中考数学-中心对称

合集下载

初中数学轴对称与中心对称

初中数学轴对称与中心对称

中心对称图形
把一个图形绕着某一点旋转 _1_8_0_°_ 把一个图形绕着某一点旋转_1_8_0_°_,如 后,如果它能与另一个图形_重__合___, 果旋转后的图形能够与原来的图形重 定义 那么就说这两个图形关于这个点成 合,那么我们把这个图形叫中心对称 中心对称,该点叫做_对__称__中__心___ 图形,这个点叫做_对__称__中__心___
图 31-4
解:得到的图形是一个菱形,对折两次得到有两条对称 轴的轴对称图形,而且剪刀所剪的虚线就是得到图形的边长, 四边相等,所以是一个菱形.
轴对称与中心对称
[方法点析] 动手操作题目主要是利用剪刀或对折,得 到的图形部分或整体是一个轴对称图形,然后根据轴对称图 形的性质解答,注意把握轴对称图形的特征.
称与中心对称 中考预测 1.把一张正方形纸片如图 31-5①、图②对折两次后, 再如图③挖去一个三角形小孔,则展开后图形是( C )
图31-5图31-6 Nhomakorabea轴对称与中心对称
2.图 31-7 的长方形 ABCD 中,E 点在 AD 上,且 BE= 2AE.分别以 BE、CE 为折线,将 A、D 向 BC 的方向折过去, 图②为对折后 A、B、C、D、E 五点均在同一平面上的位置图, 若图②中,∠A′ED′=15°,则∠BCE 的度数为( D )
例 3 [2013·钦州] 如图 31-3,在平面直 角坐标系中,△ABC 的三个顶点都在格点上, 点 A 的坐标为(2,4),请解答下列问题:
(1) 画 出 △ABC 关 于 x 轴 对 称 的 △A1B1C1,并写出点 A1 的坐标;
(2)画出△A1B1C1 绕原点 O 旋转 180°后 得到的△A2B2C2,并写出点 A2 的坐标.
对称轴,折叠后重合的点是对应 我们也说这个图形关于这条直线

三、中心对称图形

三、中心对称图形

第三章中心对称图形(一)§3.1图形的旋转知识点:1、旋转基本内涵。

将一个图形绕一个定点沿某一个方向转动一定的角度,这样的图形运动称为旋转。

这个定点称为旋转中心,转动的角度称为旋转角。

2、旋转与平移的区别和共同点:变换要素性质共性平移平移的方向和距离对应点的连线段的长度等于平移的距离,对应点的连线段平行(或在同一条直线上);对应线段平行(或同一条直线上)且相等变换前后的两个图形的形状与大小不变(全等)轴对称对称轴对称点的连线被对称轴垂直平分旋转旋转的中心、方向和旋转角对应点与旋转中心的距离相等,对应点与旋转中心所连线段的夹角都等于旋转角考点:主要围绕旋转的定义、性质来作图以及解决一些简单数学问题和实际应用问题。

典型例题:例1、(2008 盐城)如图,△ABC是等腰三角形,BC是斜边,P为△ABC内一点,且PA=3,将△ABP绕点A逆时针旋转后与△ACP’重合,那么线段PP’的长等于---------。

例2、画出△ABC绕点A逆时针90°后的图形。

例3、(2008 南京)如图,菱形ABCD与菱形EFGH的形状、大小完全相同,请从下列序号中选择正确选项的序号填在横线上。

①点E、F、G、H;②点G、F、E、H;③点E、H、G、F;④点G、H、E、F。

D HA C E GB F图1 图2(1)如果图1 经过一次旋转后得到图2,那么点A、B、C、D对应点分别是___。

P’AB CPAB C(2)如果图1经过一次轴对称后得到图2 ,那么点A ,B ,C ,D 对应点分别是___。

(3)如果图1经过一次平移后得到图2 ,那么点A ,B ,C ,D 对应点分别是___。

§3.2中心对称与中心对称图形 知识点:1、中心对称与中心对称图形联系和区别:中心对称是指两个图形之间的关系:一个图形绕着一点旋转180°,与另一个图形完全重合,那么着这两个图形叫做中心对称;中心对称图形是一个图形而言,一个图形绕着一点旋转180°,它与自身重合,那么这个图形叫中心对称图形。

【精编版】中考数学轴对称与中心对称专题复习讲义

【精编版】中考数学轴对称与中心对称专题复习讲义

苏科版中考数学轴对称与中心对称专题一、选择题1.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′,若∠AOB =15°,则∠AOB ′的度数是( )A .25°B .30°C .35°D .40°2.(2022湖北黄石一模)如图,在矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为( )A.258 cmB.254 cmC.252 cm D .8 cm3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED′等于( ).A.︒50 B 、︒55 C 、︒60 D 、︒654.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =2 3,则四边形MABN 的面积是( )A .6 3B .12 3C .18 3D .24 3二、填空5.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△C B A 11,连结1AA ,若11B AA ∠=15°,则∠B 的度数是6.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0)、),(01x ,且1<1x <2,与y轴交于的正半轴的交点在(0,2)的下方。

下列结论:①a <b <0;②2a+c >0;③4a-2b+c >0;④2a -b+1>0,其中正确结论个数是A .1个B .2个C .3个D .4个填空题1.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ,则图中阴影部分的面积是__________.2.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ′BC ′的位置,且点A ,C 仍落在格点上,则线段AB 扫过的图形的面积是 __________平方单位(结果保留π).3如图,矩形纸片ABCD ,AB =2,∠ADB =30°,沿对角线BD 折叠(使△ABD 和△EBD •落在同一平面内),则A 、E 两点间的距离为________.4 如图,正方形ABCD 和正方形AEFG ,边AE 在边AB 上,AB =2AE =2.将正方形AEFG 绕点A 逆时针旋转60°,BE 的延长线交直线DG 于点P ,旋转过程中点P 运动的路线长为 .5 如图,在正方形ABCD 中,E 是AB 上一点,BE =2,AE =3BE ,P 是AC 上一动点,则PB +PE 的最小值是_______.C BA EG D F6.如图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是.三、解答:1、如图,在∠ABC内有一点P,问:(1)能否在BA,BC边上各找到一点M,N,使△PMN的周长最短?若能,请画图说明;若不能,请说明理由;(2)若∠ABC=40°,在(1)问的条件下,能否求出∠MPN的度数?若能,请求出它的数值;若不能,请说明理由.2去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河同一侧的张村A和李村B送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴,建立平面直角坐标系(如图6-1-20),两村的坐标分别为A(2,3),B(12,7).(1)若从节约经费考虑,水泵站建在距离大桥O多远的地方,可使所用输水管最短?(2)水泵站建在距离大桥O多远的地方,可使它到张村、李村的距离相等?3、如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP 与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.4.如图,抛物线y=x2﹣2mx﹣3m2(m为常数,m>0),与x轴相交于点A、B,与y轴相交于点C,(1)用m的代数式表示:点C坐标为,AB的长度为;(2)过点C作CD∥x轴,交抛物线于点D,将△ACD沿x轴翻折得到△AEM,延长AM 交抛物线于点N,①求的值;②若AB=4,直线x=t交线段AN于点P,交抛物线于点Q,连接AQ、NQ,是否存在实数t,使△AQN的面积最大?如果存在,求t的值;如果不存在,请说明理由.5.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.6、在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为22的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与A G在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,将线段DG与线段BE相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.答案:选择题:1、B2、B3、4、、605、︒6、C填空题π1、613π2、4 34、2 35、6、作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值,根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON ′中,M′N′=32+12=10,故答案为107、解答题:1、解:(1)如图D27,作P点关于AB,BC两边的对称点E,F,连接E,F;与AB,BC交于点M,N,连接PM,PN,△PMN的周长最短.因为EM=PM,PN=FN,NM=NM,PM +PN+MN=EM+FN+MN=EF的长(两点之间,线段最短).(2)能.∵∠ABC=40°,∴∠EPF=140°.又∵∠PMN=∠EPM+∠MEP=2∠EPM,∠PNM=∠FPN+∠NFP=2∠FPN,∴∠PMN+∠PNM=2(∠EPM+∠FPN).∴180°-∠MPN=2(140°-∠MPN).∴∠MPN=100°.2.解:(1)如图D28,作点B关于x轴的对称点E,连接AE,则点E为(12,-7).设直线AE 的函数关系式为y =kx +b ,则⎩⎪⎨⎪⎧ 2k +b =3,12k +b =-7.解得⎩⎪⎨⎪⎧k =-1,b =5. ∴直线AE 的解析式为y =-x +5.当y =0时,x =5.所以,当水泵站应建在距离大桥5千米的地方时,可使所用输水管道最短.图D28(2)如图D28作线段AB 的垂直平分线GF ,交AB 于点F ,交x 轴于点G ,设点G 的坐标为(x,0).在Rt △AGD 中,AG 2=AD 2+DG 2=9+(x -2)2.在Rt △BCG 中,BG 2=BC 2+GC 2=49+(12-x )2.∵AG =BG ,∴9+(x -2)2=49+(12-x )2.解得x =9.∴水泵站建在距离大桥9千米的地方,可使它到张村、李村的距离相等.3、(1)证明:如图,连接OE .∵CD 是圆O 的直径,∴∠CED=90°.∵OC=OE ,∴∠1=∠2.又∵∠PED=∠C ,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE ⊥EP ,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)证明:∵AB 、CD 为⊙O 的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED 平分∠BEP ;(3)解:设EF=x ,则CF=2x ,∵⊙O 的半径为5,∴OF=2x ﹣5,在RT △OEF 中,OE 2=OF 2+EF 2,即52=x 2+(2x ﹣5)2, 解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8, ∴DF=CD ﹣CF=10﹣8=2,∵AB 为⊙O 的直径,∴∠AEB=90°,∵AB=10,BE=8,∴A E =6 ∵∠BEP=∠A ,∠EFP=∠AEB=90°,∴△AEB ∽△EFP , ∴=,即=,∴PF=,∴PD=PF ﹣DF=﹣2=.4、解:(1)令x=0,则y=﹣3m 2,即C 点的坐标为(0,﹣3m 2), ∵y=x 2﹣2mx ﹣3m 2=(x ﹣3m )(x+m ),∴A (﹣m ,0),B (3m ,0),∴AB=3m ﹣(﹣m )=4m ,故答案为:(0,﹣3m 2),4m ;(2)①令y=x 2﹣2mx ﹣3m 2=﹣3m 2,则x=0(舍)或x=2m ,∴D(2m,﹣3m2),∵将△ACD沿x轴翻折得到△AEM,∴D、M关于x轴对称,∴M(2m,3m2),设直线AM的解析式为y=kx+b,将A、M两点的坐标代入y=kx+b得:,解得:,∴直线AM的解析式为:y=mx+m2,联立方程组:,解得:(舍)或,∴N(4m,5m2),∴;②如图:∵AB=4,∴m=1,∴抛物线的解析式为y=x2﹣2x﹣3,直线AM的解析式为y=x+1,∴P(t,t+1),Q(t,t2﹣2t,﹣3),N(4,5),A(﹣1,0),B(3,0)设△AQN的面积为S,则:S===,∴t=,S最大.5、解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).6、(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90∘,AG=AE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90∘,∴∠AEB+∠ADG=90∘,在△EDH中,∠AEB+∠ADG+∠DHE=180∘,∴∠DHE=90∘,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90∘,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90∘,∵BD为正方形ABCD的对角线,∴∠MDA=45∘,在Rt△AMD中,∠MDA=45∘,∴cos45∘=DMAD,∵AD=2,∴DM=AM=2√,在Rt△AMG中,根据勾股定理得:GM=AG2−AM2−−−−−−−−−−√=6√,∵DG=DM+GM=2√+6√,∴BE=DG=2√+6√;(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.轴对称知识点总结:【知识脉络】【基础知识】Ⅰ. 轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. (2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.(4)线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.Ⅱ. 作轴对称图形1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).Ⅲ. 等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. Ⅳ. 最短路径一.图形旋转1.图形旋转的有关概念:图形的旋转、旋转中心、旋转角;在平面内,将一个图形一个定点转动一定的角度,这样的图形运动称为图形的旋转。

中考数学一轮复习:图形的轴对称与中心对称

中考数学一轮复习:图形的轴对称与中心对称

A.3
B.4
C.5
D.6
解析:由折叠知 BE=EF=3,则 EC=5.故 CF= EC2-EF2=4.设 AB=x,则 AF=x, AC=x+4,∴x2+82=(x+4)2.∴x=6.
答案:D
二、填空题 3. 如图, D 是AB边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC上的F 处.若∠B=50°,则∠BDF=________.
解析:由题意得AD=DF,又AD=DB,∴DB=DF,∴∠DBF=∠DFB=50°, ∴∠BDF=80°.
答案:80°
4.如图,△ABC 的顶点都在正方形网格格点上,点 A 的坐标为(-1,4).将△ABC 沿 y 轴翻折到第一象限,则点 C 的对应点 C′的坐标是(3,1).
三、解答题 5.如图,在 10× 10 的正方形网格中,每个小正方形的边长都为 1,网格中有一个格点 △ABC(即三角形的顶点都在格点上 ).
解析:∵四边形 ABCD 是正方形,∴∠ABC=90° .由轴对称可知:∠DBF=∠CBF, 1 ∠ABE=∠DBE,∴∠EBF= ∠ABC=45° . 2
答案:C
一、选择题 1. 如图,在下列四个图案中既是轴对称图形,又是中心对称图形的是(
)
答案:B
2.如图,在矩形纸片 ABCD 中,已知 AD=8,折叠纸片使 AB 边与对角线 AC 重合,点 B 落在 F 处,折痕为 AE,且 EF=3,则 AB 的长为( )
知识点二
中心对称图形和中心对称
1.在平面内,一个图形绕某个点旋转 180° ,能与原来的图形重合,这个图形叫做中心 对称图形,这个点叫做它的对称中心,旋转前后图形上能够重合的点叫做对称点. 2.在平面内,一个图形绕某一定点旋转 180° ,它能够与另一个图形重合,就说这两个 图形关于这个点成中心对称, 这个点叫做对称中心, 旋转后两个图形上能够重合的点叫做关 于对称中心的对称点. 3.中心对称与中心对称图形的区别与联系 区别:(1)中心对称是指两个图形的位置关系,而中心对称图形是指具有某种性质的一 类图形;(2) 成中心对称的两个图形的对称点分别在两个图形上,而中心对称图形的对称点 在同一个图形上. 联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把成中心对称 的两个图形看成一个整体,则成为中心对称图形.

