华师大版-数学-八年级上册-- 命题与定理
华师大版数学八年级上册13.5《逆命题与逆定理》说课稿
华师大版数学八年级上册13.5《逆命题与逆定理》说课稿一. 教材分析华师大版数学八年级上册13.5《逆命题与逆定理》是本节课的主题。
这部分内容是在学生已经掌握了命题与定理的基础上进行学习的,是进一步引导学生深入理解数学概念,培养学生逻辑思维能力的重要内容。
逆命题与逆定理是数学中的基本概念,理解这两个概念有助于学生更好地理解命题与定理的本质。
通过学习逆命题与逆定理,学生能够更深入地理解数学的逻辑结构,提高解决问题的能力。
二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,对命题与定理有一定的了解。
但是,对于逆命题与逆定理的理解可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过实例来理解逆命题与逆定理的概念,并通过练习来巩固所学知识。
三. 说教学目标本节课的教学目标是让学生理解逆命题与逆定理的概念,能够运用逆命题与逆定理来解决问题,提高学生的逻辑思维能力。
四. 说教学重难点本节课的重难点是逆命题与逆定理的理解和运用。
学生需要通过实例来理解逆命题与逆定理的概念,并通过练习来掌握运用逆命题与逆定理的方法。
五. 说教学方法与手段在教学过程中,我会采用讲解法、示例法、练习法等教学方法。
通过讲解法,我来向学生解释逆命题与逆定理的概念;通过示例法,我来引导学生通过实例来理解逆命题与逆定理;通过练习法,我来让学生通过练习来巩固所学知识。
六. 说教学过程1.导入:我会通过一个简单的实例来导入本节课的内容,让学生初步感受逆命题与逆定理的概念。
2.讲解:我会详细讲解逆命题与逆定理的概念,并通过示例来让学生更好地理解这两个概念。
3.练习:我会给出一些练习题,让学生通过练习来巩固所学知识。
4.总结:我会对本节课的内容进行总结,让学生加深对逆命题与逆定理的理解。
七. 说板书设计板书设计如下:逆命题与逆定理逆命题:将一个命题的条件和结论互换得到的命题。
逆定理:如果一个命题的条件是另一个命题的结论,另一个命题的条件是这个命题的结论,那么这两个命题叫做逆定理。
华东师大版数学八年级上册1命题、定理与证明(2课时20张)
练习:将下列命题改写成“如果…那么…”
的情势,然后指出这个命题的题设和结论。
(1)同角的补角相等。 (2)两直线平行,同位角相等。 (3)在同一平面内,同垂直于第三条
直线的两直线平行。
分析命题“不相等的两个角不可能是对顶角” 条件: 两个角不相等
结论: 这两个角不可能是对顶角
改写成“如果……,那么……”的情势: 如果两个角不相等, 那么这两个角不可能是对顶角。
华师版八年级上学期 第13章 《全等三角形》
1.1—1.2
命题、定理与证明
概念学习:
1、能清楚地规定某一名称或术语的意义 的句子叫做定义。
2、对某一件事情作出正确或不正确的 判断的句子叫做命题。
3、命题由条件和结论两部分组成。
4、命题可以写成“如果...那么...”的情势, 在如果后写条件,在那么后写结论。
5、命题是陈说句。
概念学习:
公理
综合法
真命题
命
定理 证 明
分析法
题
反证法
假命题
证 明
举反例
反例:具有命题条件,但不具有命题结论的例子。
概念学习:
推理方向是从已知到求证的思考方法 叫做综合法.
推理方向是从求证到已知的思考方法 叫做分析法.
先假设命题不成立,从这样的假设出发, 经过推理得出和已知条件矛盾,或者与 定义、公理、定理等矛盾,从而得出假 设不成立是错误的,即所求证命题正确, 这样的思考方法叫做反证法。
A
D
证法二:
1
如图,连接BC. B
2
C
∵在△ABC中, ∠BAC +∠ABC +∠ACB =180º
在△BDC中, ∠BDC+∠1+∠2=180º
华师大版八年级上册1命题、定理与证明课件
∵ DF 平分∠ CDO,BE 平分∠ ABO(已知),
∴∠ 1= 1 ∠ CDO,∠ 2= 1 ∠ ABO(_角__平__分__线__的__定__义_ ).
2
2
∴∠ 1= ∠ 2(等量代换).
解题秘方:根据上一步的因为条件填写下一步的根据.
感悟新知
4-1. 如图, 已知: 点A,B,C 在同一条直线上.
感悟新知
知1-练
解:条件:两个角互为补角;结论:这两个角相等. 假命题. 条件:a=b;结论:a+c=b+c. 真命题. 条件:两个长方形的周长相等;结论:这两个长方
形的面积相等. 假命题.
