系统辨识试卷B

合集下载

系统辨识大作业1201张青

系统辨识大作业1201张青

《系统辨识》大作业学号:********班级:自动化1班姓名:**信息与控制工程学院自动化系2015-07-11第一题模仿index2,搭建对象,由相关分析法,获得脉冲响应序列ˆ()g k,由ˆ()g k,参照讲义,获得系统的脉冲传递函数()G z和传递函数()G s;应用最小二乘辨识,获得脉冲响应序列ˆ()g k;同图显示两种方法的辨识效果图;应用相关最小二乘法,拟合对象的差分方程模型;构建时变对象,用最小二乘法和带遗忘因子的最小二乘法,(可以用辨识工具箱) 辨识模型的参数,比较两种方法的辨识效果差异;答:根据index2搭建结构框图:相关分析法:利用结构框图得到UY 和tout其中的U就是题目中要求得出的M序列,根据结构框图可知序列的周期是1512124=-=-=npN。

在command window中输入下列指令,既可以得到脉冲相应序列()g k:aa=5;NNPP=15;ts=2; RR=ones(15)+eye(15); for i=15:-1:1UU(16-i,:)=UY(16+i:30+i,1)'; endYY=[UY(31:45,2)];GG=RR*UU*YY/[aa*aa*(NNPP+1)*ts]; plot(0:2:29,GG) hold onstem(0:2:29,GG,'filled') Grid;title('脉冲序列g(τ)')最小二乘法建模的响应序列由于是二阶水箱系统,可以假设系统的传递函数为221101)(sa s a sb b s G +++=,已知)(τg ,求2110,,,a a b b已知G (s )的结构,用长除法求得G(s)的s 展开式,其系数等于从 )( g 求得的各阶矩,然后求G(s)的参数。

得到结果: a1 =-1.1561 a2 =0.4283 b0 =-0.0028 b1=0.2961在command window 中输入下列指令得到传递函数:最小二乘一次算法相关参数%最小二乘法一次完成算法 M=UY(:,1); z=UY(:,2); H=zeros(100,4); for i=1:100 H(i,1)=-z(i+1); H(i,2)=-z(i); H(i,3)=M(i+1); H(i,4)=M(i); endEstimate=inv(H'*H)*H'*(z(3:102)) %结束得到相关系数为:Estimate =-0.7866 0.1388 0.5707 0.3115带遗忘因子最小二乘法:%带遗忘因子最小二乘法程序M=UY(:,1);z=UY(:,2);P=1000*eye(5); %Theta=zeros(5,200); %Theta(:,1)=[0;0;0;0;0];K=zeros(4,400); %K=[10;10;10;10;10];lamda=0.99;%遗忘因数for i=3:201h=[-z(i-1);-z(i-2);M(i);M(i-1);M(i-2)];K=P*h*inv(h'*P*h+lamda);Theta(:,i-1)=Theta(:,i-2)+K*(z(i)-h'*Theta(:,i-2));P=(eye(5)-K*h')*P/lamda;endi=1:200;figure(1)plot(i,Theta(1,:),i,Theta(2,:),i,Theta(3,:),i,Theta(4,:),i,Theta(5,:) )title('带遗忘因子最小二乘法')grid%结束Estimate 可由仿真图得出,可知两种方法参数确定十分接近。

系统辩识作业题

系统辩识作业题

系统辨识大作业
一.设SlSO系统差分方程为
y(k)=—α1y(k-1)-a2y(k-2)+bλu(k-1)+b2u(k-2)+ξ{k)
辨识参数向量为θ=[q a2b l b2]r,输入输出数据详见数据文件UyLtXt—uy3.txtoξ(k)为噪声方差各异的白噪声或有色噪声。

试求解:
1)用n元一次方程解析法,再求其平均值方法估计。

2)用最小二乘及递推最小二乘法估计。


3)用辅助变量法及其递推算法估计
4)用广义最小二乘法及其递推算法估计
5)用夏氏偏差修正法、夏氏改良法及其递推算法估计
6)用增广矩阵法估计
7)分析噪声父攵)特性;
二.用极大似然法估计6。

三.以上题的结果为例,进行:
1.分析比较各种方法估计的精度;
2.分析其计算量;
3.分析噪声方差的影响;
4.比较白噪声和有色噪声对辨识的影响。

四.系统模型阶次的辨识:
1.用三种方法确定系统的阶次并辨识;
2.分析噪声对定阶的影响;
3.比较所用三种方法的优劣及有效性;
五.给出由正弦输入求取系统开环频率响应特性曲线的辨识方法。

六.提出一种自己创造的辨识新方法,并用所给数据进行辨识验证。

注:闭卷考试时提交大作业报告。

系统辨识习题解答

系统辨识习题解答

系统辨识习题解答1-14、若一个过程的输入、输出关系可以用MA 模型描述,请将该过程的输入输出模型写成最小二乘格式。

提示:① MA 模型z k D z u k ()()()=-1② 定义ττθ)](,),1(),([)(,],,,[10n k u k u k u k d d d n --==ΛΛh 解:因为MA 模型z k D z u k ()()()=-1,其中n n z d z d d z D ---+++=Λ1101)(,从而所以当定义ττθ)](,),1(),([)(,],,,[10n k u k u k u k d d d n --==ΛΛh ,则有最小二乘格式:)()()()()(0k e k k e k h d k z ni i i +=+=∑=θτ,其中e(k)是误差项。

2-3、设)}({k e 是一个平稳的有色噪声序列,为了考虑这种噪声对辨识的影响,需要用一种模型来描述它。

请解释如何用白噪声和表示定理把)(k e 表示成AR 模型、MA 模型和ARMA 模型。

解:根据表示定理,在一定条件下,有色噪声e(k)可以看成是由白噪声v(k)驱动的线性环节的输出,该线性环节称为成形滤波器,其脉冲传递函数可写成 即 )()()()(11k v z D k e z C --= 其中 c c n n z c z c z C ---+++=Λ1111)(根据其结构,噪声模型可区分为以下三类:自回归模型(AR 模型): )()()(1k v k e z C =- 平均滑动模型(MA 模型): )()()(1k v z D k e -= 自回归平均滑去模型(ARMA 模型): )()()()(11k v z D k e z C --= 3-4、根据离散Wiener-Hopf 方程,证明解:由于M 序列是循环周期为t N P ∆,12-=P P N ,t ∆为M 序列移位脉冲周期,自相关函数近似于δ函数,a 为M 序列的幅度。

系统辨识考试答案

系统辨识考试答案

系统辨识考试答案2.描述用随机信号测试线性系统的动态响应的原理与方法。

用伪随机噪声作为输入测试系统的动态响应:伪随机信号的自相关函数是周期为T 的周期函数,其互相关函数为:R x y( ) T 0 g( )R ( )d x 2T g( )RT x( ) d ..... kg( )kg(T) ...... T >系统的脉冲响应时间时, g(T ) =0,? ,则R ( ) kg( ) xy ,与白噪声作输入信号时结果相同,但此处R xy ( ) 的计算只需在0~T 一个周期的时间内进行。

