下水箱液位控制系统

合集下载

水箱液位自动控制系统设计

水箱液位自动控制系统设计

第一章水箱液位自动控制系统原理液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。

在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。

液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。

根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。

结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。

应用范围在制浆造纸过程中涉及的所有池、罐、槽体液位自动控制。

图1.1中,是控制器的传递函数,是执行机构的传递函数,是测量变送器的传递函数,是被控对象的传递函数。

图5.1中,控制器,执行机构、测量变送器都属于自动化仪表,他们都是围绕被控对象工作的。

也就是说,一个过程控制的控制系统,是围绕被控现象而组成的,被控对象是控制系统的主体。

因此,对被控对象的动态特性进行深入了解是过程控制的一个重要任务。

只有深入了解被控对象的动态特性,了解他的内在规律,了解被控辩量在各种扰动下变化的情况,才能根据生产工艺的要求,为控制系统制定一个合理的动态性能指标,为控制系统的设计提供一个标准。

性能指标顶的偏低,可能会对产品的质量、产量造成影响。

性能指标顶的过高,可能会成不必要的投资和运行费用,甚至会影响到设备的寿命。

性能指标确定后,设计出合理的控制方案,也离不开对被控动态特性的了解。

不顾被控对象的特点,盲目进行设计,往往会导致设计的失败。

尤其是一些复杂控制方案的设计,不清楚被控对象的特点根本就无法进行设计。

有了正确的控制方案,控制系统中控制器,测量变送器、执行器等仪表的选择,必须已被控对象的特性为依据。

在控制系统组成后,合适的控制参数的确定及控制系统的调整,也完全依赖与对被控对象动态特性的了解。

由此可见,在控制工程中,了解被控制的对象是必须首先做好的一项工作。

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计水箱液位控制系统是一种常见的自动化控制系统,通过控制水位的高低来实现水箱中水的供应与排放。

该系统常用于水处理、供水系统、工业生产等领域。

本篇毕业设计将基于可编程逻辑控制器(PLC)来设计一个水箱液位控制系统。

PLC作为控制器,能够实现对水位的监测、控制和保护。

首先,本设计将使用传感器来监测水箱的液位。

液位传感器将放置在水箱内部,在不同的液位位置测量水的高度。

传感器将通过模拟信号将液位信息传输给PLC。

PLC将读取并处理传感器的信号,得到水箱的液位信息。

其次,PLC将根据液位信息来控制水泵的运行。

当水箱的液位低于一定的阈值时,PLC将启动水泵,从水源处将水注入到水箱中。

当液位达到一定的高度时,PLC将关闭水泵,停止水的注入。

通过控制水泵的启动和停止,系统可以实现自动补水,从而保持水箱的水位在一个恰当的范围内。

此外,本系统还将具备一定的保护功能。

当水箱液位过高或过低时,PLC将触发报警装置,以便及时采取措施解决问题。

同时,系统将设置相应的安全控制,以防止水泵出现过载或短路等故障。

为了实现PLC控制系统的功能,本设计将使用PLC编程软件进行程序的编写和调试。

程序将根据液位传感器的输入信号,进行逻辑判断和控制指令的输出。

同时,本设计将与水泵、报警装置等硬件进行连接,以实现实际的控制功能。

最后,本设计将进行系统的仿真和调试。

通过模拟真实的液位变化情况,测试系统的控制性能和稳定性。

在确保系统正常运行的前提下,对系统进行各项性能指标的测试和评估。

通过该毕业设计的实施,我将能够掌握PLC水箱液位控制系统的原理和设计方法,提升自己在自动化控制领域的实践能力和工程应用能力。

同时,通过该设计的完成,也能为工业生产中的水箱液位控制问题提供一种可行的解决方案。

PLC水箱液位控制系统毕业设计

PLC水箱液位控制系统毕业设计

PLC水箱液位控制系统毕业设计PLC水箱液位控制系统是一种基于可编程逻辑控制器(PLC)的自动控制系统,用于监测和调节水箱中的液位。

这个系统可以应用于各种场景,比如工业生产中的水箱液位控制、建筑物的水池液位控制等。

在本篇文章中,将详细介绍PLC水箱液位控制系统的设计和实现。

首先,我们需要对PLC水箱液位控制系统的硬件进行设计。

其中包括传感器模块、执行器模块和PLC控制器。

传感器模块用于监测水箱中的液位,可以选择合适的液位传感器,如浮球开关、超声波传感器等。

执行器模块用于控制水箱中的液位,可以选择水泵或阀门等执行器。

PLC控制器用于接收传感器模块的信号,根据预设的控制策略来控制执行器模块的工作。

同时,还需要考虑电源模块、通信模块等其他辅助模块。

接下来,我们需要对PLC水箱液位控制系统的软件进行设计。

PLC控制器通常使用Ladder Diagram(梯形图)进行编程。

在本设计中,我们可以根据液位传感器的信号来控制执行器的开关。

当液位低于一定阈值时,PLC控制器可以启动水泵或打开阀门,以增加水箱中的液位。

当液位高于一定阈值时,PLC控制器可以停止水泵或关闭阀门,以减少水箱中的液位。

同时,我们还可以增加一些安全措施,如设置最大液位和最小液位报警,当液位超出范围时,PLC控制器可以发出警报信号或采取相应的措施。

在实际应用中,我们还可以通过人机界面(HMI)来对PLC水箱液位控制系统进行监控和操作。

通过HMI,我们可以实时查看水箱中的液位,修改控制策略,记录操作日志等。

同时,我们还可以将PLC水箱液位控制系统与上位机进行通信,实现远程监控和控制。

最后,我们需要对PLC水箱液位控制系统进行实验验证。

在实验中,我们可以模拟不同的液位情况,观察PLC控制器的响应和执行器的工作情况。

通过实验,我们可以测试系统的稳定性、精度和可靠性,并对系统进行优化和改进。

总结而言,PLC水箱液位控制系统是一种自动控制系统,用于监测和调节水箱中的液位。

水箱液位自动控制系统工作原理

水箱液位自动控制系统工作原理

水箱液位自动控制系统工作原理
1水箱液位自动控制系统
水箱液位自动控制系统是一种控制水箱液位的自动化控制系统,它包括一个液位探测器、一个液位计算机、水箱液位控制装置和一个加水控制装置。