中考专题复习第30课时 轴对称与中心对称

中考专题复习第30课时   轴对称与中心对称

第七单元┃ 图形与变换 探究4 轴对称与中心对称有关的作图问题
命题角度: 1.画出简单平面图形(点、线段、直线、三角形等)关于给定对称轴(或对称 中心)的对称图形(或中心对称图形); 2.利用轴对称或中心对称的性质设计图案. 例 4 分别按下列要求解答: (1)在图 30-6①中,作出⊙O 关于直线 l 成轴对称的图形;(2)在图 30-6② 中,作出△ABC 关于点 P 成中心对称的图形.
图 30-3
回归教材 考点聚焦 考向探究
第七单元┃ 图形与变换
[解析] 根据 B、 C 两点的坐标及△ABC 的面积求出点 A 的坐 标,画出△ABC,再画出 A、B、C 三点关于 y 轴的对称点,连接 各对应点即可得到符合要求的图形. 解:(1)点 B、C 的坐标分别为 B(1,0),C(5,0),BC=4. 根据题意,可知等腰三角形 ABC 的高为 5,点 A 的横坐标为 3, 纵坐标为 5,即 A(3,5).在第一象限内画出△ABC,如图①.
区别
联系
中心对 (1)成中心对称的两个图形中,对应点的连线 平分 ;(2) 称的性 经过对称中心,且被对称中心________ 全等 质 成中心对称的两个图形________
回归教材
考点聚焦
考向探究
第七单元┃ 图形与变换
考 向 探 究
探究1 轴对称图形与中心对称图形的概念
命题角度: 1.直接判定一个图形是轴对称图形或中心对称图形; 2.画一个图形关于某条直线成轴对称的图形或关于某点成中心 对称的图形; 3.应用轴对称或中心对称的性质求线段长或角度.
图 30-10 (4)圆中的对称(如图 30-10②).
回归教材
考点聚焦
考向探究
第七单元┃ 图形与变换

2022年中考数学真题-专题17 图形变换(平移、旋转、对称)(1)(全国通用解析版)

2022年中考数学真题-专题17 图形变换(平移、旋转、对称)(1)(全国通用解析版)

