特性阻抗衰减指标

合集下载

漏泄同轴电缆的主要性能指标及测量

漏泄同轴电缆的主要性能指标及测量

“ ’楷 I 绀 构 爪 意 VJ ’ U缆
1拶 套
2缀 包挣 锻 纹 外 譬体 3泡 沫羰 己蹲 绝 缘餐
盖 ,以达到移动通信 畅通 的 目的。
其 绝缘 采用 高物理 发泡 的均匀 细密 封闭 的微泡结



但漏泄量不同的漏泄 电缆总损耗示意图。假定电缆a 的辐 射量和传输损耗都大于电缆b ,可以看出 ,随着距离的增 加 ,电缆a 的总损耗将超过电缆b ,而波动也 比较大 。 在实际应用 中,我们需要选取最小 的系统损耗 以获
导致漏泄 电缆传输衰减有三个 因素 :导体损耗 、介 质损耗 和漏泄损耗。漏泄 电缆纵 向传输衰减可以用如下
运而生 。


— 斤 L
l ≮ 4
1 护套 2缀餐冲j激绞争簿倦 } 3泡沫鬻之 缝缭袋 4陡学棒
二 、漏 泄 同轴 电缆简 介
漏泄 同轴 电缆既能传输信号 ,又具有天线功能 。这
种 电缆一般 是用簿铜皮作为外导体 ,并在同轴管外导体
上开设一系列 的槽孑 或隙缝 ,将受控的电磁 波能量沿线 L 路均匀的辐射 出去及接收进来 ,实现对 电磁场盲 区的覆
图5给 定转 速8 0rm i 的 电流 实测 波形 0 / 时 n
六 、结 论
文章利用MalbSmui 软件对磁场定 向控制系统 ta/i l k n
信息系统工程 l 0 1 0 0 1 7 1 1. 3 2 2
强度的特征参数。耦合损耗其定义见公式 ( )。 2 由于某一处漏泄 电缆内的传输功率等 于电缆输入功
1 6 信息系统工程 J2 1. . 3 01 0 0 12
A A MI E E R H 学术研究 C DE CR S A C

RF中的阻抗匹配和50欧姆是怎么来的?

RF中的阻抗匹配和50欧姆是怎么来的?

RF中的阻抗匹配和50欧姆是怎么来的?为什么很多射频系统或者部件中,很多时候都是用50欧姆的阻抗(有时候这个值甚至就是PCB板的缺省值) ,为什么不是60或者是70欧姆呢?这个数值是怎么确定下来的,背后有什么意义?本文为您打开其中的奥秘。

我们知道射频的传输需要天线和同轴电缆,射频信号的传输我们总是希望尽可能传输更远的距离,为了传输更远的距离,我们往往希望用很大的功率去发射信号便千覆盖更大的通信范围。

可是实际上,同轴电缆本身是有损耗的,和我们平常使用得导线—样,如果传输功率过大,导线会发热甚至熔断。

这样,我们就有—种期望,试匿寻找一种能够传输大功率,同时损耗又非常小的同轴电缆。

A BA: 塑料绝缘层B: 屏蔽层(信号回路)D C: 电介质D: 内窃体(信引专输大概在1929年,贝尔实验室做了很多实验,最终发现符合这种大功率传输,损耗小的同轴电缆其特征阻抗分别是30欧姆和77欧姆。

其中,30欧姆的同轴电缆可以传输的功率是最大的,77欧姆的同轴电缆传输信号的损耗是最小的。

30欧姆和77欧姆的算术平均值为53.5欧姆,30欧姆和77欧姆的几何平均值是48欧姆,我们经常所说的50欧姆系统阻抗其实是53.5欧姆和48欧姆的—个工程上的折中考虑,考虑最大功率传输和最小损耗尽可能同时满足。

而且通过实践发现,50欧姆的系统阻抗,对千半波长偶极子天线和四分之—波长单极子天线的端口阻抗也是匹配的,引起的反射损耗是最小的。

我们常见的系统中,比如电视TV和广播FM接收系统中,其系统阻抗基本上都是75欧姆,正是因为75欧姆射频传输系统中,信号传输的损耗是最小的,TV和广播FM接收系统中,信号的传输损耗是重要的考虑因素。

而对千带有发射的电台而言,50欧姆是很常见的,因为最大功率传输是我们考虑的主要因素,同时损耗也比较重要。

这就是为什么我们的对讲机系统中,经常看到的都是50欧姆的参数指标。

如果说阻抗匹配到50欧姆,从数学上,是可以严格做到的,但是实际应用中的任何元件,线路,导线都存在损耗,而且设计的任何系统部件都存在一定的射频带宽,所以匹配到50欧姆,工程上只要保证所有的带内频点落在50欧姆附近即可。