1.1液位探测器
液位探测器是系统的最重要的组成部分,它可以实时测量水箱中液位和水温,并将其实时数据发送到液位计算机。

1.2液位计算机
液位计算机负责接收液位探测器发送过来的实时温度和液位数据,并对其进行分析,计算出水箱当前的液位状态和液位变化趋势,并将运算结果发送给控制装置。

1.3水箱液位控制装置
水箱液位控制装置接收到液位计算机发送过来的水箱当前液位状态和液位变化趋势,根据实际情况确定是否需要加水,并根据设定的液位变化趋势来决定加水的次数和加水量。

1.4加水控制装置
加水控制装置接收来自水箱液位控制装置发送过来的控制信号,根据设定次数和加水量,控制加水泵启动停止,最终实现自动控制水箱液位,保持水箱液位的稳定。

水箱液位自动控制系统通过液位探测器实时测量水箱液位和温度,液位计算机对测量数据进行分析,水箱液位控制装置根据设定液位趋势确定是否需要加水,加水控制装置根据设定次数和加水量控制加水泵启动停止,实现了水箱液位的稳定控制。

水箱液位控制系统设计设计

水箱液位控制系统设计设计

水箱液位控制系统设计设计一、系统概述水箱液位控制系统是一个智能化的系统,用于控制水箱液位并保持在设定的范围内。

该系统由传感器、控制器和执行器组成,通过传感器检测水箱液位,并将液位信号传输给控制器,控制器根据设定的参数进行判断和控制,最终通过执行器完成控制动作。

二、系统组成1.传感器:使用浮球传感器或超声波传感器来检测水箱液位。

传感器将液位转化为电信号,并传输给控制器。

2.控制器:控制器是系统的核心部分,它接收传感器的信号,并进行处理和判断。

控制器可以根据设定的参数来判断液位是否达到目标范围,并通过输出信号来控制执行器的动作。

此外,控制器还需要具备人机界面,方便用户进行参数设置和监测。

3.执行器:执行器根据控制器的控制信号,完成相应的动作。

例如,当液位过高时,执行器可以控制水泵关闭或排水阀打开,以降低液位;当液位过低时,执行器可以控制水泵开启或进水阀打开,以提高液位。

4.电源:为整个系统提供电能。

三、系统设计思路1.确定液位控制的范围:根据实际需求,确定水箱液位的上限和下限。

一般情况下,液位控制范围应在50%至85%之间。

2.选择合适的传感器:根据水箱的结构和液位控制要求,选择合适的传感器。

浮球传感器适用于小型水箱,超声波传感器适用于大型水箱。

3.设计控制器:控制器的主要功能是接收传感器的信号、处理和判断液位,并输出控制信号。

在设计控制器时,需要考虑如下几个方面:-信号处理:传感器的信号可能存在噪声,需要进行滤波处理,保证信号的准确性。

-参数设置:控制器应提供人机界面,方便用户根据实际需求设置参数,例如液位上下限、启停时间等。

-控制算法:根据设定的参数,控制器需要实现相应的控制算法,例如比例控制、积分控制等。

-控制输出:控制器根据判断结果输出控制信号,控制执行器的动作。

4.选用适配的执行器:根据液位控制要求,选择适合的执行器,例如水泵、进水阀、排水阀等。

5.系统集成与调试:将传感器、控制器和执行器进行连接和集成,进行系统调试和性能测试。

水箱液位自动控制系统设计

水箱液位自动控制系统设计

第一章水箱液位自动控制系统原理液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。

在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。

液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。

根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。

结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。

应用范围在制浆造纸过程中涉及的所有池、罐、槽体液位自动控制。

图1.1中,是控制器的传递函数,是执行机构的传递函数,是测量变送器的传递函数,是被控对象的传递函数。

图5.1中,控制器,执行机构、测量变送器都属于自动化仪表,他们都是围绕被控对象工作的。

也就是说,一个过程控制的控制系统,是围绕被控现象而组成的,被控对象是控制系统的主体。

因此,对被控对象的动态特性进行深入了解是过程控制的一个重要任务。

只有深入了解被控对象的动态特性,了解他的内在规律,了解被控辩量在各种扰动下变化的情况,才能根据生产工艺的要求,为控制系统制定一个合理的动态性能指标,为控制系统的设计提供一个标准。