专题17图形变换(平移、旋转、对称)一.选择题(2022·湖南娄底)1. 下列与2022年冬奥会相关的图案中,是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】中心对称图形定义:如果一个图形绕某一点旋转180度,旋转后的图形能和原图形回完全重合,那么这个答图形叫做中心对称图形,根据中心对称图形定义逐项判定即可.【详解】解:根据中心对称图形定义,可知D符合题意,故选:D.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的定义是解决问题的关键.(2022·四川自贡)2. 剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是()A. B.C. D.【答案】D【解析】【分析】根据轴对称图形的定义判断即可.【详解】∵不是轴对称图形,∴A不符合题意;∵不是轴对称图形,∴B不符合题意;∵不是轴对称图形,∴C不符合题意;∵是轴对称图形,∴D符合题意;故选D.【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合,熟练掌握定义是解题的关键.(2022·山东泰安)3. 下列图形:其中轴对称图形的个数是()A. 4B. 3C. 2D. 1【答案】B【解析】【分析】对每个图形逐一分析,能够找到对称轴的图形就是轴对称图形.【详解】从左到右依次对图形进行分析:第1个图在竖直方向有一条对称轴,是轴对称图形,符合题意;第2个图在水平方向有一条对称轴,是轴对称图形,符合题意;第3个图找不到对称轴,不是轴对称图形,不符合题意;第4个图在竖直方向有一条对称轴,是轴对称图形,符合题意;因此,第1、2、4都是轴对称图形,共3个.故选:B.【点睛】本题考查轴对称图形的概念,解题的关键是寻找对称轴.(2022·江苏苏州)0,2,点B是x轴正半轴上的一点,将线段AB绕点A按4. 如图,点A的坐标为()m,则m的值为()逆时针方向旋转60°得到线段AC.若点C的坐标为(),3A.【答案】C【解析】【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得AC BC AB==,可得BD=m=.OB=m=,即可解得3【详解】解:过C 作CD ⊥x 轴于D ,CE ⊥y 轴于E ,如图所示:∵CD ⊥x 轴,CE ⊥y 轴,∴∠CDO =∠CEO =∠DOE =90°,∴四边形EODC 是矩形,∵将线段AB 绕点A 按逆时针方向旋转60°得到线段AC ,∴AB =AC ,∠BAC =60°,∴△ABC 是等边三角形,∴AB =AC =BC ,∵A (0,2),C (m ,3),∴CE =m =OD ,CD =3,OA =2,∴AE =OE −OA =CD −OA =1,∴AC BC AB ===,在Rt △BCD 中,BD =在Rt △AOB 中,OB ==∵OB +BD =OD =m ,m =,化简变形得:3m 4−22m 2−25=0,解得:3m =或3m =-(舍去),∴m=,故C正确.故选:C.【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.(2022·浙江湖州)5. 如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A. 2cmB. 3cmC. 4cmD. 5cm【答案】C【解析】【分析】据平移的性质可得BB′=CC′=1,列式计算即可得解.【详解】解:∵△ABC沿BC方向平移1cm得到△A′B′C′,∴BB′=CC′=1cm,∵B′C=2cm,∴BC′= BB′+ B′C+CC′=1+2+1=4(cm).故选:C.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.(2022·浙江嘉兴)6. “方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得'''',形成一个“方胜”图案,则点D,B′之间的距离为()到正方形A B C DA. 1cmB. 2cmC. 1)cmD. -1)cm 【答案】D【解析】【分析】先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB-′求解即可.【详解】解:由题意,BD=,由平移性质得BB'=1cm,∴点D,B′之间的距离为DB'=BD BB-′=(1)cm,故选:D.【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.(2022·湖南怀化)7. 如图,△ABC沿BC方向平移后的像为△DEF,已知BC=5,EC=2,则平移的距离是()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据题意判断BE的长就是平移的距离,利用已知条件求出BE即可.【详解】因为ABC沿BC方向平移,点E是点B移动后的对应点,所以BE的长等于平移的距离,由图可知,点B、E、C在同一直线上,BC=5,EC=2,所以BE=BC-ED=5-2=3,故选C.【点睛】本题考查了平移,正确找出平移对应点是求平移距离的关键.(2022·湖南邵阳)8. 下列四种图形中,对称轴条数最多的是()A. 等边三角形B. 圆C. 长方形D. 正方形【答案】B【解析】【分析】分别求出各个图形的对称轴的条数,再进行比较即可.【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.【点睛】此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.(2022·江苏连云港)9. 下列图案中,是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.(2022·四川遂宁)10. 下面图形中既是轴对称图形又是中心对称图形的是()科克曲线笛卡尔心形线阿基米德螺旋线赵爽弦图A. 科克曲线B. 笛卡尔心形线C. 阿基米德螺旋线D. 赵爽弦图【答案】A【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、科克曲线既是轴对称图形又是中心对称图形,故本选项符合题意;B、笛卡尔心形线是轴对称图形,不是中心对称图形,故本选项不符合题意;C、阿基米德螺旋线不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D、赵爽弦图不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.(2022·新疆)11. 平面直角坐标系中,点P (2,1)关于x 轴对称的点的坐标是( )A. ()2,1B. ()2,1-C. ()2,1-D. ()2,1--【答案】B【解析】【分析】直接利用关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.【详解】解:点P (2,1)关于x 轴对称的点的坐标是(2,-1).故选:B .【点睛】本题主要考查了关于x 轴对称点的性质,正确掌握横纵坐标的关系是解题关键.(2022·天津) 12. 在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A .不是轴对称图形,故本选项错误;B .不是轴对称图形,故本选项错误;C .不是轴对称图形,故本选项错误;D .是轴对称图形,故本选项正确.故选:D .【点睛】本题考查轴对称图形,理解轴对称图形的概念是解答的关键.(2022·天津)13. 如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A. AB AN =B. AB NC ∥C. AMN ACN ∠=∠D. MN AC ⊥【答案】C【解析】 【分析】根据旋转的性质,对每个选项逐一判断即可.【详解】解:∵将△ABM 绕点A 逆时针旋转得到△ACN ,∴△ABM ≌△ACN , ∴AB =AC ,AM =AN ,∴AB 不一定等于AN ,故选项A 不符合题意; ∵△ABM ≌△ACN ,∴∠ACN =∠B ,而∠CAB 不一定等于∠B ,∴∠ACN 不一定等于∠CAB ,∴AB 与CN 不一定平行,故选项B 不符合题意; ∵△ABM ≌△ACN ,∴∠BAM =∠CAN ,∠ACN =∠B ,∴∠BAC =∠MAN ,∵AM =AN ,AB =AC ,∴△ABC 和△AMN 都是等腰三角形,且顶角相等, ∴∠B =∠AMN ,∴∠AMN =∠ACN ,故选项C 符合题意;∵AM =AN ,而AC 不一定平分∠MAN ,∴AC 与MN 不一定垂直,故选项D 不符合题意; 故选:C . 【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.(2022·江苏扬州)14. 如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:①AFE DFC △△;②DA 平分BDE ∠;③CDF BAD ∠=∠,其中所有正确结论的序号是( )A. ①②B. ②③C. ①③D. ①②③【答案】D【解析】【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∵将ABC 以点A 为中心逆时针旋转得到ADE ,∴ADE ABC ≌, E C ∴∠=∠,AFE DFC ∠=∠,∴AFE DFC △△,故①正确;ADE ABC ≌,AB AD ∴=,ABD ADB ∴∠=∠,ADE ABC ∠=∠,ADB ADE ∴∠=∠,∴DA 平分BDE ∠,故②正确;ADE ABC ≌,BAC DAE ∴∠=∠,BAD CAE ∴∠=∠,AFE DFC △△,CAE CDF ∴∠=∠,CDF BAD ∠=∠∴,故③正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.(2022·四川南充)15. 如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ''△,点B '恰好落在CA 的延长线上,3090∠=︒∠=︒,B C ,则BAC '∠为( )A. 90︒B. 60︒C. 45︒D. 30【答案】B【解析】 【分析】根据直角三角形两锐角互余,求出BAC ∠的度数,由旋转可知BAC B AC ''∠=∠,在根据平角的定义求出BAC '∠的度数即可.【详解】∵3090∠=︒∠=︒,B C ,∴90903060BAC B ∠=︒-∠=︒-︒=︒,∵由旋转可知60B A BAC C ''∠=︒∠=,∴618060860100C B A BA BA C C '''=︒-∠=︒-︒-︒=︒∠∠-,故答案选:B .【点睛】本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键.(2022·山东泰安)16. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC ∆经过平移后得到111A B C ∆,若AC 上一点(1.2,1.4)P 平移后对应点为1P ,点1P 绕原点顺时针旋转180,对应点为2P ,则点2P 的坐标为( ,A. (2.8,3.6)B. 2.8,6()3.--C. (3.8,2.6)D. ( 3.8, 2.6)--【答案】A【解析】 【详解】分析:由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1,再根据P 1与P 2关于原点对称,即可解决问题,详解,由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1,∵P ,1.2,1.4,,∴P 1,,2.8,,3.6,,∵P 1与P 2关于原点对称,∴P 2,2.8,3.6,,故选A,点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.(2022·湖北宜昌)17. 将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是( )A.B. C. D.【答案】D【解析】【分析】中心对称图形的定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,根据中心对称图形的定义逐项判定即可.【详解】解:根据中心对称图形定义,可知符合题意, 故选:D .【点睛】本题考查中心对称图形,掌握中心对称图形定义,能根据定义判定图形是否是中心对称图形是解决问题的关键.(2022·湖南常德)18. 如图,在Rt ABC △中,90ABC ∠=︒,30ACB ∠=︒,将ABC 绕点C 顺时针旋转60︒得到DEC ,点A 、B 的对应点分别是D ,E ,点F 是边AC 的中点,连接BF ,BE ,FD .则下列结论错误的是( )A. BE BC =B. BF DE ∥,BF DE =C. 90DFC ∠=︒D. 3DG GF =【答案】D【解析】 【分析】根据旋转的性质可判断A ;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B ;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C ;利用等腰三角形的性质和含30°角的直角三角形的性质可判断D .【详解】A .∵将,ABC 绕点C 顺时针旋转60°得到,DEC ,∴∠BCE =∠ACD =60°,CB =CE ,∴△BCE 是等边三角形,∴BE =BC ,故A 正确;B .,点F 是边AC 中点,,CF =BF =AF =12AC ,,,BCA =30°,,BA =12AC ,,BF =AB =AF =CF ,,,FCB =,FBC =30°,延长BF 交CE 于点H ,则∠BHE =∠HBC +∠BCH =90°,∴∠BHE =∠DEC =90°,∴BF //ED ,∵AB =DE ,∴BF =DE ,故B 正确.C .∵BF ∥ED ,BF =DE ,∴四边形BEDF 是平行四边形,∴BC =BE =DF ,∵AB =CF , BC =DF ,AC =CD ,∴△ABC ≌△CFD ,∴=90DFC ABC ∠=∠︒,故C 正确;D .∵∠ACB =30°, ∠BCE =60°,∴∠FCG =30°,∴FG =12CG ,∴CG =2FG .∵∠DCE =∠CDG =30°,∴DG =CG ,∴DG =2FG .故D 错误.故选D .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30°角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键.(2022·湖南常德) 19. 国际数学家大会每四,举行一届,下面四届国际数学家大会会标中是中心对称图形的是()A. B.C. D.【答案】B【解析】【分析】根据中心对称的概念对各图形分析判断即可得解.【详解】解:A不是中心对称图形,故A错误;B是中心对称图形,故B正确;C不是中心对称图形,故C错误;D不是中心对称图形,故D错误;故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180︒后两部分重合,理解并掌握如何判断中心对称图形的条件是解题的关键.(2022·河北)20. 题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥,乙答:d=1.6,丙答:d=)2A. 只有甲答的对B. 甲、丙答案合在一起才完整C. 甲、乙答案合在一起才完整D. 三人答案合在一起才完整【答案】B【解析】 【分析】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=,发现若有两个三角形,两三角形的AC 边关于A C '对称,分情况分析即可【详解】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=∵∠B =45°,BC =2,CA BM '⊥∴BA C '是等腰直角三角形∴A C BA ''===∵A A BA ''''=∴2A C ''==若对于d 的一个数值,只能作出唯一一个△ABC通过观察得知:点A 在A '点时,只能作出唯一一个△ABC (点A 在对称轴上),此时d =的答案;点A 在A M ''射线上时,只能作出唯一一个△ABC (关于A C '对称的AC 不存在),此时2d ≥,即甲的答案,点A 在BA ''线段(不包括A '点和A ''点)上时,有两个△ABC (二者的AC 边关于A C '对称);故选:B【点睛】本题考查三角形的存在性质,勾股定理,解题关键是发现若有两个三角形,两三角形的AC边关于A C'对称(2022·山西)21. 2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】利用中心对称图形的定义直接判断.【详解】解:根据中心对称图形的定义,四个选项中,只有B选项的图形绕着某点旋转180°后能与原来的图形重合,故选B.【点睛】本题考查中心对称图形的判定,掌握中心对称图形的定义是解题的关键.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.(2022·河南)22. 如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O∥轴,交y轴于点P.将,OAP绕点O顺时针旋转,每次旋转90°,则重合,AB x第2022次旋转结束时,点A的坐标为()A. )1-B. (1,-C. ()1-D. (【答案】B【解析】【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴, ∴AP =1, AO =2,∠OP A =90°,∴OP∴A (1,第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,;第3次旋转结束时,点A 的坐标为(1);第4次旋转结束时,点A 的坐标为(1;∵将,OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,,故选:B【点睛】本题考查正多边形与圆,规律型问题,坐标与图形变化﹣旋转等知识,解题的关键是学会探究规律的方法,属于中考常考题型.(2022·四川宜宾)23. 如图,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC 内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则2CE =+ )A. ①②④B. ①②③C. ①③④D. ①②③④ 【答案】B【解析】【分析】证明BAD CAE ≌,即可判断①,根据①可得ADB AEC ∠=∠,由180ADC AEC ∠+∠=︒可得,,,A D C E 四点共圆,进而可得DAC DEC ∠=∠,即可判断②,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,证明FAH FCE ∽,根据相似三角形的性质可得45CF AF =,即可判断③,将APC △绕A 点逆时针旋转60度,得到AB P ''△,则APP '是等边三角形,根据当,,,B P P C ''共线时,PA PB PC ++取得最小值,可得四边形ADCE 是正方形,勾股定理求得DP , 根据CE AD AP PD ==+即可判断④. 【详解】解:ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒, ,,AB AC AD AE BAD CAE ∴==∠=∠BAD CAE ∴△≌△BD CE ∴=故①正确;BAD CAE ≌ADB AEC ∴∠=∠180ADC AEC ∴∠+∠=︒,,,A D C E ∴四点共圆,CD CD =DAC DEC ∴∠=∠故②正确;如图,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,BAD CAE ≌,45,45ACE ABD ACB ∴∠=∠=︒∠=︒90DCE ∴∠=︒FC AH ∴∥2BD CD =,BD CE =1tan 2DC DEC CE ∴∠==,13CD BC = 设6BC a =,则2DC a =,132AG BC a ==,24EC DC a == 则32GD GC DC a a a =-=-=FC AH ∥1tan 2GD H GH ∴== 22GH GD a ∴==325AH AG GH a a a ∴=+=+=AH ,CE ,FAH FCE ∴∽CF CE AF AH∴= 4455CF a AF a ∴== 则45CF AF =; 故③正确如图,将ABP 绕A 点逆时针旋转60度,得到AB P ''△,则APP '是等边三角形,PA PB PC PP P B PC B C '''+++∴'+=≥,当,,,B P P C ''共线时,PA PB PC ++取得最小值,此时180********CPA APP '∠=-∠=︒-=︒︒︒,180********APB AP B AP P ∠=∠=︒-∠=︒-︒='''︒,360360*********BPC BPA APC ∠=︒-∠-∠=︒-︒-︒=︒,此时120APB BPC APC ∠=∠=∠=︒,AC AB AB '==,AP AP '=,APC AP B ''∠=∠,AP B APC ''∴≌,PC P B PB ''∴==,60APP DPC '∠=∠=︒,DP ∴平分BPC ∠,PD BC ∴⊥,,,,A D C E 四点共圆,90AEC ADC ∴∠=∠=︒,又AD DC BD ==,BAD CAE ≌,AE EC AD DC ∴===,则四边形ADCE 是菱形,又90ADC ∠=︒,∴四边形ADCE 是正方形,9060150B AC B AP PAC P AP ''''∠=∠+∠+∠=︒+︒=︒,则'B A BA AC ==,()1180152B ACB B AC '''∠=∠=︒-∠=︒, 30PCD ∠=︒,DC ∴=,DC AD =,2AP =,则)12AP AD DP DP =-==,1DP ∴==, 2AP =,3CE AD AP PD ∴==+=,故④不正确,故选B .【点睛】本题考查了旋转的性质,费马点,圆内接四边形的性质,相似三角形的性质与判定,全等三角形的性质与判定,勾股定理,解直角三角形,正方形的性质与判定,掌握以上知识是解题的关键.二.填空题(2022·云南)24. 点A (1,-5)关于原点的对称点为点B ,则点B 的坐标为______.【答案】(-1,5)【解析】【分析】根据若两点关于坐标原点对称,横纵坐标均互为相反数,即可求解.【详解】解:∵点A (1,-5)关于原点的对称点为点B ,∴点B 的坐标为(-1,5).故答案为:(-1,5)【点睛】本题主要考查了平面直角坐标系内点关于原点对称的特征,熟练掌握若两点关于坐标原点对称,横纵坐标均互为相反数是解题的关键.(2022·湖南湘潭)25. 如图,一束光沿CD 方向,先后经过平面镜OB 、OA 反射后,沿EF 方向射出,已知120AOB ∠=︒,20CDB ∠=︒,则∠=AEF _________.【答案】40°##40度【解析】【分析】根据入射角等于反射角,可得,CDB EDO DEO AEF ∠=∠∠=∠,根据三角形内角和定理求得40OED ∠=︒,进而即可求解.【详解】解:依题意,,CDB EDO DEO AEF ∠=∠∠=∠,∵120AOB ∠=︒,20CDB ∠=︒,20CDB EDO ∴∠=∠=︒,∴18040OED ODE AOB ∠=-∠-∠=︒,∴40AEF DEO ∠=∠=︒.故答案为:40.【点睛】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键.(2022·浙江丽水)26. 一副三角板按图1放置,O 是边()BC DF 的中点,12cm BC =.如图2,将ABC 绕点O 顺时针旋转60︒,AC 与EF 相交于点G ,则FG 的长是___________cm .【答案】3【解析】【分析】BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,根据锐角三角函数即可得DE ,FE ,根据旋转的性质得ONF △是直角三角形,根据直角三角形的性质得3ON =,即3NC =,根据角之间的关系得CNG △是等腰直角三角形,即3NG NC ==cm ,根据90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒得FON FED △∽△,即ON FNDE DF=,解得FN = 【详解】解:如图所示,BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,在Rt EDF 中,12tan tan 60DF DE EDF ===∠︒12sin sin 60DF EF EDF ===∠︒∵△ABC 绕点O 顺时针旋转60°,∴60BOD NOF ∠=∠=︒,∴90NOF F ∠+∠=︒,∴18090FNO NOF F ∠=︒-∠-∠=︒,∴ONF △是直角三角形, ∴132ON OF ==(cm ), ∴3NC OC ON =-=(cm ),∵90FNO ∠=︒,∴18090GNC FNO ∠=︒-∠=︒,∴NGC 是直角三角形,∴18045NGC GNC ACB ∠=-∠-∠=︒,∴CNG △是等腰直角三角形,∴3NG NC ==cm ,∵90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒,∴FON FED △∽△, 即ON FN DE DF=,12FN =,FN =∴3FG FN NG =-=(cm ),故答案为:3.【点睛】本题考查了直角三角形的性质,相似三角形的判定与性质,旋转的性质,解题的关键是掌握这些知识点.(2022·河南)27. 如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O '处,得到扇形A O B '''.若∠O =90°,OA =2,则阴影部分的面积为______.【答案】3π+【解析】【分析】设A O '与扇形AOB 交于点C ,连接OC ,解Rt OCO ',求得60O C COB '=∠=︒,根据阴影部分的面积为()OCO A O B OCB S S S''''--扇形扇形,即可求解.【详解】如图,设A O '与扇形AOB 交于点C ,连接OC ,如图O '是OB 的中点11122OO OB OA '∴===, OA =2, AOB ∠=90°,将扇形AOB 沿OB 方向平移,90A O O ''∴∠=︒1cos 2OO COB OC '∴∠== 60COB ∴∠=︒sin 60O C OC '∴=︒=∴阴影部分的面积为()OCO A O B OCB S S S ''''--扇形扇形OCO AOB OCB S S S ''=-+扇形扇形22906012213603602ππ=⨯-⨯+⨯32π=+故答案为:32π+ 【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得60COB ∠=︒是解题的关键.(2022·河南)28. 如图,在Rt △ABC 中,∠ACB =90°,AC BC ==,点D 为AB 的中点,点P 在AC 上,且CP =1,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ .当∠ADQ =90°时,AQ 的长为______.【解析】【分析】连接CD ,根据题意可得,当∠ADQ =90°时,分Q 点在线段CD 上和DC 的延长线上,且1CQ CP ==,勾股定理求得AQ 即可.【详解】如图,连接CD ,在Rt △ABC 中,∠ACB =90°,AC BC ==4AB ∴=,CD AD ⊥,122CD AB ∴==, 根据题意可得,当∠ADQ =90°时,Q 点在CD 上,且1CQ CP ==,211DQ CD CQ ∴=-=-=,如图,在Rt ADQ △中,AQ ===在Rt ADQ △中,2,3AD CD QD CD CQ ===+=AQ ∴===【点睛】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点Q 的位置是解题的关键.(2022·浙江金华)29. 如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C ''',连结CC ',则四边形AB C C ''的周长为_____cm .【答案】8+【解析】【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∴AB =2BC =4,∴∵把ABC 沿AB 方向平移1cm ,得到A B C ''',∴1CC '=,=4+1=5AB ', =2B C BC ''=,∴四边形的周长为:1528++=+故答案为:8+【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键.(2022·四川德阳)30. 如图,直角三角形ABC 纸片中,90ACB ∠=︒,点D 是AB 边上的中点,连接CD ,将ACD △沿CD 折叠,点A 落在点E 处,此时恰好有CE AB ⊥.若1CB =,那么CE =______.【解析】【分析】根据D 为AB 中点,得到AD =CD =BD ,即有,A =,DCA ,根据翻折的性质有,DCA =,DCE ,CE =AC ,再根据CE ,AB ,求得,A =,BCE ,即有,BCE =,ECD =,DCA =30°,则有,A =30°,在Rt △ACB 中,即可求出AC ,则问题得解.【详解】,,ACB =90°,,,A +,B =90°,,D 为AB 中点,,在直角三角形中有AD =CD =BD ,,,A =,DCA ,根据翻折的性质有,DCA =,DCE ,CE =AC ,,CE ,AB ,,,B +,BCE =90°,,,A +,B =90°,,,A =,BCE ,,,BCE =,ECD =,DCA ,,,BCE +,ECD +,DCA=,ACB =90°,,,BCE =,ECD =,DCA =30°,,A =30°,,在Rt △ACB 中,BC =1, 则有13tan tan 30BC AC A ===∠,CE AC ==【点睛】本题考查了翻折的性质、直角三角形斜边中线的性质、等边对等角以及解直角三角形的知识,求出,BCE =,ECD =,DCA =30°是解答本题的关键. (2022·山东泰安)31. 如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O ′,B ′,连接BB ′,则图中阴影部分的面积是__________________.【答案】23π 【解析】 【分析】连接OO ′,BO ′,根据旋转的性质得到AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒,推出△OAO ′是等边三角形,得到60AOO '∠=︒,因为∠AOB =120°,所以60O OB '∠=︒,则OO B '是等边三角形,得到120AO B '∠=︒,得到30O B B O BB ''''∠=∠=︒,90B BO '∠=︒,根据直角三角形的性质得24B O OB '==,根据勾股定理得B B '=,用B OB '△的面积减去扇形O OB '的面积即可得.【详解】解:如图所示,连接OO ′,BO ′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,∴AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒ ∴△OAO ′是等边三角形,∴60AOO '∠=︒,OO OA '=,∴点O '在,O 上,∵∠AOB =120°,∴60O OB '∠=︒,∴OO B '是等边三角形,∴120AO B '∠=︒,∵120AO B ''∠=︒,∴120B O B ''∠=︒, ∴11(180)(180120)3022O B B O BB B O B ''''''∠=∠=︒-∠=⨯︒-︒=︒, ∴180180306090B BO OB B B OB '''∠=︒-∠-∠=︒-︒-︒=︒,∴24B O OB '==,在Rt B OB '中,根据勾股定理得,B B '==∴图中阴影部分的面积=2160222=223603B OB O OB S S ''⨯-=⨯⨯扇形ππ,故答案为:23π. 【点睛】本题考查了圆与三角形,旋转的性质,勾股定理,解题的关键是掌握这些知识点.(2022·湖南怀化)32. 已知点A (﹣2,b )与点B (a ,3)关于原点对称,则a ﹣b =______.【答案】5【解析】【分析】根据平面直角坐标系中,关于原点对称的点横、纵坐标都互为相反数,求出a ,b 的值即可.【详解】∵点A (﹣2,b )与点B (a ,3)关于原点对称,∴2a =,3b =-,∴()235a b -=--=故答案为:5.【点睛】本题考查平面直角坐标系中,关于原点对称的点的坐标的特点,掌握特殊位置关系的点的坐标变化是解答本题的关键.(2022·浙江台州)33. 如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .【答案】8【解析】【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ∥B ′C ′,∴四边形B ′C ′CB 为平行四边形,∵BB ′⊥BC ,∴四边形B ′C ′CB 为矩形,∵阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC=S 矩形B ′C ′CB=4×2=8(cm 2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.三.解答题(2022·湖南湘潭)34. 如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为()1,1A -,()4,0B -,()2,2C -.将ABC 绕原点O 顺时针旋转90︒后得到111A B C △.(1)请写出1A 、1B 、1C 三点的坐标:1A _________,1B _________,1C _________(2)求点B 旋转到点1B 的弧长.【答案】(1)(1,1);(0,4);(2,2)(2)2π【解析】【分析】(1)将,ABC绕着点O按顺时针方向旋转90°得到,A1B1C1,点A1,B1,C1的坐标即为点A,B,C绕着点O按顺时针方向旋转90°得到的点,由此可得出结果.(2)由图知点B旋转到点1B的弧长所对的圆心角是90º,OB=4,根据弧长公式即可计算求出.【小问1详解】解:将,ABC绕着点O按顺时针方向旋转90°得到,A1B1C1,点A1,B1,C1的坐标即为点A,B,C绕着点O按顺时针方向旋转90°得到的点,所以A1(1,1);B1(0,4);C1(2,2)【小问2详解】解:由图知点B旋转到点1B的弧长所对的圆心角是90度,OB=4,∴点B旋转到点1B的弧长=904 180π⨯⨯=2π【点睛】本题主要考查点的旋转变换和弧长公式,解题的关键是熟练掌握旋转变换的定义和弧长公式.(2022·湖北武汉)35. 如图是由小正方形组成的96⨯网格,每个小正方形的顶点叫做格点.ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E 旋转180︒得到点F,画出点F,再在AC上画点G,使DG BC∥;(2)在图(2)中,P是边AB上一点,BACα∠=.先将AB绕点A逆时针旋转。

02-第二十三章23.2.1中心对称

02-第二十三章23.2.1中心对称

23.2.1 中心对称
(2)点D的位置共有三种可能.如图:
栏目索引
23.2.1 中心对称
栏目索引
1.点A和点B的坐标分别为(0,2),(1,0),若将△OAB绕点B顺时针旋转180° 后,得到△O'A'B,则点A的对应点A'的坐标是 ( ) A.(0,2) B.(2,2) C.(-2,2) D.(2,-2)
图23-2-1-6
23.2.1明中的应用 例2 如图23-2-1-7,在△ABC中,∠A=90°,D为BC的中点,DE⊥DF,DE交 AB于点E,DF交AC于点F,试探索线段BE,EF,FC之间的数量关系.
图23-2-1-7
23.2.1 中心对称
解析 FC2+BE2=EF2.理由如下: ∵D为BC的中点, ∴BD=DC. 作△BDE关于点D对称的△CDM,如图23-2-1-8所示, 由中心对称的性质可得△BDE≌△CDM. ∴CM=BE,MD=DE,∠DCM=∠B. 又∵∠B+∠ACB=90°, ∴∠DCM+∠ACB=90°,即∠FCM=90°. 连接FM,在△FME中,MD=DE,FD⊥ME, ∴FM=FE. 又∵在Rt△FCM中,FC2+CM2=FM2,
答案 D 如图所示,点A和点B的坐标分别为(0,2),(1,0),∴OA=2,OB=1, ∠AOB=90°.将△OAB绕点B顺时针旋转180°后,得到△O'A'B,∴O'B=OB =1,O'A'=OA=2,∠A'O'B=90°,∴点A的对应点A'的坐标为(2,-2).
23.2.1 中心对称
栏目索引
图23-2-1-3
23.2.1 中心对称

人教版九年级数学课件《中心对称图形》

人教版九年级数学课件《中心对称图形》

探究新知 知识点 1
【观察思考】
中心对称图形的概念
(1)这些图形有什么共同的特征? 都是旋转对称图形.
(2)这些图形的不同点在哪?分别绕旋转中心旋转了多少度?
第一个图形的旋转角度为120°或240 °,第二个图形的旋 转角度为72°或144°或216°或288°.后两个图形的旋转角度都为 180°,第二,三个是轴对称图形.
依题意可知△BOF与△DOE关于点O成中心
对称,由此图中阴影部分的三个三角形
就可以转化到直角△ADC中,易得阴影部
分的面积为3.
பைடு நூலகம்
巩固练习
如图,点O是平行四边形的对称中心,
点A、C关于点O对称,有AO=CO,那 D F
C
么OE=OF吗?
O
A
EB
解:∵平行四边形是中心对称图形,O是对称中心.
EF经过点O,分别交AB、CD于E、F. ∴点E、F是关于点O的对称点. ∴OE=OF.
补全它的另一部分. A
B
如何寻找中心对称 H
图形的对称中心?
G
C
D
F
E
探究新知
2.如图,有一个平行四边形请你用无刻度的直 尺画一条直线把他们分成面积相等的两部分,你 怎么画?
【归纳】过对称中心的直线可以把中心对称图 形分成面积相等的两部分.
探究新知 素养考点 3 中心对称图形性质的应用
例 请你用无刻度的直尺画一条直线把他们分成面 积相等的两部分,你怎样画?
探究新知
【判断】下列图形中哪些是中心对称图形?
(1)√
(2) √
(3) √
(4)×
探究新知
在生活中,有许多中心对称图形,你能举出一些例 子吗?

