(完整版)二元一次方程基本概念及基本解法讲解
(完整版)二元一次方程组优秀课件PPT
![(完整版)二元一次方程组优秀课件PPT](https://img.taocdn.com/s3/m/2c3a706d4a73f242336c1eb91a37f111f1850ddd.png)
矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵的性质,将二元一次方程组转化为线性方程组进行求解。
详细描述
矩阵法的基本思路是将二元一次方程组转化为线性方程组,然后利用矩阵的运算性质和 逆矩阵的性质求解。具体步骤包括:将二元一次方程组写成矩阵形式,然后对矩阵进行 变换,将其化为行最简形式,得到线性方程组;然后利用逆矩阵的性质求解线性方程组
示例
x + y = 1, 2x - y = 3
二元一次方程组的解法概述
01
02
03
消元法
通过加减或代入法消去一 个未知数,将二元一次方 程组转化为一元一次方程 求解。
替换法
通过一个方程中的未知数 表示另一个未知数,然后 将其代入另一个方程求解 。
矩阵法
利用矩阵表示方程组,通 过矩阵运算求解。
二元一次方程组的应用场景
化学问题
在化学中,有些问题涉及到两种化学物质之间的反应,如反 应速率和反应物浓度等,这时也可以用二元一次方程组来表 示和解决。
04
二元一次方程组的扩展知识
二元一次方程组的几何意义
平面直角坐标系
二元一次方程组可以表示平面上的点集,通过坐标系将代数问题与几何问题相互 转换。
直线交点
二元一次方程组的解对应于直线交点,即两个方程的公共解。
二元一次方程组的解的个数与性质
解的个数
二元一次方程组可能有无数解、唯一 解或无解,取决于方程组中方程的系 数和常数项。
解的性质
解的个数与方程组系数矩阵的秩和增 广矩阵的秩有关,通过比较两者可以 判断解的情况。
二元一次方程组的解的判定定理
定理内容
如果二元一次方程组的系数矩阵的秩等于增广矩阵的秩,则该方程组有唯一解;如果秩不相等,则该 方程组无解或有无数解。
(word完整版)二元一次方程组的概念和解法-教师版
![(word完整版)二元一次方程组的概念和解法-教师版](https://img.taocdn.com/s3/m/012fac04ba0d4a7303763ab1.png)
(word 完整版)二元一次方程组的概念和解法-教师版二元一次方程的基本概念1。
含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程。
判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”;③含有未知数的项的次数为1——“一次”。
2。
二元一次方程的一般形式:0ax by c ++=(0a ≠,0b ≠)3。
二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解。
一般情况下,一个二元一次方程有无数个解。
【例1】 下列各式是二元一次方程的是( )A 。
30x y z -+=B 。
30xy y x -+=C 。
12023x y -= D 。
210y x+-=【解析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别. 【答案】故本题选C .【巩固】下列方程是二元一次方程的是( )A.31x xy -= B 。
2430x x += C.23y += D.3x y =【答案】D .【例2】 若32125m n x y ---=是二元一次方程,则求m 、n 的值.【答案】由定义知:321m -=,11n -=,所以:1m =,2n =.【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。
【答案】根据题意可得:20m -≠,11n -=,11m -=,所以2n =,0m =.二元一次方程组的概念和解法同步练习知识讲解(word 完整版)二元一次方程组的概念和解法-教师版【例3】 若32125m n x y ---=是二元一次方程,则求m 、n 的值。
【答案】由定义知:321m -=,11n -=,所以:1m =,2n =。
【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。
《二元一次方程和它的解》 讲义
![《二元一次方程和它的解》 讲义](https://img.taocdn.com/s3/m/72581c4711a6f524ccbff121dd36a32d7275c740.png)
《二元一次方程和它的解》讲义一、什么是二元一次方程在数学的世界里,二元一次方程是一个非常基础且重要的概念。
那到底什么是二元一次方程呢?简单来说,二元一次方程就是含有两个未知数,并且含有未知数的项的次数都是 1 的整式方程。
我们可以用一般形式来表示二元一次方程,即:ax + by = c (其中 a、b 都不为 0)。
比如说,像 2x + 3y = 7 、5x 2y = 9 这样的方程,都是二元一次方程。
这里的 x 和 y 就是两个未知数,a 和 b 分别是 x 和 y 的系数,c 是常数项。
需要注意的是,方程中的系数 a、b 以及常数项 c 都是实数。
二、二元一次方程的特点了解了二元一次方程的定义,我们再来看看它有哪些特点。
首先,二元一次方程有两个未知数。
这两个未知数在方程中地位是平等的,没有主次之分。
其次,方程中含未知数的项的次数都是 1。
这意味着 x 和 y 的指数都是 1,不会出现像 x²或者 y³这样的情况。
再者,二元一次方程是整式方程。
也就是说,方程的分母中不含未知数。
比如 2/(x + y) = 3 就不是二元一次方程,因为分母中含有未知数x 和 y 。
三、二元一次方程的解既然有方程,那就必然有解。
那什么是二元一次方程的解呢?对于一个二元一次方程,如果能找到一组未知数的值,使得方程左右两边相等,那么这组未知数的值就叫做这个二元一次方程的一个解。
比如对于方程 2x + 3y = 7 ,如果 x = 1 ,y = 1 ,代入方程左边得到:2×1 + 3×1 = 5 ,不等于右边的 7 ,所以 x = 1 ,y = 1 不是方程的解。
而如果 x = 2 ,y = 1 ,代入方程左边得到:2×2 + 3×1 = 7 ,等于右边的 7 ,所以 x = 2 ,y = 1 就是方程 2x + 3y = 7 的一个解。
一般来说,一个二元一次方程有无数个解。
七年级下-二元一次方程组的定义及解法
![七年级下-二元一次方程组的定义及解法](https://img.taocdn.com/s3/m/98104e68905f804d2b160b4e767f5acfa0c78343.png)
二元一次方程组的定义及解法知识集结知识元二元一次方程(组)的定义知识讲解1. 二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。
所以满足三个条件:①方程中有且只有两个未知数;②方程中含有未知数的项的次数为1;③方程为整式方程,就是二元一次方程。
注意:主要考查未知数的项的次数为1,方程必须为整式,不能为分式。
例:x=2y.2.二元一次方程组的定义:由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。
注意三条:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程。
注意:二元一次方程组不一定由两个二元一次方程合在一起:①方程可以超过两个;②有的方程可以只有一元。
例题精讲二元一次方程(组)的定义例1.下列方程中,是二元一次方程的是().A.8x2+1=y B.y=8x+1C.y=D.xy=1例2.下列方程组中,是二元一次方程组的是().C.D.A.B.例3.有下列方程组:(1)(2)(3)(4),其中说法正确的是().A.只有(1)、(3)是二元一次方程组B.只有(3)、(4)是二元一次方程组C.只有(4)是二元一次方程组D.只有(2)不是二元一次方程组根据定义求字母的值知识讲解含有参数的二元一次方程组,根据二元一次方程的定义:1.二元的系数不为零。
2.未知数的次数为1。
注意:出现在选择填空题时,可以不用解出方程,可以直接将m,n的值代入验证即可。
例题精讲根据定义求字母的值例1.已知3 =y是二元一次方程,那么k的值是().A.2B.3C.1D.0例2.若﹣8 =10是关于x,y的二元一次方程,则m+n=.例3.'若(a-3)x+=9是关于x,y的二元一次方程,求a的值。
'由实际问题抽象出二元一次方程组知识讲解分析实际问题,找出等量关系,列出实际问题.例题精讲由实际问题抽象出二元一次方程组例1.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组().A.B.C.D.例2.元旦期间,某服装商场按标价打折销售,小王去该商场买了两件衣服,第一件打6折,第二件打5折,共记230元,付款后,收银员发现两件衣服的标价牌换错了,又找给小王20元,请问两件衣服的原标价各是多少?解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元;由题意可得方程组__________。
(word完整版)二元一次方程组解法详解
![(word完整版)二元一次方程组解法详解](https://img.taocdn.com/s3/m/24ec8186a417866fb94a8eb0.png)
一、二元一次方程组解法总结1、二元一次方程组解法的基本思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想。
即二元一次方程组形如:ax=b(a,b为已知数)的方程。
2、代入消元法由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法.3、用代入消元法解二元一次方程组的步骤(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来。
(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.4、加减消元法两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.5、加减消元法解二元一次方程组的一般步骤(1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值;(5)把求出的未知数的值写成的形式。