这就是采用伪随机信号测试系统动态特性的优越性。

用随机信号测试线性系统的动态响应的原理是相关滤波原理利用随机信号测试线性系统的动态特性的理论基础是维纳一霍夫积分方程,即R xy ( ) g( )R x ( )d= g ( ) R x ( )当系统输出端存在干扰n (t ) 时,系统的实际输出 y(t)与输入 x(t)的互相关函数为:R xy ( ) E{ x(t) y(t )} E{ x(t )[ z(t ) n(t ) ] } R xz ( ) R xn ( ) 为了测试系统的动态响应特性,选用与测量噪声 n(t)无关的激励信号 x(t),即 x(t)与 n(t)无关,故其互相关函数 R xn ( ) =0,所以 R xy ( ) R xz ( ) ,即实际输入与输出 (带测量噪声 )的互相关函数 R ( ) 等价于真实输入与输出 (不带测量噪声 )xy的互相关函数 R ( ) 。

这就是相关滤波原理。

利用相关滤波原理测试测试线性系xz 统的动态响应的突出优点是抗干扰能力强。

用白噪声作为输入测试系统的动态响应:维纳一霍夫积分方程变为:R xy ( ) g ( )R x 0 ( )d g ( )k ( )dkg( ) 0可见,当输入为自噪声时,系统输入输出的互相关函数 R ( ) 与脉冲响应函xy 数 g ( )成正比。

自动控制原理期末试卷与答案

自动控制原理期末试卷与答案

自动控制原理期末试卷与答案自动控制原理1一、单项选择题(每小题1分,共20分)1. 系统和输入已知,求输出并对动态特性进行研究,称为( c )A。

系统综合B。

系统辨识C。

系统分析D。

系统设计2。

惯性环节和积分环节的频率特性在(d)上相等。

A.幅频特性的斜率B。

最小幅值C。

相位变化率D.穿越频率3。

通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为( d )A。

比较元件B。

给定元件C。

反馈元件D.放大元件4。

ω从0变化到+∞时,延迟环节频率特性极坐标图为(a )A。

圆B。

半圆C。

椭圆D.双曲线5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看作一个( d )A.比例环节B。

微分环节C。

积分环节D。

惯性环节6。

若系统的开环传递函数为10,则它的开环增益为(c ) s(5s?2)A.1 B。

2 C。

5 D。

107. 二阶系统的传递函数G(s)?5,则该系统是(b ) 2 s?2s?5A。

临界阻尼系统B.欠阻尼系统C。

过阻尼系统D。

零阻尼系统8. 若保持二阶系统的ζ不变,提高ωn,则可以(b )A.提高上升时间和峰值时间B.减少上升时间和峰值时间C。

提高上升时间和调整时间D。

减少上升时间和超调量9。

一阶微分环节G(s)?1?Ts,当频率??1时,则相频特性?G(j?)为( a )TA。

45°B.-45°C。

90°D.—90°10。

最小相位系统的开环增益越大,其(d )A。

振荡次数越多B。

稳定裕量越大C.相位变化越小D.稳态误差越小11。

设系统的特征方程为D?s??s4?8s3?17s2?16s?5?0,则此系统()A。

稳定B。

临界稳定C。

不稳定D.稳定性不确定。

12。

某单位反馈系统的开环传递函数为:G?s??k,当k=( )时,闭环系统s(s? 1)(s?5)临界稳定.A.10 B。

20 C。

30 D。

4013。

(完整)系统辨识大作业汇总,推荐文档

(完整)系统辨识大作业汇总,推荐文档

参数递推估计是指被辨识的系统,每取得一次新的测量数据后,就在前一 次估计结果的基础上,利用新引入的测量数据对前一次估计的结果进行修正, 从而递推地得出新的参数估计值。这样,随着新测量数据的引入,一次接一次 地进行参数估计,直到估计值达到满意的精确程度为止。最小二乘递推算法的 基本思想可以概括为:
当前的估计值ˆ(k) =上次估计值ˆ(k 1) +修正项 即新的估计值ˆ(k) 是在旧的估计值ˆ(k 1) 的基础上,利用新的观测数据对旧的 估计值进行修正而成的。
可以看出,取 (k) 1的时候,加权最小二乘估计就退化成了最小二乘参数 估计的递推算法(Recursive Least Squares, RLS)。加权参数 1 可以在
(0,1]范围内选择,如果选 1 1,所有的采样数据都是等同加权的,如果
(k)
1 1,则表示对新近获得的数据给予充分大的加权因子,而削弱历史观测 (k)
可以根据生成的白噪声序列和输入序列,以及必要的 0 初始值,带入表 达式即可得到采样输出数据。
2. 差分模型阶检验 在实际场景中,辨识模型的阶数和纯时延往往是未知的,在很多情况下仅
仅依靠猜测。在模型的阶数和纯时延不确定时,设系统模型为
n
n
y(t) ai y(t i) bj y(t i) (t)
数据的影响。 实际计算时,需要首先确定初始参数ˆ(0) 和 P(0) 。
P(0) 2I 为充分大实数
一般说来选取
(0)
为充分小的向量
对于这样的系统,使用最小二乘法参数估计的递推算法进行辨识可以得到 无偏估计,但是如果噪声模型必须用 C(z1)v(k) 表示时,此时就无法得到无偏估 计了,因为该方法没有把噪声模型考虑进去。
K (k) P(k 1)h(k)[hT (k) p(k 1)h(k) 1 ]1

(完整版)智能交通系统试卷-B卷参考答案及评分标准

(完整版)智能交通系统试卷-B卷参考答案及评分标准

(完整版)智能交通系统试卷-B卷参考答案及评分标准安徽三联学院2012——2013学年度第二学期《智能交通系统原理与技术》课程期末考试(B)卷参考答案及评分标准该试卷使用范围:2011年级交通安全与智能监控专业一、名词解释:给出相应英文全称,并解释其内涵。

(每小题2分,共10分)1. DSRC ——Dedicated Short Range Communications ,专用短程通信技术。

2. GIS ——Geographic Information System ,地理信息系统。

3. VICS ——Vehicle Information and Communication System ,道路交通情报通信系统。

4. TMD ——Transportation Demand Management,交通需求管理。

5. DAB ——Digital Audio Broadcasting,数字音频广播。

二、辨析题:先判断正误再做判断解释。

(每小题4分,共20分)1. 现在的交通信息自动采集技术已很发达了,已经不再需要人工采集技术。

答:这种说法是不正确的。

自动采集技术虽说越来越发达,但是它有一定的局限性,一般都是固定安装长时间检测采集,作为临时使用的就比较困难和麻烦,这就是人工的采集的优点,灵活方便。

2.ITS 中的先进交通管理的内容是交叉路口的信号管理。

答:这种说法是错误的。

先进的交通管理系统,内容包括现代化交通控制中心、先进的交通监视服务及规范、完整的道路指示信息,使车辆得到良好的服务。

3.交通信号控制系统是城市交通管理系统的组成部分之一。

答:这种说法是正确的。

交通信号控制系统是智能交通管理系统的重要子系统,其主要功能是自动协调和控制整个控制区域内交通信号灯的配时方案,均衡路网内交通流运行,使停车次数、延误时间及环境污染减至最小,充分发挥道路系统的交通效益。