性能指标顶的偏低,可能会对产品的质量、产量造成影响。

性能指标顶的过高,可能会成不必要的投资和运行费用,甚至会影响到设备的寿命。

性能指标确定后,设计出合理的控制方案,也离不开对被控动态特性的了解。

不顾被控对象的特点,盲目进行设计,往往会导致设计的失败。

尤其是一些复杂控制方案的设计,不清楚被控对象的特点根本就无法进行设计。

有了正确的控制方案,控制系统中控制器,测量变送器、执行器等仪表的选择,必须已被控对象的特性为依据。

在控制系统组成后,合适的控制参数的确定及控制系统的调整,也完全依赖与对被控对象动态特性的了解。

由此可见,在控制工程中,了解被控制的对象是必须首先做好的一项工作。

基于PLC的液位控制系统设计

基于PLC的液位控制系统设计

2024年7月16日
11
基于PLC的液位控制系统设计
液位控制系统的硬件组成
计算机液位控制系统电路图如图所示。在本控制系统中、用计算机实现控 制算法, PLC控制系统带有A/D模块SM331和D/A模块SM332。电动调节阀作为 执行机构。
控制系统硬件电路连接图
2024年7月16日
12
基于PLC的液位控制系统设计
液位变送器 : 采用液位变送器 BP800采用工业用的扩散硅压力变送器, 含不绣钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补 偿 。压力传感器用来对上水箱和下水箱的液位进行检测,变送器为二 线制,故工作时需串接24VDC电源 。
电动调节阀 : 采用智能型电动调节阀,用来进行控制回路流量的调节。。 电动调节阀号为: QSVP-16K。具有精度高、技术先进、体积小、重量轻、 推动力大、功能强、控制单元与电动执行机构一体化、可靠性高、操作 方便等优点,控制信号为4—20mADC或1—5VDC,输出4—2OmADC的阀位信 号,使用和校正非常方便。
2
基于PLC的液位控制系统设计
建立数学模型
被控对象的数学模型 :
将Q1作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型 就是h与Q1之间的数学表达式。根据动态物料平衡关系有:
2024年7月16日
3
基于PLC的液位控制系统设计
表示为增量形式:
式中: ΔQ1,ΔQ2,Δh分别为偏离某一平衡状态的增量;A为水箱截 面积。
基于PLC的液位控制系统设计
本文设计的主要目的是控制下水箱的液位。使下水箱的 液位在某一比较小的范围变化。
研究对象是双容水箱的串级系统。 液位控制系统的组成:
控制器 电动调节阀 上水箱、下水箱 液位变送器等 电动调节阀用于调节上水箱的进水量大小,液位变送器 用于检测上水箱和下水箱的液位。控制器的输出量用于控制 调节阀的开度。

(2021年整理)下水箱液位前馈反馈控制系统

(2021年整理)下水箱液位前馈反馈控制系统

(完整)下水箱液位前馈反馈控制系统编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)下水箱液位前馈反馈控制系统)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)下水箱液位前馈反馈控制系统的全部内容。

下水箱液位前馈反馈控制系统实验一、实验目的1、学习前馈—反馈控制的原理。

2、了解前馈-反馈控制的特点。

3、掌握前馈—反馈控制的设计.二、实验设备A3000-FS/FBS现场系统,任意控制系统。

三、实验原理1、控制原理前馈控制又称扰动补偿,它与反馈调节原理完全不同,是按照引起被调参数变化的干扰大小进行调节的。

在这种调节系统中要直接测量负载干扰量的变化,当干扰刚刚出现而能测出时,调节器就能发出调节信号使调节量作相应的变化,使两者抵消与被调量发生偏差之前。

因此,前馈调节对干扰的克服比反馈调节快。

但是前馈控制是开环控制。

其控制效果需要通过反馈加以检验.前馈控制器在测出扰动之后,按过程的某种物质或能量平衡条件计算出校正值.如果没有反馈控制,则这种校正作用只能在稳态下补偿扰动作用。

如图6-12所示。

设法保持下水箱液位,是用两个水泵注水。

图6—12 前馈-反馈控制系统原理图如果支路一出现扰动,经过流量计测量之后,测量得到干扰的大小,然后在第二个支路通过调整调节阀开度,直接进行补偿.而不需要经过调节器。

如果没有反馈,就是开环控制,这个控制是有余差的.增加反馈通道,使用PI进行控制,如图6-12所示。

我们按照参考书上的内容,进行了部分简化.前馈控制不考虑控制通道与对象通道延迟,则根据物料平衡关系,简单的前馈控制方程为:Qu=dF。

也就是两个流量的和保持稳定.但是有两个条件,一是准确知道第一个支路的流量,二是准确知道调节阀开度与流量对应关系K,如图6-13所示:1图6-13 调节阀开度与流量比例关系2、测量与控制端连接表说明:电磁流量计可能为涡轮流量计.408060203、实验方案被调量为调节阀,控制量是支路2流量,控制目标是下水箱液位。

下水箱液位与进水流量串级控制系统

下水箱液位与进水流量串级控制系统

下水箱液位与进水流量串级控制系统一、实验目的1.了解液位-流量串级控制系统的组成原理。

2.掌握液位-流量串级控制系统调节器参数的整定与投运方法。

3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。

4.掌握液位-流量串级控制系统采用不同控制方案的实现过程。

二、实验设备三、实验原理本实验系统的主控量为下水箱的液位高度h,副控量为电动调节阀支路流量Q,它是一个辅助的控制变量。

系统由主、副两个回路所组成。

主回路是一个定值控制系统,要求系统的主控制量h等于给定值,因而系统的主调节器应为PI 或PID控制。

副回路是一个随动系统,要求副回路的输出能正确、快速地复现主调节器输出的变化规律,以达到对主控制量h的控制目的,因而副调节器可采用P控制。

但选择流量作副控参数时,为了保持系统稳定,比例度必须选得较大,这样比例控制作用偏弱,为此需引入积分作用,即采用PI控制规律。

引入积分作用的目的不是消除静差,而是增强控制作用。

显然,由于副对象管道的时间常数小于主对象下水箱的时间常数,因而当主扰动(二次扰动)作用于副回路时,通过副回路快速的调节作用消除了扰动的影响。

本实验系统结构图和方框图如图37所示。

图37 下水箱液位与进水流量串级控制系统(a)结构图 (b)方框图四、实验内容与步骤本实验选择下水箱和电动调节阀支路组成串级控制系统(也可采用变频器支路)。

实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8全开,将下水箱出水阀门F1-11开至适当开度,其余阀门均关闭。