6、二元一次方程组解的情况若二元一次方程组(a1,a2,b1,b2,c1,c2均为不等于0的已知数),则(1)当时,这个方程组只有唯一解;(2)当时,这个方程组无解;(3)当时,这个方程组有无穷多个解.二、重难点知识归纳二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题.三、典型例题讲解例1、(1)下列方程中是二元一次方程的有( )①②③④mn+m=7 ⑤x+y=6A.1个B.2个C.3个D.4个(2)在方程(k2-4)x2+(2-k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k的值为()A.2 B.-2 C.±2D.以上都不对分析:一个方程是否是二元一次方程,必须看它是否满足或使它满足三个条件:①含有两个未知数;②未知数项的次数为1;③整式方程.解答:(1)∵方程①③不是整式方程,∴它们不是二元一次方程.∵mn的次数为2,∴方程④不是二元一次方程.∵方程②⑤满足二元一次方程的三个条件,∴方程②⑤是二元一次方程.故此题应选择B.(2)∵方程(k2-4)x2+(2-k)x+(k+1)y+3k=0是二元一次方程,∴它应满足条件:k2-4=0且2-k≠0且k+1≠0,解得k=±2且k≠2且k≠-1.∴k=-2.例2、在方程3x-ay=0中,如果是它的一个解,那么a的值为_____..由于方程的解必使方程左右两边的值相等,所以只需将代入方程中,解关于a的一次方程即可.解答:∵是方程3x-ay=0的一个解,∴3×3-a·2=0,例3、甲、乙两人同时解方程组乙因抄错c,解得求a、b、c 的值.将正确的解代入方程组中可直接求出c的值,但不能求a、b的值.错误解有什么作用呢?方程组的解应满足每一个方程,因此正确解满足ax+by=2,错误的解同样能满足方程ax+by=2,那么就可以建立a、b的方程组,于是a、b、c的值均可求出.解答:都是方程①的解.又∵是方程②的解,∴c+3=-2,∴c=-5.故a、b、c的值分别为例4、解下列方程组.(1)先将①化简为3y=4x+5,再代入②即可消去y,从而求出x的值。
(完整版)二元一次方程组优秀课件PPT
![(完整版)二元一次方程组优秀课件PPT](https://img.taocdn.com/s3/m/ac2c304253ea551810a6f524ccbff121dd36c52f.png)
距离问题
浓度问题
通过给定的两点坐标,利用二元一次 方程组求解两点之间的距离。
通过给定的溶液浓度和体积,利用二 元一次方程组求解溶液的配制比例和 浓度。
速度问题
通过给定的时间和速度,利用二元一 次方程组求解物体的运动轨迹和速度 。
THANKS
[ 感谢观看 ]
(完整版)二元一次方程 组优秀课件
汇报人:可编辑
2023-12-25
CONTENTS
目录
• 二元一次方程组的基本概念 • 二元一次方程组的解法 • 二元一次方程组的实际应用 • 二元一次方程组的变式与拓展
CHAPTER 01
二元一次方程组的基本概念
二元一次方程组的定义
定义
二元一次方程组是由两个或两个以上的方程组成,其中含有两个未知数,且每 个方程中未知数的次数都是一次。
代数问题
例如,在求解两个未知数的和、差、 积、商等问题时,需要使用二元一次 方程组来表示和求解。
物理中的二元一次方程组问题
运动问题
例如,在计算两个物体之间的相对速度和距离时,需要使用二元一次方程组来表示和求 解。
力的问题
例如,在计算两个物体之间的相互作用力和扭矩时,需要使用二元一次方程组来表示和 求解。
示例
x + y = 1, 2x - y = 3。
二元一次方程组的表示方法
代数表示法
使用代数符号表示二元一次方程 组,如x + y = 1, 2x - y = 3。
图形表示法
通过图形表示二元一次方程组的 解,如平面直角坐标系中的直线 。
二元一次方程组的解的概念
01
02
03
解的概念
满足二元一次方程组的未 知数的值称为解。
初一数学二元一次方程知识点总结
![初一数学二元一次方程知识点总结](https://img.taocdn.com/s3/m/93ea136d3868011ca300a6c30c2259010302f36b.png)
初一数学二元一次方程知识点总结一、二元一次方程的概念。
1. 定义。
- 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
例如:x + y=5,其中x、y是未知数,方程中x的次数是1,y的次数也是1,并且整个方程是整式方程。
2. 二元一次方程的一般形式。
- 一般形式为ax + by=c(a、b、c是常数,a≠0,b≠0)。
例如2x - 3y = 8就是这种形式,这里a = 2,b=-3,c = 8。
二、二元一次方程组的概念。
1. 定义。
- 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
例如x + y=3 2x - y = 1就是一个二元一次方程组。
2. 二元一次方程组的解。
- 二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
例如对于方程组x + y=3 2x - y = 1,通过求解可得x=(4)/(3),y=(5)/(3),((4)/(3),(5)/(3))就是这个方程组的解,即把x=(4)/(3),y=(5)/(3)代入方程组中的两个方程都成立。
三、二元一次方程组的解法。
1. 代入消元法。
- 步骤:- 从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来。
例如对于方程组x + y=3 2x - y = 1,由方程x + y=3可得x = 3 - y。
- 将变形后的式子代入另一个方程,消去一个未知数,得到一个一元一次方程。
把x = 3 - y代入2x - y = 1,得到2(3 - y)-y = 1。
- 解这个一元一次方程,求出一个未知数的值。
解2(3 - y)-y = 1,6-2y -y=1,- 3y=-5,y=(5)/(3)。
- 将求得的这个未知数的值代入变形后的式子,求出另一个未知数的值。
把y=(5)/(3)代入x = 3 - y,得x=(4)/(3)。
2. 加减消元法。
- 步骤:- 当方程组中两个方程的同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
《二元一次方程组》知识讲解及例题解析
![《二元一次方程组》知识讲解及例题解析](https://img.taocdn.com/s3/m/b9f14049f242336c1fb95e16.png)
《二元一次方程组》知识讲解及例题解析◆知识讲解1.二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.3.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.◆例题解析例1 已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求(m+n)的值.【分析】由方程组的解的定义可知21xy=⎧⎨=⎩,同时满足方程组中的两个方程,将21xy=⎧⎨=⎩代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值.【解答】把x=2,y=1代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得22(1)12211m n ⨯+-⨯=⎧⎨+=⎩ 由①得m=-1,由②得n=0.所以当m=-1,n=0时,(m+n )=(-1+0)=-1.【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程. 例2 “5.12”汶川大地震后,灾区急需大量帐篷.•某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000•顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;•若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y 顶,则210523178x y x y +=⎧⎨+=⎩ 解得:x=41;y=32答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.例3 某商场正在热销2008年北京奥运会吉祥物“福娃”和徽章两种奥运商品,根据下图提供的信息,•求一盒“福娃”玩具和一枚徽章的价格各是多少元?【分析】本题以图文形式提供了部分信息,主要考查学生运用二元一次方程组解决实际问题的能力.【解答】设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得214523280x y x y +=⎧⎨+=⎩解这个方程组,得12510x y =⎧⎨=⎩ 故一盒“福娃”玩具的价格为125元,一枚徽章的价格为10元.例4 为满足用水量不断增长的需求,昆明市最近新建甲,乙,•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B •型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)【分析】(1)可设甲水厂的日供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3,由三个水厂的日供水量总和为11.8万m 3,可列方程x+3x+12x+1=11.8; (2)设每辆A 型汽车每次运土石xt ,B 型车每辆每次运土石yt ,•依题意可列方程组30206001530600x y x y +=⎧⎨+=⎩解方程后可求解.【解答】(1)设甲水厂的供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3. 由题意得:x+3x+12x+1=11.8,解得x=2.4. 则3x=7.2,x+1=2.2.答:甲水厂日供水量是2.4万m 3,乙水厂日供水量是7.2万m 3,•丙水厂日供水量是2.2万m 3.(2)设每辆A 型汽车每次运土石xt ,每辆B 型汽车每次运土石yt ,由题意得: 30206001530600x y x y +=⎧⎨+=⎩ ∴1015x y =⎧⎨=⎩答:每辆A型汽车每次运土石10t,每辆B型汽车每次运土石15t.【点评】本例系统地考查了一元一次方程和二元一次方程组这两个重要内容,在同一背景下提供不同的动作方案是近年中考应用题的发展方法.。