感悟新知
知1-练
2-1. 下列命题是真命题的是( A ) A. 如果两个角不相等,那么这两个角不是对顶角 B. 如果a2=b2, 那么a=b C. 两个互补的角一定是邻补角 D. 如果两个角是同位角,那么这两个角一定相等
知2-练
感悟新知
知识点 3 命题证明的一般步骤
知3-讲
1. 证明 根据条件、定义以及基本事实、定理等,经过演绎 推理,来判断一个命题是否正确,这样的推理过程叫做 证明.
感悟新知
知3-讲
2. 命题证明的一般步骤 第一步:分清命题的条件和结论,若命题与图形有关,则
根据题意,画出图形,并在图形上标出相关的字母和符号; 第二步:根据条件、结论,结合图形,写出已知、求证; 第三步:视察图形,分析证明思路,找出证明方法; 第四步:写出证明的过程,并注明根据.
结论不成立,像这样的命题,称为假命题.
感悟新知
知1-练
例 1 把下列命题改写成“如果……,那么……”的情势: 对顶角相等; 平行于同一条直线的两条直线平行; 同角或等角的余角相等. 解题秘方:紧扣命题的结构情势进行改写.
华师版八年级数学上册作业课件(HS)第十三章 全等三角形 命题、定理与证明 第1课时 命题
(2)同一个角的两个补角相等. 解:如果两个角是同一个角的补角,那么这两个角相等
6.(4分)下列命题是真命题的是( C ) A.不相交的两条直线是平行线 B.同旁内角互补 C.对顶角的角平分线成一条直线 D.一个数能被5整除,那么这个数的末位数是0
7.(4 分)下列命题是假命题的是( B )
A.若 x<y,则 x+2 015<y+2 015 B.单项式-4x72y3 的系数是-4 C.若|x-1|+(y-3)2=0,则 x=1,y=3 D.平移不改变图形的形状和大小
两个直角 以举反例:____________.
15.把命题“平行于同一直线的两直线平行”改写成“如果……,那 么……”的形式:
___如__果__有__两__条__直__线__平__行__于__同__一__条__直__线__,__那__么__这__两__条__直__线__互__相__平__行_____. 16.对于同一平面内的三条直线a,b,c,给出下列五个论断:①a∥b; ②b∥c;③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,一个论断为 结论,组成一个你认为正确的命题: ____如__果__a_∥__b_,__b_∥__c_._那__么__a_∥__c(_答__案__不__唯__一__)______.
三、解答题(共32分) 17.(12分)写出下列各命题的条件和结论: (1)如果x=0,那么xy=0; 解:条件是x=0,结论是xy=0 (2)如果两条直线相交,那么它们只有一个交点; 解:条件是两条直线相交,结论是它们只有一个交点 (3)互补的两个角是邻补角; 解:条件是两个角互补,结论是它们是邻补角 (4)过一点有且只有一条直线与已知直线垂直. 解:条件是过一点作已知直线的垂线,结论是有且只有一条直线垂直 于已知直线
华东师大版数学八年级上册-13.1 命题、定理与证明 课件 优秀课件PPT
你能举出一些命题吗? 举出一些不是命题的语句.
练一练
下列句子哪些是命题?是命题的,指出
ቤተ መጻሕፍቲ ባይዱ
是真命题还是假命题?
1、猴子是动物的一种; 是 真命题
2、负数都小于零;
是 真命题
3、画一条直线;
不是
4、四边形都是正方形;
是 假命题
5、今天会下雨吗?
不是
(√)
(4)如果a2=b2,那么a=b
(×)
(5)一个锐角与一个钝角的和等于一个平角。 (×)
判断一件事情是正确或错误的语句,叫做命题。
命题: 判断一件事情正确或者错误的句子叫做命题。
命题的分类:
正确的命题称为真命题,错误的命题称为假命题。
反之,如果一个句子没有对某一件事情作出 任何判断,那么它就不是命题。
6、内错角相等,两直线平行;是 真命题
7、对顶角相等;
是 真命题
8、所有的等边三角形都全等;是 假命题
9、美丽的天空。
不是
观察下列命题,你能发现这些命题有什么共同的结构特征?