中考数学必考知识点-轴对称与中心对称

中考数学必考知识点-轴对称与中心对称

中考数学必考知识点轴对称与中心对称知识点回顾知识点一:轴对称、轴对称图形1、轴对称图形:如果一个图形沿某条直线对折,对折的两部分是的,那么就称这样的图形为轴对称图形。

这条直线称为,一定为直线。

2、轴对称:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么这两个图形成,两个图形中的对应点叫。

例1:(2009湖南株洲)下列四个图形中,不是..轴对称图形的是A.B.C.D.解析:轴对称图形的特点就是对折后两旁部分完全重合,所以,判断图形是不是轴对称图形,关键是观察能不能找到一条直线可以对折。

四幅图案中,A、B、C都是轴对称图形;D不是。

选择D。

同步测试:1.(2009广西梧州)在下列对称图形中,对称轴的条数最少的图形是()A.圆 B.等边三角形 C.正方形 D。

正六边形【答案】B2.(2009贵州黔东南州)在下列几何图形中一定是轴对称图形的有()A、1个B、2个C、3个D、4个【答案】B知识点二:轴对称图形的性质1、轴对称图形的对应线段,对应角,对应点的连线被对称轴。

轴对称的两个图形,对应线段或延长线相交,交点在 上。

2、轴对称图形变换的特征是不改变图形的 和 ,只改变图形的 ,新旧图形具有对称性。

例2:(2009湖北荆门)如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB =( ) A .40° B.30° C.20° D.10° 解析:有关折叠问题是中考常考的题型,必须要辨别清楚折叠前后图形和数量关系。

本题中,将∠A 折叠,出现了轴对称,∠CA ′D =∠A ,因为∠A =50°,所以∠CA ′D =50°。

在Rt △ABC 中,∠ACB =90°,∠B =90°-∠A =40°。

∠CA ′D 是△ A ′B D 的一个外角,等于∠A ′DB 与∠B 之和,所以∠A ′DB =∠A ′DB -∠B =50°- 40°=10°。

2022年中考数学中心对称的概念解析

2022年中考数学中心对称的概念解析

2022年中考数学中心对称的概念解析中心对称的概念
概念
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。

中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。

性质:
关于中心对称的两个图形是全等形。

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

点的对称变换:
(1)关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y)
(2)关于x轴对称的点的特征。

两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P'(x,-y)
(3)关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P'(-x,y)
(4)关于直线y=x对称
两个点关于直线y=x对称时,横坐标与纵坐标与之前对换,即P(x,y)关于直线 y=x的对称点为P'(y,x)
(5)两个点关于直线y=-x对称时,横坐标与纵坐标与之前相反,即P(x,y)关于直线y=x的对称点为P'(-y,-x)
注:y=x的直线是过一三象限的角平分线,y=-x的直线是过二四象限的角平分线。

2021年中考数学 分类集训:轴对称与中心对称(含答案)

2021年中考数学 分类集训:轴对称与中心对称(含答案)

2021中考数学分类集训:轴对称与中心对称一、选择题1. 下列图形中,既是轴对称图形又是中心对称图形的是()2. 如图所示的图案中,是中心对称图形的是()3. 如图所示的尺规作图是作 ()A.一条线段的垂直平分线B.一个角的平分线C.一条直线的平行线D.一个角等于已知角4. 图中的四个图形,对称轴的条数为4的图形有()A.1个B.2个C.3个D.4个5. 如图,将△ABC以点O为旋转中心旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后变为线段E′D′.已知BC=4,则线段E′D′的长度为()A.2 B.3 C.4 D.1.56. 在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1对称,再作△B2A3B3与△B2A2B1关于点B2对称……如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n-1,3) B.(2n-1,3)C.(4n+1,3) D.(2n+1,3)7. 把一张长方形纸片按图2①②所示的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是图3中的()8. 2020·河北模拟如图所示,A1(1,3),A2(32,32),A3(2,3),A4(3,0).作折线OA1A2A3A4关于点A4中心对称的图形,得折线A8A7A6A5A4,再作折线A8A7A6A5A4关于点A8中心对称的图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线以每秒1个单位长度的速度运动,设运动时间为t秒.当t=2020时,点P的坐标为()A.(1010,3) B.(2020,3 2)C.(2016,0) D.(1010,3 2)二、填空题9. 将一张矩形纸片折叠成如图所示的图形,若AB=10 cm,则AC=cm.10. 等腰三角形的两边长分别为6 cm,13 cm,其周长为________ cm.11. 如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=________.12. 在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是________.13. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.14. 如图,在△ABC中,AB,AC的垂直平分线分别交BC于点E,F.若△AEF的周长为10 cm,则BC的长为cm.15. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n 边形有 条对称轴.16. (2019•黄冈)如图,AC BD ,在AB 的同侧,288AC BD AB ===,,,点M为AB 的中点,若120CMD ∠=︒,则CD 的最大值是__________.三、解答题17. 如图,正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称.已知A ,D 1,D三点的坐标分别是(0,4),(0,3),(0,2). (1)求对称中心的坐标;(2)写出顶点B ,C ,B 1,C 1的坐标.18. 如图,在正方形网格中,△ABC 的三个顶点都在格点上,点A ,B ,C 的坐标分别为(-2,4),(-2,0),(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于原点O对称的△A1B1C1;(2)平移△ABC,使点A移动到点A2(0,2)的位置,画出平移后的△A2B2C2,并写出点B2,C2的坐标;(3)在△ABC,△A1B1C1中,△A2B2C2与________成中心对称,其对称中心的坐标为________.19. 请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.20. 如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).(1)作出△ABC关于原点O成中心对称的△A1B1C1.(2)作出点A关于x轴的对称点A′.若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.21. 如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上的点,连接EF.(1)如图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF =3S△EDF,求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M 处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长.轴对称与中心对称-答案一、选择题1. 【答案】B2. 【答案】D3. 【答案】A4. 【答案】B[解析] 图①是轴对称图形,有6条对称轴;图②是轴对称图形,有4条对称轴;图③是轴对称图形,有2条对称轴;图④是轴对称图形,有4条对称轴.故对称轴的条数为4的图形有2个.5. 【答案】A [解析] ∵ED 是△ABC 的中位线,BC =4,∴ED =2.又∵△A ′B ′C ′和△ABC 关于点O 中心对称,∴E ′D ′=ED =2.6. 【答案】C[解析] A 1(1,3),A 2(3,-3),A 3(5,3),A 4(7,-3),…,∴点A n 的坐标为⎩⎨⎧(2n -1,3)(n 为奇数),(2n -1,-3)(n 为偶数).∵2n +1是奇数,∴点A 2n +1的坐标是(4n +1,3).故选C.7. 【答案】C8. 【答案】A二、填空题9. 【答案】10 [解析]如图,∵矩形的对边平行, ∴∠1=∠ACB ,由翻折变换的性质,得∠1=∠ABC , ∴∠ABC=∠ACB , ∴AC=AB ,∵AB=10 cm ,∴AC=10 cm . 故答案为10.10. 【答案】32[解析] 由题意知,应分两种情况:(1)当腰长为6 cm 时,三角形的三边长为6 cm ,6 cm ,13 cm ,6+6<13,不能构成三角形;(2)当腰长为13 cm 时,三角形的三边长为6 cm ,13 cm ,13 cm ,能构成三角形,周长=2×13+6=32(cm).11. 【答案】40°[解析] 如图.∵△BCD 是等边三角形,∴∠BDC=60°.∵a∥b,∴∠2=∠BDC=60°.由三角形的外角性质和对顶角的性质可知,∠1=∠2-∠A=40°.12. 【答案】(-2,2)[解析] ∵点P(4,2),∴点P到直线x=1的距离为4-1=3.∴点P关于直线x=1的对称点P′到直线x=1的距离为3.∴点P′的横坐标为1-3=-2.∴对称点P′的坐标为(-2,2).13. 【答案】3[解析] ∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE =1.∵DE是AB的垂直平分线,∴AD=BD.∴∠B=∠DAB.∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B.∵∠C=90°,∴∠CAD+∠DAB+∠B=90°.∴∠B=30°.∴BD=2DE=2.∴BC=BD+CD=2+1=3.14. 【答案】10[解析] ∵AB,AC的垂直平分线分别交BC于点E,F,∴AE=BE,AF=CF.∴BC=BE+EF+CF=AE+EF+AF=10 cm.15. 【答案】解:如图.故填3,4,5,6,n.16. 【答案】14【解析】如图,作点A 关于CM 的对称点A',点B 关于DM 的对称点B'.∵120CMD ∠=︒,∴60AMC DMB ∠+∠=︒, ∴60CMA'DMB'∠+∠=︒, ∴60A'MB'∠=︒, ∵MA'MB'=,∴A'MB'△为等边三角形,∵14CD CA'A'B'B'D CA AM BD ≤++=++=, ∴CD 的最大值为14,故答案为:14.三、解答题17. 【答案】解:(1)∵点D 和点D 1是对称点, ∴对称中心是线段DD 1的中点, ∴对称中心的坐标是(0,52).(2)B(-2,4),C(-2,2),B 1(2,1),C 1(2,3).18. 【答案】解:(1)△ABC 关于原点O 对称的△A 1B 1C 1如图所示.(2)平移后的△A 2B 2C 2如图所示,其中点B 2的坐标为(0,-2),点C 2的坐标为(-2,-1).(3)△A1B1C1(1,-1)19. 【答案】解:(1)如图①,直线m即为所求.(2)如图②,直线n即为所求.20. 【答案】【思维教练】要作△ABC关于点O的中心对称图形,可先分别求出点A,B,C 关于点O 中心对称点,再顺次连接即可;(2)先作出点A′,再根据点A′在ΔA1B1C1,从而得出平移距离a满足A′A1<a<A′D(其中点D是A′A1与B1C1的交点).解:(1)如解图,△A1B1C1就是所求作的图形:(2分)(2)A′如图所示;(4分)a的取值范围是4<a<6.(6分)21. 【答案】(1)如解图①,∵折叠后点A落在AB边上的点D处,解图①∴EF ⊥AB ,△AEF ≌△DEF ,∴S △AEF =S △DEF ,∵S 四边形ECBF =3S △EDF ,∴S 四边形ECBF =3S △AEF ,∵S △ACB =S △AEF +S 四边形ECBF ,∴S △ACB =S △AEF +3S △AEF =4S △AEF , ∴14△△AEF ACB S S =, ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°,∴△AEF ∽△ABC , ∴2△△()AEF ACB S AE ABS =, ∴214()=,AE AB 在Rt △ACB 中,∠ACB =90°,AC =4,BC =3,∴AB 2=AC 2+BC 2,即AB =42+32=5,∴(AE 5)2=14,∴AE =52;(2)①四边形AEMF 是菱形.证明:如解图②,∵折叠后点A 落在BC 边上的点M 处,∴∠CAB =∠EMF ,AE =ME ,又∵MF ∥CA ,∴∠CEM =∠EMF ,∴∠CAB =∠CEM ,∴EM ∥AF ,∴四边形AEMF 是平行四边形,而AE =ME ,∴四边形AEMF 是菱形,解图②②如解图②,连接AM ,与EF 交于点O ,设AE =x ,则AE =ME =x ,EC =4-x , ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°,∴Rt △ECM ∽Rt △ACB ,∴EC AC =EM AB ,∵AB =5, ∴445-,x x =解得x =209, ∴AE =ME =209,EC =169,在Rt △ECM 中,∵∠ECM =90°,∴CM 2=EM 2-EC 2,即CM 22EM EC -=(209)2-(169)2=43,∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF ,∴S AEMF 菱形=4S △AOE =2OE ·AO ,在Rt △AOE 和Rt △ACM 中,∵tan ∠EAO =tan ∠CAM ,∴OE AO =CM AC ,∵CM =43,AC =4,∴AO =3OE ,∴S AEMF 菱形=6OE 2,又∵S AEMF 菱形=AE ·CM ,∴6OE 2=209×43,解得OE =2109,∴EF =2OE =4109.。

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)1、平移(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。

(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。

(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。

2、轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。

这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

这条直线叫做它的对称轴。

(3)轴对称的性质:关于某条直线对称的图形是全等形。

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(4)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在线段的垂直平分线上。

(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y);3、旋转(1)旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。

点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;①旋转前后的图形全等。

(2)中心对称定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。

【决胜】(预测题)中考数学 专题22 几何三大变换问题之旋转(中心对称)问题(含解析)

【决胜】(预测题)中考数学 专题22 几何三大变换问题之旋转(中心对称)问题(含解析)

专题22 几何三大变换问题之旋转(中心对称)问题轴对称、平移、旋转是平面几何的三大变换。

旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。

旋转由旋转中心、旋转的方向和角度决定。

经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上; 旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。

把一个图形绕着某一定点旋转一个角度360°/n(n 为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。

特别地,中心对称也是旋转对称的一种的特别形式。

把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。

在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。

中考压轴题中旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形旋转问题;其它图形的问题。

一. 直线(线段)的旋转问题1. 如图,直线l :y =y 轴交于点A ,将直线l 绕点A 顺时针旋转75º后,所得直线的解析式为【 】A .y =.y x =.y x =- D .y x =【答案】B 。