第4讲 二元一次方程(组)的概念与解法(学生版)
![第4讲 二元一次方程(组)的概念与解法(学生版)](https://img.taocdn.com/s3/m/503124ed9fc3d5bbfd0a79563c1ec5da50e2d631.png)
第4讲 二元一次方程(组)的概念与解法一、知识回顾:一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 特别说明:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.二、二元一次方程组的解法 1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;转化消元一元一次方程二元一次方程组④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解. (2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.二、经典例题:知识点一、二元一次方程(组)的概念【例1】若(a −2)x |a−1|−3y =5是关于x 、y 的二元一次方程,则a 的值为( ) A .0 B .2 C .0或2 D .1或2 【例2】下列各组数中,是二元一次方程3x −5y =8的解的是( )A .{x =1y =1B .{x =−1y =1C .{x =−1y =−1D .{x =1y =−1【例3】若{x =−1y =2是关于x ,y 的二元一次方程3x+ay=5的一个解,则a 的值为 【例4】如果{x =1,y =2是关于x ,y 的方程mx +2y =6的解,那么m 的值为() A .−2 B .−1 C .1 D .2【例5】下列方程中:①xy =1 ;②3x +2y =4 ;③2x +3y =0 ;④x 4+y3=7 ,二元一次方程有( ) A .1个 B .2个 C .3个 D .4个 【例6】下列方程组是二元一次方程组的是( )A .{mn =2m +n =3 B .{5m −2n =01m+n =3C .{m +n =03m +2a =16D .{m =8m 3−n 2=1知识点二、二元一次方程组的解法【例7】用代入消元法解方程组 {y =x −13x −2y =5正确的化简结果是( ) A .3x −2x −2=5 B .3x −2x +2=5 C .3x −2x −1=5 D .3x −2x +1=5【例8】用代入法解方程组使得代入后化简比较容易的变形是( )A .由(1),得x=2−4y 3B .由(1),得y=2−3x 4C .由(2),得x=y+52D .由(2),得y=2x ﹣5【例9】解方程组。
二元一次方程基本概念及基本解法讲解
![二元一次方程基本概念及基本解法讲解](https://img.taocdn.com/s3/m/2b0d11f0a8956bec0875e3a3.png)
二元一次方程一、二元一次方程的概念:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 注意:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式.练习1:已知下列方程,其中是二元一次方程的有________.(1)2x-5=y ; (2)x-1=4; (3)xy =3; (4)x+y =6; (5)2x-4y =7; (6)102x +=;(7)251x y +=;(8)132x y +=;(9)280x y -=;(10)462x y+=.【变式1】下列方程中,属于二元一次方程的有( )A.71xy -=B.2131x y -=+C.4535x y x y -=-D. 231x y-= 二、二元一次方程的解: 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 注意:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩.(2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.如:10x y +=的解可以是241,,869x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩等等练习2:二元一次方程x-2y =1有无数多个解,下列四组值中不是该方程解的是( )A .012x y =⎧⎪⎨=-⎪⎩ B .11x y =⎧⎨=⎩ C .10x y =⎧⎨=⎩ D .11x y =-⎧⎨=-⎩ 【变式2】若方程24ax y -=的一个解是21x y =⎧⎨=⎩,则a= .三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.注意:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.练习3:下列方程组中,是二元一次方程组的是( )A.22375(9)1x yx y⎧+=⎨+=-⎩B.2138237yxx y⎧-=⎪⎨⎪-=⎩C.135()237x z x yx z y=+-⎧⎨-=⎩D.5()()82317x y x yx y-++=⎧⎨=-+⎩()四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.注意:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x ay b=⎧⎨=⎩的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x yx y+=⎧⎨+=⎩无解,而方程组1222x yx y+=-⎧⎨+=-⎩的解有无数个.【巩固练习】一、选择题1.下列方程中,属于二元一次方程的是()A.xy-7=1 B.2x-1=3y+1 C.4x-5y=3x-5y D.231 xy-=2.下列方程组是二元一次方程组的是()A.53 x yz x+=⎧⎨+=⎩ B.1113xxyx⎧+=⎪⎪⎨⎪-=⎪⎩C.434x y xyx y-+=⎧⎨-=⎩D.12132112(2)32x yx y x y⎧-=⎪⎪⎨⎪-=-⎪⎩3. 以31xy=⎧⎨=⎩为解建立一个二元一次方程,不正确的是()A.3x-4y=5 B.13x y-= C.x +2y=-3 D.25236xy-=4. 方程组233x yx y-=⎧⎨+=⎩的解是()A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.23xy=⎧⎨=⎩5.已知二元一次方程组6511327,x y y x +=⎧⎨-=⎩, ①②,下列说法正确的是()A.适合②的,x y 的值是方程组的解①②B.适合①的,x y 的值是方程组的解C.同时适合①和②的,x y 的值不一定是方程组的解D.同时适合①和②的,x y 的值是方程组的解6. 关于,m n 的两个方程23321m n m n -=+=与的公共解是( )A. 03m n =⎧⎨=-⎩B. 11m n =⎧⎨=-⎩C. 012m n =⎧⎪⎨=⎪⎩ D. 122m n ⎧=⎪⎨⎪=-⎩ 二、填空题7.由x+2y =4,得到用y 表示x 的式子为x =________;得到用x 表示y 的式子为y =________.8.在二元一次方程组423x y x m y -=⎧⎨=-⎩中,有6x =,则_____,______.y m ==9.若22(32)0x y x -++=,则xy的值是 . 10.若是二元一次方程的一个解,则的值是__________.11.已知,且,则___________.12.若方程ax-2y =4的一个解是21x y =⎧⎨=⎩,则a 的值是 . 三、解答题 13.已知23x y =⎧⎨=⎩是一个二元一次方程的解,试写出一个符合条件的二元一次方程组.14.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组.(1)甲数的13比乙数的2倍少7; (2)摩托车的时速是货车的32倍,它们的速度之和是200km/h ;(3)某种时装的价格是某种皮装价格的倍,5件皮装比3件时装贵700元解二元一次方程方法1.代入消元法解二元一次方程组代入消元法解二元一次方程组的步骤有四步:(1)变形:将方程组中系数较简单的方程变形,将系数较简单的未知数用另一个未知数表示出来;(2)代入:将变形的方程代入另一个方程,这样便消去一元,求出一个未知数的值;(3)代入:将求得的未知数的值代入变形后的方程(这一点要特别注意),求出另一个 未知数的值;(4)写出方程组的解. 一般地,当方程组中某个方程的某未知数的系数绝对值是1或常数项为0时,用代入法简便.例2 解方程组 327,2 5.x y x y -=⎧⎨+=⎩①②解析:由②,得 52x y =-. ③ 将③代入①,得 3(52)27y y --=, 15627y y --=,88y -=-, 1.y = 把 1y =代入③,得 3.x =所以原方程组的解是⎩⎨⎧==.1,3y x点评:此题方程②的系数较简单,且方程②中未知数x 的系数是1,因此考虑将方程②变形,并用含y 的代数式表示x . 用代入消元法解二元一次方程组,需先观察方程组的系数特点,判断消去哪个未知数较为简单. 代入消元时,要注意所代代数式的整体性,必要时可添加括号,以避免符号错误.变式2:用代入法解方程组:34,110.42x y x y +=⎧⎪⎨+=⎪⎩①②方法2.加减消元法解二元一次方程组加减消元法解二元一次方程组的步骤有四步: (1)变形:使方程组中某未知数的绝对值相等;(2)加减:若某未知数的系数相等,两方程相减;若某未知数的系数互为相反数,两方程相加;这样便消去一元,求出一个未知数的值;(3)代入:将求得的未知数的值代入系数较简单的方程,求出另一未知数的值; (4)写出方程组的解.进行加减消元时,要注意做到以下几点:(1)当方程组比较复杂时,应先整理变形,把方程组整理成形如:111222,a xb yc a x b y c +=⎧⎨+=⎩的形式,若此时两未知数的绝对值都不相等,则先观察哪个未知数的系数较易化为绝对值(系数的最小公倍数的绝对值)相等的形式,且计算简单,然后将其化为系数的绝对值相等的形式.(2)两个未知数的值都可采用加减消元法的方法求出.(3)当方程组中的某一个未知数的系数的绝对值相等或成整数倍关系时,用加减法简便.例3 解方程组:521,7316.m nm n+=⎧⎨-+=⎩①②解析:法一:①×3,②×2,得1563,14632.m nm n+=⎧⎨-+=⎩③④③-④,得29m=-29,m=-1.将m=-1代入①,得-5+2n=1,n=3.所以原方程组的解为1,3. mn=-⎧⎨=⎩法二:①×7,②×5,得35147,351580.m nm n+=⎧⎨-+=⎩③④③+④,得29n=87,n=3.把n=3代入①,得5m+6=1,m=-1.所以原方程组的解为1,3. mn=-⎧⎨=⎩点评:此题方程组中的两方程,两未知数的系数分别既不相等也不互为相反数,即绝对值不相等. 因此先将两方程分别变形,使某个未知数的系数的绝对值相等. 比较题中的两种方法,先消去系数比较简单的未知数n,解法较为简捷. 另外用加减消元法解二元一次方程组,需注意两方程相减时,符号的正确处理.练习(1)(2)(3)(4);(5); (6)附加题(7)(8) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x。