必要时,可通过控制中心人工干预,直接控制路口信号机执行指定相位,强制疏导交通。

系统辨识练习题

系统辨识练习题

系统辨识练习题方法一:%递推最小二乘参数估计(RLS) clear all; close all;a=[1 -1.5 0.7]'; b=[1 0.5]'; d=3; % 对象参数na=length(a)-1; nb=length(b)-1; %na、nb 为A、B 阶次L=480; %仿真长度uk=zeros(d+nb,1); % 输入初值:uk(i)表示u(k-i)yk=zeros(na,1); % 输出初值u=randn(L,1); %输入采用白噪声序列xi=sqrt(O.1)*ra ndn (L,1); % 白噪声序列theta=[a(2:na+1);b]; % 对象参数真值thetae_仁zeros(na+nb+1,1); %thetae 初值P=10A6*eye( na+nb+1);for k=1:Lphi=[-yk;uk(d:d+nb)]; % 此处phi 为列向量y(k)=phi'*theta+xi(k); % 采集输出数据%递推最小二乘法K=P*phi/(1+phi'*P*phi);thetae(:,k)=thetae_1+K*(y(k)-phi'*thetae_1);P=(eye( na+n b+1)-K*phi')*P;%更新数据thetae_1=thetae(:,k);for i=d+nb:-1:2uk(i)=uk(i-1);enduk(1)=u(k);for i=n a:-1:2yk(i)=yk(i-1);endyk(1)=y(k);endplot([1:L],thetae); %li ne([1,L],[theta,theta]); xlabel('k'); ylabel('参数估计a、b');lege nd('a_1','a_2','b_0','b_1'); axis([0 L -2 2]);方法三:%遗忘因子递推最小二乘参数估计(FFRLS) clear all; close all;a=[1 -1.5 0.7]'; b=[1 0.5]'; d=3; % 对象参数na=length(a)-1; nb=length(b)-1; %na、nb 为A、B 阶次L=1000; %仿真长度uk=zeros(d+nb,1); % 输入初值:uk(i)表示u(k-i) yk=zeros(na,1); % 输出初值u=randn(L,1); %输入采用白噪声序列xi=sqrt(O.1)*ra ndn (L,1); % 白噪声序列thetae_仁zeros(na+nb+1,1); %thetae 初值P=10A6*eye( na+nb+1);lambda=0.98; % 遗忘因子范围[0.9 1]for k=1:Lif k==501a=[1 -1 0.4]';b=[1.5 0.2]'; % 对象参数突变endtheta(:,k)=[a(2:na+1);b]; % 对象参数真值phi=[-yk;uk(d:d+nb)];y(k)=phi'*theta(:,k)+xi(k); % 采集输出数据%遗忘因子递推最小二乘法K=P*phi/(lambda+phi'*P*phi);thetae(:,k)=thetae_1+K*(y(k)-phi'*thetae_1);P=(eye( na+nb+1)-K*phi')*P/lambda;%更新数据thetae_仁thetae(:,k);for i=d+nb:-1:2uk(i)=uk(i-1);enduk(1)=u(k);for i=n a:-1:2yk(i)=yk(i-1);endyk(1)=y(k);endsubplot(1,2,1)plot([1:L],thetae(1:na,:)); hold on; plot([1:L],theta(1:na,:),'k:'); xlabel('k'); ylabel('参数估计a');lege nd('a_1','a_2'); axis([0 L -2 2]);subplot(1,2,2)plot([1:L],thetae(na+1:na+nb+1,:)); hold on; plot([1:L],theta(na+1:na+nb+1,:),'k:'); xlabel('k'); ylabel('参数估计b');legend('b_0','b_1'); axis([0 L -0.5 2]);方法四:%递推极大似然参数估计〔RML〕clear all; close all;a=[1 -1.5 0.7]'; b=[1 0.5]'; c=[1 -0.5]'; d=1; % 对象参数na=length(a)-1; nb=length(b)-1; nc=length(c)-1; %na 、nb、nc 为A、B、C 阶次nn=max(na,nc); % 用于yf(k-i)、uf(k-i)更新L=480; %仿真长度uk=zeros(d+nb,1); % 输入初值:uk(i)表示u(k-i) yk=zeros(na,1); % 输出初值xik=zeros(nc,1); % 白噪声初值xiek=zeros(nc,1); %白噪声估计初值yfk=zeros (nn ,1); %yf(k-i) ufk=zeros( nn ,1); %uf(k-i) xiefk=zeros(nc,1); % E f(k-i)u=randn(L,1); %输入采用白噪声序列xi=randn(L,1); %白噪声序列thetae_仁zeros(na+nb+1+ nc,1); % 参数估计初值P=eye( na+n b+1+ nc);for k=1:Ly(k)=-a(2: na+1)'*yk+b'*uk(d:d+nb)+c'*[xi(k);xik]; % 采集输出数据%构造向量phi=[-yk;uk(d:d+nb);xiek]; xie=y(k)-phi'*thetae_1;phif=[-yfk(1: na);ufk(d:d+nb);xiefk];%递推极大似然参数估计算法K=P*phif/(1+phif*P*phif); thetae(:,k)=thetae_1+K*xie;P=(eye( na+nb+1+ nc)-K*phif)*P;yf=y(k)-thetae( na+nb+2: na+n b+1+ nc,k)'*yfk(1: nc); %yf(k) uf=u(k)-thetae( na+nb+2: na+nb+1+ nc,k)'*ufk(1: nc); %uf(k) xief=xie-thetae( na+n b+2: na+n b+1+ nc,k)'*xiefk(1: nc); %xief(k)%更新数据thetae_1=thetae(:,k);for i=d+nb:-1:2uk(i)=uk(i-1);enduk(1)=u(k);for i=n a:-1:2yk(i)=yk(i-1);endyk(1)=y(k);for i=n c:-1:2xik(i)=xik(i-1); xiek(i)=xiek(i-1);xiefk(i)=xiefk(i-1);endxik(1)=xi(k);xiek(1)=xie;xiefk(1)=xief;for i=nn :-1:2yfk(i)=yfk(i-1);ufk(i)=ufk(i-1);endyfk(1)=yf;ufk(1)=uf;endfigure(1)plot([1:L],thetae(1: na,:),[1:L],thetae (n a+nb+2: na+nb+1+ nc,:)); xlabel('k'); ylabel('参数估计a、c');lege nd('a_1','a_2','c_1'); axis([0 L -2 2]);figure(2)plot([1:L],thetae( na+1: na+n b+1,:)); xlabel('k'); ylabel('参数估计b');legend('b_0','b_1'); axis([0 L 0 1.5])自适应控制习题(1) %可调增益MIT-MRACclear all; close all;h=0.1; L=1OO/h; %数值积分步长、仿真步数num=[1]; den=[1 1 1]; n=length(den)-1; % 对象参数kp=1; [Ap,Bp,Cp,Dp]=tf2ss(kp* num,de n); % 传递函数型转换为状态空间型km=1; [Am,Bm,Cm,Dm]=tf2ss(km*num,den); % 参考模型参数gamma=0.1; %自适应增益yrO=O; u0=0; eO=O; ymO=O; % 初值xpO=zeros( n,1); xmO=zeros( n,1); % 状态向量初值kcO=O; %可调增益初值r=0.1; yr=r*[ones(1,L/4) -ones(1,L/4) ones(1,L/4) -ones(1,L/4)]; % 输入信号for k=1:Ltime(k)=k*h;xp(:,k)=xpO+h*(Ap*xpO+Bp*uO);yp(k)=Cp*xp(:,k)+Dp*u0; % 计算ypxm(:,k)=xm0+h*(Am*xm0+Bm*yr0);ym(k)=Cm*xm(:,k)+Dm*yr0; % 计算yme(k)=ym(k)-yp(k); %e=ym-ypkc=kcO+h*gamma*eO*ymO; %MIT 自适应律u(k)=kc*yr(k); % 控制量%更新数据yr0=yr(k); u0=u(k); eO=e(k); ym0=ym(k);xp0=xp(:,k); xm0=xm(:,k);kc0=kc;endplot(time,ym,'r',time,yp,':');xlabel('t'); ylabel('y_m(t)、y_p(t)');%axis([O L*h -10 10]);lege nd('y_m(t)','y_p(t)');⑵%可调增益MIT-MRAC clear all; close all;h=0.1; L=100/h; %数值积分步长、仿真步数num=[1]; den=[1 1 1]; n=length(den)-1; % 对象参数kp=1; [Ap,Bp,Cp,Dp]=tf2ss(kp* num,de n); % 传递函数型转换为状态空间型km=1; [Am,Bm,Cm,Dm]=tf2ss(km* nu m,de n); % 参考模型参数gamma=0.1; %自适应增益yr0=0; u0=0; e0=0; ym0=0; % 初值xp0=zeros(n,1); xm0=zeros(n,1); % 状态向量初值kc0=0; %可调增益初值r=1; yr=r*[o nes(1,L/4) -on es(1,L/4) on es(1,L/4) -on es(1,L/4)]; % 输入信号for k=1:Ltime(k)=k*h;xp(:,k)=xp0+h*(Ap*xp0+Bp*u0);yp(k)=Cp*xp(:,k)+Dp*u0; % 计算ypxm(:,k)=xm0+h*(Am*xm0+Bm*yr0);ym(k)=Cm*xm(:,k)+Dm*yrO; % 计算yme(k)=ym(k)-yp(k); %e=ym-yp kc=kcO+h*gamma*eO*ymO; %MIT 自适应律u(k)=kc*yr(k); % 控制量%更新数据yr0=yr(k); u0=u(k); e0=e(k); ym0=ym(k);xp0=xp(:,k); xm0=xm(:,k);kc0=kc;endplot(time,ym,'r',time,yp,':');xlabel('t'); ylabel('y_m(t)、y_p(t)');%axis([0 L*h -10 10]);lege nd('y_m(t)','y_p(t)');⑶(1)%可调增益MIT-MRAC 归一化算法clear all; close all;h=0.1; L=100/h; %数值积分步长和仿真步数num=[1]; den=[1 1 1]; n=length(den)-1; % 对象参数kp=1; [Ap,Bp,Cp,Dp]=tf2ss(kp* num,de n); % 传递函数型转换为状态空间型km=1; [Am,Bm,Cm,Dm]=tf2ss(km* nu m,de n); % 参考模型参数gamma=0.1; %自适应增益alpha=0.01; beta=2;yr0=0; u0=0; e0=0; ym0=0; % 初值xpO=zeros(n,1); xm0=zeros(n,1); % 状态向量初值kc0=0; %可调增益初值r=0.1; yr=r*[o nes(1,L/4) -on es(1,L/4) on es(1,L/4) -on es(1,L/4)]; % 输入信号for k=1:Ltime(k)=k*h;xp(:,k)=xpO+h*(Ap*xpO+Bp*uO);yp(k)=Cp*xp(:,k)+Dp*uO; % 计算ypxm(:,k)=xmO+h*(Am*xmO+Bm*yrO); ym(k)=Cm*xm(:,k)+Dm*yr0; % 计算ym e(k)=ym(k)-yp(k); %e=ym-ypDD=e0*ym0/km/(alpha+(ym0/km)A2);if DD<-betaDD=-beta;endif DD>betaDD=beta;endkc=kcO+h*gamma*DD; %MIT 自适应律u(k)=kc*yr(k); % 控制量%更新数据yr0=yr(k); u0=u(k); e0=e(k); ym0=ym(k); xp0=xp(:,k); xm0=xm(:,k);kc0=kc;endplot(time,ym,'r',time,yp,':');xlabel('t'); ylabel('y_m(t)、y_p(t)');(2)%可调增益MIT-MRAC归一化算法clear all; close all;h=0.1; L=1OO/h; %数值积分步长和仿真步数num=[1]; den=[1 1 1]; n=le ngth(de n)-1; % 对象参数kp=1; [Ap,Bp,Cp,Dp]=tf2ss(kp* num,de n); % 传递函数型转换为状态空间型km=1; [Am,Bm,Cm,Dm]=tf2ss(km* nu m,de n); % 参考模型参数gamma=0.1; %自适应增益alpha=0.01; beta=2;yrO=O; u0=0; e0=0; ym0=0; % 初值xpO=zeros(n,1); xmO=zeros(n,1); % 状态向量初值kc0=0; %可调增益初值r=1; yr=r*[o nes(1,L/4) -on es(1,L/4) on es(1,L/4) -on es(1,L/4)]; % 输入信号for k=1:Ltime(k)=k*h;xp(:,k)=xpO+h*(Ap*xpO+Bp*uO);yp(k)=Cp*xp(:,k)+Dp*uO; % 计算ypxm(:,k)=xmO+h*(Am*xmO+Bm*yrO);ym(k)=Cm*xm(:,k)+Dm*yr0; % 计算ym e(k)=ym(k)-yp(k); %e=ym-ypDD=e0*ym0/km/(alpha+(ym0/km)A2);if DD<-betaDD=-beta;endif DD>betaDD=beta;endkc=kc0+h*gamma*DD; %MIT 自适应律u(k)=kc*yr(k); % 控制量%更新数据yr0=yr(k); u0=u(k); e0=e(k); ym0=ym(k);xp0=xp(:,k); xm0=xm(:,k);kc0=kc;endplot(time,ym,'r',time,yp,':');xlabel('t'); ylabel('y_m(t)、y_p(t)');lege nd('y_m(t)','y_p(t)');。