(1)如果两个角是对顶角,那么 这两个角相等;
(2)如果一个图形是三角形,那么它的外角和等于360°
(3)如果两直线平行,那么同位角相等;
(2)互为余角的两个角的和等于90°; 如果两个角互为余角,那么它们的和等于90°
(3)全等三角形的对应角相等; 如果两个三角形全等,那么它们的对应角相等。
(4)同角(或等角)的余角相等; 如果两个角是同角(或等角)的余角, 那么它们相等。
例1:将命题“三个角都相等的三角形是等边三角形”
改写成“如果……那么……”的形式,
华东师大版八年级数学上册上课课件 第13章 全等三角形 命题、定理与证明 定理与证明
证明:∵AB∥CD (已知),
∴∠BEF=∠CFE (两直线平行,内错角相等).
∵EM 平分∠BEF,FN 平分∠EFC (已知),
∴∠2=
12∠BEF,∠1=
1 2
∠CFE(角平分线的定义).
∴∠1=∠2(等量代换).
∴EM ∥FN (内错角相等,两直线平行).
练习
1. 把下列定理改写成“如果……,那么……”的形式, 指出它们的条件和结论,并用演绎推理证明题(1) 所示的定理:
习题13.1
1. 判断下列命题是真命题还是假命题,若是假命题, 举一个反例加以说明: (1)两个锐角的和等于直角; (2)两条直线被第三条直线所截,同位角相等.
解: (1)假命题,例: 50°和20°是两锐角, 但50°+20°=70°≠ 90°. (2)假命题,例:如图,直线 AB、CD 被 EF 所截,但 AB 不平行于 CD ,此时,∠EMB≠∠END .
(2)如图所示,一位同学在画图时发现: 三角形三条 边的垂直平分线的交点都在三角形的内部.于是他得出 结论:任何一个三角形三条边的垂直平分线的交点都在 三角形的内部.他的结论正确吗?
(3)我们曾经通过计算四边形、五边形、六边形、 七边形等的内角和,得到一个结论: n 边形的内角和 等于 ( n -2) ×180°. 这个结论正确吗?是否有一个 多边形的内角和不满足这一规律?
课堂小结
基本事实
定义 常见的几条基本事实
定理与 证明
定理
定义 与基本事实的区别
证明
定义 证明的一般步骤
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
定理:
数学中,有些命题可以从基本事实或其他真命题出发, 用逻辑推理的方法判断它们是正确的,并且可以作为进一步 判断其他命题真假的依据,这样的真命题叫做定理.
13.5.1.互逆命题与互逆定理课件 2024-2025学年 华东师大版数学八年级上册
(3)内错角相等. 【自主解答】(3)内错角相等的逆命题是相等的角是内错角,逆命题是假命题,原 命题是假命题; (4)若两个角相加等于180°,则这两个角互为邻补角. 【自主解答】(4)若两个角相加等于180°,则这两个角互为邻补角的逆命题是若 两个角互为邻补角,则两个角相加等于180°,逆命题是真命题,原命题是假命题.
本课结束
【技法点拨】 互逆命题、互逆定理的区别与联系
命题 定理
是否有逆命题/逆定理
一定有逆命题
不一定有逆定理(定理的逆 命题是真命题且该逆命题 作为定理使用)
原命题 逆命题 原定理
逆定理
真假判断 真或假 真或假 真命题
真命题
素养 当堂测评
1.(4分·推理能力)下列命题的逆命题是假命题的是( D ) A.直角三角形的两个锐角互余 B.两直线平行,内错角相等 C.三边对应相等的三角形是全等三角形 D.若x=y,则x2=y2 2.(4分·推理能力)下列三个定理中,存在逆定理的有______个. ( C ) ①有两个角相等的三角形是等腰三角形;②全等三角形的周长相等;③同位角相 等,两直线平行.
【举一反三】 1.(2024·怀化期中)下列说法错误的是( B ) A.任何命题都有逆命题 B.任何定理都有逆定理 C.命题的逆命题不一定是真命题 D.定理的逆定理一定是真命题
2.下列定理中,哪些有逆定理?如果有逆定理,写出它的逆定理. (1)全等三角形的对应边、对应角分别相等. 【解析】(1)逆命题是:边、角分别对应相等的两个三角形全等,是真命题, 故原定理有逆定理:边、角分别对应相等的两个三角形全等. (2)三角形的两边之和大于第三边. 【解析】(2)逆命题为:如果三条线段中,任意两条线段长度之和大于第三条线段 的长度,那么这三条线段能围成三角形,是真命题, 故原定理有逆定理:如果三条线段中,任意两条线段长度之和大于第三条线段的 长度,那么这三条线段能围成三角形.