综合布线系统 第三章 通道传输特性及其主要技术指标

综合布线系统 第三章 通道传输特性及其主要技术指标
链路级别 最大环路 电阻 A 560 B 170 C 40 D 40
2. 特性阻抗 指链路在规定工作频率范围内对通过的信号 的阻碍能力,单位为欧姆。 与一对电线之间的距离及绝缘体的电气特性有 关,根据信号传输的物理特性,形成对信号的 阻碍作用。 包括电阻及工作频率1~100MHz内的电感阻 抗及电容阻抗。 所有铜质电缆都有一个确定的特性阻抗指 标,大小取决于电缆的导线直径和覆盖在导线 外面的绝缘材料的电介质常数,与长度无关。
第3章 通道传输特性及其主要技术指标
主要教学内容: 主要教学内容: 3.1 通道传输特性 3.2 电缆传输通道性能指标 3.3 光缆传输通道性能指标 3.4学时讲解
教学目标: 教学目标: 掌握: 掌握:电缆传输通道性能指标 了解:光纤传输通道性能指标,以及提高通道传输质量的措 了解:光纤传输通道性能指标, 施
数据传输速率 通信线路用来传输数字信号时数字通道的最重要的 指标。 指单位时间内线路中传输的二进制位的数量,是一 个表征速率的物理量,以bit/s来度量。 带宽取决于所用传输介质的质量、每一种传输介质的 精确长度及传输技术 传输速率描述的是在特定带宽下对信息进行传输的能 力 二者之间有一定的关系,这种关系与编码方式等技术 有关,不一定是一对一的关系。 在计算机网络领域,广泛使用的是数据传输速率
在计算机网络领域广泛使用的是数据传输速率电磁干扰与电磁兼容性电磁干扰emielectromagneticinterference也称为噪声指由电磁场引起的铜导线中的电噪声铜缆线网络和设备会产生电磁干扰同时铜质通信电缆中传输的信号易受电磁干扰的影响电磁干扰可以通过电感传导欧化等方式中的任何一种进入通信电缆导致信号损失光纤通信系统不易受此影响电磁兼容性emcelectromagneticcompatibility指系统发出的最小辐射和系统能经受的最大外部噪声即设备或设备系统在正常情况下运行而不会产生干扰或者扰乱其他在湘潭空间或者环境中的设备或者系统的电信号能力有两个方面

PCB生产工程阻抗制作规范

PCB生产工程阻抗制作规范

工程阻抗制作规范1.目的规范制作阻抗P C B的阻抗计算和阻抗图形设计方法,确保成品的阻抗符合规定。

2.适用范围适用于本厂客户要求阻抗控制的P C B的阻抗设计及之C A M制作的阻抗图形设计。

3.名词解释3.1特性阻抗(C h a r a c t e r i s t i c I m p e d a n c e):当一条导线与大地绝缘后,导线与大地彼此之间的阻抗。

3.2差分阻抗(D i f f e r e n t i a l I m p e d a n c e):二条平行导线与大地绝缘后的阻抗,两条导线与大地彼此之间的阻抗。

4.阻抗控制的制作规格范围一般地,对于成品产品来说,我司控制的阻抗值的规格范围为±10%,如客户又特别要求,可根据客户设计的产品结构或客户要求的阻抗规格制作。

4.1 与阻抗控制计算有关的各个材质的计算参数如下:⑴. 芯板:介电常数为4.5±0.2操作中,根据客户要求,以及产品的需要,可向板材供应商了解芯板的具体层压结构,然后依照该芯板的Prepreg配方的介电常数来计算。

⑵. 7628 PrepregA、介电常数为4.5±0.2B、压合后的介质厚度为(内层100%残铜理论值):RC%47 压合后的介质厚度为190±10UM,RC%43 压合后的介质厚度为180±15UM。

⑶. 2116 PrepregA、介电常数为4.3±0.2B、压合后的介质厚度为(内层100%残铜理论值):RC%54 压合后的介质厚度为118±10UM,RC%50 压合后的介质厚度为105±10UM。

⑷. 1080 PrepregA、介电常数为4.2±0.2B、压合后的介质厚度为(内层100%残铜理论值):RC68% 压合后的介质厚度为71±8UM,RC%62 压合后的介质厚度为65±8UM。