具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。

(一)、智能仪表控制1.将两个SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。

将“FT1电动阀支路流量”钮子开关拨到“OFF”的位置,将“LT3下水箱液位”钮子开关拨到“ON”的位置。

下水箱液位控制系统设计

下水箱液位控制系统设计

下水箱液位控制系统设计下水箱液位控制系统是一种用于控制下水箱液位的自动化设备。

在城市排水系统中,下水箱是收集和暂时储存污水的设备,因此正确控制下水箱的液位对于保证排水系统的正常运行非常重要。

本文将详细介绍下水箱液位控制系统的设计原理、关键组成部分以及工作流程。

设计原理:下水箱液位控制系统的目标是将下水箱的液位维持在一个设定值附近。

当液位低于设定值时,系统将启动排泥泵将污泥排出,从而提高液位;当液位超过设定值时,系统将启动排水泵将污水排出,从而降低液位。

通过不断监测下水箱液位,系统可以自动调节排泥泵和排水泵的运行来控制液位。

关键组成部分:1.液位传感器:用于监测下水箱液位,并将液位信号传递给控制器。

常用的液位传感器有浮球传感器、超声波传感器等。

2.控制器:接收液位传感器的信号,并根据设定值判断是否需要启动排泥泵或排水泵。

同时,控制器还可以设置各种保护控制逻辑,如过流保护、过压保护等。

3.排泥泵和排水泵:当液位低于设定值时,控制器将启动排泥泵,将污泥排出;当液位高于设定值时,控制器将启动排水泵,将污水排出。

排泥泵和排水泵的选型应根据实际需求进行。

4.阀门:用于控制污水进出下水箱的流量。

可以根据实际需要选择手动阀门或电动阀门。

工作流程:1.系统启动后,控制器开始接收液位传感器的信号。

2.当液位低于设定值时,控制器判断需要启动排泥泵,并发送信号给排泥泵,排泥泵开始工作。

同时,控制器可以关闭进水阀门,以防止系统压力过高。

3.当液位达到设定值时,控制器判断需要停止排泥泵,并发送信号给排泥泵,排泥泵停止工作。

4.当液位高于设定值时,控制器判断需要启动排水泵,并发送信号给排水泵,排水泵开始工作。

同时,控制器可以关闭进水阀门,以防止系统压力过高。

5.当液位达到设定值时,控制器判断需要停止排水泵,并发送信号给排水泵,排水泵停止工作。

同时,控制器可以打开进水阀门,以便下一周期的运行。

6.系统持续监测液位,并根据液位变化进行相应的控制操作,以维持液位在设定值附近。

实验九DCS水箱液位控制系统

实验九DCS水箱液位控制系统

实验九DCS水箱液位控制系统1、了解单回路控制的特点和调节品质,掌握PID 参数对控制性能的影响。

2、学会分析执行器风开风关特性的选择及调节器正反作用的确定。

3、初步掌握单回路控制系统的投运步骤以及单回路控制器参数调整方法。

实验设备A3000 过程对象的下水箱V103,SUPCON DCS,支路系统1,支路系统2。

图9-1 A3000过程控制系统示意图实验原理9-2 单回路控制系统方框图图9-2为单回路控制系统方框图的一般形式,它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。

系统的给定量是某一定值,要求系统的被控制量稳定至给定量。

由于这种系统结构简单,性能较好,调试方便等优点,故在工业生产中已被广泛应用。

控制器采用PID控制规律,常用的控制规律有比例(P)调节、比例积分(PI)调节、比例微分(PD)调节、比例积分微分(PID)调节。

调节器参数的整定一般有两种方法:一种是理论计算法,即根据广义对象的数学模型和性能要求,用根轨迹法或频率特性法来确定调节器的相关参数;另一种方法是工程实验法,通过对典型输入响应曲线所得到的特征量,然后查照经验表,求得调节器的相关参数。

工程实验整定法有临界振荡法、衰减振荡法。

(1)临界振荡法将Ti→∞, Td= 0,调整δ至较大值,逐渐减小δ,直至出现等幅振荡如下图所示,记下δr (临界比例带),根据δr ,Tα 查表得δ, Ti , Td ,见下表图9-2 临界震荡过程表9-1 临界比例度法控制器参数计算表临界比例度法的优点是应用简单方便,但此法有一定限制。

首先要产生允许受控变量能承受等幅振荡的波动,其次是受控对象应是二阶和二阶以上或具有纯滞后的一阶以上环节,否则在比例控制下,系统是不会出现等幅振荡的。

在求取等幅振荡曲线时,应特别注意控制阀出现开、关的极端状态。

(2)衰减振荡法将Ti→∞, Td= 0,调δ使被控量达4:1 或10:1如下图所示;对应δs,根据δs ,Ts 确定δ, Ti , Td ,见下表图9-4 4:1衰减震荡曲线表9-2 衰减曲线法控制器参数计算表实验流程介绍以第1套实验装置为例,在A3000 高级过程控制实验系统中,下图所示为液位单回路控制系统。

上水箱(中水箱或下水箱)液位定值控制系统

上水箱(中水箱或下水箱)液位定值控制系统

第一节上水箱(中水箱或下水箱)液位定值控制系统一、实验目的1.了解单闭环液位控制系统的结构与组成。

2.掌握单闭环液位控制系统调节器参数的整定。

3.研究调节器相关参数的变化对系统动态性能的影响。

二、实验设备1.THJ-2型高级过程控制系统装置2.计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3.万用表 1只三、实验原理本实验系统的被控对象为上水箱,其液位高度作为系统的被控制量。

系统的给定信号为一定值,它要求被控制量上水箱的液位在稳态时等于给定值。

由图3-7 上水箱液位定值控制结构图反馈控制的原理可知,应把上水箱的液位经传感器检测后的信号作为反馈信号。

图3-7为本实验系统的结构图,图3-8为控制系统的方框图。

为了实现系统在阶跃给定和阶跃扰动作用下无静差,系统的调节器应为PI或PID。

图3-8 上水箱液位定值控制方框图四、实验内容与步骤1.按图3-7要求,完成系统的接线。

2.接通总电源和相关仪表的电源。

3.打开阀F1-1、F1-2、F1-6和F1-9,且把F1-9控制在适当的开度。

4.选用单回路控制系统实验中所述的某种调节器参数的整定方法整定好调节器的相关参数。

5.设置好系统的给定值后,用手动操作调节器的输出,使电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把调节器切换为自动,使系统投入自动运行状态。