【考点】旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,由已知,可求直线y=x、y轴的交点分别为B(1,0),A(0,2.根据要求,解答下列问题:(1)已知直线l1的函数表达式为y x1=+,直接写出:①过原点且与l1垂直的直线l2的函数表达式;②过点(1,0)且与l1垂直的直线l2的函数表达式;(2)如图,过点(1,0)的直线l4向上的方向与x轴的正方向所成的角为600,①求直线l4的函数表达式;②把直线l4绕点(1,0)按逆时针方向旋转900得到的直线l5,求直线l5的函数表达式;(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线11y x55=-垂直的直线l6的函数表达式。

图形的变化——中心对称备战2023年中考数学考点微专题

图形的变化——中心对称备战2023年中考数学考点微专题

考向5.4 图形的变化——中心对称【知识要点】1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点五、坐标系中对称点的特征 (3分) 1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P (x ,y )关于原点的对称点为P ’(-x ,-y )2、关于x 轴对称的点的特征两个点关于x 轴对称时,它们的坐标中,x 相等,y 的符号相反,即点P (x ,y )关于x 轴的对称点为P ’(x ,-y )3、关于y 轴对称的点的特征两个点关于y 轴对称时,它们的坐标中,y 相等,x 的符号相反,即点P (x ,y )关于y 轴的对称点为P ’(-x ,y )例:(2020·河北唐山·模拟预测)如图,已知ABC 三个顶点的坐标分别为24A (﹣,﹣),04B (,-),11C (,﹣)(1)请在网格中,画出线段BC 关于原点对称的线段11B C ;(2)请在网格中,过点C 画一条直线CD ,将ABC 分成面积相等的两部分,与线段AB 相交于点D ,写出点D 的坐标;(3)若另有一点33P (﹣,﹣),连接PC ,则tan BCP = .【分析】(1)分别作出点B 、C 关于原点对称的点,然后连接即可;(2)根据网格特点,找到AB的中点D,作直线CD,根据点D的位置写出坐标即可;(3)连接BP,证明△BPC是等腰直角三角形,继而根据正切的定义进行求解即可.解:(1)如图所示,线段B1C1即为所求作的;(2)如图所示,D(-1,-4);(3)连接BP,则有BP2=32+12=10,BC2=32+12=10,BC2=42+22=20,BP2+BC2=PC2,∴△BPC是等腰直角三角形,∠PBC=90°,∴∠BCP=45°,∴tan∠BCP=1,故答案为1.【点拨】本题考查了作图——中心对称,三角形中线的性质,勾股定理的逆定理,正切,熟练掌握相关知识并能灵活运用网格的结构特征是解题的关键.一、单选题1.(2021·广西河池·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(2021·湖北黄石·中考真题)下列几何图形中,是轴对称图形但不是中心对称图形的是( ) A .梯形B .等边三角形C .平行四边形D .矩形3.(2021·广西贺州·中考真题)在平面直角坐标系中,点()3,2A 关于原点对称的点的坐标是( ) A .(-3,2)B .(3,-2)C .(-2,-3)D .(-3,-2)4.(2020·陕西师大附中一模)直线l 1:y =﹣12x +1与直线l 2关于点(1,0)成中心对称,下列说法不正确的是( ) A .将l 1向下平移1个单位得到l 2 B .将l 1向左平移1个单位得到l 2C .将l 1向左平移4个单位,再向上平移1个单位得到l 2D .将l 1向右平移2个单位,再向下平移2个单位得到l 2 二、填空题5.(2021·江苏淮安·中考真题)如图,正比例函数y =k 1x 和反比例函数y =2k x图象相交于A 、B 两点,若点A 的坐标是(3,2),则点B 的坐标是___.6.(2021·山东临沂·一模)若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图象上关于原点对称的两点叫做一对“H 点”.根据该约定,下列关于x 的函数:①2y x =;②()0my m x=≠;③31y x =-;④2y x .其中是“H 函数”的为________.(填上序号即可)7.(2021·湖北·武汉六中上智中学模拟预测)在平面直角坐标系中,点6(4,)P -与点(,1)Q m n +关于原点对称,那么m n +=________.8.(2021·湖南·张家界市永定区教育研究室一模)如图,以平行四边形ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系. 若D 点坐标为(5,3),则B 点坐标为__________.9.(2021·湖南师大附中高新实验中学二模)在平面直角坐标系中,若点(),P a b 的坐标满足0a b =≠,则称点P 为“对等点”.已知一个二次函数22y x mx m =+-的图像上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m 的值为_________.10.(2021·山东威海·一模)如图,O 是▱ABCD 的对称中心,点E 在边BC 上,AD =7,BE =3,将ABE △绕点O 旋转180°,设点E 的对应点为E ',则AEE ABCDSS'=______.三、解答题11.(2019·黑龙江绥化·中考真题)如图,已知ABC 三个顶点的坐标分别为24A (﹣,﹣),04B (,-),11C (,﹣)(1)请在网格中,画出线段BC 关于原点对称的线段11B C ;(2)请在网格中,过点C 画一条直线CD ,将ABC 分成面积相等的两部分,与线段AB 相交于点D ,写出点D 的坐标;(3)若另有一点33P (﹣,﹣),连接PC ,则tan BCP ∠= .12.(2018·山东枣庄·中考真题)如图,在4×4的方格纸中,△ABC 的三个顶点都在格点上.(1)在图1中,画出一个与△ABC 成中心对称的格点三角形;(2)在图2中,画出一个与△ABC 成轴对称且与△ABC 有公共边的格点三角形; (3)在图3中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.一、单选题1.(2021·广西河池·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .2.(2021·湖北黄石·中考真题)下列几何图形中,是轴对称图形但不是中心对称图形的是( ) A .梯形B .等边三角形C .平行四边形D .矩形3.(2021·广西贺州·中考真题)在平面直角坐标系中,点()3,2A 关于原点对称的点的坐标是( ) A .(-3,2)B .(3,-2)C .(-2,-3)D .(-3,-2)4.(2020·陕西师大附中一模)直线l 1:y =﹣12x +1与直线l 2关于点(1,0)成中心对称,下列说法不正确的是( ) A .将l 1向下平移1个单位得到l 2 B .将l 1向左平移1个单位得到l 2C .将l 1向左平移4个单位,再向上平移1个单位得到l 2D .将l 1向右平移2个单位,再向下平移2个单位得到l 25.(2021·内蒙古通辽·中考真题)定义:一次函数y ax b =+的特征数为,a b ,若一次函数2y x m =-+的图象向上平移3个单位长度后与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,则一次函数2y x m =-+的特征数是( ) A .[]2,3B .[]2,3-C .[]2,3-D .[]2,3--6.(2021·湖北荆门·中考真题)下列图形既是中心对称又是轴对称的是( )A .B .C .D .7.(2021·四川眉山·中考真题)在平面直角坐标系中,抛物线245y x x =-+与y 轴交于点C ,则该抛物线关于点C 成中心对称的抛物线的表达式为( ) A .245y x x =--+ B .245y x x =++ C .245y x x =-+-D .245y x x =---8.(2020·黑龙江牡丹江·中考真题)下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个二、填空题9.(2021·江苏淮安·中考真题)如图,正比例函数y =k 1x 和反比例函数y =2k x图象相交于A 、B 两点,若点A 的坐标是(3,2),则点B 的坐标是___.10.(2021·山东临沂·一模)若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图象上关于原点对称的两点叫做一对“H 点”.根据该约定,下列关于x 的函数:①2y x =;②()0my m x=≠;③31y x =-;④2y x .其中是“H 函数”的为________.(填上序号即可)11.(2021·湖北·武汉六中上智中学模拟预测)在平面直角坐标系中,点6(4,)P -与点(,1)Q m n +关于原点对称,那么m n +=________.12.(2021·湖南·张家界市永定区教育研究室一模)如图,以平行四边形ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系. 若D 点坐标为(5,3),则B 点坐标为__________.13.(2021·湖南师大附中高新实验中学二模)在平面直角坐标系中,若点(),P a b 的坐标满足0a b =≠,则称点P 为“对等点”.已知一个二次函数22y x mx m =+-的图像上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m 的值为_________.14.(2021·山东威海·一模)如图,O 是▱ABCD 的对称中心,点E 在边BC 上,AD =7,BE =3,将ABE △绕点O 旋转180°,设点E 的对应点为E ',则AEE ABCDSS'=______.15.(2021·山东聊城·中考真题)有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是__________. 16.(2020·贵州黔东南·中考真题)以▱ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系.若A 点坐标为(﹣2,1),则C 点坐标为_____.三、解答题17.(2019·黑龙江绥化·中考真题)如图,已知ABC 三个顶点的坐标分别为24A (﹣,﹣),04B (,-),11C (,﹣)(1)请在网格中,画出线段BC 关于原点对称的线段11B C ;(2)请在网格中,过点C 画一条直线CD ,将ABC 分成面积相等的两部分,与线段AB 相交于点D ,写出点D 的坐标;(3)若另有一点33P (﹣,﹣),连接PC ,则tan BCP = .18.(2018·山东枣庄·中考真题)如图,在4×4的方格纸中,△ABC 的三个顶点都在格点上. (1)在图1中,画出一个与△ABC 成中心对称的格点三角形;(2)在图2中,画出一个与△ABC 成轴对称且与△ABC 有公共边的格点三角形; (3)在图3中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.1.B 【解析】 【分析】根据轴对称图形和中心对称图形的定义,即可解答. 【详解】解:A 、是轴对称图形,不是中心对称图形,故A 不符合题意; B 、既是轴对称图形,又是中心对称图形,故B 符合题意; C 、是中心对称图形,不是轴对称图形,故C 不符合题意; D 、是轴对称图形,不是中心对称图形,故A 不符合题意; 故选:B .【点拨】本题主要考查了轴对称图形和中心对称图形的定义,理解轴对称图形要找到对称轴,图形关于对称轴折叠能完全重合;中心对称图形要找到对称中心,图形绕着对称中心旋转180°能与自身重合是解题的关键. 2.B 【解析】 【分析】根据轴对称图形和中心对称图形的定义以及性质对各项进行分析即可. 【详解】A 、梯形不是轴对称图形,也不是中心对称图形,故本选项说法错误;B 、等边三角形是轴对称图形,但不是中心对称图形,故本选项说法正确;C 、平行四边形不是轴对称图形,是中心对称图形,故本选项说法错误;D 、矩形是轴对称图形,也是中心对称图形,故本选项说法错误. 故选:B .【点拨】本题考查了轴对称图形和中心对称图形的判断,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键. 3.D 【解析】 【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解. 【详解】∵两个点关于原点对称时,它们的坐标符号相反, ∴点()3,2A 关于原点对称的点的坐标是(-3,-2).故选:D.【点拨】考查了关于原点对称的点的坐标,解题关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.B【解析】【分析】设直线l2的点(x,y),则(2﹣x,﹣y)在直线l1:y=﹣12x+1上,代入可得直线l2解析式,根据直线l1与直线l2的解析式即可判断.【详解】解:设直线l2的点(x,y),则(2﹣x,﹣y)在直线l1:y=﹣12x+1上,∴﹣y=﹣12(2﹣x)+1,∴直线l2的解析式为:y=﹣12x,A、将l1向下平移1个单位得到y=﹣12x,故此选项正确;B、将l1向左平移1个单位得到y=﹣12x+12,故此选项错误;C、将l1向左平移4个单位,再向上平移1个单位得到y=﹣12x,故此选项正确;D、将l1向右平移2个单位,再向下平移2个单位得到y=﹣12x,故此选项正确;故选:B.【点拨】本题考查一次函数图象与几何变换,求得直线l2的解析式是关键.5.(﹣3,﹣2)【解析】【分析】由于正比例函数与反比例函数的图象均关于原点对称,所以A、B两点关于原点对称,由关于原点对称的点的坐标特点求出B点坐标即可.【详解】解:∵正比例函数与反比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵A的坐标为(3,2),∴B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).【点拨】本题主要考查了关于原点对称点的坐标关系,解题的关键在于能够熟练掌握相关知识进行求解.6.①②【解析】【分析】设函数上一个点的坐标为(,)a b ,先根据关于原点对称的点坐标变换规律可得对称点的坐标为(,)a b --,再代入函数的解析式逐个检验即可得.【详解】解:设函数上一个点的坐标为(,)a b ,则其关于原点对称的点坐标为(,)a b --,①将点(,)a b 代入2y x =得:2b a =,当x a =-时,2y a b =-=-,即点(,)a b --在函数2y x =上,则函数2y x =是“H 函数”;②将点(,)a b 代入()0m y m x =≠得:m b a =, 当x a =-时,m y b a ==--,即点(,)a b --在函数()0m y m x =≠上, 则函数()0m y m x=≠是“H 函数”; ③将点(,)a b 代入31y x =-得:31b a =-,即31a b =+,当x a =-时,312y a b =--=--,则点(,)a b --不在函数31y x =-上,此函数不是“H 函数”;④将点(,)a b 代入2y x 得:2b a =,当x a =-时,22()y a a b =-==,则点(,)a b --不在函数2y x 上,此函数不是“H 函数”;综上,是“H 函数”的为①②,故答案为:①②.【点拨】本题考查了关于原点对称的点坐标变换规律,理解“H 函数”的定义是解题关键. 7.1.【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【详解】由点6(4,)P -与点(,1)Q m n +关于原点对称,得4,16m n =-+=,所以5n =.则451m n +=-+=,故答案为:1.【点拨】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.8.(-5,-3)【解析】【分析】根据平行四边形是中心对称图形,再根据平行四边形ABCD 对角线的交点O 为原点和点D 的坐标,即可得到点B 的坐标.【详解】解:∵坐标原点O 为平行四边形ABCD 对角线的交点∴B 、D 两点关于点O 对称∵D (5,3)∴B (-5,-3)故答案为:(-5,-3)【点拨】本题考查了平行四边形的性质,坐标与图形的性质,解答本题的关键是明确题意,利用平行四边形性质解答.9.12【解析】【分析】设这两个“对等点”的坐标为(),a a 和(),a a --,代入抛物线的解析式,两式相减,计算即可求得.【详解】解:设这两个“对等点”的坐标为(),a a 和(),a a --,代入22y x mx m =+-得 2222a am m a a am m a ⎧+-=⎨--=-⎩, 两式相减得24a am =, 解得12m =, 故答案为:12.【点拨】本题考查了待定系数法求二次函数以及关于原点对称的点的坐标,图象上点的坐标适合解析式.10.27【解析】 【分析】首先根据题意画出图形,进而可得AE '的长度,ABCD 和AEE '是等高,设高为h ,然后再利用平行四边形的面积和三角形的面积公式计算即可.【详解】解:作CDE '与ABE △关于点O 对称,连接EE ',∵CDE '与ABE △关于点O 对称, ∴3BE DE '== ,∵AD =7,∴4AE '=, 设ABCD 的高为h ,则AEE '的高也等于h ,则1422.77AEE h S S ABCD h '⨯== 故答案为:27.【点拨】本题主要考查了中心对称,以及平行四边形的性质,关键是正确画出图形,掌握中心对称的性质.11.(1)见解析;(2)见解析,()1,4D --;(3)1.【解析】【分析】(1)分别作出点B 、C 关于原点对称的点,然后连接即可;(2)根据网格特点,找到AB 的中点D ,作直线CD ,根据点D 的位置写出坐标即可;(3)连接BP ,证明△BPC 是等腰直角三角形,继而根据正切的定义进行求解即可.【详解】(1)如图所示,线段B 1C 1即为所求作的;(2)如图所示,D(-1,-4);(3)连接BP,则有BP2=32+12=10,BC2=32+12=10,BC2=42+22=20,BP2+BC2=PC2,∴△BPC是等腰直角三角形,∠PBC=90°,∴∠BCP=45°,∴tan∠BCP=1,故答案为1.【点拨】本题考查了作图——中心对称,三角形中线的性质,勾股定理的逆定理,正切,熟练掌握相关知识并能灵活运用网格的结构特征是解题的关键.12.(1)如图所示见解析;(2)如图所示见解析;(3)如图所示见解析.【解析】【分析】(1)根据中心对称的定义画图即可.(2)根据轴对称的定义画出图形,注意与已知三角形有公共边.(3)明白顺时针的方向,根据要求画图即可.【详解】(1)如图所示,△DCE为所求作;(2)如图所示,△ACD为所求作;(3)如图所示△ECD为所求作.【点拨】本题是一道画图题,考查动手能力,解题关键是掌握轴对称,中心对称等定义.1.B【解析】【分析】根据轴对称图形和中心对称图形的定义,即可解答.【详解】解:A、是轴对称图形,不是中心对称图形,故A不符合题意;B、既是轴对称图形,又是中心对称图形,故B符合题意;C 、是中心对称图形,不是轴对称图形,故C 不符合题意;D 、是轴对称图形,不是中心对称图形,故A 不符合题意;故选:B .【点拨】本题主要考查了轴对称图形和中心对称图形的定义,理解轴对称图形要找到对称轴,图形关于对称轴折叠能完全重合;中心对称图形要找到对称中心,图形绕着对称中心旋转180°能与自身重合是解题的关键.2.B【解析】【分析】根据轴对称图形和中心对称图形的定义以及性质对各项进行分析即可.【详解】A 、梯形不是轴对称图形,也不是中心对称图形,故本选项说法错误;B 、等边三角形是轴对称图形,但不是中心对称图形,故本选项说法正确;C 、平行四边形不是轴对称图形,是中心对称图形,故本选项说法错误;D 、矩形是轴对称图形,也是中心对称图形,故本选项说法错误.故选:B .【点拨】本题考查了轴对称图形和中心对称图形的判断,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键.3.D【解析】【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解.【详解】∵两个点关于原点对称时,它们的坐标符号相反,∴点()3,2A 关于原点对称的点的坐标是(-3,-2).故选:D .【点拨】考查了关于原点对称的点的坐标,解题关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.B【解析】【分析】设直线l 2的点(x ,y ),则(2﹣x ,﹣y )在直线l 1:y =﹣12x +1上,代入可得直线l 2解析式,根据直线l 1与直线l 2的解析式即可判断.【详解】解:设直线l 2的点(x ,y ),则(2﹣x ,﹣y )在直线l 1:y =﹣12x +1上,∴﹣y =﹣12(2﹣x )+1,∴直线l 2的解析式为:y =﹣12x ,A 、将l 1向下平移1个单位得到y =﹣12x ,故此选项正确;B 、将l 1向左平移1个单位得到y =﹣12x +12,故此选项错误;C 、将l 1向左平移4个单位,再向上平移1个单位得到y =﹣12x ,故此选项正确;D 、将l 1向右平移2个单位,再向下平移2个单位得到y =﹣12x ,故此选项正确; 故选:B .【点拨】本题考查一次函数图象与几何变换,求得直线l 2的解析式是关键.5.D【解析】【分析】先求出平移后的直线解析式为23y x m =-++,根据与反比例函数3y x =-的图象交于A ,B 两点,且点A ,B 关于原点对称,得到直线23y x m =-++经过原点,从而求出m ,根据特征数的定义即可求解.【详解】解:由题意得一次函数2y x m =-+的图象向上平移3个单位长度后解析式为23y x m =-++,∵直线23y x m =-++与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,∴点A ,B ,O 在同一直线上,∴直线23y x m =-++经过原点,∴m +3=0,∴m =-3,∴一次函数2y x m =-+的解析式为23y x =--,∴一次函数2y x m =-+的特征数是[]2,3--.故选:D【点拨】本题考查了新定义,直线的平移,一次函数与反比例函数交点,中心对称等知识,综合性较强,根据点A ,B 关于原点对称得到平移后直线经过原点是解题关键.6.C【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A 、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项不符合题意.B 、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项不符合题意;C 、此图形旋转180°后能与原图形重合,此图形是中心对称图形,是轴对称图形,故此选项符合题意;D 、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项不符合题意.故选:C .【点拨】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.7.A【解析】【分析】先求出C 点坐标,再设新抛物线上的点的坐标为(x ,y ),求出它关于点C 对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.【详解】解:当x =0时,y =5,∴C (0,5);设新抛物线上的点的坐标为(x ,y ),∵原抛物线与新抛物线关于点C 成中心对称,由20x x ⨯-=-,2510y y ⨯-=-;∴对应的原抛物线上点的坐标为(),10x y --;代入原抛物线解析式可得:()()21045y x x -=--⋅-+,∴新抛物线的解析式为:245y x x =--+;故选:A .【点拨】本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.8.B【解析】【详解】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B .9.(﹣3,﹣2)【解析】【分析】由于正比例函数与反比例函数的图象均关于原点对称,所以A 、B 两点关于原点对称,由关于原点对称的点的坐标特点求出B 点坐标即可.【详解】解:∵正比例函数与反比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵A 的坐标为(3,2),∴B 的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).【点拨】本题主要考查了关于原点对称点的坐标关系,解题的关键在于能够熟练掌握相关知识进行求解.10.①②【解析】【分析】设函数上一个点的坐标为(,)a b ,先根据关于原点对称的点坐标变换规律可得对称点的坐标为(,)a b --,再代入函数的解析式逐个检验即可得.【详解】解:设函数上一个点的坐标为(,)a b ,则其关于原点对称的点坐标为(,)a b --,①将点(,)a b 代入2y x =得:2b a =,当x a =-时,2y a b =-=-,即点(,)a b --在函数2y x =上,则函数2y x =是“H 函数”;②将点(,)a b 代入()0m y m x =≠得:m b a =, 当x a =-时,m y b a ==--,即点(,)a b --在函数()0m y m x =≠上, 则函数()0m y m x=≠是“H 函数”; ③将点(,)a b 代入31y x =-得:31b a =-,即31a b =+,当x a =-时,312y a b =--=--,则点(,)a b --不在函数31y x =-上,此函数不是“H 函数”;④将点(,)a b 代入2y x 得:2b a =,当x a =-时,22()y a a b =-==,则点(,)a b --不在函数2y x 上,此函数不是“H 函数”;综上,是“H 函数”的为①②,故答案为:①②.【点拨】本题考查了关于原点对称的点坐标变换规律,理解“H 函数”的定义是解题关键. 11.1.【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【详解】由点6(4,)P -与点(,1)Q m n +关于原点对称,得4,16m n =-+=,所以5n =.则451m n +=-+=,故答案为:1.【点拨】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.12.(-5,-3)【解析】【分析】根据平行四边形是中心对称图形,再根据平行四边形ABCD 对角线的交点O 为原点和点D 的坐标,即可得到点B 的坐标.【详解】解:∵坐标原点O 为平行四边形ABCD 对角线的交点∴B 、D 两点关于点O 对称∵D (5,3)∴B (-5,-3)故答案为:(-5,-3)【点拨】本题考查了平行四边形的性质,坐标与图形的性质,解答本题的关键是明确题意,利用平行四边形性质解答.13.12【解析】【分析】设这两个“对等点”的坐标为(),a a 和(),a a --,代入抛物线的解析式,两式相减,计算即可求得.【详解】解:设这两个“对等点”的坐标为(),a a 和(),a a --,代入22y x mx m =+-得 2222a am m a a am m a ⎧+-=⎨--=-⎩, 两式相减得24a am =, 解得12m =, 故答案为:12.【点拨】本题考查了待定系数法求二次函数以及关于原点对称的点的坐标,图象上点的坐标适合解析式.14.27【解析】【分析】首先根据题意画出图形,进而可得AE '的长度,ABCD 和AEE '是等高,设高为h ,然后再利用平行四边形的面积和三角形的面积公式计算即可.【详解】解:作CDE '与ABE △关于点O 对称,连接EE ',∵CDE'与ABE△关于点O对称,∴3BE DE'==,∵AD=7,∴4AE'=,设ABCD的高为h,则AEE'的高也等于h,则1422.77 AEEhSS ABCD h'⨯==故答案为:27.【点拨】本题主要考查了中心对称,以及平行四边形的性质,关键是正确画出图形,掌握中心对称的性质.15.1 6【解析】【分析】由等边三角形、平行四边形、菱形、圆中,既是中心对称图形,又是轴对称图形的有菱形、圆,再画出树状图展示所有等可能的结果,进而即可求得答案.【详解】解:设等边三角形、平行四边形、菱形、圆分别为A,B,C,D,根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形既是中心对称图形,又是轴对称图形为C、D共有2种情况,∴P(既是中心对称图形,又是轴对称图形)=2÷12=16.故答案是:16. 【点拨】本题考查了列表法和树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比,画出树状图,是解题的关键.16.(2,﹣1)【解析】【分析】根据平行四边形是中心对称图形,再根据▱ABCD 对角线的交点O 为原点和点A 的坐标,即可得到点C 的坐标.【详解】解:∵▱ABCD 对角线的交点O 为原点,A 点坐标为(﹣2,1),∴点C 的坐标为(2,﹣1),故答案为:(2,﹣1).【点拨】此题考查中心对称图形的顶点在坐标系中的表示.17.(1)见解析;(2)见解析,()1,4D --;(3)1.【解析】【分析】(1)分别作出点B 、C 关于原点对称的点,然后连接即可;(2)根据网格特点,找到AB 的中点D ,作直线CD ,根据点D 的位置写出坐标即可;(3)连接BP ,证明△BPC 是等腰直角三角形,继而根据正切的定义进行求解即可.【详解】(1)如图所示,线段B 1C 1即为所求作的;(2)如图所示,D(-1,-4);。