⑸. 当选用几种Prepreg同时压合时,则采用最高的介电常数与最低的介电常数的平均值进行计算。

滤波器测试指标

滤波器测试指标
四、阻带衰减
阻带衰减是指滤波器对不需要的频率成分的衰减能力。阻带衰减的测试指标主要包括阻带衰减系数、阻带带宽等。阻带衰减系数是指滤波器在阻带内对信号的衰减程度。阻带带宽是指滤波器在阻带内的频率范围。
滤波器的测试指标包括频率响应、幅频特性、相频特性和阻带衰减。通过对这些指标的测试,可以评估滤波器的性能表现,从而选择合适的滤波器应用于具体的信号处理任务中。在实际应用中,需要根据具体需求和信号特点选择合适的滤波器,并对其进行测试和验证,以确保其性能符合要求。
滤波器测试指标
滤波器是信号处理中常用的一种工具,用于对信号进行滤波处理,以滤除不需要的频率成分或增强特定频率成分。滤波器的测试指标是评估其性能表现的标准,包括滤波器的频率响应、幅频特性、相频特性、群延迟、阻带衰减等。
一、频率响应
频率响应是指滤波器对不同频率信号的响应能力。滤波器的频率响应通常以幅频特性和相频特性来描述。幅频特性是指滤波器对不同频率信号的幅度衰减或增益程度。相频特性是指滤波器对不同频率信号的相位变化情况。频率响应的测试指标主要包括通频带、截止频率、衰减系数等。
二、幅频特性
幅频特性是指滤波器对不同频率信号的幅度衰减或增益程度。幅频特性的测试指标主要包括通频带、增益平坦度、通频带波动等。通频带是指滤波器能够有效传递信号的频率范围。增益平坦度是指滤波器在通频带内的增益变化情况。通频带波动是指滤波器在通频带内的增益在频率信号的相位变化情况。相频特性的测试指标主要包括群延迟、相位线性度等。群延迟是指滤波器对不同频率信号的延迟时间。相位线性度是指滤波器对不同频率信号的相位变化是否线性。

fluke性能指标

fluke性能指标
an :是指在链路中任何两对线之间测得的近端串扰损耗。a :是指通道信号衰减。近端串扰和衰减的符合上述3、4的测试要求。ACR的值应符合下表4的要求。
表4 最小ACR限值
6) 直流环路电阻
任何导线都存在电阻,当信号在通道中传输时,会有一部分信号转变热而损耗,测量直流环路电阻时,应在线路的远端短路,在近端测量直流环路电阻。测量的值应与电缆中导线的长度和直径相符合。通道的每对线的直流环路电阻应低于下表5的数值。
2) 结构回波损耗(Structural Return Loss)
它是衡量通道一致性的。通道的特性阻抗随着信号频率的变化而变化。如果通道所用的线缆和相关连接硬件阻抗不匹配,就会造成信号反射。被反射到发送端的一部分能量会形成干扰。导致信号失真,这就降低综合布线的传输性能。在综合布线的任一接口测得平衡电缆回波损耗应符合或超过下表1的数据。
△ = 6dB+10㏒(n+1)dB
式中 n :电缆中相邻的对称电缆单元数。
5) 衰减/串扰比(Attenuation to Crosstalk Ratio,缩写ACR)
它是在同一频率下链路的信号与近端串扰损耗的比值。这是确定可用带宽的一种方法。通道衰减/串扰比越大越好。
ACR = an (dB)- a (dB)
对所有光纤通道来说,不管工作波长或光纤纤芯大小,光的反射损耗是一个重要指标。光纤最小模态带宽指标应能支持带宽高速应用,一些低带宽的光纤通道通常不适合高速应用,它可以用在短距离的一些特殊系统上。多模光纤的带宽用频率来表示,光纤的带宽通常是不测量的。然而,其它如光纤损耗和反射损耗测试是需要的。
1) 光纤衰减
表3 线对间最小近端串音衰减限值
注: 1 所有其它音源的噪声应比全部应用频率的串音噪声低10dB。

双绞线性能指标

双绞线性能指标

一、概述双绞线(TP:Twisted Pairwire)是综合布线工程中最常用的一种传输介质。

双绞线由两根具有绝缘保护层的铜导线组成。

把两根绝缘的铜导线按一定密度互相绞在一起,可降低信号干扰的程度,每一根导线在传输中辐射的电波会被另一根线上发出的电波抵消。

双绞线一般由两根22~26号绝缘铜导线相互缠绕而成。

如果把一对或多对双绞线放在一个绝缘套管中便成了双绞线电缆。

在双绞线电缆(也称双扭线电缆)内,不同线对具有不同的扭绞长度,一般地说,扭绞长度在38.1cm至14cm内,按逆时针方向扭绞,相临线对的扭绞长度在12.7cm以上。

与其他传输介质相比,双绞线在传输距离、信道宽度和数据传输速度等方面均受到一定限制,但价格较为低廉。

目前,双绞线可分为非屏蔽双绞线(UTP:Unshilded Twisted Pair)和屏蔽双绞线(STP:Shielded Twisted Pair)。

虽然双绞线主要是用来传输模拟声音信息的,但同样适用于数字信号的传输,特别适用于较短距离的信息传输。

在传输期间,信号的衰减比较大,并且产生波形畸变。

采用双绞线的局域网的带宽取决于所用导线的质量、长度及传输技术。

只要精心选择和安装双绞线,就可以在有限距离内达到每秒几百万位的可靠传输率。

当距离很短,并且采用特殊的电子传输技术时,传输率可达100Mbps~155Mbps。

由于利用双绞线传输信息时要向周围幅射,信息很容易被窃听,因此要花费额外的代价加以屏蔽。

屏蔽双绞线电缆的外层由铝泊包裹,以减小幅射,但并不能完全消除辐射。

屏蔽双绞线价格相对较高,安装时要比非屏蔽双绞线电缆困难。

类似于同轴电缆,它必须配有支持屏蔽功能的特殊连结器和相应的安装技术。

但它有较高的传输速率,100米内可达到155Mbps。

另外,非屏蔽双绞线电缆具有以下优点:(1)无屏蔽外套,直径小,节省所占用的空间;(2)重量轻、易弯曲、易安装;(3)将串扰减至最小或加以消除;(4)具有阻燃性;(5)具有独立性和灵活性,适用于结构化综合布线。

