2009年上海中考数学试卷分析2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以几何图形为背景的压轴题
闵行中心
马德岩
近年中考试题或模拟考题能反映命题风格、命题热点、命题形式(特别是新题型)的新动向、新导向,以近年中考题为基本素材,有利于考生适应中考情境,提高中考复习的针对性。中考题型的创新形式主要有:情景题、应用题、开放题、操作题、探索题等,体现出“经历、体验、探索”的过程性目标。此类题目是学生得分的薄弱环节,主要涉及到的题目为:图形翻折、平移、旋转的运动变化、函数思想的形成、方程思想的建立等等。应对此类问题学生应该要用数学的眼光观察世界,用数学知识、数学思想方法去分析问题、解决问题。这类试题往往情景较为新颖,问题也较为灵活,每年的分值在25分左右。下面以2009年上海中考最后一题为点来分析这类问题解决的方法。
已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足
PQ AD
PC AB
=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长;
(2)在图8中,联结AP .当3
2AD =
,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBC
S y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域; (3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.
数学思想方法是数学知识在更高层次上的抽象和概括,在重点考查最基本、通用的数学规律和数学技能
的同时,这道试题突出考查学生对数学思想方法的领悟。
解:(1)AD=2,且Q 点与B 点重合,根据题意,∠
PDA ,因为∠A=90。
PQ/PC=AD/AB=1,所以:△PQC 为等腰直角三角形,BC=3,所以:PC=3 /2,
(2)如图:根据题意,两个三角形的面积可以分别表示成S1,S2, 高分别是H ,h ,则:S1=(2-x )H/2=(2*3/2)/2-(x*H/2)-(3/2)*(2-h)/2
S2=3*h/2 因为两S1/S2=y ,消去H,h,得:Y=-(1/4)*x+(1/2),
定义域:当点P 运动到与D 点重合时,X 的取值就是最大值,当PC 垂直BD 时,这时X=0,连接DC,作QD
A
D
P
C
B
Q 图8
D
A
P
C
B
(Q ) 图9
图10
C
A
D
P
B
Q
垂直DC,由已知条件得:B、Q、D、C四点共圆,则由圆周角定理可以推知:三角形QDC相似于三角形ABD则QD/DC=AD/AB=3/4,令QD=3t,DC=4t,则:QC=5t,(t>0)由勾股定理得:直角三角形AQD中:(3/2)^2+(2-x)^2=(3t)^2直角三角形QBC中:3^2+x^2=(5t)^2整理得:(8x-7)(8x-43)=0得x1=7/8 x2=(43/8)>2(舍去) 所以函数:
Y=-(1/4)*x+1/2的定义域为[0,7/8]
(3)因为:PQ/PC=AD/AB,假设PQ不垂直PC,则可以作一条直线PQ′垂直于PC,与AB交于Q′点,则:Q′,B,P,C四点共圆,由圆周角定理推知,三角形P Q′C相似于三角形ABD,根据相似三角形的性质得:PQ′/PC=AD/AB,又由于PQ/PC=AD/AB 所以,点Q′与点Q重合,所以角∠QPC=90。
近三年以来,上海中考对数学这个科目的考察越来越重视加强对探究能力、获取信息和处理信息能力、空间观念操作能力和综合运用数学知识解决问题能力的考查力度,加强对学生数学思维过程和思维方法的考查;如有关图形运动变换试题,重点对空间观念和动态图形处理能力的考查,从对静态图形的想象、简单动态图形的想象、复杂动态图形的想象等几个不同层次对考生能力作恰当要求。而这样的题目对考生来说乍一看来是无从下手的,即使有的考生有能力完成,但限于时间上的要求往往不能全面的分析这类问题。想要有条理的分析解决这类问题应该注重以下技能的培养
①深刻理解基础知识,熟练掌握解题基本方法,努力形成解题基本技能。
②合理安排考试时间,书写做到数学语言是通用、精确、简约的科学语言。
③平时进行速度训练。以此来加快书写速度,降低思维难度,提高解题质量。
而对于即将步入初三的学生来说,如何学会有效的学习,把学习效率发挥到及至,以下是几点建议:
①中考试题或模拟考题经过考生的实践检验和广大教师的深入研讨,科学性强(漏洞也清楚),解题思路明朗,解题书写规范,评分标准清晰,是优质的训练素材。
②中考试题或模拟考题都努力抓课程的重点内容和重要方法,并且每套中考试题或模拟考题能覆盖全部知识点的60%~80%,几套试题一交叉,既保证了全面覆盖,又体现了重点突出。
以下是今年来涉及到得以几何图形为背景的压轴题目
1、正方形ABCD的边长为2,E是射线CD上的动点(不与点D重合),直线AE交直线BC于点G,∠BAE
的平分线交射线BC于点O.(1)如图8,当CE= 时,求线段BG的长;
(2)当点O在线段BC上时,设,BO=y,求y关于x的函数解析式;
(3)当CE=2ED时,求线段BO的长.(2008年中考真题25题)
2、如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).
(1)设四边形PCQD的面积为y,求y与t的函数关系式;