华师大版数学八年级上册13.5《逆命题与逆定理》教学设计
华师大版数学八年级上册13.5《逆命题与逆定理》教学设计一. 教材分析《逆命题与逆定理》是华师大版数学八年级上册第13.5节的内容。
本节主要让学生了解逆命题和逆定理的概念,理解它们之间的关系,并能够运用逆定理判断命题的真假。
教材通过实例引入逆命题和逆定理的概念,接着给出了它们的定义和性质,最后通过例题和练习题来巩固所学知识。
二. 学情分析学生在学习本节内容前,已经学习了命题、定理和证明等基本知识,具备了一定的逻辑思维能力。
但逆命题和逆定理的概念较为抽象,学生可能难以理解和接受。
因此,在教学过程中,需要通过具体实例和生活中的问题来引导学生理解和掌握逆命题和逆定理。
三. 教学目标1.了解逆命题和逆定理的概念,理解它们之间的关系。
2.能够写出给定命题的逆命题,并能判断其真假。
3.能够运用逆定理判断命题的真假。
4.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.逆命题和逆定理的概念。
2.判断逆命题的真假。
3.运用逆定理判断命题的真假。
五. 教学方法1.实例引入:通过具体实例引导学生理解和掌握逆命题和逆定理。
2.小组讨论:让学生分组讨论,共同探索逆命题和逆定理的关系,提高学生的合作能力。
3.练习巩固:通过大量练习题,让学生巩固所学知识,提高解题能力。
4.引导思考:引导学生思考生活中的问题,培养学生解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示逆命题和逆定理的定义和性质。
2.练习题:准备适量练习题,用于巩固所学知识。
3.实例:准备生活中的实例,用于引导学生理解和掌握逆命题和逆定理。
七. 教学过程1.导入(5分钟)通过生活中的实例,如“如果一个人是学生,那么他一定是人类。
”引导学生思考,让学生知道一个命题可以分为题设和结论两部分,并且题设和结论可以互换位置。
2.呈现(10分钟)讲解逆命题和逆定理的概念,给出它们的定义和性质。
让学生理解逆命题是将原命题的题设和结论互换位置得到的新命题,而逆定理是如果一个命题的逆命题是真命题,那么这个命题也是真命题。
华师大版八年级数学上册《命题、定理与证明2.定理与证明》优课件
You made my day!
我们,还在路上……
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年2月14日星期一2022/2/142022/2/142022/2/14 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年2月2022/2/142022/2/142022/2/142/14/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/2/142022/2/14February 14, 2022 4、享受阅读快乐,提高生活质量。2022/2/142022/2/142022/2/142022/2/14
13.1.2 定理与证明
2.学会证明 填空,把下列解题过程补充完整. 如图 13-1-4 所示,直线 A⊥直线 C,直线 B⊥直线 C, 判断∠1 和∠2 是否相等?并说明理由.
图 13-1-4
13.1.2 定理与证明
解:∠1 和∠2 相等.理由如下:∵A⊥C,B⊥C(已知), ∴A∥B在(__同一平面内,垂直于同一条直线的两条直__线),平行
13.1.2 定理与证明
解:因为 AE∥BC(已知), 所以∠EAC=∠C(__ 两直线平行,内错角相等 __). 因为∠C=30°(三角板角的度数), 所以∠EAC=30°(等量代换). 因为∠DAE=45°(三角板角的度数), 所 以 ∠ DAF = ∠DAE - ∠EAC = 45 ° - 30 ° = 15 ° ( 角 的 和 差). 因为∠AFD+∠ADE+∠DAF=180°(三__角形内角和定_理), 所以∠AFD=180°-∠ADE-∠DAF=180°-90°-15° =75°(等式的性质). 你认为所填写的两个依据都是些什么命题?它们的共同作用 是什么? ◆知识链接——[新知梳理]知识点一
13.1 命题、定理与证明 课件 2024-2025学年 华东师大版数学八年级上册
本课结束
【举一反三】 1.(2024·来宾期中)下列命题中,是真命题的是( B ) A.相等的角是对顶角 B.垂线段最短 C.三角形的外角和等于180° D.三角形的外角大于它的内角 2.(2024·吴忠期末)命题“等角的余角相等”的题设是____两__个__角__是_等__角__的__余__角_____, 结论是___它__们__相__等_____.
2.下列说法正确的是( C ) A.命题是定理,定理是命题 B.命题不一定是定理,定理不一定是命题 C.真命题有可能是定理,假命题不可能是定理 D.定理可能是真命题,也可能是假命题
3. 如 图 , 有 如 下 四 个 论 断 : ① AC ∥ DE; ② DC ∥ EF; ③ CD 平 分 ∠ BCA; ④ EF 平 分 ∠BED,请你选择四个论断中的三个作为条件,余下的一个作为结论,构成一个正 确的数学命题并证明它.