滤波器主要参数与特性指标

滤波器主要参数与特性指标

滤波器主要参数与特性指标滤波器的主要参数(Definitions ): 中心频率(Center Frequency ):滤波器通带的频率f0,一般取f0=(f1+f2 ) /2 , fl、f2 为带通或带阻滤波器左、右相对下降1dB或3dB边频点。

窄带滤波器常以插损最小点为中心频率计算通带带宽。

截止频率(Cutoff Frequency ):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。

通常以1dB或3dB相对损耗点来标准定义。

相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。

通带带宽(BWxdB:指需要通过的频谱宽度,BWxdB(f2-f1 )。

fl、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。

通常用X=3 1、0.5 即BW3dB BW1dB BW0.5dB表征滤波器通带带宽参数。

分数带宽(fractional bandwidth ) =BW3dB/f0x 100[%],也常用来表征滤波器通带带宽。

插入损耗(Insertion Loss ):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。

纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。

带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。

idB带宽内的带内波动是1dB。

带内驻波比(VSWR衡量滤波器通带内信号是否良好匹配传输的一项重要指标。

理想匹配VSWR=1 1,失配时VSWR<1对于一个实际的滤波器而言,满足VSWR<1 BWdBBWdBdiv>在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin,形成波节。

其它各点的振幅值则介于波腹与波节之间。

射频电缆及测试电缆组件的性能指标及通用设计准则

射频电缆及测试电缆组件的性能指标及通用设计准则

射频电缆及测试电缆组件的性能指标及通用设计准则概述—射频电缆的通用设计准则射频电缆组件的正确选择除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。

在本文中,详细讨论了射频电缆的各种指标和性能,了解电缆的性能对于选择最佳的射频电缆组件是十分有益的。

射频同轴电缆是用于传输射频和微波信号能量的。

它是一种分布参数电路,其电长度是物理长度和传输速度的函数,这一点和低频电路有着本质的区别。

射频同轴电缆分为半刚,半柔和柔性电缆三种,不同的应用场合应选择不同类型的电缆。

半刚和半柔电缆一般用于设备内部的互联;而在测试和测量领域,应采用柔性电缆。

半刚性电缆顾名思义,这种电缆不容易被轻易弯曲成型,其外导体是采用铝管或者铜管制成的,其射频泄露非常小(<-120dB),在系统中造成的信号串扰可以忽略不计。

这种电缆的无源互调特性也是非常理想的。

如果要弯曲到某种形状,需要专用的成型机或者手工的磨具来完成。

如此麻烦的加工工艺换来的是非常稳定的性能,半刚性电缆采用固态聚四氟乙烯材料作为填充介质,这种材料具有非常稳定的温度特性,尤其在高温条件下,具有非常良好的相位稳定性。

半刚性电缆的成本高于半柔性电缆,大量应用于各种射频和微波系统中。

半柔性电缆半柔性电缆是半刚性电缆的替代品,这种电缆的性能指标接近于半刚性电缆,而且可以手工成型。

但是其稳定性比半刚性电缆略差些,由于其可以很容易的成型,同样的也容易变形,尤其在长期使用的情况下。

柔性(编织)电缆柔性电缆是一种“测试级”的电缆。

相对于半刚性和半柔性的电缆,柔性电缆的成本十分昂贵,这是因为柔性电缆在设计时要顾及的因素更多。

柔性电缆要易于多次弯曲而且还能保持性能,这是作为测试电缆的最基本要求。

柔软和良好的电指标是一对矛盾,也是导致造价昂贵的主要原因。

柔性射频电缆组件的选择要同时考虑各种因素,而这些因素之间有些的相互矛盾的,如单股内导体的同轴电缆要比多股的具有更低的插入损耗和弯曲时的幅度稳定性,但是相位稳定性能就不如后者。