第10讲---二元一次方程组的解法精选全文完整版
![第10讲---二元一次方程组的解法精选全文完整版](https://img.taocdn.com/s3/m/9fe8ce7f6ad97f192279168884868762cbaebb17.png)
可编辑修改精选全文完整版第八讲 二元一次方程组的解法一、知识梳理(一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。
2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。
任何一个二元一次方程都有无数个解。
3.方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。
(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。
4.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。
(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。
(二)二元一次方程组的解法: 1.代入法 2.加减法二、典例剖析专题一:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。
(一)、代入消元法:1、直接代入 例1 解方程组②①y x x y ⎩⎨⎧=--=.134,32跟踪训练:解方程组:(1)90152x y x y+=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 例2 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法例3、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=-=-322543y x y x (3).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3)(4) (5)⎪⎩⎪⎨⎧=++-=--9275320232y y x y x (6)11,233210;x y x y +⎧-=⎪⎨⎪+=⎩(三)、选择适当的方法解下列方程组 (1)⎩⎨⎧=+---=+.5)3()1(2),1(32x y x y (2)⎩⎨⎧-=+---=+--23)3(5)4(44)3()4(2y x y x⎪⎩⎪⎨⎧=+=+15251102y x y x ⎩⎨⎧=+=-1023724y x y x(3)⎪⎩⎪⎨⎧-=+-++=+3)43(4)1(3)2(311y x y x (4)x 2y+2=02y+22x536⎧⎪⎨⎪⎩---=专题二:有关二元一次方程组的解:例4、(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.(2)二元一次方程3a +b =9在正整数范围内的解的个数是_________.(3)已知(3x -2y +1)2与|4x -3y -3|互为相反数,则x =__________,y =________(4)若方程组⎩⎨⎧-=-+=+122323m y x m y x 的解互为相反数,求m 的值。
(完整版)二元一次方程基本概念及基本解法讲解
![(完整版)二元一次方程基本概念及基本解法讲解](https://img.taocdn.com/s3/m/b82245f4b7360b4c2f3f64c6.png)
二元一次方程一、二元一次方程的概念:含有两个未知数,并且含有未知数的项的次数都是 1,像这样的方程叫做二元一次方程.注意:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数, “二元”就是指方程中有且只有两个未知数 .(2) “未知数的次数为1”是指含有未知数的项(单项式)的次数是 1.(3)二元一次方程的左边和右边都必须是整式^练习1:已知下列方程,其中是二元一次方程的有 .(1)2x-5=y; (2)x-1 = 4; (3)xy = 3;(4)x+y = 6; (5)2x-4y=7;一 1- 2 1 _ 2__ x4y -(6) x - 0; (7)5x — 1; (8)x - y 3; (9) x 8y 0; (10) ---------------- 6.2 y 2 2【变式1 ]下列方程中,属于二元一次方程的有()2A. xy 7 1B. 2x 1 3y 1C. 4x 5y 3x 5yD. 3x — 1 y二、二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值, 叫做二元一次方程的一组解.注意:如:x y 10的解可以是练习2:二元一次方程 x-2y= 1有无数多个解,下列四组值中不是该方程解的是x 1 x 1C. D.y 0 y 1.............................. x 2【变式2】若方程ax 2y 4的一个解是 ,则a= .y 1三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组 注意:组成方程组的两个方程不必同时含有两个未知数,例如3x 1 0也是二元一次方x 2y 5(1)二元一次方程的解都是一对数值,而不是一个数值, 般用大括号联立起来, 如:x 2, y 5.(2) 一般情况下,二元一次方程有无数个解, 即有无数多对数适合这个二元一次方程.x 1 B.y 1程组.练习3:下列方程组中,是二元一次方程组的是( )四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解^注意:(1)二元一次方程组的解是一组数对, 它必须同时满足方程组中的每一个方程, 一般x a , 写成的形式.y b〃, ,、…,…一“ ,一,/ , 2x y 5T (2)一般地,二元一次方程组的解只有一个, 但也有特殊情况,如方程组无2x y 6一 一、… x y 1 ,…,解,而方程组 "的解有无数个.2x 2y 2【巩固练习】 一、选择题1 .下列方程中,属于二元一次方程的是(A. xy-7=1B. 2x-1 = 3y+12 .下列方程组是二元一次方程组的是()x 3 _3 .以为解建立一个二兀一次万程,不正确的是()y 11 x 25 A. 3x- 4y= 5 B. —xy 0 C. x +2y = - 3 D.— — y —3 2 362x y 3 34 .方程组的解是()x y 3C.2x 2 3y 7 5(x 9) 1 y B.3- y 2 8 x 2x 3 7yx 13z 5(x y) 2x 3z 7yD.5(x y) (x y) 8 2x 3y 1) 7C. 4x-5y=3x-5y0 2D. 3x 一y x y 5A.z x 3x y xy 4 C.3x y 41-x 2y 13D.2-x - y 2(x 3 22y)x 1 x 2A. B.y 2 y 1C.y 1D.「 ,、… 6x 5y 11, ①……5 .已知二元一次方程组 7,下列说法正确的是()3y 2x 7,②A.适合②的x, y 的值 是方程组的解①②B.适合①的x, y 的值 是方程组的解C.同时适合①和②的x, y 的值 不一定是方程组的解D.同时适合①和②的 x, y 的值 是方程组的解 6 .关于m, n 的两个方程2m n 3与3m 2n二、填空题7 .由x+2y =4,得到用y 表示x 的式子为x= x y 4 ,, …8 .在二元一次方程组中,有x 6 ,则y _______ , m ______2x m 3y9 .若 |x 2 (3y 2x)2 0 ,则二的值是次方程"工+如二一2的一个解,则2a-b-6的值是11 .已知以一 1|+[2>+1),=0 ,且2工一仙=4 ,则太=一一 .一 x 2 ........... .12 .右方程ax-2y = 4的一个解是 ,则a 的值是 ___________ .y 1三、解答题x 213,已知是一个二元一次方程的解,试写出一个符合条件的二元一次方程组.y 314.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组.(1)甲数的1比乙数的2倍少7;33 .、1的公共解是(A.m 0B .n 3m 1 C.n 1m 0 1 D.n -21m - 2 n 2;得到用x 表示y 的式子为 y=x = 210.若"是二兀〔A —(2)摩托车的时速是货车的一倍,它们的速度之和是200km/h;2(3)某种时装的价格是某种皮装价格的 1.4倍,5件皮装比3件时装贵700元解二元一次方程方法1.代入消元法解二元一次方程组代入消元法解二元一次方程组的步骤有四步:(1)变形:将方程组中系数较简单的方程变形,将系数较简单的未知数用另一个未知 数表示出来;(2)代入:将变形的方程代入另一个方程,这样便消去一元,求出一个未知数的值; (3)代入:将求得的未知数的值代入变形后的方程(这一点要特别注意),求出另一个未知数的值;(4)写出方程组的解.一般地,当方程组中某个方程的某未知数的系数绝对值是 1或常数项为0时,用代入法简便.3x 2y 7, ① x 2y 5. ② x 5 2y.