6.启动计算机,运行MCGS组态软件软件,并进行下列实验:当系统稳定运行后,突加阶跃扰动(将给定量增加5%~15%),观察并记录系统的输出响应曲线。

7.适量改变PI的参数,用计算机记录不同参数时系统的响应曲线。

五、实验报告1.用实验方法确定调节器的相关参数。

2.列表记录,在上述参数下求得阶跃响应的动、静态性能指标。

3.列表记录,在上述参数下求得系统在阶跃扰动作用下响应曲线的动、静态性能指标。

对系统的性能产生什么影响?4.变比例度δ和积分时间TI。

双容水箱液位控制系统

双容水箱液位控制系统

双容水箱液位控制系统简介双容水箱液位控制系统是一种能够自动检测液位并控制液位的系统,通常用于工业生产中的水处理、冷却等环节。

它包括两个水箱和一套自动液位控制系统。

系统组成双容水箱液位控制系统主要由以下几部分组成:1.双个水箱:分别是进水箱和出水箱,供水系统在进水箱中存储新的水,然后将水处理后的水送到出水箱,最后再供应到整个系统中。

2.液位控制器:一种能够检测并控制液位水平的控制器,通过传感器收集水位信号,并将数据传输到中控系统中。

3.中央控制器:用于处理液位信号和控制整个系统,开启或关闭水泵和控制进出水箱之间的流量。

系统工作原理当水处理系统开始工作时,水泵会将新的水送入水箱中。

同时,液位控制器会监测进水箱的液位,发送信号到中央控制器。

当进水箱的液位降到最低时,中央控制器会打开进水阀门,并将水流至进水箱中。

当进水箱液位升高到预设液位时,液位控制器会停止进水。

如果进水箱液位超过了预设值,控制器会关闭进水阀门,以避免水溢出。

同样的,出水箱也安装有液位控制器,监测出水箱液位,当液位达到最高限制时,中央控制器会打开出水阀门,并控制出水量。

当出水箱的液位降至预设值时,中央控制器会关闭出水阀门,以避免水泵过载。

优势双容水箱液位控制系统的优势主要在于以下几点:1.自动化程度高:整个水箱液位控制系统实现了全自动化的工作流程,大大减少了人工干预的频率和工作强度。

2.稳定性好:水箱液位控制系统能够实时监测液位变化,并根据水量来调整水泵流量,保证了流量平稳且不会超载,同时可以避免水流过大或过小带来的问题,提高了整个系统的稳定性和安全性。

应用场景双容水箱液位控制系统适用于以下场合:1.工业生产:工业生产中通常需要大量的水,而这些水又需要简单地进行过滤以保证生产质量。

双容水箱液位控制系统能够有效地满足这些需求。

2.冷却系统:在冷却系统中,温度是一个至关重要的因素。

过高或过低的温度都会导致整个系统的损坏,而恰当的水流量和水温可以保持整个系统的适宜温度和稳定性。

水箱液位控制系统

水箱液位控制系统

水箱液位控制系统水箱液位控制系统的原理:水箱液位控制系统是一种自动控制系统,其目的是通过控制进水量和排水量,使水箱中的液位保持在一定的范围内。

该系统主要由水箱、电动机、进水阀门、浮子连杆等配件构成。

当水箱液位下降时,浮子连杆会向下移动,通过传感器将信号发送给控制器,控制器将信号转化为控制信号,控制进水阀门的开度,从而增加进水量,使液位回升到设定值。

当水箱液位上升时,浮子连杆会向上移动,控制器会减小进水量或打开排水阀门,从而使液位回落到设定值。

控制系统元件的选择:在设计水箱液位控制系统时,需要选择合适的控制元件,如传感器、控制器、执行器等。

传感器需要选择灵敏度高、精度高的液位传感器,以确保液位检测的准确性;控制器需要具有良好的控制性能和稳定性,以确保系统的稳定性和可靠性;执行器需要选择响应速度快、控制精度高的电动阀门或电动泵等,以确保系统的响应速度和控制精度。

控制系统的参数确定:在设计水箱液位控制系统时,需要确定一些重要的参数,如控制器的比例、积分、微分系数,以及进水阀门的开度和排水阀门的开度等。

这些参数的确定需要结合实际情况和系统响应特性,通过试验和仿真等手段进行优化调整,以确保系统的性能和稳定性。

控制系统的仿真结果:通过Matlab/Simulink对水箱液位控制系统进行仿真,可以得到系统的响应曲线和稳态误差等性能指标。

通过仿真结果可以发现系统的稳态误差较小,响应速度较快,控制精度较高,符合设计要求。

设计总结:本文设计了一个水箱液位控制系统,并对其进行了仿真分析。

通过设计和仿真可以发现,该系统具有操作简便、可靠性好、运行成本低、可扩展行强等特点,能够满足实际应用需求。

同时,本文还提出了一些优化建议,如进一步优化控制器参数、加强系统的故障检测和容错能力等,以进一步提高系统的性能和稳定性。

参考文献:暂无。

在工业生产和日常生活中,经常需要对中的液位进行自动控制,例如自动控制水箱、水池、水槽、锅炉等中的蓄水量,以及生活中抽水马桶的自动补水控制、自动电热水器和电开水机的自动进水控制等。