中考数学 专题22 几何三大变换问题之旋转(中心对称)问题(含解析)

中考数学 专题22 几何三大变换问题之旋转(中心对称)问题(含解析)

专题22 几何三大变换问题之旋转(中心对称)问题轴对称、平移、旋转是平面几何的三大变换。

旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。

旋转由旋转中心、旋转的方向和角度决定。

经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上; 旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。

把一个图形绕着某一定点旋转一个角度360°/n(n 为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。

特别地,中心对称也是旋转对称的一种的特别形式。

把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。

在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。

中考压轴题中旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形旋转问题;其它图形的问题。

一. 直线(线段)的旋转问题1. 如图,直线l :y 3x 3=-+与y 轴交于点A ,将直线l 绕点A 顺时针旋转75º后,所得直线的解析式为【 】A .y 33=B .y x 3=+.y x 3=-+ D .y x 3=【答案】B 。

【考点】旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,由已知,可求直线y3x3=-+与x、y轴的交点分别为B(1,0),A(0,3),2.根据要求,解答下列问题:(1)已知直线l1的函数表达式为y x1=+,直接写出:①过原点且与l1垂直的直线l2的函数表达式;②过点(1,0)且与l1垂直的直线l2的函数表达式;(2)如图,过点(1,0)的直线l4向上的方向与x轴的正方向所成的角为600,①求直线l4的函数表达式;②把直线l4绕点(1,0)按逆时针方向旋转900得到的直线l5,求直线l5的函数表达式;(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线11y x55=-垂直的直线l6的函数表达式。

中考数学点对点-轴对称与中心对称图形问题(解析版)

中考数学点对点-轴对称与中心对称图形问题(解析版)

专题35 轴对称与中心对称图形问题专题知识点概述1.对称轴:把一个图形沿某条直线对折,如果它与另一个图形重合,就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

2.轴对称图形:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

3.轴对称的性质:(1)关于某条直线成轴对称的两个图形是全等形。

(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

(4)轴对称图形上对应线段相等、对应角相等。

4.中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。

这个点就是它的对称中心。

例题解析与对点练习【例题1】(2020•扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A. B.C.D.【答案】C【解析】根据轴对称图形的概念对各选项分析判断利用排除法求解.A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不合题意.【对点练习】(2019山东东营)下列图形中,是轴对称图形的是()【答案】D【解析】观察图形,选项D中图形是轴对称图形,有3条对称轴,其他图形都不是轴对称图形.故选D.【例题2】(2020武汉模拟)下列图形中是中心对称图形的是()【答案】D【解析】根据中心对称图形是图形沿对称中心旋转180度后与原图重合的图形。

所给图形中只有D绕着中心旋转180°后能与自身重合,故选D。

【对点练习】下列图形是中心对称图形的是()A B C D【答案】A.【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.A.∵该图形旋转180°后能与原图形重合,∴该图形是中心对称图形;B.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;C.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;D.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形.专题点对点强化训练1.(2020•北京)下列图形中,既是中心对称图形也是轴对称图形的是()A. B. C.D.【答案】D【解析】根据轴对称图形与中心对称图形的概念求解.A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,不合题意;D.既是中心对称图形,又是轴对称图形,符合题意.2.下列图案中,属于轴对称图形的是()【答案】D.【解析】根据轴对称图形的定义:在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.四个选项只有选项D符合要求,故答案选D.3.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.用字母表示数 C.随机性D.数形结合【答案】A【解析】用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的轴对称性。

初中数学几何中点问题题型总结

初中数学几何中点问题题型总结

初中数学几何中点问题题型总结1、还原中心对称图形(倍长中线法)中心对称与中心对称图形知识:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

这两个图形中的对应点叫做关于中心的对称点。

中心对称的两条基本性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

(2)关于中心对称的两个图形是全等图形。

中心对称图形把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

(一个图形)线段本身就是中心对称图形,中点就是它的对称中心,所以遇到中点问题,依托中点借助辅助线还原中点对称图形,可以把分散的条件集中起来(集散思想)。

例 如图,D 是△ABC 的边BC 上的点,且CD=AB ,∠ADB=∠BAD ,AE 是△ABD的中线。

求证:AC=2AE练习 1、已知:如图,梯形ABCD 中,AD ∥BC ,∠ABC=90°.若BD=BC ,F 是CD的中点,试问:∠BAF 与∠BCD 的大小关系如何?请写出你的结论并加以证明;A BCDF2、Rt △ABC 中,∠BAC=90°,M 为BC 的中点,过A 点作某直线l ,过B 作BD l ⊥于点D ,过C 作CE l ⊥于点E 。

(1)中的结论是否任然成立?2、两条平行线间线段的中点(“八字型”全等)如图,1l ∥2l ,C 是线段AB 的中点,那么过点C 直线都可以和AB 构造“8字型”全等例 已知梯形ABCD ,AD ∥BC ,点E 是AB 的中点,连接DE 、CE 。