③ 3(5 2y) 2y 7,15 6y 2y 7, 8y 8, y 1.把y 1代入③,得 x 3.点评:此题方程②的系数较简单,且方程②中未知数x 的系数是1,因此考虑将方程②变形,并用含y 的代数式表示x.用代入消元法解二元一次方程组, 需先观察方程组的系数特点,判断消去哪个未知数较为简单 .代入消元时,要注意所代代数式的整体性,必要时可添加括号,以避免符号错误 .x 3y 4, ①变式2:用代入法解方程组:1 1-x -y 0.② 4 2方法2.加减消元法解二元一次方程组 加减消元法解二元一次方程组的步骤有四步:(1)变形:使方程组中某未知数的绝对值相等;(2)加减:若某未知数的系数相等,两方程相减;若某未知数的系数互为相反数,两 方程相加;这样便消去一元,求出一个未知数的值;(3)代入:将求得的未知数的值代入系数较简单的方程,求出另一未知数的值; (4)写出方程组的解.进行加减消元时,要注意做到以下几点:(1)当方程组比较复杂时,应先整理变形,把方程组整理成形如:a1x b 1yc 1’的形a 2xb 2yc 2式,若此时两未知数的绝对值都不相等, 则先观察哪个未知数的系数较易化为绝对值 (系数的最小公倍数的绝对值)相等的形式,且计算简单,然后将其化为系数的绝对值相等的形式例2解方程组 解析:由②,得 将③代入①,得所以原方程组的解是x 3,y 1.(2)两个未知数的值都可采用加减消元法的方法求出^(3)当方程组中的某一个未知数的系数的绝对值相等或成整数倍关系时,用加减法简 便.③-④,得 29m=-29 , m=-1. 将 m=-1 代入①,得-5+2 n=1, n=3.③ +④,得 29n=87, n=3.把 n=3 代入①,得 5m+6=1 , m=-1. 点评:此题方程组中的两方程, 两未知数的系数分别既不相等也不互为相反数,即绝对值不相等.因此先将两方程分别变形, 使某个未知数的系数的绝对值相等 .比较题中的两种方法, 先消去系数比较简单的未知数 n,解法较为简捷.另外用加减消元法解二元一次方程组,需 注意两方程相减时,符号的正确处理 . 练习f9x+2y=20 l3x+4y=10例3解方程组:5m 2n 1, ①7m 3n 16.②解析:法①②X2,得15m 6n 3, ③14m 6n 32.④所以原方程组的解为m 1, n3.法二:①X 7,②X 5,得35m 14n 35m 15n7, 80.④所以原方程组的解为m 1, n 3.(1)j 2戈-3产- 5[3x+2y=12"2y=3⑸" x 一第F ;J- -2=10附加题C3 (s- t) - 2 ts+t) =10 13 fs-t) +2 (s+t) =26x 2 y 1--- --- - 2(8) 3 2x 2 1 y d1。
中考数学知识讲解:二元一次方程的概念及解法
![中考数学知识讲解:二元一次方程的概念及解法](https://img.taocdn.com/s3/m/33d3612133d4b14e8424684a.png)
中考数学知识讲解:二元一次方程的概念及解法二元一次方程有关概念(1)概念:含有两个未知数,并且未知数的项的次数都是1,这样的方程叫做二元一次程.(2)一般形式:ax+by=c(a≠0,b≠0).(3)使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.(4)解的特点:一般地,二元一次方程有无数个解.二元一次方程的解法1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。
用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。
二元一次方程讲课逐字稿
![二元一次方程讲课逐字稿](https://img.taocdn.com/s3/m/161ee3b9a48da0116c175f0e7cd184254b351bc5.png)
二元一次方程讲课逐字稿好的,以下是关于二元一次方程的讲课逐字稿。
各位同学,大家好。
今天我们来学习二元一次方程。
二元一次方程是初中数学的重要内容,也是高中数学的基础。
下面我们从二元一次方程的定义、解法、应用三个方面来展开学习。
一、二元一次方程的定义首先,我们来看二元一次方程的定义。
二元一次方程是指含有两个未知数,且未知数的次数都是1的整式方程。
例如:x + y = 52x - 3y = 6这两个方程都含有两个未知数x和y,且x和y的次数都是1,所以它们都是二元一次方程。
二、二元一次方程的解法接下来,我们来学习二元一次方程的解法。
常用的解法有代入法和加减法。
1. 代入法:先从一个方程中用一个未知数表示另一个未知数,然后将这个表达式代入另一个方程,从而得到一个一元一次方程,解出这个一元一次方程后,再代入原方程求出另一个未知数。
2. 加减法:将两个方程相加或相减,消去一个未知数,得到一个一元一次方程,解出这个一元一次方程后,再代入原方程求出另一个未知数。
下面我们来看一个例题:x + y = 72x - y = 1我们可以用加减法来解这个方程组。
将第一个方程乘以2,然后与第二个方程相加,得到:3x = 15x = 5将x=5代入第一个方程,得到:5 + y = 7y = 2所以这个方程组的解为x=5,y=2。
三、二元一次方程的应用最后,我们来看二元一次方程的应用。
二元一次方程可以解决很多实际问题,例如:1. 行程问题:已知速度和时间,求路程。
2. 工程问题:已知工作效率和工作时间,求工作总量。
3. 几何问题:已知线段长度和角度,求其他线段长度或角度。
同学们可以在生活中多观察,发现可以用二元一次方程解决的问题,提高自己的数学应用能力。
本节课我们学习了二元一次方程的定义、解法和应用。
希望大家能够掌握二元一次方程的相关知识,提高自己的数学素养。
今天的课就上到这里,同学们再见。
(完整版)二元一次方程组的概念及解法
![(完整版)二元一次方程组的概念及解法](https://img.taocdn.com/s3/m/fccb5ea63169a4517623a327.png)
二元一次方程组的概念及解法知识点梳理知识点一二元一次方程组的概念含有两个未知数,并且含有未知数的相的次数都是1,像这样的方程叫做二元一次方程。
把两个二元一次方程合在一起就组成了一个方程组,像这样的方程组叫做二元一次方程组。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
典例分析例1、在方程组、、、、、中,是二元一次方程组的有个;例2、已知二元一次方程2x-y=1,若x=2,则y=;若y=0,则x=.变式1:方程x+y=2的正整数解是__________.变式2、在方程3x-ay=8中,如果是它的一个解,那么a的值为⎩⎨⎧==13 yx例3 方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、 ⎩⎨⎧=-=21y xB 、⎩⎨⎧-==12y x C 、⎩⎨⎧==21y x D 、⎩⎨⎧==12y x例4、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组。
例5、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十头,下有九十四足。
问鸡兔各几何。
”你能用二元一次方程组表示题中的数量关系吗?使找出问题的解。
知识点二 解二元一次方程 消元解二元一次方程⎧⎨⎩代入消元法加减消元法典例分析例1、 把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = .化成含x 的代数式表示y 的形式:y = .例2、用代入消元法解下列方程 (1)、⎩⎨⎧-=-=+54032y x y x (2)、⎩⎨⎧=-=+15234932y x y x(3)23328x y x y -=-⎧⎨+=⎩(4)25342x y x y -=⎧⎨+=⎩例3、用加减消元法解下列方程 (1)、⎩⎨⎧-=-=+54032y x y x (2)、⎩⎨⎧=-=+15234932y x y x(3)23328x y x y -=-⎧⎨+=⎩ (4)25342x y x y -=⎧⎨+=⎩例4、解下列方程(1)⎩⎨⎧-=-+=-85)1(21)2(3y x x y (2)⎪⎩⎪⎨⎧=+=184332y x yx(3)⎩⎨⎧=--=--023256017154y x y x (4)⎪⎩⎪⎨⎧=-=+234321332yx y x(5)⎪⎩⎪⎨⎧=-+=+1323241y x x y (6)⎩⎨⎧=+=+24121232432321y x y x例5 、若,则= ,= 。
二元一次方程
![二元一次方程](https://img.taocdn.com/s3/m/e48fbd98a48da0116c175f0e7cd184254b351bb3.png)
二元一次方程二元一次方程,也称为一元二次方程,是高中数学中重要的概念之一。
它是指形如ax+by+c=0的方程,其中a、b、c为已知的实数,而x、y为未知数。
在这篇文章中,我们将探讨二元一次方程的基本概念、解法以及应用。
通过详细的讲解和例题分析,帮助读者加深对二元一次方程的理解。
一、基本概念二元一次方程可以看作是一种含有两个变量的一次方程,其一般形式为ax+by+c=0。
其中,a、b、c为已知实数,x、y为未知数。
我们可以通过消元、代入或配方法等多种方式来求解二元一次方程。
二、解法解二元一次方程的基本方法有三种:消元法、代入法和配方法。
接下来,我们将分别介绍这三种方法的步骤和原理。
1. 消元法消元法是解二元一次方程的常用方法。
具体步骤如下:(1)通过变换,使其中一个未知数的系数相等或相差一个倍数;(2)将两个方程相减,消去一个未知数,得到另一个未知数的方程;(3)求解得到其中一个未知数的值;(4)将求得的未知数的值代入任一方程中,求解另一个未知数的值。
2. 代入法代入法是解二元一次方程的另一种常用方法。
具体步骤如下:(1)选择一个方程,将其中一个未知数表示成另一个未知数的函数;(2)将该函数代入另一个方程中,得到只含有一个未知数的方程;(3)求解得到该未知数的值;(4)将求得的未知数的值代入最初选择的方程中,求解另一个未知数的值。
3. 配方法配方法也是解二元一次方程的重要方法之一。
具体步骤如下:(1)将一个方程的两边同时乘以一个系数,使得其两个未知数的系数相等或相差一个倍数;(2)将两个方程相加(或相减),得到一个只含有一个未知数的方程;(3)求解得到该未知数的值;(4)将求得的未知数的值代入任一方程中,求解另一个未知数的值。