5.(8分·推理能力、几何直观)如图,有下列三个条件:①DE∥BC;②∠1=∠2; ③∠B=∠C. (1)若从这三个条件中任选两个作为题设,另一个作为结论, 组成一个命题,一共能组成几个命题?请你都写出来; 【解析】(1)一共能组成三个命题: ①如果DE∥BC,∠1=∠2,那么∠B=∠C; ②如果DE∥BC,∠B=∠C,那么∠1=∠2; ③如果∠1=∠2,∠B=∠C,那么DE∥BC.
13.1 命题、定理与证明 1.命题 2.定理与证明
基础 主干落实 重点 典例研析 素养 当堂测评
课时学习目标 1.了解命题的概念,理解命题的结构,会区分命题的条件 和结论,会将命题改写成“如果……,那么……”的形式 2.掌握已学的5个基本事实,理解定理的概念 3.理解证明的概念,掌握推理证明的格式,并会证明简单 命题的真假
2.五个基本事实: (1)两点确定一条直线; (2)两点之间,__线__段__最__短__; (3)过一点__有__且__只__有__一__条__直__线__与已知直线垂直; (4)过直线外一点__有__且__只__有__一__条__直__线__与这条 直线平行; (5)两条直线被第三条直线所截,如果同位角 相等,那么这两条直线_平__行___.
课件华东师大版数学八年级上册-13 命题、定理与证明 -课时ppt课件
(3)我们曾经通过计算四边形、五边形、六
2、边会运用形公理、、定理七进行简边单的真形命题等的证明的。 内角和,得到一个结论:n
∴∠1= ∠AOB, ∠2= ∠BOC
边形的内角和等于(n-2)×180°。 已知:如图,∠AOB、∠BOC互为邻补角,
6) 平行线的判定定理:
(3)我们曾经通过计算四边形、五边形、六边形、七边形等的内角和,得到一个结论:n边形的内角和等于(n-2)×180°。
第二课时 公理(正确性由实践总结)
3、过一点有且只有一条直线与已知直线垂直; 2、会运用公理、定理进行简单的真命题的证明。 6) 平行线的判定定理: 两直线平行,内错角相等. 1、举例说明一些公认的真命题(基本事实); 经过分析,找出由已知推出求证的
督预示标
• 学习目标
• 1、什么是公理?什么是定理? • 2、会运用公理、定理进行简单的真命题的
因此: 通过这种方式得到的结论,还需进一步加以 证实。
证明的定义
根据条件、定义及基本事实、定理等,经 过演绎推理,来判断一个命题是否正确, 这样的推理过程叫做证明。
例如,有了“三角形的内角和等于180°”这条 定理后,我们还可以证明刻画直角三角形的两 个锐角之间的数量关系的命题:直角三角形的 两个锐角互余.
于是,他根据上面的结果并利用质数表得出结论:
从质数2开始,排在前面的任意多个质数的乘积加1一 定也是质数。
他的结论正确吗? 不正确
(2)如下图所示,一位同学在画图时发现: 三角形三条边的垂直平分线的交点都在三角形 的内部。于是他得到结论:任何一个三角形三 边的垂直平分线的交点都在三角形的内部。
他的结论正确吗? 不正确
证明。
自学梳理
• 请同学们阅读课本55--57页的内容,完成 下列问题。
华东师大版八年级数学上册第13章《全等三角形》全章课件(共285张PPT)
练习:将下列命题改写成“如果…那么…”
的形式,然后指出这个命题的题设和结论。
(1)同角的补角相等。 (2)两直线平行,同位角相等。 (3)在同一平面内,同垂直于第三条
直线的两直线平行。
分析命题“不相等的两个角不可能是对顶角” 条件: 两个角不相等
结论: 这两个角不可能是对顶角
改写成“如果……,那么……”的形式: 如果两个角不相等, 那么这两个角不可能是对顶角。
观察 2、下列各图中的两个三角形是全等形吗? 思考
A
D
B A
C
E
M C
F S
O
O
B
D
N
T
经过平移、旋转、翻折等位移变换
得到的三角形与原三角形全等。
1、能够完全重合的两个三角形,叫做
全等三角形。
A
D
B
CE
F
2、把两个全等的三角形重叠到一起时, 重合的顶点叫做对应顶点,重合的边叫做 对应边,重合的角叫做对应角。
强调:
观察、猜想、度量、实验得 出的结论未必都正确;
一个命题的真假,常常需要 进行有理有据的推理才能作出正 确的判断,这个推理过程叫做命 题的证明.把经过证明的真命题 叫做定理.