电介质的 tgδ 值

电介质的 tgδ 值

电介质的 tgδ值
电介质的tgδ值是用来衡量电介质性质的重要参数。

据统计,电介质在广泛的工程领域中占据着重要的地位,无论是什么产品都需要电介质来保证其正常运作。

因此,电介质的 tgδ是电子设计中的重要指标,是电介质选择的重要依据。

tgδ电介质的主要特性参数之一,用来衡量电介质在变化电压与时间下的性质变化情况。

tgδ电介质特性的主要参数,是描述电介质在不同频率下的阻抗特性的重要参数。

一般来说,tgδ值越小,电介质性能越优。

tgδ值通常指的是电介质在负载变化时,其绝缘阻抗值变化的一个比率。

它是电介质有效介电常数与电介质衰减系数的比值,其公式为:tgδ=εr-ε0/εr+ε0,其中εr 为有效介电常数,ε0 为衰减系数。

它反映了电介质在某个特定频率下,它的抗绝缘性能变化的情况,比如频率越高,表示电介质越不稳定。

除了tgδ值,电介质还有诸如介质损耗以及对温度、湿度及外界电磁信号等的响应等性能参数,它们也是电介质选择的重要依据。

为了保证电介质在外来电磁信号下的可靠性,介电损耗参数(介电损耗因数tanδ等)也是值得关注的参数。

介电损耗因数是电介质的另一个重要指标,是用来衡量介质使用寿命的重要参数,其变化范围一般较小。

在选择电介质时,应重点考虑满足应用场合的各项性能指标,其中tgδ的检测应该是优先考虑的。

此外,在使用电介质的过程中,
应经常检查,以保证其良好的性能。

综上所述,电介质的tgδ值是衡量电介质性能的重要参数,在电介质使用和选择过程中,应结合各项性能指标进行考虑,以保证电介质在各项指标上达到最佳性能,达到预期的结果。

综合布线测试及标准

综合布线测试及标准

布线标准与系统测试网络布线系统是网络的基础。

它的健康与否对于网络用户是至关重要的。

衡量布线系统健康与否有几项重要的指标枣近端串扰(NEXT)、衰减、长度、接线图、特性阻抗与噪声。

现在,5类双绞线已变得越来越流行,并已成为了高速局域网的首选布线系统。

5类UTP的安装国际上早已有标准可循,即EIA/TIA 568A TSB-67。

我们将在下面进一步讨论这一新的电缆连接标准。

我们也将讨论一下在测试5类双绞线的连接特性时用户应该了解的一些问题。

网络标准与电源标准:通常有两类标准被用于安装电缆的测试中,即网络标准和电缆标准。

如果用户对所选的布线系统将被用在哪种特定的网络环境中很清楚,相应的IEEE网络标准就可以用来验证该布线系统是否支持这种特定的网络环境下的应用。

网络标准定义了在网络中使用的电缆介质的端对端连接规范。

当用户需要了解网络故障是否是由电缆造成时,网络标准就显得特别有用了。

现在最常见的网络多是在10Mbps速度下运行的。

市场上现有的低价位电缆测试仪,如Fluke(福禄克)的650或652就是用来测试这些电缆是否符合网络标准的。

这些电缆测试仪所提供的自动测试功能使其可以自动地测试多种电缆指标,并将它们与所选标准中的指标进行比较。

测试的结果将在标准的范围内由测试仪给出。

有时布线工程施工商或用户在一开始可能无法确定布线系统将被用来支持什么样的网络信号类型,比如对于承包商来说,在智能大厦开始施工时,他们对于以后将用这些电缆来传输什么样的信号是一无所知的。

进一步说,用户在将来可能会对网络进行升级或改变网络的类型。

为了减少升级的代价,用户希望能充分利用他们的布线系统,因此考察布线系统能否在一段时间内支持未来的网络应用就变得非常重要了。

现在的大多数网络,如以太网和令牌环网都使用UTP电缆。

5类UTP也可以被用来支持一些新的网络平台,比如155M ATM、100Base-TX和100Base-VG等。

考虑到其相对低廉的价格,5类UTP正在成为应用最为广泛的电缆系统。

1特性阻抗

1特性阻抗

.1特性阻抗特性阻抗也称波阻抗,是电缆的二次参数,它描述了电磁波沿均匀线路传播而没有反射时所遇到的阻抗,即线路终端匹配时,线路内任一点的电压波(U)和电流波(I)的比值。

特性阻抗可以用一个复数表示,当电缆线芯的材料、直径、绝缘形式确定后,特性阻抗只随频率的变化而变化。

特性阻抗Zc为回路上任意点电压波和电流波之比并有R、L、G、C分别为对绞回路的电阻、电感、电导、电容,虚部相位角Φ从零开始到频率f =800Hz时接近-45°,然后逐渐接近零。

可以看出传播常数和特性阻抗Zc均与电缆的一次参数R、L、G、C有关,TIA/EIA---568---A规定5类缆的特性阻抗为对于局部网布线系统来说,传输媒介具有稳定的阻抗值是很重要的,否则连接器硬件就会和电缆失配。

从而引起信号反射导致传输效率下降,甚至网络无法工作。

对于高频对称电缆,由于频率增加时,集肤效应增加,使内电感减小,而外电感与频率无关,所以随频率的增加,总电感近似于外电感,式中,为等效介电常数;a为绝缘线心外径;d为导体直径由式子可以看出特性阻抗和导体类型和直径,绝缘的类型和厚度有关,在某种程度上也与线对的绞合性能有关(因等效介电常数εr和绞合有关)。