求证:ABCD 12DECSS =梯 分析:如果直接证明,是不容易,联想到AD ∥BC ,点E 是AD 的中点 ,我们延长DE ,与CB 的延长线交于点F ,这样,我们就构造出一对八 字型的三角形,并且这对三角形是全等的。

数学:23.2《中心对称》教案(人教版九年级上)

数学:23.2《中心对称》教案(人教版九年级上)

数学:23.2《中心对称》教案(人教版九年级上)一. 教学内容:中心对称1. 中心对称的概念、中心对称与旋转的关系、中心对称的基本性质.2. 画已知图形关于已知点的对称图形.3. 两个关于原点对称的点的坐标间的关系.4. 运用轴对称、平移、旋转等变换关系及组合进行简单的图案设计.二. 知识要点:1. 中心对称和中心对称图形把一个图形绕着某一个点旋转180°,如果它能够和另一个图形完全重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.区别:中心对称是指两个全等图形之间的相互位置关系,这两个图形关于某一点(对称中心)对称叫做中心对称.联系:如果把中心对称的两个图形看成一个整体(一个图形),那么这个图形是中心对称图形.如果把一个中心对称图形中对称的部分看成两个图形,那么它们是中心对称.2. 中心对称的性质(1)关于中心对称的两个图形是全等形;(2)关于中心对称的两个图形,对称点的连线都经过对称中心并且被对称中心平分;(3)如果两个图形的对应点的连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称;(4)过对称中心的直线把中心对称图形分为面积相等的两部分.3. 点P(x,y)关于原点的对称点是P’(-x,-y).4. 图案设计的步骤(1)整体构思①图案的设计要突出主题,即设计图案的意图,要求简捷,自然、别致,具有一定的意义.例如:奥运会会徽是由五个两两相联的圆环组成的,分别代表世界上五大洲的人民热爱体育运动,携手共创美好的未来.②确定整幅图案的形状(如圆形或正方形)和“基本图案”(不宜太复杂).③构思图案的形成过程:首先构思该图案由哪几部分构成,再构思如何运用平移、旋转、轴对称等方法实现由“基本图形”到各部分图案的组合,并作出草图.(2)具体作图:根据草图,运用尺规作图的方法,准确地作出图案.(3)对图案进行适当的修饰(如着色等).三. 重点难点:本讲重点是中心对称的性质和关于原点对称的两点间的坐标关系.难点是正确运用中心对称的性质解决相关问题.四. 考点分析:旋转和轴对称、平移这三种图形变换关系是中考的热点问题,通常出现一道填空题或选择题.从近几年各地中考试卷来看,图形变换经常和三角形、四边形相联系以综合题、探究题的形式出现,相关知识所占分值有所增加.【典型例题】例1.如图所示,已知平行四边形ABCD,画出平行四边形ABCD关于点C对称的平行四边形A’B’CD’.分析:画平行四边形ABCD关于点C的对称图形,只要画出A、B、D关于点C的对称点,而点C的对称点就是它本身.解:连接AC并延长到A’,使CA’=CA,延长BC到B’使CB’=CB,延长DC到D’使CD’=CD.顺次连接A’、B’、C、D’就得到平行四边形ABCD关于点C对称的平行四边形A’B’CD’.评析:画与已知图形关于某点中心对称的图形问题,思路较简单,只要分别画出图形各个顶点关于对称中心的对称点,再顺次连接即可,这样就将问题转化为画点关于点的对称点的问题.例2.如图所示,矩形ABCD的四个顶点的坐标分别为A(-4,4)、B(-4,0)、C(-1,0)、D(-1,4),画出矩形ABCD,并作出与矩形ABCD关于原点对称的图形.分析:找点A关于原点O的对称点A’的坐标,可以根据关于原点对称的点的坐标的关系,即坐标的符号相反,得A’(4,-4),同理可得到其他三点的对称点的坐标.解:由两个点关于原点对称时,它们的符号相反,得到点A、B、C、D关于原点对称的对应点A’、B’、C’、D’的坐标分别为A’(4,-4)、B’(4,0)、C’(1,0)、D’(1,-4),分别画出这四个点,顺次连接,得到矩形ABCD关于原点O对称的矩形A’B’C’D’.评析:通过画出关于原点对称的图形可以验证P(x,y)与P’(-x,-y)关于原点对称.如果在图中发现两个点不是关于O对称,就要检查改变符号是否有误或描点时是否出错.例3.如图所示,一个长方形内有任意一圆,请你用一条直线同时将圆和长方形的面积二等分,并说明作图的道理和方法.分析:因为长方形是中心对称图形,两条对角线的交点是它的对称中心,根据对称的性质,经过对称中心的任何一条直线都将长方形的面积二等分,因此,所作的直线必须经过长方形的两条对角线的交点;因为圆同样是中心对称图形,经过圆心的任何一条直线都将圆面积二等分,所以这条直线必须经过圆的圆心.综上所述,这条直线必须是经过长方形对角线交点和圆心的直线.解:作长方形的两条对角线,令交点为O1,圆的圆心为O2,过O1、O2作直线l,则这条直线l将长方形和圆的面积二等分(如图所示).评析:根据中心对称图形的性质:过对称中心的任一条直线能将其面积两等分,因此,由两个中心对称图形组合而成的复合图形,经过两个中心对称图形的对称中心画一条直线,将整个图形的面积两等分,这是等分组合图形面积的基本方法.例4.用6根一样长的小棒搭成如图(1)所示的图形,试移动其中两根小棒使组成的图形是中心对称图形.分析:这种题要善于动手操作,抓住中心对称的特征,旋转180°后与原图形重合.解:如图(2)所示,将AC移到BM位置,将DE移到BN位置;或如图(3)所示沿AB所在直线将AC 和BC翻折.例5.(1)在图(1)所示编号为①、②、③、④的四个三角形中,关于y轴对称的两个三角形的编号为__________;关于坐标原点O对称的两个三角形的编号为__________.(2)在图(2)中,画出与△ABC关于x轴对称的△A1B1C1.分析:(1)观察图(1)知:沿y轴对折后①和②这两个三角形可以重合,故关于y轴对称的两个三角形的编号为①②;连结①和③这两个三角形的对应点,就会发现这些对应点的连线都过原点O且被原点O平分,所以关于原点O对称的两个三角形的编号为①和③.(2)先根据A、B、C的位置确定A1、B1、C1的位置(利用网格确定),再顺次连结.解:(1)①和②;①和③.(2)如图(3)所示.评析:注意中心对称和轴对称的区别,作已知图形的轴对称图形时要特别注意以谁为对称轴.例6.如图所示,过平行四边形ABCD对角线的交点O作两条互相垂直的直线EF、GH分别交平行四边形ABCD四边于E、G、F、H,求证:四边形EGFH是菱形.分析:已知EF⊥GH,只要能证出EF、GH互相平分即可,由对角线互相垂直平分的四边形是菱形可证.证明:∵O是平行四边形ABCD的对称中心,EF经过点O与AB交于点E,与CD交于点F,∴E、F关于点O中心对称,∴EO=FO.同理可得GO=HO.又∵EF⊥GH,∴四边形EGFH是菱形.评析:通过平行四边形是中心对称图形,及过对称中心的直线与对应线段的交点等性质证明,思路清晰、新颖.【方法总结】1. 关于原点对称的两个点的坐标的符号相反,可以通过这个规律,确定已知点关于原点对称的点的坐标,由此可以画出已知图形关于原点对称的图形.2. 判定一个图形是中心对称图形主要方法是根据定义,即某点旋转180°后与自身重合,常见的几何图形中是中心对称图形的有:线段、平行四边形、圆等.过中心对称图形的对称中心的直线平分其面积.【预习学案】(期中复习)二. 预习导学2. 解下列方程:(1)x2-2x=0;(2)2x2-x+1=0;(3)4x2-9=0.3. 将图1按顺时针方向旋转180°后得到的是()反思:(1)二次根式有什么性质?如何对二次根式进行化简?(2)二次根式的运算法则是怎样的?(3)一元二次方程的常用解法有哪几种?(4)旋转、中心对称的性质是什么?【模拟试题】(答题时间:50分钟)一. 选择题1. 下列英文单词或标记中,可看作中心对称图形的是()A.SOS B.CEO C.MBA D.SARS2. 下列图形中,既是轴对称图形,又是中心对称图形的是()3. 下列图形中,既是轴对称图形又是中心对称图形的是()A.角B.等边三角形 C.线段 D.长方形4. 下列各图中,是中心对称图形的是()5. 已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A. 1B. 3C. -1D. -36. 把下图中①向右平移叠放在图②上,可以形成A~D中的哪个图形()*7. 下列说法正确的是()①中心对称与中心对称图形是两个不同的概念;②中心对称图形是指两个图形之间的一种关系;③中心对称与中心对称图形都只有一个对称中心;④关于某点成中心对称的两点连线的中点正好是对称中心.A. ①②B. ①②③C. ①③④D. ②③④**8. 将平行四边形纸片沿过其对称中心的任一直线对折,下图不可能的是()二. 填空题1. 关于中心对称的两个图形,对称点的连线经过__________,并且__________.2. 如果△ABC与△A'B'C'关于点O成中心对称,那么△ABC与△A'B'C'的关系是__________.3. 利用图形的__________、__________和__________可以设计出许多美丽的图案,我们将图形的平移,旋转和轴对称统称为__________.4. 点A(a,3)与点B(-4,b)关于原点对称,则点P(a,b)在第__________象限..**6. 在平面直角坐标系中,已知3个点的坐标分别为A1(1,1)、A2(0,2)、A3(-1,1).一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以A1为对称中心的对称点P1,第2次电子蛙由P1点跳到以A2为对称中心的对称点P2,第3次电子蛙由P2点跳到以A3为对称中心的对称点P3,…,按此规律,电子蛙分别以A1、A2、A3为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是P2009(_______,_______).三. 解答题1. 如图所示,找出下列图形的对称中心(画图表示).2. 已知点M(a-1,2a+4)关于原点对称的点在第三象限,求a的取值范围.3. 请探究以下两个问题.(1)过中心对称图形的对称中心的任一直线,能否将该图形分成面积相等的两部分?为什么?(2)如图所示的是由5个相同正方形组成的图形,你能否画一条直线将这个图形分成面积相等的两部分?请至少找出两种不同的画法.4. 利用如图所示的两个直角三角形,你能设计出满足下列条件的图案吗?(1)是轴对称图形但不是中心对称图形;(2)是中心对称图形,但不是轴对称图形;(3)既是轴对称图形,又是中心对称图形;(4)既不是轴对称图形,又不是中心对称图形,但既利用了旋转,又利用了平移.5. 图①、图②均为7×6的正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)(1)【试题答案】一. 选择题1. A2. D3. C4. B5. D6. B7. C8. B二. 填空题1. 对称中心;被对称中心平分2. △ABC≌△A'B'C'3. 平移;旋转;轴对称;图形变换4.四 5. m<0 6. (-2,2)三. 解答题1. 提示:先确定两对对应点,分别连结两对对应点,交点即为对称中心2. 依题意可知,点M在第一象限,∴a-1>0,且2a+4>0,∴a>1.3. 提示:(1)能.因为被直线分成的两部分之一旋转180°能与另一部分重合.(2)①作出右上角小正方形的对称中心,再作出下边田字形的对称中心,过这两点的直线即是.②作出左边两个小正方形的对称中心.再作出右边三个小正方形的对称中心,过这两点的直线即是.4. 如图所示:5. (1)有以下答案供参考:(2)有以下答案供参考:。