巩固:
下列语句中哪些是命题?请判断其中命题 的真假,并说明理由。
(1)每单位面积所受到的压力叫做压强. (2)两个奇数的和是偶数. (3)两个无理数的乘积一定是无理数. (4)偶数一定是合数吗? (5)连结AB. (6)不相等的两个角不可能是对顶角.
3、全等三角形的表示法:
A
D
B
CE
F
表示图中的△ABC和△DEF全等:
记作△ABC≌△DEF, 读作△ABC全等于△DEF.
华东师大版八年级上册数学教学设计《互逆命题与互逆定理》
华东师大版八年级上册数学教学设计《互逆命题与互逆定理》一. 教材分析华东师大版八年级上册数学《互逆命题与互逆定理》一课,是在学生学习了命题与定理的基础上进行的。
本节课的主要内容是让学生理解互逆命题的概念,掌握互逆定理的证明过程,并能运用互逆定理解决实际问题。
教材通过丰富的例题和练习,引导学生探索互逆命题和互逆定理的规律,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了命题与定理的基本概念,具备了一定的逻辑思维能力。
但是,对于互逆命题和互逆定理的理解和应用,还需要进一步的引导和培养。
因此,在教学过程中,教师需要关注学生的学习需求,针对学生的实际情况,采取适当的教学策略,帮助学生理解和掌握互逆命题和互逆定理。
三. 教学目标1.知识与技能目标:让学生理解互逆命题的概念,掌握互逆定理的证明过程,能运用互逆定理解决实际问题。
2.过程与方法目标:通过探索互逆命题和互逆定理的规律,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:互逆命题的概念,互逆定理的证明过程。
2.难点:互逆定理在实际问题中的应用。
五. 教学方法1.情境教学法:通过设置情境,引导学生主动探索互逆命题和互逆定理的规律。
2.小组合作学习:学生进行小组讨论和合作,培养学生的团队合作精神。
3.案例教学法:通过分析实际案例,帮助学生理解互逆定理的应用。
六. 教学准备1.教学PPT:制作包含互逆命题和互逆定理的定义、证明过程和应用实例的PPT。
2.教学案例:准备一些实际问题,用于引导学生运用互逆定理解决。
3.学习材料:为学生准备相关的学习材料,以便学生在课堂上进行自主学习。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何利用已学的命题和定理来解决这些问题。
通过问题的讨论,激发学生的学习兴趣,引出本节课的主题——互逆命题与互逆定理。
八年级数学上册第十三章全等三角形13.5逆命题与逆定理课件新版华东师大版
学习目标
• 1.理解原命题、逆命题、互逆命题、逆定理、互逆 定理的概念,通过比较,提高学生的辨析与表达能 力;
• 2.通过独立思考、小组合作,培养学生说理有据, 有条理地表达自己想法的良好意识.
问题4:如何判断一个命题的逆命题是假命题? 例如原命题“对顶角相等”是真命题,而它的逆命题“相等的角是对顶角” 为假命题; 【答案】举反例.
归纳总结: 一般来说,在两个命题中,如果第一个命题的题设是第二个命题的结论,而 第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题,如 果把其中一个命题叫做原命题,那么另一个命题就叫做它的逆命题;逆命题 是一个命题,而互逆命题指的是两个命题之间的关系.
总结升华
课堂小结
本节课主要学习了原命题、逆命题、互逆命题以及互逆定理的概念与区 别; 要学会给定一个命题或定理,能够判断其逆命题的真假; 本节课主要采用了类比的数学思想方法.
问题2.如何判断定理的逆命题能否成为原定理的逆定理?
【答案】 (1)逆命题:三个内角都相等的三角形是等边三角形;
它是一个真命题,故可成为原定理的逆定理;
(2)逆命题:各角对应相等的两个三角形是全等三角形; 它是一个假命题,故不能成为原定理的逆定理.
规律方法总结: 每一个命题都有逆命题,而一个定理不一定有逆定理.定理和逆定理都是 真命题, 而命题和逆命题却不一定都是真命题.
(4)逆命题:如果
a b ,那么 a b
题设: a b , 结论: a b, 假命题.
规律方法总结: 分清原命题的题设与结论是写出逆命题的前提; 原命题正确,它的逆命题不一定正确.