水箱液位控制系统的设计

水箱液位控制系统的设计

水箱液位控制系统的设计首先,我们需要选择适合的传感器来测量水箱中的液位。

常用的液位传感器有浮子式传感器、压力传感器和超声波传感器等。

在选用传感器时需要考虑水箱的大小、形状和液位变化的速度等因素。

在测量完液位后,测量值需要经过放大和转换处理,以便与控制器进行连接并进行进一步的处理和分析。

放大和转换电路应根据传感器类型和输出信号的特征进行设计。

接下来,我们需要选择合适的控制器来实现液位控制。

液位控制器通常包括一个比例控制器和一个开关控制器。

比例控制器根据液位测量值与设定值之间的差异来调整输出信号,以控制水泵的运行速度。

开关控制器则根据液位测量值是否超出设定范围来判断是否需要启动或停止水泵。

在液位控制器中,需要定义一个设定范围,即水箱液位的上下限。

当液位超出设定范围时,开关控制器会发送一个控制信号,来启动或停止水泵。

同时,比例控制器会根据液位测量值与设定值之间的差异来调整水泵的运行速度。

另外,为了确保系统的可靠性和稳定性,还需要设计一套安全保护措施。

例如,在水箱液位过高或过低的情况下,可以设置报警装置,同时关闭水泵以避免故障或损坏。

此外,还可以设计备用水泵或备用电源,以确保在主要设备故障时系统可以继续运行。

最后,为了方便人机交互和系统管理,可以将液位控制系统与计算机网络进行连接,实现远程监控和操作。

通过远程监控,可以随时随地获取系统状态和运行数据,及时发现并解决问题。

总之,水箱液位控制系统的设计需要选择合适的传感器和控制器,并进行适当的信号处理和转换。

在设计过程中需要考虑系统的可靠性、稳定性和安全性,并提供方便的人机交互和系统管理功能。

通过合理的设计和实施,水箱液位控制系统可以实现自动化的液位控制,提高水资源的利用效率,并减少人力和能源的浪费。

实验四 水箱液位串级控制系统

实验四  水箱液位串级控制系统

实验四水箱液位串级控制系统一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。

2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。

3.研究阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。

4.掌握液位串级控制系统采用不同控制方案的实现过程。

二、实验设备1、THJ-2 型高级过程控制系统实验装置2、计算机、上位机MCGS 组态软件、RS232-485 转换器1 只、串口线1 根3、万用表1 只三、实验原理本实验为水箱液位的串级控制系统,它是由主、副两个回路组成。

每一个回路中都有一个属于自己的调节器和控制对象,即主回路中的调节器称主调节器,控制对象为下水箱,作为系统的被控对象,下水箱的液位为系统的主控制量。

副回路中的调节器称副调节器,控制对象为中水箱,又称副对象,它的输出是一个辅助的控制变量。

本系统控制的目的不仅使系统的输出响应具有良好的动态性能,且在稳态时,系统的被控制量等于给定值,实现无差调节。

当有扰动出现于副回路时,由于主对象的时间常数大于副对象的时间常数,因而当被控制量(下水箱的液位)未作出反映时,副回路已作出快速响应,及时地消除了扰动对被控制量的影响。

此外,如果扰动作用于主对象,由于副回路的存在,使副对象的时间常数大大减小,从而加快了系统的响应速度,改善了动态性能。

本实验系统结构图和方框图如图所示。

图1 水箱液位串级控制系统(a)结构图 (b)方框图四、实验内容与步骤1、本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。

实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10开至适当开度(40%~90%)、下水箱出水阀门F1-11开至适当开度(30%~80% 要求阀F1-10稍大于阀F1-11),其余阀门均关闭。

2、按照实验图接线,将主、副控仪表设置为自动,主控制器Sn=33,addrss=1,CF=0 ,DF=0;副控制器Sn=32,addrss=2,CF=8,DF=0;合上三相电源空气开关,磁力驱动泵上电打水,上位机的主控制器,下水箱的液位设定值8—15cm。