系统辨识复习题

系统辨识复习题

一、概念题1. 请给系统辨识下个定义。

2. 如何获得适合辨识的观测数据?3. 系统辨识有哪些应用?4. 为何要将辨识数据标准化?如何标准化?5. 白噪声的定义是什么?6. 什么是M 序列?7. 线性系统的结构由哪些参量来描述? 8. 什么是预报误差模型? 二、计算与问答题9. 请用双线性变换将连续传递函数)2(1)(++=s s s s W 转换为离散传递函数(T=0.5s)。

10. 一被识系统的观测数据含有有色噪声E(k)。

拟选的参考模型为A(q -1)y(k)=B(q -1)u(k)+E(k)请问:1)用LS 能否得到A(q -1)和B(q -1)的无偏估计?为什么?2)如果将)()(ˆ)(ˆ)(ˆ11k u q Aq Bk y LSLS --=作为辅助变量,能否得到A(q -1)和B(q -1)的无偏估计?写出此时的计算公式。

11. 试述相关最小二乘二步法的适用条件和计算过程。

12. 已选择被识系统的参考模型为)()(1)()()()(111k w q C k u q A q B k y ---+=,其中w(k)为白色噪声。

为了进行递推辨识,请将模型改写为伪线性回归形式,并给出其中所有估计量的表达式。

13. 试述一种多步最小二乘法的适用条件和计算过程。

14. 已选择被识系统的参考模型为)()()()()()(111k w q D k u q A q B k y ---+=,其中w(k)为白色噪声。

为了进行递推辨识,请将模型改写为伪线性回归形式,并给出其中所有估计量的表达式。

15. 如果一个系统的部分参数已知(例如,A(q-1)y(k)=B(q-1)u(k)+w(k)中,A(q-1)已知,B(q-1)未知),你怎么去辨识其他未知参数?写出你的计算公式。