由于一般的标准中都规定了导体的直径d=24(AWG),而且从实际情况中看来,此d值也是最理想值。

这样从上式看来影响特性阻抗的只有外径(外径可以看成和导线间距α相等)、组合绝缘介质的等效相对介电常数(εr)。

而且,Zc正比于α和λ,反比于εr。

所以只要控制好了α、λ、εr的值,也就能控制好。

在实际中常用输入阻抗Zin来表述电缆的特性阻抗。

其定义式中:Z0为终端开路时的阻抗测量值;Zs为终端短路时的阻抗测量值。

3.2 回波损耗回波损耗是数字电缆产品的一项重要指标,回波损耗合并了两种反射的影响,包括对标称阻抗(如:100Ω)的偏差以及结构影响,用于表征链路或信道的性能。

它是由于电缆长度上特性阻抗的不均匀性引起的,归根到底是由于电缆结构的不均匀性所引起的。

屏蔽性能指标介绍

屏蔽性能指标介绍

屏蔽性能指标介绍1.表面转移阻抗(SuRFaceTransferImpedance)按IEC61196-1测试同轴电缆的方法,测试带屏蔽的平衡电缆,短路8根芯线后用50Ω信号源激励。

被测试线长1米,测试频率30MHz,频率越高,线长越短导体表面转移阻抗。

主要用于评估连接硬件的屏蔽效率,其实测值不超过以下计算值。

ZTcable=37+4f+4f1/2+5f1/3ZTcable:表面转移阻抗,单位mΩ/mf:信号频率,单位MHz2.转移阻抗(TransferImpedance)转移阻抗与屏蔽电缆和连接硬件的屏蔽效率相关,其数值可通过实验室高频密封箱测量屏蔽插入损耗,计算得出。

Ri1=Ri2=50Ω——网络分析仪特性阻抗R1=50Ω——馈电电阻R2=50Ω——终端电阻U1=信号发射电压(V)U2=信号接收电压(V)Uc=被测设备两端电压Zcond=连接器特性阻抗(Ω)Zt=转移阻抗(Ω)Zt=1/l电缆长度•Ri1/Ri2•(R2+Ri2)•U2/U1=100/l电缆长度•U2/U1由于屏蔽插入损耗(αs)为20•lg(U2/U1)dB,转移阻抗(Zt)也可以表示为:Zt=100•10α/20(Ω)3.耦合衰减(CouplingAttenuation)耦合衰减用于描述电缆系统的电磁兼容性能。

耦合衰减Catt=Pr/Pi(Pr:线缆接收功率;Pi:在内导体上产生的噪声功率)将电缆近似看作电磁场中的全向天线,其接收到的电磁功率Pr=λ2/4π•PD(λ:信号波长,PD:电磁场功率密度)内部内部导体产生噪声功率Pi=内部导体产生噪声功率Vi2/Z(Vi:内导体上的噪声电压;Z内导体阻抗,50Ω)4屏蔽系数(GB54419-1985)按下图装置,测试电缆金属护套及铠装层的理想屏蔽系数γ0s=VC/VS(线芯上的感应电压mV;电缆式样金属套上的纵向干扰电压mV)。