水箱液位控制系统设计

水箱液位控制系统设计

水箱液位控制系统设计一、引言二、水箱液位控制系统功能需求1.实时监测水箱内的液位,能够准确地反映水箱的水位高低。

2.自动控制水泵的启停,能够根据液位情况自动控制水泵的工作状态。

3.监测和报警功能,当水箱液位过高或过低时,能够及时发出警报,防止水箱溢满或干涸。

4.用户可通过控制面板进行参数设置和手动控制,便于系统的调试和操作。

三、系统硬件设计1.液位传感器:选择合适的液位传感器,如浮球式液位传感器、压力式液位传感器等,用于测量水箱内的液位。

2.控制面板:包括液晶显示屏、按键开关和警报器,用于进行参数设置、手动控制和状态显示。

3.控制器:采用单片机或PLC等控制器,用于控制水泵的启停和监测、处理液位传感器的信号。

4.电磁继电器:用于控制水泵的启停,根据控制器的输出信号来控制水泵的运行。

四、系统软件设计1.液位监测算法:通过液位传感器获取的模拟信号,经过模数转换后,传入控制器进行处理。

控制器根据预设的液位范围和阈值,判断并监测水箱的液位高低。

2.控制算法:根据液位监测的结果,判断是否需要启动或停止水泵。

当液位过低时,控制器输出控制信号,驱动电磁继电器闭合,启动水泵;当液位过高时,控制器输出控制信号,驱动电磁继电器断开,停止水泵。

3.参数设置界面:在控制面板上设计用户界面,用户可以通过按键设置液位的上下限值、警报阈值等参数。

4.警报功能:当水箱液位超过上限或低于下限时,控制器将发出警报信号,触发警报器报警,并在液晶显示屏上显示相应的警报信息。

五、系统测试与调试1.对液位传感器的测量精度进行测试,确认液位传感器和控制器的连接正确,信号传输正常。

2.进行液位控制的测试,对水箱进行填满、放空等操作,检查控制系统是否正常响应并进行相应的控制。

3.对警报功能进行测试,将液位设置为超过上限或低于下限的值,检查是否触发警报器和显示屏的报警信息。

六、系统优化与改进1.根据实际情况对控制算法进行优化,提高控制的精度和可靠性。

单容水箱液位控制系统设计

单容水箱液位控制系统设计

单容水箱液位控制系统设计一、引言水箱是常见的储水设备,广泛应用于家庭、工业和农业等领域。

为了保证水箱的水位稳定和安全,需要设计一种液位控制系统来监测和控制水箱的液位。

本文将介绍一个单容水箱液位控制系统的设计思路和实现方法。

二、系统设计思路1.系统功能要求2.系统组成液位传感器用于检测水箱的液位,并将检测到的液位信号传输给控制器。

控制器根据液位传感器的信号以及设定范围来判断蓄水或排水的需求,并通过控制阀门的开闭来实现液位的控制。

执行器是用于控制阀门开闭的装置,可以是电磁阀、电动阀或脚踏阀等。

人机界面用于显示水箱的液位信息和设置控制参数,可以是液晶显示屏或者计算机控制界面。

3.系统工作原理水箱液位控制系统的工作原理如下:当水箱液位低于设定范围的下限时,控制器会发送信号给执行器,使其打开阀门,进水进入水箱。

当水箱液位达到设定范围的上限时,控制器会发送信号给执行器,使其关闭阀门,停止进水进入水箱。

当水箱液位高于设定范围的上限时,控制器会发送信号给执行器,使其打开阀门,排水排出水箱。

当水箱液位低于设定范围的下限时,控制器会发送信号给执行器,使其关闭阀门,停止排水排出水箱。

三、系统实现方法1.液位传感器的选择与安装在单容水箱液位控制系统中,可以使用浮球式液位传感器或者压力式液位传感器。

浮球式液位传感器安装在水箱内部,通过浮球的上下运动来检测液位变化。

压力式液位传感器安装在水箱外部,通过测量水箱外部水压来间接推算液位变化。

2.控制器的设计与实现控制器可以使用微控制器或者可编程逻辑控制器(PLC)来实现。

控制器需要实现以下功能:(1)接收液位传感器的信号,并进行信号处理和滤波;(2)判断水箱液位是否低于设定范围的下限或高于设定范围的上限;(3)根据判断结果控制执行器的开闭。

3.执行器的选择与控制执行器可以根据具体需求选择合适的类型,如电磁阀、电动阀或脚踏阀。

执行器控制的开闭可以通过控制信号来实现。

4.人机界面的设计与实现人机界面可以使用液晶显示屏或者计算机控制界面来显示水箱的液位信息和设置控制参数。

上下水箱双容液位控制现实中的应用

上下水箱双容液位控制现实中的应用

上下水箱双容液位控制现实中的应用
上下水箱双容液位控制在现实中有许多应用。

下面我将逐个解释这个概念,并提供一些具体的应用案例。

上下水箱双容液位控制是一种自动化控制系统,用于控制液体在两个容器(上水箱和下水箱)之间的液位。

该系统通过测量液位并根据预定的设定值来控制液体的进出,以保持液位在适当的范围内。

一个常见的应用案例是供水系统。

例如,一个城市的供水系统通常包括一个或多个上水箱和下水箱,用于储存和供应给城市的水。

通过使用上下水箱双容液位控制系统,可以确保上水箱始终保持足够的水量,以满足城市居民的需求。

当上水箱的液位下降到设定的最低值时,系统将自动打开水源,将水引入上水箱,直到液位达到设定的最高值。

当液位达到最高值时,系统将自动关闭水源。

同样,当下水箱的液位超过设定的最高值时,系统将自动排水,使液位保持在适当的范围内。

另一个应用案例是化工工艺控制。

在化工领域,许多工艺需要保持特定液位以确保生产的稳定性和安全性。

通过使用上下水箱双容液位控制系统,可以监测和控制反应器或储罐中的液位。

系统将根据设定的液位范围自动调节进料和排出液体的流量,以维持期望的液位。

总而言之,上下水箱双容液位控制在现实生活中有广泛的应用。

它可以用于供水系统、化工工艺控制以及其他需要控制液位的领域。

这种控制系统确保了液位的稳定和可控,提高了系统的效率和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要液位控制是常见的工业过程控制之一,它广泛运用于水塔、锅炉、高层建筑水箱、罐、工业化工槽等受压容器的液位测量。

随着科技的进步,人们对生产的控制精度要求越来越高,所以提高液位控制系统的性能显得十分重要。

本文介绍了一种基于组态软件WinCC和西门子STEP 7的下水箱液位控制系统的设计过程。

控制对象为实验室的水箱液位设备,采用以太网进行通讯,用软件完成了系统硬件配置,实现了任意液位高度的手动/自动调节。

在系统远程监控方面,利用WinCC软件进行了远程监控界面的设计,通过对液位数据的采集、处理、输出处理,实现了对液位高度的实时监控、自动/手动的无扰切换、报警显示等功能。

关键词:液位控制;实时监控;以太网;WinCC软件AbstractThe level control is one of the common industrial process control, it is widely used in cooling towers, boilers, high-rise buildings, water tanks, tanks, industrial chemical tank level measurement of the pressure vessel. With the advances in technology, production control accuracy requirements are high, so to improve the performance of the liquid level control system is very important.This paper introduces a kind of based on Wincc configuration software and Siemens STEP 7 under the tank liquid level control system of the design process. This design uses the Ethernet communication, the software system hardware configuration, design and debugging of various modules of the ladder to achieve a any level of a high degree of manual / automatic adjustment. Wincc software system RMON RMON interface design, the level of data collection, processing, output processing, the liquid level in the real-time monitoring, automatic / manual bumpless switching, alarm display and other functions.Keywords: evel control;data collection;Siemens STEP 7;Wincc software目录1绪论 (1)1.1过程控制 (1)1.2 液位控制系统的组成 (1)1.3液位控制系统的功能 (2)1.4本论文的主要内容与方法 (3)2 系统软件介绍 (4)2.1PLC的发展及过程控制简介 (4)2.2STEP7简介 (4)2.3组态软件WinCC (5)3 下水箱液位控制系统设计 (6)3.1单回路过程控制系统概述 (6)3.2被控对象的选择 (7)3.3 仪表选择 (7)3.3.1检测变送仪表的选择 (7)3.3.2 执行器的选择 (7)3.3.3 控制器的选择 (8)4 系统调试 (9)4.1 系统模型 (9)4.2 控制规律 (10)4.3 调试过程 (10)5 结论分析 (17)总结 (18)参考文献 (19)1绪论1.1过程控制液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。