16. Matlab 中Rand 函数产生的随机数是不是白噪声?说出你的理由。

17. 逐步回归法辨识模型结构的原理是什么?18. 结构判断准则FPE 和AIC 的共同特点是什么? 三、选择题1)要辨识一个实际系统,正确的获得辨识数据的过程是:A 在实验室做模拟仿真B 在被辨识系统处于正常工况时采集数据C 通过施加激励信号,使被辨识系统处于非正常工况时采集数据D 在实验室做数字仿真2)过滤观测数据中的噪声,正确的方法是:A 对系统输出数据做低通滤波B 对系统输入数据做低通滤波C 对系统输入、输出数据做不同的滤波D 对系统输入、输出数据做相同的滤波3) 最小二乘法的适用模型是:A 带白色噪声的线性回归模型;B 带白色噪声的连续传递函数模型;C 带白色噪声的离散传递函数模型;D 带白色噪声的伪线性回归模型;4)辨识结果是否好的标准是:A 模型阶次是小的;B 参数估计误差是小的;C 输出估计误差是小的;D 模型是稳定的;5)对于模型A(q -1)y(k)=B(q -1)u(k)+E(q -1)w(k),A(q -1)、B(q -1)、E(q -1)均是多项式。

系统辨识考试汇总

系统辨识考试汇总

基于人工神经网络的二阶系统辨识摘要:BP神经网络是误差反向传播神经网络的简称,提供了一个处理非线v k的二阶系统,提出了改进的BP神经网络性问题的模型。

本文针对带有噪声()对二阶系统的辨识方法,以达到对系统的精确辨识;通过仿真实验数据可得,神经网络的输出与被辨识系统输出之间的误差很小(当k>=8时,error<0.1%);首先介绍了人工神经网络的系统辨识方面的发展与研究现状,然后介绍常规BP算法和改进的BP算法,最后通过一个具体的二阶系统的实例充分证明了改进BP 神经网络具有的良好辨识效果,实用性强。

关键字:BP神经网络;系统辨识;二阶非线性系统Second-order system identification based on artificial neuralnetworksWeiLu(College of Electrical and Control Engineering, Xi’an University of Science andTechnology,Xi’an 710054,China)Abstract:BP neural network is the abbreviation of erroneous reverse transmissionneural network, which provides a model of dealing with nonlinear problems.In thispaper, the second-order system with noise, and puts forward the improved BP neuralnetwork to second order system modeling method. In order to achieve an accurateidentification of the system.Through the simulation experiment the error between theoutput of neural network and the output of identification system is very small(Theerror<0.1% when k>=8). First, introduced the artificial neural network systemidentification aspects of development and research,Then, introduced the conventionalBP algorithm and improved BP algorithm,Finally, Through an example of a specificsecond-order system fully proved that the improved BP neural network has goodrecognition results and practical.Key words:BP neural network;System Identification;Second-order nonlinear system 一绪论在自然科学和社会科学的各个领域中,越来越多需要辨识系统模型的问题已广泛引起人们的重视,很多学者在研究有关线性和非线性的辨识问题。

系统辨识答案

系统辨识答案

1:修改课本p61的程序,并画出相应的图形;u =-1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 1z =Columns 1 through 110 0 -1.5000 -3.7500 -4.0750 -3.9875 -2.6288 0.3481 1.8623 3.0498 2.7711Columns 12 through 162.5217 1.3429 -1.2509 -2.3164 -1.0989HL =0 0 -1.0000 -1.00001.5000 0 -1.0000 -1.00003.7500 1.5000 1.0000 -1.00004.0750 3.7500 -1.0000 1.0000 3.9875 4.0750 1.0000 -1.0000 2.6288 3.9875 1.0000 1.0000 -0.3481 2.6288 -1.0000 1.0000 -1.8623 -0.3481 1.0000 -1.0000 -3.0498 -1.8623 -1.0000 1.0000 -2.7711 -3.0498 1.0000 -1.0000 -2.5217 -2.7711 -1.0000 1.0000 -1.3429 -2.5217 -1.0000 -1.00001.2509 -1.3429 1.0000 -1.00002.3164 1.2509 1.0000 1.0000 ZL =-1.5000-3.7500-4.0750-3.9875-2.62880.34811.86233.04982.77112.52171.3429-1.2509-2.3164-1.0989c =-1.50000.70001.00000.5000a1 =-1.5000a2 =0.7000b1 =1b2 =0.50002:修改课本p63的程序,并画出相应的图形(V的取值范围为54-200);V = [54.3000, 61.8000, 72.4000, 88.7000, 118.6000, 194.0000]τP = [61.2000, 49.5000, 37.6000, 28.4000, 19.2000, 10.1000]τZL = [4.1141, 3.9020, 3.6270, 3.3464, 2.9549, 2.3125]τHL =-3.9945 1.0000-4.1239 1.0000-4.2822 1.0000-4.4853 1.0000-4.7758 1.0000-5.2679 1.0000c4 =1.40429.6786alpha = 1.4042beita = 1.5972e+0043:表1中是在不同温度下测量同一热敏电阻的阻值,根据测70时的电阻量值确定该电阻的数学模型,并求出当温度在C︒值。

系统辨识作业及答案解析

系统辨识作业及答案解析

一. 问答题1. 介绍系统辨识的步骤。

答:(1)先验知识和建模目的的依据:(2)实验设计:(3)结构辨识:(4)参数估计;(5) 模型适用性检验。

2. 考虑单输入单输岀随机系统,状态空间模型yW = [1小•伙)+咻)转换成ARMA 模型。

答:ARMA 模型的特点是u(k)=O.1 0x(k + 1) =x 伙).2 0. y 伙)=[1 \]x(k) + v(k)3. 设有一个五级移位寄存器,反馈取自第2级和第3级输出的模2加法和匚试说明:(1)其输出序列是什么? (2)是否是M 序列? (3)它与反馈取自第4级与第3级输出模2加法和所得的序列有何不同? (4) 其逆M 序列是什么?答:(1)设设输入序列1 1111(1) 11111(9)01110 (17)00111(25)10011(2) 01111 (10)00111 (18)10011(26)01001(3) 00111 (11)10011 (19)01001(27)10100(4) 10011 (12)01001(20)10100(28)11010(5) 01001 (13)10100(21)11010(29)00111(6) 10100 (14)11010(22)11101(30)01110(7) 11010 (15)11101 (23)01110(31)00111(8) 11101 (16)01110(24)00111(32)10011其输出序列为:1 1 1 1 1 0 0 1 0 1(2) 不是M 序列⑶第4级与第3级模2相加结果(1) 11111(9)11001 (17)01111(25)01100皿+沪20 。

心)+ "伙)(2)01111 (10)01100(18)00111(26)10110(3)00111 (11)10110 (19)00011(27)01011(4)00011 (12)01011(20)10001(28)10101(5)10001 (13)10101(21)01000(29)11010(6)01000 (14)11010(22)00100(30)11101(7)00100 (15)11101 (23)10010(31)11110(8)10010 (16)11110(24)11001(32)01111不同点:第2级和第3级模二相加产生的序列,是从第4时刻开始,每隔7个时刻重复一次:第4级与第3级模2相加产生的,序列,是从第2时刻开始每隔15个时刻重复一次。