八年级数学上册第13章全等三角形13.1命题定理与证明1命题说课稿华东师大版.doc
13.1 命题、定理与证明(第一课时)一、说教材1、教材的地位和作用命题是数学教学的基本依据,经过推理证实的命题如定理可以作为继续推理的依据,所以认识命题的定义、结构、真假是数学学习的主要任务之一。
而正确找出命题的题设和结论,是基础,特别是题设和结论不明显的命题,和难以判断真假的命题,是学习的重点。
本节课将通过一些具体的例子来了解基本概念,不必深究,不钻难题。
二、说教学目标知识与技能目标:了解命题、真命题、假命题、定理的含义能识别真假命题。
会区分命题的题设和结论。
过程与方法目标:通过命题的真假,培养分类思想。
通过命题的构成,培养学生分析法。
通过命题的构成,培养语言推理技能。
情感态度与价值观目标:通过命题、定理的具体含义,让学生体会到数学的严谨性。
通过学习命题真假,培养学生尊重科学、实事求是的态度。
通过学习命题的构成,使学生获得成功的体验,锻炼克服困难的意志,建立自信心。
三、教学重点:定义、命题、公理、定理的概念;四、教学难点:判定什么定义、命题、定理、公理,及找出命题的题设和结论。
五、说教法学法通过“目标定向,自主合作”,以实现学习目标为目的,以问题为载体给学生提供探索的空间,引导学生积极探索。
教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。
本节课的学习任务是让学生了解命题的概念,能区分命题的题设和结论,并初步认识真、假命题。
因此就内容看来,可能会较为枯燥、单调;因此在教学设计时,根据不同的学习任务进行了不同的教学设计。
在命题的概念教学中,与以往直接的告知学生概念不同,采用了让学生对两组语句进行比较、区别,然后再学生充分讨论的感性认识基础上,在提出命题的概念,能有效促进学生对命题概念的理解,然后再通过学生举例来加强巩固概念。
在命题的构成这一环节中,通过一个问题的思考与探讨,让学生了解到命题是由题设和结论两部分构成,同时感受到命题的常用表述形式,然后教师再加以总结分析,使学生对知识的认识更加透彻。
最新华师版八上数学 13.1 命题、定理与证明 上课课件(共43张PPT)
(4)平行于同一条直线的两条直线互相平行.
真命题
3. 如图,从① ∠1= ∠2;②∠C=∠D ;③∠A =∠F 三个条件
中选出两个作为已知条件,另一个作为结论所组成的命题中,
这些都是公认的真命题,我们把它视为基本事实.
基本事实:
公认的真命题视为基本事实. 它们是用来判断其他命题真假的原始依据,即出发点.
定理:
数学中,有些命题可以从基本事实或其他真命题出发, 用逻辑推理的方法判断它们是正确的,并且可以作为进一步 判断其他命题真假的依据,这样的真命题叫做定理.
试一试
1. 下列命题中属于基本事实的是( C ) A. 内错角相等,两直线平行 B. 三角形的外角和等于 360° C. 两点确定一条直线 D. 直角三角形两锐角互余
改写:直角都相等. 如果两个角都是直角,那么这两个角相等.
例1 把命题“三个角都相等的三角形是等边三角形” 改写成“如果……,那么……”的形式,并分别指出 该命题的条件与结论.
解:这个命题可以写成“如果一个三角形的三个角 都相等,那么这个三角形是等边三角形”.该命题的条件 是“一个三角形的三个角都相等”,结论是“这个三角 形是等边三角形”.
命题的分类 命题分为真命题和假命题. 有些命题,如果条件成立,那么结论一定成立, 像这样的命题称为真命题; 而有些命题,条件成立时,不能保证结论总是正确, 也就是说结论不成立,像这样的命题,称为假命题.
两直线平行,内错角相等. 真命题 同位角相等. 假命题
真假命题的判断:
(1)要判断一个命题是真命题,可以用演绎推理加以论证. (2)要判断一个命题是假命题,只要举出一个例子,说明 该命题不成立,即只要举出一个符合该命题条件而不符合 该命题结论的例子就可以了.
