《同底数幂的除法》要点解读

合集下载

同底数幂的除法说课稿

同底数幂的除法说课稿

同底数幂的除法说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《同底数幂的除法》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析《同底数幂的除法》是人教版八年级上册第十四章整式的乘法与因式分解中的重要内容。

在此之前,学生已经学习了同底数幂的乘法、幂的乘方和积的乘方等知识,为本节课的学习奠定了基础。

同底数幂的除法是整式运算的重要组成部分,也是后续学习整式除法、分式运算的基础,在数学知识体系中具有承上启下的作用。

本节课的主要内容是探究同底数幂的除法法则,并能运用法则进行计算。

通过本节课的学习,学生将进一步深化对幂的运算的理解,提高运算能力和逻辑推理能力。

二、学情分析八年级的学生已经具备了一定的数学基础知识和运算能力,对幂的运算有了初步的认识。

但他们的抽象思维能力和逻辑推理能力还相对较弱,对于法则的理解和运用可能会存在一定的困难。

因此,在教学过程中,我将注重引导学生通过观察、类比、猜想、验证等方法,自主探究同底数幂的除法法则,帮助他们理解和掌握新知识。

三、教学目标1、知识与技能目标(1)理解同底数幂的除法法则,并能熟练运用法则进行计算。

(2)了解零指数幂和负整数指数幂的意义,并能进行相关计算。

2、过程与方法目标(1)通过探究同底数幂的除法法则,培养学生的观察、类比、猜想、验证和归纳能力。

(2)在运算过程中,培养学生的运算能力和逻辑推理能力。

3、情感态度与价值观目标(1)通过小组合作学习,培养学生的团队合作精神和交流能力。

(2)让学生在数学学习中体验成功的喜悦,增强学习数学的自信心。

四、教学重难点1、教学重点同底数幂的除法法则的推导和应用。

2、教学难点对零指数幂和负整数指数幂意义的理解。

五、教法与学法1、教法(1)启发式教学法:通过创设问题情境,引导学生思考和探究,激发学生的学习兴趣和主动性。

(2)讲练结合法:在讲解新知识的同时,及时进行练习,让学生在实践中巩固所学知识,提高运算能力。

初中数学知识点精讲精析 同底数幂的除法

初中数学知识点精讲精析  同底数幂的除法

第三节 同底数幂的除法要点精讲同底数幂相除的法则一般地,我们有am ÷an=a m-n (a ≠0,m,n 都是正整数,并且m>n ). 即同底数幂相除, 底数不变, 指数相减.规定a 0=1 (a ≠0).即任何不等于0的数的0次幂都等于1.规定 任何不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.a -p = 1/ a p (a≠0,p 是正整数)相关链接已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法.典型分析1. 若m•23=26,则m 等于( )A . 2B . 4C . 6D .8【答案】D【解析】根据乘除法的关系,把等式变形,根据同底数幂的除法,底数不变指数相减.m=26÷23=26﹣3=23=82.下列计算正确的是【 】A .a6÷a2=a3B .(a3)2=a5C .D .【答案】D 。

【解析】根据同底数幂的除法,幂的乘方,算术平方根,立方根运算法则逐一计算作出判断:A 、a6÷a2=a6﹣2=a4≠a3,故本选项错误;B 、(a3)2=a3×2=a6≠a5,故本选项错误;C ,表示25的算术平方根式5,故本选项错误;D ,故本选项正确。

故选D 。

25=5±5±2-中考案例1.(2012湖南常德3分)下列运算中,结果正确的是【 】A. B. C. D.【答案】D 。

【考点】同底数幂的乘法和除法,合并同类项。

【解析】根据同底数幂的乘法和除法运算法则和合并同类项的概念,对各选项分析判断后利用排除法求解:A 、应为,故本选项错误;B 、应为,故本选项错误;C 、a2与a3不是同类项,不能合并,故本选项错误;D 、4a -a=3a ,正确。