系统辨识与建模智慧树知到课后章节答案2023年下湘潭大学

系统辨识与建模智慧树知到课后章节答案2023年下湘潭大学

系统辨识与建模智慧树知到课后章节答案2023年下湘潭大学湘潭大学第一章测试1. A system is a unity composed of various parts that are interconnectedconstrained and interacted with each other and have certain overallfunctions and comprehensive behaviors.()A:对 B:错答案:对2.Which one is not belong to modern control theory system?().A:System identification B:Modern control theory C:State estimationD:Automatic control答案:Automatic control3.建立数学模型的方法可大体分为:().A:观测法 B:理论分析法 C:测试法 D:实验法答案:理论分析法;测试法4.下列哪些属于非参数模型?()A:权序列模型 B:输入输出模型 C:状态空间模型 D:脉冲响应模型答案:权序列模型;脉冲响应模型5.针对水箱进行机理建模时,我们应该凭借哪种关系建立公式?().A:水箱流入量和流出量之差为流入水流量的增量 B:水箱流入量和流出量之差为液位的增量 C:水箱流入量和流出量之差为液体存储量的变化率 D:水箱流入量和流出量之差为流出水流量的增量答案:水箱流入量和流出量之差为液体存储量的变化率第二章测试1.下面哪些内容不属于系统辨识的基本内容?()A:观测数据 B:模型结构辨识 C:模型验证 D:模型参数辨识答案:观测数据2.白噪声过程没有“记忆性”,也就是说t时刻的数值与t时刻以前的值无关,也不影响t时刻以后的将来值。

()A:对 B:错答案:对3.关于白噪声的均匀分布计算问题,将产生的(0,1)均匀分布的随机数通通减去0.5,然后乘以存储器f中预置的系数,这里取f=2,从而得到新的分布()。

2022年职业考证-软考-系统集成项目管理工程师考试全真模拟易错、难点剖析B卷(带答案)第84期

2022年职业考证-软考-系统集成项目管理工程师考试全真模拟易错、难点剖析B卷(带答案)第84期

2022年职业考证-软考-系统集成项目管理工程师考试全真模拟易错、难点剖析B卷(带答案)一.综合题(共15题)1.单选题()不是大数据技术的典型应用。

问题1选项A.本人健康码查询B.广告精准投放C.通信大数据行程卡D.地铁站无接触测温【答案】D【解析】本题考查大数据应用知识,出自《系统集成项目管理工程师教程(第2版)》第一章信息化知识 1.6.1 大数据。

(1)互联网行业应用。

互联网访问的行为包括:访问的网站和页面,访间内容,停留时间,访问网页的关联性,购买行为,兴趣点,位置信息,社交信息等等。

通过对互联网访问行为的监测分析,可以向访问者提供个性化的商业推荐,精确投放广告;还可以对互联网推广商品的市场行情进行监测;利用网站动态数据对网络状态实时监控,并针对流量、安全进行预警;通过综合分析,向公众提供诸如流行疾病的预警、节假日客运流量预告等服务。

(2)传统领域的应用。

大数据应用起源于互联网,正在向以数据生产、流通和利用为核心的金融、零售、电信、公共管理、医疗卫生等领域渗透。

例如,金融机构通过收集互联网用户的微博数据、社交数据、历史交易数据来评估用户的信用级别和消费级别;零售企业通过互联网用户数据分析商品销售趋势、用户偏好。

基于大数据的智慧城市也是大数据应用的重要领域,可整合来自经济、统计、民政、教育、卫生、人力等政府部门内部数据和来自物联网、移动互联网等网络数据,开通智慧医疗、智慧教育、智能物流、智能环保等应用。

地铁站无接触测温不是大数据技术的典型应用。

2.单选题()是人工智能的核心,是使计算机具有智能的根本途径。

问题1选项A.机器学习B.人机交互C.计算机视觉D.虚拟现实【答案】A【解析】机器学习(Machine Learning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。

自动识别系统考核试卷

自动识别系统考核试卷
A.摄像头
B.传感器
C.数据处理单元
D.显示器
15.以下哪些技术可以用于自动识别系统中的语音识别?()
A.隐马尔可夫模型
B.深度神经网络
C.麦克风阵列
D.语音合成
16.以下哪些因素可能会影响自动识别系统的可靠性?()
A.硬件故障
B.软件错误
C.网络延迟
D.人员操作失误
17.以下哪些是自动识别系统在交通领域的应用?()
8. A
9. B
10. A
11. A
12. C
13. B
14. D
15. A
16. D
17. A
18. D
19. C
20. A
二、多选题
1. ABCD
2. ABC
3. ABCD
4. ABC
5. ABC
6. ABCD
7. ABCD
8. ABCD
9. ABCD
10. ABCD
11. A
12. ABC
13. ABCD
A.电子警察
B.车牌识别
C.交通事故分析
D.实时路况监控
18.以下哪些技术可以用于自动识别系统中的视频分析?()
A.运动检测
B.轨迹跟踪
C.行为识别
D.面部识别
19.以下哪些方法可以用于自动识别系统中的异常检测?()
A.机器学习
B.深度学习
C.数据挖掘
D.人工视觉检查
20.以下哪些是自动识别系统在安全监控领域的应用?()
14. ABCD
15. ABC
16. ABCD
17. ABCD
18. ABCD
19. ABC
20. ABCD

系统辨识试卷-西建大

系统辨识试卷-西建大

西安建筑科技大学工程硕士《系统辨识》课程考试试卷班级姓名学号成绩一、选择题(每小题2分,共10分)1.平稳随机过程的均值。

a. 是随机数b. 等于0c. 等于恒定值2.按照建模分类方法,系统辨识属于建模。

a. white boxb. gray bo xc. black box3.模型y(K)=c(Z-1)v(K)称为模型。

a. ARMAXb. ARMAc. ARd. MA4. 模型y(K)= b(Z-1)u(K)+ c(Z-1)v(K)称为模型。

a. ARMAXb. ARMAc. ARd. MA5. 移位寄存器的初始状态(全“0”除外),对产生M序列。

a. 有影响b. 无影响二、名词解释(每小题4分,共20分)1.线性系统2.随机系统3.动态系统辨识4.正态白噪声信号5.各态历经性三、写出一下公式或表达式,并说明式中变量的意义。

(每小题5分,共20分)1. L序列的逆重复性2. Wiener-Hopf方程3.互相关函数Rxy(k)的数字计算机算法4.带遗忘因子最小二乘的目标函数四、简答题。

(每小题5分,共20分)1.双闭环不可逆调速系统运行中是否存在外部扰动?若有,请举例说明。

请说明是否存在随机性扰动?若有,请举例说明。

2.为什么用相关分析法辨识系统的动特性,在一定条件下能够抑制输出信号y(t)中噪声信号)ξ的不利影响?这个结论的前提条件是什么?(t3.说明用M序列/或L序列作为系统辨识实验的输入信号的原因。

4.说明根据已有M序列获取与其对应的L序列的方法。

五、设计计算(30分)1.设计一个线性反馈移位寄存器,使其产生的M序列为{u}=110100111010011101001………………(10分)2.已初步确定被辨识系统的过渡过程时间为T s=25min,最高工作频率(截止频率)f M=0.002Hz,设计 M序列的时钟周期)(t∆过大(t∆和序列长度N。

时钟周期)或过小会带来什么问题?长度N过大或过小会带来什么问题?(10分)3. 设某物体长度为x(真值是未知量),测量它的长度N次,得到(10分)x(1),x(2),……x(N)共N个观测值。