华师大版数学八年级上册13.1《命题、定理与证明》教学设计
华师大版数学八年级上册13.1《命题、定理与证明》教学设计一. 教材分析《命题、定理与证明》是华师大版数学八年级上册第13.1节的内容。
本节内容是学生学习数学证明的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。
本节内容主要包括命题、定理与证明的定义,以及如何写出完整的证明过程。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数学概念和运算规则有一定的了解。
但学生在逻辑思维和证明方面可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,引导学生逐步理解和掌握证明的方法。
三. 教学目标1.了解命题、定理与证明的定义,理解它们之间的关系。
2.学会写出完整的证明过程,培养学生的逻辑思维能力。
3.通过对本节内容的学习,使学生能够运用证明的方法解决实际问题。
四. 教学重难点1.重点:命题、定理与证明的定义,证明过程的写法。
2.难点:理解命题的假设和结论,掌握证明的方法。
五. 教学方法1.采用问题驱动法,引导学生主动探究命题、定理与证明的关系。
2.通过实例分析,让学生了解证明的过程和方法。
3.利用小组合作学习,培养学生团队合作精神,提高学生的逻辑思维能力。
六. 教学准备1.准备相关的教学PPT,内容包括命题、定理与证明的定义及示例。
2.准备一些实际的数学问题,用于引导学生进行证明练习。
3.准备黑板,用于板书重要的概念和证明过程。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际的数学问题,引导学生思考如何用数学语言来描述这些问题,从而引入命题的概念。
2.呈现(10分钟)通过PPT讲解命题、定理与证明的定义,让学生理解它们之间的关系。
同时,给出一些简单的命题和定理,让学生初步了解证明的过程。
3.操练(10分钟)让学生分组讨论,尝试对给出的命题进行证明。
教师巡回指导,解答学生的问题,并引导学生写出完整的证明过程。
4.巩固(10分钟)让学生自主完成一些证明练习题,检验学生对证明方法的掌握程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东师大版 §19.1
想一想
你玩过拼图游戏吗?那是用许多各种颜色的小拼板拼成一 幅幅美丽的图画.那些拼板有不少是形状相同、大小一样的.它 们相互之间有什么关系?发挥你的智慧,想想看!
想一想
观察下列图形,找出其中的平行四边形、梯形
(1) (2)
(3)
(4)
(2)(3) (5)
(1) (6)
想一想
1、错误的命题也是命题。 如:“3〈 2”是一个命题 2、命题必须是对某种事情作出判断,如 问句,几何的作法等就不是命题。
指出下列命题哪些是真命题,哪些是假命题?
(1)同位角相等 (2)两直线平行,同旁内角互补 (3)在同圆或等圆中,圆心角的度数等于圆周角的度 数的一半。
(4)过圆心的线段是直径 (5)若a<b,则a)
(7)
(8)
一般地,能明确指出概念含义或特征的句子, 称为定义. 请给它们下定义
直角三角形: 有一个角为直角的三角形叫直
角三角形.
锐
角: 大于00且小于900的角叫锐角.
圆 周 角: 顶点在圆上,两边与圆相交的角 叫圆周角.
看下面的句子: (1)对顶角相等 (2)内错角相等 (3)如果两直线被第三直线所截,那么同位角相等 (4)3<2 (5)三角形的内角和等于1800 (6)x>2 能判断真假吗?哪能是正确的?哪些是错误的?
(假)
想一想
体会.分享
说能出你这节课的心得和体会 让大家与你分享吗?
B
题设是:
结论是:
1
2
A
C
命题
如果…
若(x-2)(x-1)=0
那么…
则:x=1
题设
结论
提示:这可 是假命题哟
添加“如果”、“那么”后,命题的意义 不能改变,改写的句子要完整,语句要通顺, 使命题的题设和结论更明朗,易于分辨,改写 过程中,要适当增加词语,切不可生搬硬套。
一、把下面的命题改写成“如果……那么……”的形 式。 1、两直线平行,同旁内角互补。 2、同圆的半径相等。 3、有两个角相等的两个三角形相似。 4、等角的补角相等。 5、圆是轴对称图形,又是中心对称图形。
解:
(6)不能. (1) 、(3)、(5)为正确,(2)、(4)是错误的。
你能举出一些老师在教学上重点提示的一些不确
切的定义吗?
定义的严密性
注意!
正确的命题 称为真命题
错误的命题 称为假命题
这样可以 判断它是 正确的或 是错误的 句子叫做 命题.
看下面的句子,哪些是真命题,哪些是假命题?
(1)对顶角相等 (真) (2)内错角相等 (假) (3)如果两直线被第三直线所截,那么同位角相等 (真) (4)3<2 (假) (5)三角形的内角和等于1800 (真) (6)x>2 (不是命题)
判断下列命题的真假:
细心!
1.相等的两角是对顶角。 2.若XY=0,则X=0。 3.圆的切线垂直于圆的半径。 4.等腰三角形的底角必是锐角。 5.正数与负数的和仍是负数。 6.一个数的平方必是正数。
(假) (假) (假) (真) (假) (假)
7.一个三角形的两个角、一边和另一三角形的两个角、
一边分别相等的三角形全等。
解:真命题有(2)、(5)
假命题有(1)、(3)、(4)
把下列命题改写成“如果,那么”的形 式,并分别指出命题的题设与结论.
1、对顶角相等。
2、在一个三角形中,等角对等边。
解:1、如果两个角是对顶角,那么, 这两个角相等。
题设是:
结论是:
2、如果在一个三角形中有两个角 相等,那么这两个角
所对的边也相等。