5屏蔽耦合损耗(CouplingLoss)(GY/T186-2002)GTEM小室馈入功率与被测件耦合功率的分贝差。

常用微波技术术语含义

常用微波技术术语含义

常用微波器件/部件的技术指标及其基本含义一、振荡器概述:近年来,新材料新工艺的进展为微波振荡信号的产生、放大和合成提供了很好的条件。

微波固态振荡电路是通过谐振电路与微波固态器件的相互作用,把直流能量转换为射频能量的装置。

固态振荡器工作电压低、效率高、可靠性高、寿命长、体积小、重量轻,从而在雷达、通讯、电子对抗、仪器和测量等系统中得到广泛的应用。

有人形象比喻微波振荡器是微波系统的“心脏”,可见其在微波系统中的重要地位。

通常把振荡器分为两类:稳频振荡器、自由振荡器(含压控振荡器)等。

稳频振荡器又分为晶体稳频振荡器(晶振、晶振倍频链)、高Q腔稳频振荡器(同轴腔、波导腔、介质)、锁相稳频振荡器(环路锁相、注入锁相、取样锁相、谐波混频锁相)。

同一频率和功率的不同形式的振荡器的成本相差很大,在使用时应该合理选择振荡器的类型。

主要技术指标:1、工作频率范围:指满足各项技术指标的调谐频率范围。

用起止频率或中心频率和相对带宽来表示。

2、频率精确度:振荡器工作频率偏离标称频率的程度。

3、频率稳定度:长期稳定度:指振荡器的老化和元器件的性能变化以及环境条件改变导致的频率的慢变化。

常用一定时间内频率的相对变化来表示。

短期稳定度:与长期稳定度相比,在较小的时间间隔内考察频率源的稳定程度。

常用阿伦方差来表征,以△f/f/μs(或ms)为单位。

4、相位噪声:是短期稳定度的频域表示,它可以看成是各种类型的随机噪声信号对相位的调制作用。

从频域表现来看,频谱不再是一根离散的谱线,而带有一定的宽度。

通常用距离中心频率某频率处单位带宽内噪声能量与中心频率能量的比值来表示,以-dBc/Hz@KHz(或MHz)为单位。

5、杂散抑制:指与输出频率不相干的无用频率成分与载波电平的比值,用dBc表示。

有时也成为杂波抑制。

6、谐波抑制:指与输出频率相干的邻近基波的谐波成分与载波电平的比值,用dBc表示。

7、工作电压:指使振荡器满足各项技术指标时的正常工作电压。

射频电缆的参数理论

射频电缆的参数理论

射频电缆的参数理论第一节特性阻抗特性阻抗是选用电缆的首先要考虑的参数它定义为电缆处于匹配状态即线路上无反射波时沿线路分析的电压与电流的比值实际上它代表了无限长线路始端呈现的阻抗。

特性阻抗是电缆本身的参数它取决于导体的直径以及绝缘结构的等效介电常数。

特性阻抗对于电缆的使用有很大的影响例如在选择射频电缆作为发射天线馈线时其特性阻抗应尽可能和天线的阻抗一致否则会在电缆和天线的连接处造成信号反射使得天线得到的功率减少电缆的传输效率也会下降更为严重的是反射的存在会使电缆沿线出现驻波有些地方会出现电压和电流的过载从而造成电缆的热击穿或热损伤而影响电缆的正常运行。

电缆内部反射的存在还会造成传输信号的畸变使传输信号出现重影严重影响信号传输质量。

为了便于使用射频电缆的阻抗已经标准化了。

因此在选用电缆时应尽可能选用标准阻抗值。

对于射频同轴电缆有以下三中标准阻抗50±2ohm 推荐使用于射频及微波用于测试仪表以及同轴波导转换器等75±3ohm 用于视频或者脉冲数据传输用于大长度例如CATV电缆传输系统100±5ohm 用于低电容电缆以及其它特种电缆。

以下是同轴电缆特性阻抗计算的各种公式。

§1.1同轴电缆阻抗公式根据传输理论特性阻抗公式为Zc 式中R、L、G、C、代表该传输线的一次参数而ω2πf代表信号的角频率。

对于射频同轴电缆传输高频信号通常都有RωLGωC此时特性阻抗公式可以简化为Zc 60??lnD/d/138??lgD/d/ ohm 式中D为外导体内直径mm d为内导体外直径mm ε为绝缘相对介电常数R:射频电缆的参数理论基础表1给出了常用绝缘材料的相对介电常数。

表1常用介质材料的特性介质种类介电常数ε1000KHz 介质损耗角正切tgδ 空气1.00 0 聚乙烯2.30 0.0002 物理发泡聚乙烯1.201.30 0.0001 聚丙烯2.55 0.0004 聚四氟乙烯2.10 0.0002 聚全氟乙丙烯2.10 0.0002 泡沫绝缘的是一种常用的半空气绝缘形式其等效介电常数公式为εrε·2ε12Pε1/2ε1Pε1 式中ε为绝缘相对介电常数P为绝缘发泡度它表示发泡绝缘介质内所有气泡的体积与绝缘总体积的比例。

连接器的三大特性

连接器的三大特性

连接器的三大基本性能发布: 2008-7-14 09:00 | 作者: admin | 来源: | 查看: 5次连接器的基本性能可分为三大类:即机械性能、电气性能和环境性能。

1.机械性能就连接功能而言,插拔力是重要地机械性能。

插拔力分为插入力和拔出力(拔出力亦称分离力),两者的要求是不同的。

在有关标准中有最大插入力和最小分离力规定,这表明,从使用角度来看,插入力要小(从而有低插入力LIF和无插入力ZIF的结构),而分离力若太小,则会影响接触的可靠性。

另一个重要的机械性能是连接器的机械寿命。

机械寿命实际上是一种耐久性(durability)指标,在国标GB5095中把它叫作机械操作。

它是以一次插入和一次拔出为一个循环,以在规定的插拔循环后连接器能否正常完成其连接功能(如接触电阻值)作为评判依据。

连接器的插拔力和机械寿命与接触件结构(正压力大小)接触部位镀层质量(滑动摩擦系数)以及接触件排列尺寸精度(对准度)有关.2.电气性能连接器的主要电气性能包括接触电阻、绝缘电阻和抗电强度。