江南大学《系统辨识》试卷部分答案

江南大学《系统辨识》试卷部分答案

江南大学《系统辨识》实体部分参考答案一、【每小题2分,其中10小题,共计20分】假设a ,b ,c ,d ,i θ是未知参数,υ 是噪声,写出下列系统的辨识模型(1) 12()t y t t e θθ=++解答:12()()()[1,][,]t T T Te y t t t t ϕθϕθθθ⎧-+=⎪=⎨⎪=⎩(2) 12()2cos()t y t t e t θθ=+++解答:122cos()()()()[1,][,]t T T T e t y t t t t ϕθϕθθθ⎧--+=⎪=⎨⎪=⎩(3) 21231()()y t t t t θθυθ=+++解答: 2123()()()()[1,,]1[,,]T T Ty t t t t t t ϕθυϕθθθθ⎧⎪=+⎪⎪=⎨⎪⎪=⎪⎩(4) 123()()t y t t e t θθθυ=++++解答:132()()()()[1,][,]t T T T y t e t t t t ϕθυϕθθθθ⎧-=+⎪=⎨⎪=+⎩(5) ()()()()()()()()1212......n n y t ax t bx t cx t dx t x t x t t υ=+++++ 解答:()()()()()()()1212()()()[,,...,,...][,,...,,]T T n n T y t t v t t x t x t x t x t x t x t a b c d ϕθϕθ⎧=+⎪=⎨⎪=⎩二、【每个2分,共计20分】假设i θ是未知参数,υ是噪声,写出下列系统辨识模型(1) 123()1t y t t e θθθ=+++解答: 1231()()()[1,,][,,]T T t T y t t t t e ϕθϕθθθθ⎧-+=⎪=⎨⎪=⎩(2) 212()()()...()()m m y t u t u t u t t θθθυ=++++解答:212()()()()[(),(),...,()][,,...,]T T m T m y t t t t u t u t u t ϕθυϕθθθθ⎧=+⎪=⎨⎪=⎩(3) 1234()()(1)(2)(1)(2)()y t t y t y t u t u t t θθθθυ+-+-=-+-+ 解答:()12341234()()(1)(2)(1)(2)()()()()[(1),(2),1,(2)][,,,]T T T y t t y t y t u t u t t t t t y t y t u t u t θθθθυϕθυϕθθθθθ⎧=----+-+-+=+⎪=------⎨⎪=⎩(4) 123()sin(/)(1)(1)cos()()y t t y t u t t t θπθθυ+-=-++解答:()123123()()s i n (/)(1)(1)c o s ()()()()()[s i n (/)(1),1,c o s ()][,,]T T T y t t t y t u t t t t t t t y t u t t θπθθυϕθυϕπθθθθ⎧=--+-++=+⎪=---⎨⎪=⎩ (5) 2()()()2s i n (/)y t a u t b u t c d t π=+++ 解答: 2()()()[(),(),2,sin(/)][,,,]T T T y t t t u t u t t a b c d ϕθϕπθ⎧=⎪=⎨⎪=⎩三、【10分】设三阶MA 模型为)3()2()1()()(321-+-+-+=t v d t v d t v d t v t y .其中,{})(t y 是已知观测序列,{})(t v 是零均值方差为2σ的随机白噪声序列,其便是模型为 )()()(t v t t y T +=θϕ● 写出信息向量)(t ϕ和参数向量θ的表达式● 写出θ的递推增广最小二乘(RELS)辨识算法.解答:)()()(t v t t y T +=θϕ)]3(),2(),1([)(---=t v t v t v t T θ其中,T d d d ],,[321=θ算法如下:的RELS R -θ)(ˆ)1()(ˆ1)(ˆ)1()(ˆ)()()]1(ˆ)(ˆ)()[()1(ˆ)(ˆt t p t t t p t t p t L t t t y t L t t T ϕϕϕϕθϕθθ-+-==--+-= )1()](ˆ)(1[)(--=t p t t L t p T ϕI p p 0)0(= T T T T d d d t t t t t v t v t v t v t ]ˆˆˆ[)(ˆ)(ˆ)(ˆ)()()]3(ˆ),2(ˆ),1(ˆ[)(ˆ321=-=---=θθϕϕϕ四、证明题【每小题2分,其中5题,计10分】设n T R t t t t t p t p ∈≥+-=--)(,0)(),()()1()(211ϕϕϕϕ格式阶单位矩阵,证明以下为n I I p n n ,)0(=(1))()(t t p ϕ )()1()(1)()1(t t p t t t p T ϕϕϕ-+-= (2)1)()()(≤t t p t T ϕϕ(3) )()()(1)()()()1(t t p t t t p t t p T ϕϕϕϕ-=-(4) )()1()()()()()(2t t p t p t t t p t T T ϕϕϕϕ-≤(5) 1()()(1)()T t t p t p t t ϕϕ∞=-∞∑(6) )()()(21t t p t t T ϕϕ∑∞=∞解答:(1)11()(1)()()T p t p t t t ϕϕ--=-+ ①对①式用矩阵求逆引理,则1()(1)(1)()[()(1)()]()(1)T T p t p t p t t I t p t t t p t ϕϕϕϕ-=---+-- 对上式两边乘)(t ϕ,可得)()1()(1)()1()()()1()()1()()(t t p t t t p t t t p t t p t t p T T ϕϕϕϕϕϕϕ-+----= )()1()(1)()1(t t p t t t p T ϕϕϕ-+-= (2)∵ )()1()(1)()1()()(t t p t t t p t t p T ϕϕϕϕ-+-=② 对②式左乘)(t Tϕ,可得)()1()(1)()1()()()()(t t p t t t p t t t p t T T T ϕϕϕϕϕϕ-+-= ∵0)1(≥-t p ∴1)()()(≤t t p t T ϕϕ (3)对①右乘p(t),可得)()()()()1(1t p t t t p t p IT ϕϕ+-=- ③ 面对③左乘)1(-t p ,右乘)(t ϕ,则有)()()()()1()()()()1(t t p t t t p t t p t t p T ϕϕϕϕϕ-+=- ④ 移向合并,可得)()()(1)()()()1(t t p t t t p t t p T ϕϕϕϕ-=-④对②式左乘(t)p(t) T ϕ,得)()1()(1)()1()()()()()(t t p t t t p t p t t t p t T T TT ϕϕϕϕϕϕ-+-= ∵0)1(≥-t p ∴0)()1()(≥-t t p t T ϕϕ∴)()1()()()()()(t t p t p t t t p t T T T ϕϕϕϕ-≤(1)()(1)()()()T p t p t p t t t p t ϕϕ-=+-∴11(1)()()()()(0)()T t i p t t t p t p t p p ϕϕ∞∞==-=∆=-∞∑∑ ⑤ ∵)()()1()(11t t t p t p T ϕϕ+-=--11(0)()()T t p t t ϕϕ∞-==+∑ ∴)0()(11--≥p t p∴when ∞→t ,则)()0(∞≥p p对⑤式两队取迹,得)]()1()()([)]()()()1([11t t p t p t tr t p t t t p tr i T i Tϕϕϕϕ-=-∑∑∞=∞= [(0)()]tr p p =-∞∞⑥∵)()1()()()()()(t t p t p t t t p t T T T ϕϕϕϕ-≤∴∞-≤∑∑∞=∞= )]()1()()()()()(11t t p t p t t t p t t T T t T ϕϕϕϕ。