三、应用二元一次方程在实际生活中有着广泛的应用。
下面我们以一个例子来说明二元一次方程的具体应用。
例题:一个体育馆里有男性和女性运动员,总共有100人。
男性每人平均站立重量为70kg,女性每人平均站立重量为60kg。
《二元一次方程》 讲义
![《二元一次方程》 讲义](https://img.taocdn.com/s3/m/253af1132f3f5727a5e9856a561252d380eb203d.png)
《二元一次方程》讲义一、什么是二元一次方程在数学的世界里,二元一次方程是一个非常基础且重要的概念。
那到底什么是二元一次方程呢?简单来说,二元一次方程是指含有两个未知数(通常用 x 和 y 表示),并且未知数的最高次数都是 1 的整式方程。
例如:2x + 3y = 8 ,x 5y =-1 ,这些都是二元一次方程。
它的一般形式可以写成 Ax + By = C ,其中 A、B 不同时为 0 。
这里要注意几个关键点:首先,方程中必须含有两个未知数;其次,未知数的最高次数是 1 ;最后,方程必须是整式方程,也就是说分母中不能含有未知数。
二、二元一次方程的解既然有方程,那就会有解。
那什么是二元一次方程的解呢?对于一个给定的二元一次方程,如果存在一组数(x,y),将这组数代入方程后,能使方程左右两边相等,那么这组数就叫做这个二元一次方程的一个解。
比如对于方程 2x + 3y = 8 ,如果 x = 1 ,y = 2 ,代入方程左边得到 2×1 + 3×2 = 8 ,方程左右两边相等,所以(1,2)就是这个方程的一个解。
需要注意的是,二元一次方程一般有无数个解。
因为只要给定一个x 的值,就可以通过方程求出对应的 y 值。
三、二元一次方程组有时候,我们会遇到两个二元一次方程组合在一起的情况,这就形成了二元一次方程组。
例如:\\begin{cases}2x + 3y = 8 \\x 5y =-1\end{cases}\二元一次方程组的解,就是同时满足这两个方程的未知数的值。
求解二元一次方程组的方法主要有代入消元法和加减消元法。
四、代入消元法代入消元法是求解二元一次方程组的一种常用方法。
举个例子,对于方程组:\\begin{cases}x + y = 5 \\2x y = 1\end{cases}\我们可以从第一个方程中解出 x = 5 y ,然后将其代入第二个方程:2(5 y) y = 1 ,10 2y y = 1 ,10 3y = 1 ,-3y =-9 ,y = 3 。
二元一次方程组知识点归纳及解题技巧
![二元一次方程组知识点归纳及解题技巧](https://img.taocdn.com/s3/m/d363662b05087632301212bc.png)
二元一次方程组知识点归纳及解题技巧一、基本定义:二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。
二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
二、解的情况:二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。
三、二元一次方程的解法:1、一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种:1、代入消元法2、加减消元法3、教科书中没有的几种解法(一)加减-代入混合使用的方法.例:13x+14y=41 (1)14x+13y=40 (2)解:(2)-(1)得x-y=-1 x=y-1 (3)把(3)代入(1)得13(y-1)+14y=41y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例3:x:y=1:45x+6y=29令x=t, y=4t 则方程2可写为:5t+6×4t=2929t=29t=1 所以x=1,y=4四、列方程(组)解应用题(一)、其具体步骤是:⑴审题。
理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。
①直接未知数②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
初中数学 二元一次方程组及其解法
![初中数学 二元一次方程组及其解法](https://img.taocdn.com/s3/m/054812935fbfc77da269b1fe.png)
二元一次方程组及其解法一、二元一次方程的概念1.二元一次方程:含有两个未知数,并且含未知数的项的最高次数是1的整式方程,叫做二元一次方程.二元一次方程的一般形式为:ax by c ++=0(,)a b ≠0≠0.【例】x y +2=5,x y 2=3,x y 3=-2,x y 2+3+6=0等都是二元一次方程. 2.二元一次方程的判定: 必须同时满足四个条件:(1)含有两个未知数——“二元”;(2)未知数项的最高次数为1——“一次”; (3)方程两边都是整式——整式方程; (4)未知数的系数不能为0.【例】x y +=1,()y x 1=+82,x y 3-1=2-5,x y 4=3等都是二元一次方程;y x 4+=5,x y z 2+3=,x y 21+=02,x x 2+3=-5等都不是二元一次方程. 3.二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解.【注】任何一个二元一次方程都有无数个解.【例】x y =1⎧⎨=2⎩和x y =3⎧⎨=1⎩是方程x y +2=5的解,可以看出x y +2=5有无数个解.二、二元一次方程组的概念和解法1.二元一次方程组:由几个一次方程组成并含有两个未知数的方程组,叫做二元一次方程组.【注意】(1)二元一次方程组不一定由几个二元一次方程合在一起.(2)方程可以超过两个.【例】x x y 2=6⎧⎨3-=1⎩,x x y 2=6⎧⎨3-=1⎩,x y x y =2⎧⎪=3⎨⎪+=4⎩等都是二元一次方程组.2.二元一次方程组的解:使二元一次方程组的几个方程左、右两边都相等的两个未知数的值(即几个方程的公共解),叫做二元一次方程组的解.【例】x x y 2=6⎧⎨3-=1⎩的解是x y =3⎧⎨=8⎩.3.二元一次方程组解的情况:一般情况下,一个二元一次方程组只有唯一一组解;但在特殊情况下,二元一次方程组也可能无解或有无数组解.【例】方程组x y x y +=1⎧⎨2+2=2⎩有无数组解,方程组x y x y +=2⎧⎨2+2=2⎩和x y x y =2⎧⎪=3⎨⎪+=4⎩无解.4.二元一次方程组的基本解法(1)代入消元法:①从方程组中选一个系数比较简单的方程,将该方程中的一个未知数用含另一未知数的式子表示出来,例如y ax b =+;②把y ax b =+代入另一个方程中,消去y ,得到一个关于x 的一元一次方程;③解这个一元一次方程,求出x 的值; ④把求得的x 的值代回y ax b =+中,求出y 的值,从而得出方程组的解;⑤把这个方程组的解写成x my n =⎧⎨=⎩的形式.解方程组:19,x y x y 3+4=⎧⎨-=4.⎩解:19,x y x y 3+4=⎧⎨-=4.⎩①②由②,得x y =4+,③ 把③代入①,()y y 34++4=19, ∴y y 12+3+4=19,得y =1. 把y =1代入③,得x =4+1=5.∴方程组的解为5x y =⎧⎨=1.⎩,(2)加减消元法:①把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数相反或相等;②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中,求出另一个未知数的值,从而得出方程组的解;⑤把这个方程组的解写成x my n=⎧⎨=⎩的形式.解方程组:x y x y +2=1⎧⎨3-2=11⎩解:x y x y +2=1⎧⎨3-2=11⎩①②①+②,得x 4=12,解得:x =3.将x =3代入①,得y 3+2=1, 解得y =-1.∴方程组的解是x y =3⎧⎨=-1⎩.5.解方程组的三大解题思想(1)消元思想;(2)整体思想;(3)换元思想.(1)在下列方程中,①x 4+5=1;②x y 3-2=1;③x y1+=1;④xy y +=14;⑤x y =;⑥()y x 1=+82,其中是二元一次方程的是__________.(填序号)(2)已知方程||n m x y m -1-1+2=是关于x 、y 的二元一次方程,则m =_____,n =______.(3)若已知方程()()()k x k x k y k 22-1++1+-7=+2,当k =______时,方程为一元一次方程,当k =_______时,方程为二元一次方程.【解析】(1)②⑤⑥;(2)m =0或2,n =2.(3)-1,1.模块一 二元一次方程的概念例题1(1)已知x y =1⎧⎨=-1⎩是方程x ay 2-=3的一个解,那么a 的值是_________.(2)若x ky k =2⎧⎨=-3⎩是二元一次方程x y 2-=14的解,则k 的值是_________.【解析】(1)1;(2)2.(1)下列方程组中,是二元一次方程组的是( )A .x y y 2+=1⎧⎪1⎨=-1⎪⎩ B .x xy 2=1⎧⎨=-1⎩ C .x y y z 2+=1⎧⎨-=-1⎩D .x y =1⎧⎨=-1⎩(2)已知x y =-4⎧⎨=3⎩是方程组ax y x by +=-1⎧⎨-=2⎩的解,则()a b 6+=______.(3)已知x y =2⎧⎨=1⎩是二元一次方程组ax by bx ay +=1⎧⎨+=2⎩的解,则a b -的值为______.【解析】(1)D ;(2)由题意得a =1,b =-2,a b +=1,∴()a b 6+=1.(3)把解代入方程组得a b b a 2+=1⎧⎨2+=2⎩①②,①-②得a b -=-1.(1)用代入消元法解方程组:x y x y 3+4=2⎧⎨2-=5⎩.(2)用加减消元法解方程组:x y x y 4+3=5⎧⎨-2=4⎩.例题2模块二二元一次方程组的概念和解法例题3例题4【解析】(1)由题意得,x yx y3+4=2⎧⎨2-=5⎩①②由②,得y x=2-5,③把③代入①,得()x x3+42-5=2,∴x x3+8-20=2,得x11=22,解得x=2.把x=2代入③,得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩(2)由题意得,x yx y4+3=5⎧⎨-2=4⎩①②①×2+②×3,得x x8+3=10+12,∴x11=22,解得x=2.