2020中考数学知识点总结:轴对称与中心对称

2020中考数学知识点总结:轴对称与中心对称

2020中考数学知识点总结:轴对称与中心对称一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。

说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学中心对称(1)第一课时教学内容两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.教学目标了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.复习运用旋转知识作图,•旋转角度变化,•设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题.重难点、关键1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.2.难点与关键:从一般旋转中导入中心对称.教具、学具准备小黑板、三角尺教学过程一、复习引入请同学们独立完成下题.如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,•并写出简要作法.老师点评:分析,本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,•一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;•已知一对对应点和旋转中心,很容易确定旋转角.如图,连结OA、OD,则∠AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.作法:(1)连结OA、OB、OC、OD;(2)分别以OB、OB为边作∠BOM=∠CON=∠AOD;(3)分别截取OE=OB,OF=OC;(4)依次连结DE、EF、FD;即:△DEF就是所求作的三角形,如图所示.二、探索新知问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对称点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,•对称中心就是旋转中心.(3)旋转后的对应点,便是中心的对称点.解:作法:(1)延长AD,并且使得DA′=AD(2)同样可得:BD=B′D,CD=C′D(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点.(2)A、B、C、D关于中心D的对称点是A′、B′、C′、D′,这里的D′与D重合.例2.如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD•成中心对称的三角形.分析:因为D是对称中心且AD是△ABC的中线,所以C、B为一对的对应点,因此,只要再画出A关于D的对应点即可.解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),B•点关于中心D的对称点为C(B′)(2)连结A′B′、A′C′.则△A′B′C′为所求作的三角形,如图所示.三、巩固练习教材P74 练习2.四、应用拓展例3.如衅,在△ABC中,∠C=70°,BC=4,AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.(1)若平移的距离为3,求△ABC与△A′B′C′重叠部分的面积.(2)若平移的距离为x(0≤x≤4),求△ABC与△A′B′C′重叠部分的面积y,写出y与x的关系式.分析:(1)∵BC=4,AC=4∴△ABC是等腰直角三角形,易得△BDC′也是等腰直角三角形且BC′=1(2)∵平移的距离为x,∴BC′=4-x解:(1)∵CC′=3,CB=4且AC=BC∴BC′=C′D=1∴S△BDC`=12×1×1=12(2)∵CC′=x,∴BC′=4-x ∵AC=BC=4∴DC′=4-x∴S△BDC`=12(4-x)(4-x)=12x2-4x+8五、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称及对称中心的概念;2.关于中心的对称点的概念及其运用.六、布置作业1.教材P73 练习1.2.选作课时作业设计.第一课时作业设计一、选择题1.在英文字母VWXYZ中,是中心对称的英文字母的个数有()个. A.1 B.2 C.3 D.42.下面的图案中,是中心对称图形的个数有()个A.1 B.2 C.3 D.43.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,•点D、C分别落在D′、C′的位置上,若∠EFG=55°,则∠1=()A.55° B.125° C.70° D.110°二、填空题1.关于某一点成中心对称的两个图形,对称点连线必通过_________.2.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,•那么就说这两个图形是_________图形.3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(•填序号)(1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)•梯形.三、综合提高题1.仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内.对称形式轴对称旋转对称中心对称只有一条对称轴有两条对称轴2.如图,在正方形3.如图,是由两个半圆组成的图形,已知点B是AC的中点,•画出此图形关于点B成中心对称的图形.答案:一、1.B 2.D 3.D二、1.这一点(对称中心) 2.中心对称 3.(1)(4)(5)三、1.略2.作法:(1)延长CB且BC′=BC;(2)延长DB且BD′=DB,延长AB且使BA′=BA;(3)连结A′D′、D′C′、C′B则四边形A′BC′D′即为所求作的中心对称图形,如图所示.3.略.23.2 中心对称(2)第二课时教学内容1.关于中心对称的两个图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.教学目标理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.重难点、关键1.重点:中心对称的两条基本性质及其运用.2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质.教学过程一、复习引入(老师口问,学生口答)1.什么叫中心对称?什么叫对称中心?2.什么叫关于中心的对称点?3.请同学随便画一三角形,以三角形一顶点为对称中心,•画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.(每组推荐一人上台陈述,老师点评)(老师)在黑板上画一个三角形ABC,分两种情况作两个图形(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.(1) (2)从图1中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.下面,我们就以图2为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′∴△AOB≌△A′OB′∴AB=A′B′同理可证:AC=A′C′,BC=B′C′∴△ABC≌△A′B′C′(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O•旋转180•°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO 并延长,取与它们相等的线段即可得到.解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连结DE、EF、FD.则△DEF即为所求的三角形.例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).二、巩固练习教材P70 练习.三、应用拓展例3.如图等边△ABC内有一点O,试说明:OA+OB>OC.分析:要证明OA+OB>OC,必然把OA、OB、OC转为在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因此要应用旋转.以A为旋转中心,•旋转60°,便可把OA、OB、OC转化为一个三角形内.解:如图,把△AOC以A为旋转中心顺时针方向旋转60°后,到△AO′B•的位置,则△AOC≌△AO′B.∴AO=AO′,OC=O′B又∵∠OAO′=60°,∴△AO′O为等边三角形.∴AO=OO′在△BOO′中,OO′+OB>BO′即OA+OB>OC四、归纳小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.五、布置作业1.教材P74 复习巩固1 综合运用6、7.2.选作课时作业设计.第二课时作业设计一、选择题1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角 B.等边三角形 C.直角梯形 D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60° B.50° C.75° D.55°二、填空题1.关于中心对称的两个图形,对称点所连线段都经过__________,而且被对称中心所________.2.关于中心对称的两个图形是_________图形.3.线段既是轴对称图形又是中心对称图形,它的对称轴是_________,•它的对称中心是__________.三、综合提高题1.分别画出与已知四边形ABCD成中心对称的四边形,使它们满足以下条件:(1)•以顶点A为对称中心,(2)以BC边的中点K为对称中心.2.如图,已知一个圆和点O,画一个圆,使它与已知圆关于点O成中心对称.3.如图,A、B、C是新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校M,现计划修建居民小区D,其要求:(1)到学校的距离与其它小区到学校的距离相等;(2)控制人口密度,有利于生态环境建设,试写居民小区D•的位置.答案:一、1.D 2.C 3.A二、1.对称中心平分 2.全等 3.线段中垂线,线段中点.三、1.略 2.作出已知圆圆心关于O点的对称点O′,以O′为圆心,已知圆的半径为半径作圆. 3.连结AB、AC,分别作AB、AC的中垂线PQ、GH相交于M,学校M所在位置,•就是△ABC外接圆的圆心,小区D是在劣弧BC的中点即满足题意.23.2 中心对称(3)第三课时教学内容1.中心对称图形的概念.2.对称中心的概念及其它们的运用.教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.重难点、关键1.重点:中心对称图形的有关概念及其它们的运用.2.难点与关键:区别关于中心对称的两个图形和中心对称图形.教具、学具准备小黑板、三角形教学过程一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.A O(2)作出三角形AOB关于O点的对称图形,如图所示.B AOB ACDO(2)延长AO使OC=AO,延长BO使OD=BO,连结CD则△COD为所求的,如图所示.二、探索新知从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=•OB,所以,就是线段AB绕它的中点旋转180°后与它重合.上面的(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵AO=OC,BO=OD,∠AOB=∠COD∴△AOB≌△COD∴AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳.例3.求证:如图任何具有对称中心的四边形是平行四边形.B ACDO分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC、•BD必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,•四边形ABCD是平行四边形.三、巩固练习教材P72 练习.四、应用拓展例4.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,•求折痕EF的长.分析:将矩形折叠,使C点和A点重合,折痕为EF,就是A、C两点关于O点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积.21085解:连接AF ,∵点C 与点A 重合,折痕为EF ,即EF 垂直平分AC .∴AF=CF ,AO=CO ,∠FOC=90°,又四边形ABCD 为矩形,∠B=90°,AB=CD=3,AD=•BC=4 设CF=x ,则AF=x ,BF=4-x ,由勾股定理,得AC 2=BC 2+AB 2=52∴AC=5,OC=12AC=52∵AB 2+BF 2=AF 2 ∴32+(4-x )=2=x 2 ∴x=258∵∠FOC=90°∴OF 2=FC 2-O C 2=(258)2-(52)2=(158)2 OF=158同理OE=158,即EF=OE+OF=154五、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题. 六、布置作业1.教材P74 综合运用5 P75 拓广探索8、9.2.选用作业设计作业设计一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等边三角形 B .等腰梯形 C .平行四边形 D .正六边形2.下列图形中,是中心对称图形,但不是轴对称图形的是( ).A .正方形B .矩形C .菱形D .平行四边形3.如图所示,平放在正立镜子前的桌面上的数码“21085•”在镜子中的像是( )A .21085B .28015C .58012D .51082 二、填空题1.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__________.2.请你写出你所熟悉的三个中心对称图形_________.3.中心对称图形具有什么特点(至少写出两个)_____________. 三、解答题1.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,•那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:•正方形绕着它的对角线的交点旋转90°后能与自身重合,•所以正方形是旋转对称图形,应有一个旋转角为90°. (1)判断下列命题的真假(在相应括号内填上“真”或“假”) ①等腰梯形是旋转对称图形,它有一个旋转角为180°;( ) ②矩形是旋转对称图形,它有一个旋转角为180°;( )(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(•写出所有正确结论的序号)①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.2.如图,将矩形A 1B 1C 1D 1沿EF 折叠,使B 1点落在A 1D 1边上的B 处;沿BG 折叠,使D 1点落在D 处且BD 过F 点.(1)求证:四边形BEFG 是平行四边形;(2)连接BB ,判断△B 1BG 的形状,并写出判断过程.D 1C 1B 1A 1BA CEDG F3.如图,直线y=2x+2与x 轴、y 轴分别交于A 、B 两点,将△AOB 绕点O•顺时针旋转90°得到△A 1OB 1. (1)在图中画出△A 1OB 1;(2)设过A 、A 1、B 三点的函数解析式为y=ax 2+bx+c ,求这个解析式.答案:一、1.D 2.D 3.D二、1.中心对称图形 2.答案不唯一 3.答案不唯一 三、1.(1)①假 ②真 (2)①③(3)①例如正五边形 正十五边形 •②例如正十边 正二十边形2.(1)证明:∵A1D1∥B1C1,∴∠A1BD=∠C1FB 又∵四边形ABEF是由四边形A1B1EF翻折的,∴∠B1FE=∠EFB,同理可得:∠FBG=∠D1BG,∴∠EFB=90°-12∠C1FB,∠FBG=90°-12∠A1BD,∴∠EFB=∠FBG∴EF∥BG,∵EB∥FG∴四边形BEFG是平行四边形.(2)直角三角形,理由:连结BB,∵BD1∥FC1,∴∠BGF=∠D1BG,∴∠FGB=∠FBG同理可得:∠B1BF=∠FB1B.∴∠B1BG=90°,∴△B1BG是直角三角形3.解:(1)如右图所示(2)由题意知A、A1、B1三点的坐标分别是(-1,0),(0,1),(2,0)∴1042a b cca b c=-+⎧⎪=⎨⎪=++⎩解这个方程组得12121abc⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩∴所求五数解析式为y=-12x2+12x+1.23.2 中心对称(4)第四课时教学内容两个点关于原点对称时,它们的坐标符号相反,即点P(x,y),关于原点的对称点为P′(-x,-y)及其运用.教学目标理解P与点P′点关于原点对称时,它们的横纵坐标的关系,掌握P(x,y)关于原点的对称点为P′(-x,-y)的运用.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用.重难点、关键1.重点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)•关于原点的对称点P′(-x,-y)及其运用.2.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面三题.1.已知点A和直线L,如图,请画出点A关于L对称的点A′.lA2.如图,△ABC是正三角形,以点A为中心,把△ADC顺时针旋转60°,画出旋转后的图形.3.如图△ABO,绕点O旋转180°,画出旋转后的图形.老师点评:老师通过巡查,根据学生解答情况进行点评.(略)二、探索新知(学生活动)如图23-74,在直角坐标系中,已知A(-3,1)、B(-4,0)、C(0,3)、•D(2,2)、E (3,-3)、F(-2,-2),作出A、B、C、D、E、F点关于原点O的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?-3-33OBAC-2-21-1yx3-4D4221-1老师点评:画法:(1)连结AO并延长AO(2)在射线AO 上截取OA ′=OA(3)过A 作AD ′⊥x 轴于D ′点,过A ′作A ′D ″⊥x 轴于点D ″. ∵△AD ′O 与△A ′D ″O 全等 ∴AD ′=A ′D ″,OA=OA ′ ∴A ′(3,-1)同理可得B 、C 、D 、E 、F 这些点关于原点的中心对称点的坐标. (学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,•①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点? 提问几个同学口述上面的问题.老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即设P (x ,y )关于原点O 的对称点P ′(-x ,-y ).例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.分析:要作出线段AB 关于原点的对称线段,只要作出点A 、点B 关于原点的对称点A ′、B ′即可. 解:点P (x ,y )关于原点的对称点为P ′(-x ,-y ), 因此,线段AB 的两个端点A (0,-1),B (3,0)关于原点的对称点分别为A ′(1,0),B (-3,0). 连结A ′B ′.则就可得到与线段AB 关于原点对称的线段A ′B ′. (学生活动)例2.已知△ABC ,A (1,2),B (-1,3),C (-2,4)利用关于原点对称的点的坐标的特点,作出△ABC 关于原点对称的图形.老师点评分析:先在直角坐标系中画出A 、B 、C 三点并连结组成△ABC ,要作出△ABC 关于原点O 的对称三角形,只需作出△ABC 中的A 、B 、C 三点关于原点的对称点,•依次连结,便可得到所求作的△A ′B ′C ′. 三、巩固练习 教材P73 练习. 四、应用拓展例3.如图,直线AB 与x 轴、y 轴分别相交于A、B 两点,将直线AB 绕点O 顺时针旋转90°得到直线A 1B 1.(1)在图中画出直线A 1B 1.(2)求出线段A 1B 1中点的反比例函数解析式.(3)是否存在另一条与直线AB 平行的直线y=kx+b (我们发现互相平行的两条直线斜率k 值相等)它与双曲线只有一个交点,若存在,求此直线的函数解析式,若不存在,请说明理由.分析:(1)只需画出A、B两点绕点O顺时针旋转90°得到的点A1、B1,连结A1B1.(2)先求出A1B1中点的坐标,设反比例函数解析式为y=kx代入求k.(3)要回答是否存在,如果你判断存在,只需找出即可;如果不存在,才加予说明.这一条直线是存在的,因此A1B1与双曲线是相切的,只要我们通过A1B1的线段作A1、B1关于原点的对称点A2、B2,连结A2B2的直线就是我们所求的直线.解:(1)分别作出A、B两点绕点O顺时针旋转90°得到的点A1(1,0),B1(2,0),连结A1B1,那么直线A1B1就是所求的.(2)∵A1B1的中点坐标是(1,12)设所求的反比例函数为y=k x则12=1k,k=12∴所求的反比例函数解析式为y=1 2 x(3)存在.∵设A1B1:y=k′x+b′过点A1(0,1),B1(2,0)∴1`02bk b=⎧⎨=+⎩∴`11`2bk=⎧⎪⎨=-⎪⎩∴y=-12x+1把线段A1B1作出与它关于原点对称的图形就是我们所求的直线.根据点P(x,y)关于原点的对称点P′(-x,-y)得:A1(0,1),B1(2,0)关于原点的对称点分别为A2(0,-1),B2(-2,0)∵A2B2:y=kx+b∴102`bk b-=⎧⎨=-+⎩∴121kb⎧=-⎪⎨⎪=-⎩∴A 2B 2:y=-12x-1 下面证明y=-12x-1与双曲线y=12x相切11212y x y x ⎧=--⎪⎪⎨⎪=⎪⎩-12x-1=12x ⇒x+2=-1x ⇒ x 2+2x+1=0,b 2-4ac=4-4×1×1=0∴直线y=-12x-1与y=12x相切∵A 1B 1与A 2B 2的斜率k 相等∴A 2B 2与A 1B 1平行 ∴A 2B 2:y=-12x-1为所求. 五、归纳小结(学生总结,老师点评) 本节课应掌握:两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y ),•关于原点的对称点P ′(-x ,-y ),及其利用这些特点解决一些实际问题. 六、布置作业1.教材P74 复习巩固3、4. 2.选用作业设计.作业设计一、选择题1.下列函数中,图象一定关于原点对称的图象是( ) A .y=1xB .y=2x+1C .y=-2x+1D .以上三种都不可能 2.如图,已知矩形ABCD 周长为56cm ,O 是对称线交点,点O 到矩形两条邻边的距离之差等于8cm ,则矩形边长中较长的一边等于( )OB ACDA .8cmB .22cmC .24cmD .11cm 二、填空题1.如果点P (-3,1),那么点P (-3,1)关于原点的对称点P ′的坐标是P ′_______.2.写出函数y=-3x 与y=3x具有的一个共同性质________(用对称的观点写). 三、综合提高题1.如图,在平面直角坐标系中,A (-3,1),B (-2,3),C (0,2),画出△ABC•关于x 轴对称的△A ′B ′C ′,再画出△A ′B ′C ′关于y 轴对称的△A ″B ″C ″,那么△A ″B ″C ″与△ABC 有什么关系,请说明理由.2.如图,直线AB 与x 轴、y 轴分别相交于A 、B 两点,且A (0,3),B (3,0),现将直线AB 绕点O 顺时针旋转90°得到直线A 1B 1. (1)在图中画出直线A 1B 1;(2)求出过线段A 1B 1中点的反比例函数解析式;(3)是否存在另一条与直线A 1B 1平行的直线y=kx+b (我们发现互相平行的两条直线斜率k 相等)它与双曲线只有一个交点,若存在,求此直线的解析式;若不存在,请说明不存在的理由.答案:一、1.A 2.B 二、1.(3,-1) 2.答案不唯一 参考答案:关于原点的中心对称图形. 三、1.画图略,△A ″B ″C ″与△ABC 的关系是关于原点对称. 2.(1)如右图所示,连结A 1B 1; (2)A 1B 1中点P (1.5,-1.5),设反比例函数解析式为y=k x ,则y=-2.25x.(3)A 1B 1:设y =k 1x+b 1 113033b k =-⎧⎨=-⎩ 1113k b =⎧⎨=-⎩∴y=x+3∵与A 1B 1直线平行且与y=2.25x相切的直线是A 1B 1•旋转而得到的. ∴所求的直线是y=x+3,下面证明y=x+3与y=-2.25x相切, 32.25y x y x =+⎧⎪⎨=-⎪⎩⇒x 2+3x+2.25=0,b 2-4ac=9-4×1∴y=x+3与y=-2.25x相切.。

相关文档
最新文档