《系统安全评价与预测》试卷B答案与评分标准

《系统安全评价与预测》试卷B答案与评分标准

《系统安全评价与预测》试卷(B 卷)答案与评分标准1. 目前国内将安全评价通常根据工程、系统生命周期和评价的目的分为安全预评价、安全验收评价、 安全现状评价、专项安全评价。

2.《安全生产法》第二十四条规定:生产经营单位新建、改建、扩建工程项目的职业安全卫生设施 ,必须与工程主体同时设计、同时施工、同时投入生产和使用。

3.定义重大危险源时,其中的单元是指一个(套)生产装置、设施或场所,或同属一个工厂的且边缘距离小于500m 的几个(套)生产装置、设施或场所。

4. 建筑属于高风险行业,建筑和拆除过程中的危险、有害因素主要有:高空坠落、物体打击和挤压、触电、机械伤害、火灾和爆炸、交通事故、职业病;5.德尔菲法是一种专家调查法,利用专家们的经验和知识对所要研究的问题进行分析和预测的一种方法。

常用于中长期预测。

6.安全检查表分类按用途分:设计审查用安全检查表、厂级安全检查表、车间安全检查表、工段及岗位安全检查表、专业性安全检查表。

7.人因失误:对系统已设定的目标及系统的构造、模式、运行发生影响,使之逆转运行或遭受破坏的人的因素造成的各种活动。

1. 重大危险源:重大危险源是长期或临时生产、加工、搬运、使用或贮存危险物质,且危险物质的数量等于或超过临界量的单元。

2. 事故致因理论:是人们对事故机理所作的逻辑抽象或数学抽象,是描述事故成因、经过和后果的理论,是研究人、物、环境、管理及事故处理这些基本因素如何作用而形成事故、造成损失的理论。

3. 马尔可夫过程在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移过程就称为马尔可夫过程。

4. 安全专项评价专项安全评价一般是针对某一项活动或场所,如一个特定的行业、产品、生产方式、生产工艺或生产装置等,存在的危险、有害因素进行的安全评价,目的是查找其存在的危险、有害因素,确定其程度,提出合理可行的安全对策措施及建议。

系统辨识试卷B

系统辨识试卷B

襄樊学院2008-2009学年度上学期《系统辨识》试题系别专业学号姓名课程类别:选修课适用专业:自动化一、选择题(从下列各题的备选答案中选出一个或几个正确答案,并将其代号写在题干后面的括号内。

答案选错或未选全者,该题不得分。

每空2分,共12分)1、下面哪种建模方法也称为“黑箱问题”()。

(A)机理建模(B)实验建模(C)机理分析和系统辨识相结合(D)系统辨识2、频谱覆盖宽、能量均匀分布是下面哪种信号的特点()。

(A)白噪声信号(B)脉冲信号(C)阶跃信号(D)斜坡信号3、下面哪种辨识方法不属于系统辨识的经典方法()。

(A)阶跃响应法(B)相关分析法(C)最小二乘法(D)频率响应法4、下面哪些数学模型属于参数型()。

(A)微分方程(B)状态方程(C)传递函数(D)脉冲响应模型5、下面哪些内容属于系统辨识的基本内容()。

(A)观测数据(B)模型结构辨识(C)模型参数辨识(D)模型验证6、下面哪个不属于系统辨识过程中的3大要素之一()。

(A)输入输出数据(B)输入数据(C)模型类(D)等价准则二、填空题(每空2分,共14分)1、通过和计算的方法,可以由阶跃响应求出系统的传递函数。

2、SISO系统的结构辨识可归结为确定和。

3、最小二乘法是和的特殊情形。

4、的最小二乘递推算法和的最小二乘递推算法都称为实时辨识算法。

三、判断改错题(下列命题你认为正确的在题后括号内打“√”;错误的打“×”并改正;每小题2分,共20分)1、白噪声过程是一种均值为非零、谱密度为非零常数的平稳()随机过程。

2、相关分析法对噪声有滤波作用。

()3、白噪声和M序列是两个完全相同的概念。

()4、预报误差法不需要先验统计信息。

()5、增长记忆估计算法给新、老数据不相同的信度。

()6、均值和方差是随机过程的数字特征。

()7、等价准则是系统辨识的优化目标。

()8、传递函数属于参数型。

()9、机理建模这种建模方法也称为“灰箱问题”。

()10、系统辨识不需要知道系统的阶次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

襄樊学院2008-2009学年度上学期《系统辨识》试题
系别专业学号姓名
课程类别:选修课
适用专业:自动化
一、选择题(从下列各题的备选答案中选出一个或几个正确答案,
并将其代号写在题干后面的括号内。

答案选错或未选全者,该题不得
分。

每空2分,共12分)
1、下面哪种建模方法也称为“黑箱问题”()。

(A)机理建模(B)实验建模(C)机理分析和系统辨识相结合(D)系统辨识
2、频谱覆盖宽、能量均匀分布是下面哪种信号的特点()。

(A)白噪声信号(B)脉冲信号(C)阶跃信号(D)斜坡信号
3、下面哪种辨识方法不属于系统辨识的经典方法()。

(A)阶跃响应法(B)相关分析法(C)最小二乘法(D)频率响应法4、下面哪些数学模型属于参数型()。

(A)微分方程(B)状态方程(C)传递函数(D)脉冲响应模型5、下面哪些内容属于系统辨识的基本内容()。

(A)观测数据(B)模型结构辨识(C)模型参数辨识(D)模型验证6、下面哪个不属于系统辨识过程中的3大要素之一()。

(A)输入输出数据(B)输入数据(C)模型类(D)等价准则
二、填空题(每空2分,共14分)
1、通过和计算的方法,可以由阶跃响应求出系统的传递函数。

2、SISO系统的结构辨识可归结为确定和。

3、最小二乘法是和的特殊情形。

4、的最小二乘递推算法和的最小二乘递推算法都称为实时辨识算法。

三、判断改错题(下列命题你认为正确的在题后括号内打“√”;
错误的打“×”并改正;每小题2分,共20分)
1、白噪声过程是一种均值为非零、谱密度为非零常数的平稳
()随机过程。

2、相关分析法对噪声有滤波作用。

()
3、白噪声和M序列是两个完全相同的概念。

()
4、预报误差法不需要先验统计信息。

()
5、增长记忆估计算法给新、老数据不相同的信度。

()
6、均值和方差是随机过程的数字特征。

()
7、等价准则是系统辨识的优化目标。

()
8、传递函数属于参数型。

()
9、机理建模这种建模方法也称为“灰箱问题”。

()
10、系统辨识不需要知道系统的阶次。

()
四、简答题(回答要点,并简明扼要作解释,每小题6分,共18分)
1、什么是权?叙述加权在渐消记忆的最小二乘递推算法中的作用。

2、相关分析法的主要优点是什么,其在工程中的应用有哪些方面?
3、简述极大似然原理,叙述极大似然法和最小二乘法的关系。

得分评卷人
五、计算题(要求写出主要计算步骤及结果。

每小题12分,共36
分)
1、某系统的阶跃响应曲线
如右图所示,试写出其传
递函数。

(注:要有详细
的步骤)
2、观测数据如下:
试用二次多项式(利用最小二乘法)拟合这些数据。

3、被辨识系统的脉冲响应序列如下表所示:
(1)求)
H
det k
,2(
(2)假设
D=2.998 3D=911.9 4D=56.28,则,系统的阶数为多少
2。

相关文档
最新文档