将x=2代入①,得y8+3=5,解得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩【提示】展示解二元一次方程组的基本解法.用合适的方法解下列二元一次方程组:(1)()()()x yy x3-1=+5⎧⎨5-1=3+5⎩(2)()()()x yx y+1=5+2⎧⎨32-5-43+4=5⎩(3)()()x y yx y4--1=31--2⎧⎪⎨+=2⎪23⎩(4)m n n mnm+-⎧-=2⎪⎪34⎨⎪4+=14⎪3⎩(5)x yx y3-22-1⎧+=2⎪⎪45⎨3+23+1⎪-=0⎪45⎩(6)...x yx y112⎧+=⎪535⎨⎪05-03=02⎩【解析】(1)由题意得,x yx y3-=8⎧⎨3-5=-20⎩①②①-②,得y4=28,解得y=7.将y=7代入①,得x3-7=8,解得x=5.∴方程组的解为xy=5⎧⎨=7⎩.(2)由题意得,x yx y-5=9⎧⎨-2=6⎩①②②-①,得y3=-3,解得y=-1.将y=-1代入①,得x+5=9,解得x=4.∴方程组的解为xy=4⎧⎨=-1⎩.(3)xy=2⎧⎨=3⎩.(4)mn18⎧=⎪⎪5⎨6⎪=-⎪5⎩.(5)xy=2⎧⎨=3⎩.(6)xy14⎧=⎪⎪17⎨12⎪=⎪17⎩.例题5【提示】练习解二元一次方程组的一般步骤:(1)去分母,去括号,最好转化为各项系数为整数的二元一次方程组; (2)多观察,系数为1±时优先使用代入消元法,其次才是加减消元法.解方程组:(1)x y x y 23+17=63⎧⎨17+23=57⎩(2)x y x y 2011-2013=4023⎧⎨2013-2011=4025⎩【解析】(1)两方程相加,得:x y 40+40=120,即x y +=3 ①两方程相减,得:x y 6-6=6,即x y -=1 ② ①+②得:x 2=4,解得x =2,①-②得:y 2=2,解得y =1,∴方程组的解为:x y =2⎧⎨=1⎩.(2)x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】系数对称的二元一次方程组的特殊解法.(1)若方程组.a b a b 2-3=13⎧⎨3+5=309⎩的解是..a b =83⎧⎨=12⎩,则方程组()()()().x y x y 2+2-3-1=13⎧⎨3+2+5-1=309⎩的解是( )A ...x y =63⎧⎨=22⎩B ...x y =83⎧⎨=12⎩C ...x y =103⎧⎨=22⎩D ...x y =103⎧⎨=02⎩(2)用适当的方法解下列方程组:()()x y x y x y x y 3+-2-=-1⎧⎪⎨+-+=1⎪⎩24.【解析】(1)A .比较两个方程组可知..x a y b +2==83⎧⎨-1==12⎩,解得..x y =63⎧⎨=22⎩.(2)令x y u +=,x y v -=,则u v u v 3-2=-1⎧⎪⎨+=1⎪⎩24,解得u v =1⎧⎨=2⎩,即x y x y +=1⎧⎨-=2⎩,解得x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】整体换元法.例题6例题7解方程组:(1)x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩ (2)x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩【解析】(1)由题意得,x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩①②③由①,得y z x =-,④把④代入②和③, 得x z x z 5-=5⎧⎨-+3=13⎩,解得x z =2⎧⎨=5⎩. 把x z =2⎧⎨=5⎩代入④得,y =3.∴方程组的解为x y z =2⎧⎪=3⎨⎪=5⎩.(2)由题意得,x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩①②③③①+得,④x y 3+5=21, 2③②⨯+得,⑤x y 3+3=9,④﹣⑤得y 2=12,y =6,将y =6代入⑤得,x 3=-9,x =-3,将x =-3,y =6代入①得,()z =16-2⨯-3-3⨯6=4, ∴方程组的解为x y z =-3⎧⎪=6⎨⎪=4⎩.【提示】三元一次方程组的基本解法:(1)通过消元把三元一次方程组转化为二元一次方程组; (2)解二元一次方程组.模块三 多元一次方程组的解法例题8(1) x y zx y z ⎧==⎪234⎨⎪5+2-3=8⎩ (2) x y z x y z x y z 2++=2⎧⎪+2+=4⎨⎪++2=6⎩【解析】(1)令x y zk ===234,即x k =2,y k =3,z k =4, 代入②可求得k =2,所以x y z =4⎧⎪=6⎨⎪=8⎩.(2)①+②+③得x y z ++=3,用①、②、③分别减去此式得x y z =-1⎧⎪=1⎨⎪=3⎩.【提示】三元一次方程组的特殊解法:(1)连比设k 型;(2)对称轮换型,整体相加.解方程组:(1)pq p q pq p q1⎧=⎪+5⎪⎨1⎪=⎪-3⎩ (2)xyx y yz y z zx z x ⎧=1⎪+⎪⎪=2⎨+⎪⎪=3⎪+⎩【解析】(1)原方程组可化为p q q p 11⎧+=5⎪⎪⎨11⎪-=3⎪⎩,解得q p 1⎧=4⎪⎪⎨1⎪=1⎪⎩,∴q p 1⎧=⎪4⎨⎪=1⎩.(2)原方程组可化为,解得,∴.【提示】均为可以转化为二元一次方程组或者三元一次方程组的分式方程.11111121113x y y z z x ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩151217121112x y z ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩12512712x y z ⎧=⎪⎪⎪=⎨⎪⎪⎪=-⎩例题9非常挑战(1)已知二元一次方程x y--1=023,下列用含x 的代数式表示y 正确的是( ). A .y x 3=-12 B .y x 3=+12 C .y x 3=-32 D .y x 3=+32(2)下列方程属于二元一次方程的是( )A .x y +=1B .xy +5=4C .y x 23-8=D .x y1+=2(3)已知方程||||()()a b a x b y -1-4-2-+5=3是关于x 、y 的二元一次方程,则a =________,b =__________.【解析】(1)C ;(2)A ;(3)根据题意可得:a -2≠0,b +5≠0,||a -1=1,||b -4=1,所以a =-2,b =5.(1)下列不是二元一次方程组的是( )A .x y =2⎧⎨=-1⎩B .m n n m =2+3⎧⎨3-=4⎩C .x y y z +=2⎧⎨+=3⎩D .(())a a b a b 4+2=5⎧⎨2-+1=2+-3⎩(2)二元一次方程ax by +=6有两组解是x y =2⎧⎨=-2⎩与x y =-1⎧⎨=-8⎩,求a 、b 的值.【解析】(1)C .(2)将两组解分别代入ax by +=6,可得a b a b 2-2=6⎧⎨--8=6⎩,解得a b =2⎧⎨=-1⎩.复习巩固演练1演练2解方程组:(1)m n m n 3+2=2⎧⎨5-4=7⎩(2)()()()()y x x y 3-1=4-4⎧⎨5-1=3+5⎩(3)()()y x x y y x -1⎧-=3⎪2⎨⎪2-+32-=-6⎩ (4)x y x y +1+2⎧=⎪⎪34⎨-3-31⎪-=⎪4312⎩【解析】(1)m n =1⎧⎪⎨1=-⎪⎩2. (2)x y =7⎧⎨=5⎩. (3)x y =2⎧⎨=-1⎩. (4)x y =2⎧⎨=2⎩.解下列方程组:(1)x y x y 21+23=243⎧⎨23+21=241⎩ (2)x y x y 2014+2013=2012⎧⎨2012+2011=2010⎩(3)x y x yx y x y 2+32-3⎧+=7⎪⎪43⎨2+32-3⎪+=8⎪32⎩【解析】(1)x y =5⎧⎨=6⎩.(2)x y =-1⎧⎨=2⎩.(3)设x y a 2+3=,x y b 2-3=,则原方程组可变为,,a ba b ⎧+=7⎪⎪43⎨⎪+=8⎪32⎩整理,得,,a b a b 3+4=84⎧⎨2+3=48⎩解得,.a b =60⎧⎨=-24⎩∴,,x y x y 2+3=60⎧⎨2-3=-24⎩解得,,x y =9⎧⎨=14⎩ ∴原方程组的解为,.x y =9⎧⎨=14⎩演练3演练4解方程组:(1)x z z y x y z -=4⎧⎪-2=-1⎨⎪+-=-1⎩(2)::::::x y z u x y z u =1234⎧⎨9+7+3+2=200⎩(3) x y z y z x z x y +-=11⎧⎪+-=3⎨⎪+-=1⎩(4)mn m n mn m n 1⎧=⎪⎪3+213⎨1⎪=⎪2+312⎩【解析】(1)x y z =-7⎧⎪=-5⎨⎪=-11⎩.(2)设x k =,y k =2,z k =3,u k =4,所以有k k k k 9+14+9+8=200, 即k =5,故x y z u =5⎧⎪=10⎪⎨=15⎪⎪=20⎩.(3)①+②+③得:x y z ++=15,分别去减①、②、③式可得:x y z =6⎧⎪=7⎨⎪=2⎩.(4)m n 1⎧=⎪⎪2⎨1⎪=⎪3⎩.演练5。
二元一次方程组的概念及解法
![二元一次方程组的概念及解法](https://img.taocdn.com/s3/m/021759e5c0c708a1284ac850ad02de80d4d806f2.png)
二元一次方程组的概念及解法二元一次方程组是含有两个未知数,且未知数的指数都是1的方程。
当把两个二元一次方程合在一起时,就组成了一个二元一次方程组。
方程组的解是使得两个方程的未知数相等的值。
公共解是指两个方程的解都相同的值。
例如,在方程组中,是一个二元一次方程组的例子。
另外,已知二元一次方程2x-y=1,当x=2时,y=3;当y=1时,x=3.消元解法是解二元一次方程组的一种方法。
代入消元法是将一个方程中的一个未知数表示为另一个未知数的函数,然后代入另一个方程中进行消元。
加减消元法是将两个方程相加或相减,消去一个未知数,然后解出另一个未知数。