①接触电阻高质量的电连接器应当具有低而稳定的接触电阻. 连接器的接触电阻从几毫欧到数十毫欧不等。

②绝缘电阻衡量电连接器接触件之间和接触件与外壳之间绝缘性能的指标,其数量级为数百兆欧至数千兆欧不等。

③抗电强度或称耐电压、介质耐压,是表征连接器接触件之间或接触件与外壳之间耐受额定试验电压的能力。

④其它电气性能。

电磁干扰泄漏衰减是评价连接器的电磁干扰屏蔽效果,电磁干扰泄漏衰减是评价连接器的电磁干扰屏蔽效果,一般在100MHz~10GHz频率范围内测试。

对射频同轴连接器而言,还有特性阻抗、插入损耗、反射系数、电压驻波比(VSWR)等电气指标。

由于数字技术的发展,为了连接和传输高速数字脉冲信号,出现了一类新型的连接器即高速信号连接器,相应地,在电气性能方面,除特性阻抗外,还出现了一些新的电气指标,如串扰(crosstalk),传输延迟(delay)、时滞(skew)等。

馈线的行波系数

馈线的行波系数

馈线的行波系数馈线的行波系数是指电磁波在馈线中传播时的衰减和相位变化的特性参数。

它是馈线传输损耗和信号传输稳定性的重要指标,用于衡量馈线的传输特性。

馈线的行波系数通常用γ表示,其定义为:γ = α + jβ其中,α表示电磁波在馈线中的衰减常数,单位为Neper/m,表示单位长度馈线的衰减量;β表示电磁波的相位变化常数,单位为rad/m,表示单位长度馈线的相位延迟量;j表示虚数单位。

衰减常数α描述了电磁波在馈线中的衰减情况。

当α为正值时,表示电磁波在馈线传输过程中逐渐减弱,使得信号强度随传输距离增加而减小;当α为负值时,表示电磁波在馈线传输过程中增强,使得信号强度随传输距离增加而增大。

相位变化常数β描述了电磁波在馈线中的相位延迟情况。

它决定了电磁波在馈线中的传输速度,即频率不变时波长在馈线中的传播长度。

当β为正值时,表示电磁波传输速度较快,波长缩短,频率不变;当β为负值时,表示电磁波传输速度较慢,波长拉长,频率不变。

行波系数γ经常与特性阻抗Z0联系在一起,特性阻抗是指馈线两端不产生反射波时的等效阻抗,通常用于匹配信源或负载的阻抗。

行波系数和特性阻抗之间的关系可以由以下公式表示:γ = √(Z0 * Y0)其中,Y0是特性导纳,与特性阻抗Z0的倒数相关。

通过测量行波系数,可以得到馈线中电磁波的衰减程度和相位延迟量,进而评估馈线传输性能的好坏。

较小的衰减常数和相位变化常数表示较低的传输损耗和较高的传输稳定性,有利于提高信号传输的质量和可靠性。

总之,馈线的行波系数是描述电磁波在馈线中传播特性的重要参量,它涉及到衰减常数和相位变化常数,通过测量行波系数可以评估馈线的传输性能。

衰减器的技术指标

衰减器的技术指标

衰减器的技术指标衰减器适用于0—2GHZ频率范围,输入电平,小于或等于10V的任何50Ω阻抗的电子仪器和电子设备的机内配套和单独测量使用,可实现电平控制和进行灵敏度及线型测量。

工作频带衰减器的工作频带是指在给定频率范围内使用衰减器,衰减器才能达到指标值。

由于射频/微波数字衰减器结构与频率有关,不同频段的元器件,结构不同,也不能通用。

现代同轴结构的衰减器使用的工作频带相当宽,设计或使用中要加以注意。

衰减量无论形成功率衰减的机理和具体结构如何,总是可以用下图所示的两端口网络来描述衰减器。

信号输入端的功率为P1,而输出端得功率为P2,衰减器的功率衰减量为A(dB)。

若P1、P2以分贝毫瓦(dBm)表示,则两端功率间的关系为P2(dBm)=P1(dBm)-A(dB)可以看出,衰减量描述功率通过衰减器后功率的变小程度。

衰减量的大小由构成衰减器的材料和结构确定。

衰减量用分贝作单位,便于整机指标计算。

功率容量衰减器是一种能量消耗元件,功率消耗后变成热量。

可以想象,材料结构确定后,衰减器的功率容量就确定了。

如果让衰减器承受的功率超过这个极限值,衰减器就会被烧毁。

设计和使用时,必须明确功率容量。

回波损耗回波损耗就是衰减器的驻波比,要求衰减器两端的输入输出驻波比应尽可能小。

我们希望的衰减器是一个功率消耗元件,不能对两端电路有影响,也就是说,与两端电路都是匹配的。

设计衰减器时要考虑这一因素。

功率系数当输入功率从10mW变化到额定功率时,衰减量的变化系数表示为dB/(dB*W)。

衰减量的变化值的具体算法是将系数乘以总衰减量功率(W)。

如:一个功率容量50W,标称衰减量为40dB的衰减器的功率系数为0.001dB/(dB*W),意味着输入功率从10mW加到50W时,其衰减量会变化0.001*40*50=2dB之多!性能特性衰减量程:101dB/0.1dB衰减精度:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档