在制浆造纸工厂中,常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。

液位自动控制系统有液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。

根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。

结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。

控制器、执行机构、测量变送器都属于自动化仪表,他们都是围绕被控对象工作的。

因此,对被控对象的动态特性进行深入了解是过程控制的一个重要任务。

只有深入了解被控对象的动态特性,了解他的内在规律,了解被控对象的性能指标,为控制系统的设计提供一个标准。

性能指标确定后,设计出合理的控制方案,也离不开对被控对象动态特性的了解。

有了正确的控制方案,控制系统中控制器,测量变送器、执行器等仪表的选择,必须以被控对象的特性为依据。

在控制系统组成后,合适的控制参数的确定及控制系统的调整,也完全依赖于对被控对象动态特性的理解。

过程控制的被控对象设计的范围很广。

被控对象不一定是指一个具体的设备,不少情况下被控对象是指一个过程。

有些过程可能涉及好几种设备,而在有些设备内部可能包括几个过程。

1.2 液位控制系统的组成本论文对水箱液位控制系统的设计是一个简单控制系统,所谓简单液位控制系统通常是指由一个被控对象、一个检测变送单元(检测元件及变送器)、一个控制器和一个执行器(控制阀)所组成的单闭环负反馈控制系统,也称为单回路控制系统。

简单控制系统有着共同的特征,它们均有四个基本环节组成,即被控对象、测量变送装置、控制器和执行器。

图1-1 闭环控制结构框图由这个简单控制系统通用的框图设计出水箱液位控制系统的原理框图如图1-2所示。

图1-2 水箱控制系统结构框图这是单回路水箱液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。

1.3液位控制系统的功能(1)液位控制系统基本功能设置液位高度后,通过控制变送器,自动调节液位高度到设置值。

如果自动调节出现错误时,可以切换到手动进行调节和诊断。

可以通过实时曲线去分析系统的稳态误差、超调量、调整时间等动态性能指标。

n系统管理员可以通过微机进行实时监控,包括查看现场工作设备情况、手动/自动无扰切换、液位设置和液位显示、报警显示、实时曲线。

(2)异常报警功能在异常状况下可以实现音响报警,分别为高高报警、高报警、低报警、低低报警。

通过查看报警次数和时间,对液位的状况进行跟踪分析,最后进行确认报警。

1.4本论文的主要内容与方法随着科学技术的进步和微电子技术的迅猛发展,可编程序已广泛应用于各行业自动化控制领域,在现代工业企业的生产、加工和制造过程中起到了非常重要的作用。

再加上控制器技术可编程控制器的功能日益完善,其小型化、价格低、可靠性高,在现代工业中的作用更加突出。

它将传统的继电器控制技术、计算机技术和通讯技术融为一体,具有控制能力强、操作灵活方便、可靠性高、适合长期连续工作的特点,非常适合液位控制的要求。

PID闭环控制是控制系统中应用很广泛的一种控制算法,对大部分控制对象都有良好的控制效果,组态软件因其简单易用的特点,在控制界面的设计中得到广泛的应用。

本论文介绍了基于可编程控制器和WinCC组态软件的液位控制系统的设计方案。

作为下位机完成液位的采集和数据的转换;上位机利用WinCC组态软件设计人机界面,实现控制系统的实时监控、数据采集与处理;可编程控制器和组态软件通过现场总线以太网进行通讯;通过PLC软件编写程序实现液位控制,实时控制水箱液位。

实验证明,液位控制系统效果比较令人满意,具有一定的工程实用价值。

2 系统软件介绍2.1PLC的发展及过程控制简介20世纪60年代末期,美国的汽车制造业竞争激烈,各生产厂家的汽车型号不断更新,它必然要求生产线的控制系统亦随之改变,以及对整个开展系统重新配置。

为抛弃传统的继电接触器控制系统的束缚,适应白热化的市场竞争要求,1968年美国通用汽车公司公开向社会招标,对汽车流水线控制系统提出具体要求,归纳起来是:(1)编程方便,可现场修改程序(2)维修方便,采用插件式结构(3)可靠性高于继电器控制装置(4)体积小于继电器控制盘(5)数据可直接送入管理计算机(6)成本可与继电器控制盘竞争(7)输入可以是交流150V以上(8)输出为交流115V,容量要求在2A以上,可直接驱动接触器,电磁阀等(9)扩展时原系统改变最小(10)用户存储器至少能扩张到4KB(适应当时汽车装配过程的需要)十项指标的核心要求是采用软布线(编程)方式代替继电控制的硬接线方式,实现大规模生产线的流程控制。

随着信息技术、自动化技术在过程工业的广泛应用,过程控制系统在过程工业中愈显重要。

过程控制从应用于工业生产至今经历了由简单到复杂、从低级到高级的过程。

在过程控制中,通常对液位、温度、压力、流量的参数进行控制。

其中液位控制技术在国民生活、生产中发挥了重要作用,如民用水塔供水,精馏塔液位控制,锅炉气泡液位控制等。

液位控制的精确度与精度都直接或间接影响着生产、生活的质量与安全。

为了保证安全、合理高效生产,急需开展先进的液位控制方法和策略的研究和开发。

2.2STEP7简介本设计中PLC控制方案采用了德国西门子公司的S7-300PLC,采用的是Step 7编程软件。

利用这个软件可以对PLC进行编程、调试、下装、诊断。

梯形图编程语言的优点:(1)易于调试(2)程序易读性强(3)程序易于移植(4)易于分析逻辑关系(5)梯形图编程语言的缺点2.3组态软件WinCC组态软件是数据采集与过程控制的专用软件,是自动控制系统监控层一级的软件平台和开发环境,能以灵活多样的组态方式(而不是编程方式)提供良好的用户开发界面,其预设的各种软件模块可以非常容易地实现和完成监控层的各项功能,并能同时支持各种硬件厂家的计算机和I/O产品,与工控计算机和网络系统结合,可向控制层和管理层提供软、硬件的全部接口,进行系统集成。

作为SIMATIC WinCC全集成自动化系统的重要组成部分,WinCC确保与SIMATIC S5,S7和505系列的PLC连接的方便和通讯的高效;WinCC与STEP7编程软件的紧密结合缩短了项目开发的周期。

相关文档
最新文档