例如,方程2x-y-5=0可以表示为x=(y+5)/2,y=2x-5.另外,方程组可以用消元解法来解,例如,方程组(2x+3y=40.x-y=-5)可以用加减消元法解出x=11,y=6.举例来说,如果有一个两位数,其个位和十位数字之和为11,将其个位数字和十位数字对调后得到的数比原数大63,那么可以用代数式表示原数为(10y+x),对调后的数为(10x+y),则可以列出方程组(10y+x+63=10x+y。
x+y=11)。
解方程组可以得到x=8,y=3,因此原数为83.鸡兔同笼”问题是另一个例子,可以用二元一次方程组表示。
题目中给出了总共30个头和94只脚,因此可以列出方程组(2x+4y=30.2x+2y=94),其中x表示鸡的数量,y表示兔的数量。
解方程组可以得到x=12,y=9,因此鸡的数量为12,兔的数量为9.综上所述,二元一次方程组是含有两个未知数和未知数的指数都是1的方程组。
解二元一次方程组可以使用消元解法,包括代入消元法和加减消元法。
实际问题可以用二元一次方程组来表示,然后解方程组得出答案。
1.在方程y=-3x-2中,若x=2,则y=-8.若y=2,则x=-4.2.若方程2x-y=3写成用含x的式子表示y的形式:y=2x-3;写成用含y的式子表示x的形式:x=(y+3)/2.3.已知43=2x-3y+1,4x-15y-17=0,6x-25y-23=0,则x=3,y=-2.4.二元一次方程3x-my=4和mx+ny=3有一个公共解,则m=-4,n=3.5.已知|a-b+2|+(b-3)^2=1,那么ab=-1.6.对于方程组(1){xy= -10.x+y=-2},是二次方程组;(2){x-y=1.x/y=3/4},是一次方程组;(3){x+y=5.xy=3},是二次方程组;(4){x+y=3.x=2y},是一次方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程一、二元一次方程的概念:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 注意:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式.练习1:已知下列方程,其中是二元一次方程的有________.(1)2x -5=y ; (2)x -1=4; (3)xy =3; (4)x+y =6; (5)2x -4y =7; (6)102x +=;(7)251x y +=;(8)132x y +=;(9)280x y -=;(10)462x y+=.【变式1】下列方程中,属于二元一次方程的有( )A .71xy -=B .2131x y -=+C .4535x y x y -=-D . 231x y-= 二、二元一次方程的解: 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 注意:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩.(2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.如:10x y +=的解可以是241,,869x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩等等练习2:二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程解的是( )A .012x y =⎧⎪⎨=-⎪⎩ B .11x y =⎧⎨=⎩ C .10x y =⎧⎨=⎩ D .11x y =-⎧⎨=-⎩ 【变式2】若方程24ax y -=的一个解是21x y =⎧⎨=⎩,则a= .三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.注意:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.练习3:下列方程组中,是二元一次方程组的是( )A.22375(9)1x yx y⎧+=⎨+=-⎩B.2138237yxx y⎧-=⎪⎨⎪-=⎩C.135()237x z x yx z y=+-⎧⎨-=⎩D.5()()82317x y x yx y-++=⎧⎨=-+⎩()四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.注意:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x ay b=⎧⎨=⎩的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x yx y+=⎧⎨+=⎩无解,而方程组1222x yx y+=-⎧⎨+=-⎩的解有无数个.【巩固练习】一、选择题1.下列方程中,属于二元一次方程的是()A.xy-7=1 B.2x-1=3y+1 C.4x-5y=3x-5y D.231 xy-=2.下列方程组是二元一次方程组的是()A.53 x yz x+=⎧⎨+=⎩B.1113xxyx⎧+=⎪⎪⎨⎪-=⎪⎩C.434x y xyx y-+=⎧⎨-=⎩D.12132112(2)32x yx y x y⎧-=⎪⎪⎨⎪-=-⎪⎩3. 以31xy=⎧⎨=⎩为解建立一个二元一次方程,不正确的是()A.3x-4y=5 B.13x y-=C.x +2y=-3 D.25236xy-=4. 方程组233x yx y-=⎧⎨+=⎩的解是()A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.23xy=⎧⎨=⎩5.已知二元一次方程组6511327,x y y x +=⎧⎨-=⎩, ①②,下列说法正确的是()A.适合②的,x y 的值是方程组的解①②B.适合①的,x y 的值是方程组的解C.同时适合①和②的,x y 的值不一定是方程组的解D.同时适合①和②的,x y 的值是方程组的解6. 关于,m n 的两个方程23321m n m n -=+=与的公共解是( )A. 03m n =⎧⎨=-⎩B. 11m n =⎧⎨=-⎩C. 012m n =⎧⎪⎨=⎪⎩ D. 122m n ⎧=⎪⎨⎪=-⎩ 二、填空题7.由x+2y =4,得到用y 表示x 的式子为x =________;得到用x 表示y 的式子为y =________.8.在二元一次方程组423x y x m y -=⎧⎨=-⎩中,有6x =,则_____,______.y m ==9.若22(32)0x y x -++=,则xy的值是 . 10.若是二元一次方程的一个解,则的值是__________.11.已知,且,则___________.12.若方程ax -2y =4的一个解是21x y =⎧⎨=⎩,则a 的值是 . 三、解答题 13.已知23x y =⎧⎨=⎩是一个二元一次方程的解,试写出一个符合条件的二元一次方程组.14.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组.(1)甲数的13比乙数的2倍少7; (2)摩托车的时速是货车的32倍,它们的速度之和是200km/h ;(3)某种时装的价格是某种皮装价格的1.4倍,5件皮装比3件时装贵700元解二元一次方程方法1.代入消元法解二元一次方程组代入消元法解二元一次方程组的步骤有四步:(1)变形:将方程组中系数较简单的方程变形,将系数较简单的未知数用另一个未知数表示出来;(2)代入:将变形的方程代入另一个方程,这样便消去一元,求出一个未知数的值;(3)代入:将求得的未知数的值代入变形后的方程(这一点要特别注意),求出另一个 未知数的值;(4)写出方程组的解. 一般地,当方程组中某个方程的某未知数的系数绝对值是1或常数项为0时,用代入法简便.例2 解方程组 327,2 5.x y x y -=⎧⎨+=⎩①②解析:由②,得 52x y =-. ③ 将③代入①,得 3(52)27y y --=, 15627y y --=,88y -=-, 1.y = 把 1y =代入③,得 3.x =所以原方程组的解是⎩⎨⎧==.1,3y x点评:此题方程②的系数较简单,且方程②中未知数x 的系数是1,因此考虑将方程②变形,并用含y 的代数式表示x . 用代入消元法解二元一次方程组,需先观察方程组的系数特点,判断消去哪个未知数较为简单. 代入消元时,要注意所代代数式的整体性,必要时可添加括号,以避免符号错误.变式2:用代入法解方程组:34,110.42x y x y +=⎧⎪⎨+=⎪⎩①②方法2.加减消元法解二元一次方程组加减消元法解二元一次方程组的步骤有四步: (1)变形:使方程组中某未知数的绝对值相等;(2)加减:若某未知数的系数相等,两方程相减;若某未知数的系数互为相反数,两方程相加;这样便消去一元,求出一个未知数的值;(3)代入:将求得的未知数的值代入系数较简单的方程,求出另一未知数的值; (4)写出方程组的解.进行加减消元时,要注意做到以下几点:(1)当方程组比较复杂时,应先整理变形,把方程组整理成形如:111222,a xb yc a x b y c +=⎧⎨+=⎩的形式,若此时两未知数的绝对值都不相等,则先观察哪个未知数的系数较易化为绝对值(系数的最小公倍数的绝对值)相等的形式,且计算简单,然后将其化为系数的绝对值相等的形式.(2)两个未知数的值都可采用加减消元法的方法求出.(3)当方程组中的某一个未知数的系数的绝对值相等或成整数倍关系时,用加减法简便.例3 解方程组:521,7316.m nm n+=⎧⎨-+=⎩①②解析:法一:①×3,②×2,得1563, 14632.m nm n+=⎧⎨-+=⎩③④③-④,得29m=-29,m=-1.将m=-1代入①,得-5+2n=1,n=3.所以原方程组的解为1,3. mn=-⎧⎨=⎩法二:①×7,②×5,得35147,351580.m nm n+=⎧⎨-+=⎩③④③+④,得29n=87,n=3.把n=3代入①,得5m+6=1,m=-1.所以原方程组的解为1,3. mn=-⎧⎨=⎩点评:此题方程组中的两方程,两未知数的系数分别既不相等也不互为相反数,即绝对值不相等. 因此先将两方程分别变形,使某个未知数的系数的绝对值相等. 比较题中的两种方法,先消去系数比较简单的未知数n,解法较为简捷. 另外用加减消元法解二元一次方程组,需注意两方程相减时,符号的正确处理.练习(1)(2)(3)(4);(5); (6)附加题(7)(8) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x。