故选D 。

2.(2012山东东营3分)若,则的值为【】A .B .C .D .【答案】A 。

【考点】同底数幂的除法,幂的乘方。

【解析】∵,∴。

第14讲:同底数幂的除法、零指数幂与负整数指数幂

第14讲:同底数幂的除法、零指数幂与负整数指数幂

第14讲:同底数幂的除法、零指数幂与负整数指数幂一、本讲知识标签同底数幂的除法:(≠0, 为正整数,并且). 同底数幂相除,底数不变,指数相减.零指数幂:即任何不等于零的数的零次方等于1.负整数指数幂:a-n=n a 1( a ≠0,n 为正整数)即:任何不为零的-n (n 为正整数)次幂等于这个数n 次幂的倒数要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.二、范例分析例1.已知,求的值.【分析】利用除法与乘法的互逆关系,通过计算比较系数和相同字母的指数得到的值即可代入求值.解:由已知,得,即,,,解得,,.所以. 也可以直接做除法,然后比较系数和相同字母的指数得到的值.【变式】(1)已知,求的值. (2)已知,,求的值. (3)已知,,求的值.【答案】解:(1)由题意,知.∴ . ∴ ,解得.a m n ,m n >()010.a a =≠312326834m n ax y x y x y ÷=(2)n m n a +-m n a 、、312326834m n ax y x y x y ÷=31268329284312m n n ax y x y x y x y +=⋅=12a =39m =2812n +=12a =3m =2n =22(2)(23212)(4)16n m n a +-=⨯+-=-=m n a 、、1227327m m -÷=m 1020a =1105b =293a b ÷23m =24n =322m n -312(3)327m m -÷=3(1)2333m m --=3323m m --=6m =(2)由已知,得,即.由已知,得.∴ ,即.∴ ∴. (3)由已知,得.由已知,得.∴ .例2.已知2a=3,4b=6,8c=12,a 、b 、c 的关系.【分析】本题逆用幂的运算规律,同底数幂乘除的规律,巧妙地将3用2a 代替将6用22b 代换,化成2的幂,从而找出a 、b 、c 之间的关系.解:因为8c=12,所以(23)c=2×6,又因为4b=6,所以23c=2×4b=2×22b=22b+1,所以3c=2b+1因为4b=6,所以22b=2×3,又因为2a=3,所以22b=2×2a=2a+1,所以2b=a+1,所以3c-1=a+1,所以a-4b+3c=0.三、训练提高(一)选择题:1.(2015•下城区二模)下列运算正确的是( )A .(a3﹣a )÷a=a2B .(a3)2=a5C .a3+a2=a5D .a3÷a3=12.化简11)(--+y x 为( ) A 、y x +1 B 、y x 1+ C.、1+xy y D 、1+xy x 3.已知P=,那么P 、Q 的大小关系是( ) A.P>Q B.P=Q C.P<Q D.无法确定(二)填空题:4. 计算.5.(2015春•成都校级月考)(﹣a6b7)÷= . 1020a =22(10)20a =210400a =1105b =211025b =221101040025a b ÷=÷2241010a b -=224a b -=22222493333381a b a b a b -÷=÷===23m =3227m =24n =2216n =32322722216m n m n -=÷=9999909911,99Q =()()34432322396332x y x y x y x y x y xy -+÷=-+-6.若整数x 、y 、z 满足,则x=_______,y=_______,z=________.(三) 解答题:7.先化简,再求值:,其中=-5.8.已知a 、b 互为相反数,c 、d 互为倒数,12=-x ,2=y ,求22007)(y cd x b a --++ 的值.(4分)9.若2010=a , 1510-=b ,求b a 239÷的值.10.已知,求整数x.11.阅读下列材料:关于x 的方程:121212111,;222,;333,;x c x c x x c cx c x c x x c cx c x c x x c c +=+==+=+==+=+==的解是的解是的解是 …请观察上述方程与解的特征,比较关于x 的方程(0)m m x c m x c +=+≠与它们的关系,猜想它的解是什么?并加以验证.12.请你来计算:若1+x +x2+x3=0,求x +x2+x3+…+x2012的值.91016()()()28915x y x ⨯⨯=()()()23242622532a a a a a ⎡⎤⋅-÷÷-⎢⎥⎣⎦a 2(1)1x x +-=。

同底数幂除法(解析版)

同底数幂除法(解析版)

同底数幂除法【知识梳理】一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a −÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.【考点剖析】 题型一、同底数幂的除法例1、计算:(1)83x x ÷;(2)3()a a −÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫−÷− ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号. 【答案与解析】解:(1)83835x x x x −÷==.(2)3312()a a a a −−÷=−=−.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y −÷===. (4)535321111133339−⎛⎫⎛⎫⎛⎫⎛⎫−÷−=−=−=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号. 【变式1】(2021•上海)计算:x 7÷x 2= .【分析】根据同底数幂的除法法则进行解答即可. 【解答】解:x7÷x2=x7﹣2=x5, 故答案为:x5.【点评】此题考查了同底数幂的除法,熟练掌握同底数幂相除,底数不变指数相减是解题的关键. 【变式2】(2022•浦东新区二模)计算:(﹣a 6)÷(﹣a )2= . 【分析】根据同底数幂相除的法则:底数不变,指数相减即可得出答案. 【解答】解:(﹣a6)÷(﹣a )2=﹣(a6÷a2)=﹣a4. 故答案为:﹣a4.【点评】本题考查了同底数幂的除法,同底数幂相除的法则:底数不变,指数相减. 【变式3】计算:(1)()()151233−÷−;(2)853377⎛⎫⎛⎫÷− ⎪ ⎪⎝⎭⎝⎭;(3)10010099÷.【答案】(1)27−;(2)27343−;(3)1.【解析】(1)()()()()151215123333327−−÷−=−=−=−;(2)858533333277777343−⎛⎫⎛⎫⎛⎫⎛⎫÷−===⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3)100100100100099991−÷===.【总结】本题考查了同底数幂的除法,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠.【变式4】计算: (1)107a a ÷;(2)102102x x −÷;(3)()()75a a −÷−.【答案】(1)3a ;(2)1−;(3)2a .【解析】(1)1071073a a aa −÷==; (2)10210210210201x x x x −−÷=−=−=−;(3)()()()()757522a a a a a −−÷−=−=−=.【总结】本题考查了同底数幂的除法,同底数幂相除,底数不变,指数相减. 【变式5】计算:(1)()()105x y x y +÷+;(2)()()97a b b a −÷−.【答案】(1)()5x y +;(2)222a ab b −+−.【解析】(1)()()()()1051055x y x y x y x y −+÷+=+=+;(2)()()()()()()9797972222a b b a b a b a b a b a a ab b −−÷−=−−÷−=−−=−−−+−.【总结】本题主要考查了同底数幂的除法. 题型二、科学记数法有关的同底数幂的除法例2.下雨时,常常是“先见闪电、后闻雷鸣”,这是因为光速比声速快的缘故.已知光在空气中的传播速度为8310⨯米每秒,而声音在空气中的传播速度约为300米每秒,你知道光速是声速的多少倍吗? 【答案】610.【解析】8631030010⨯÷=.【总结】本题考查了整式的除法,解题的关键是根据题意列出代数式,再根据除法运算法则求出答案. 【变式】月球距离地球大约53.8410⨯千米,一架飞机的速度约为2810⨯千米/时.如果乘坐此飞机飞行这么远的距离,大约需要多少时间? 【答案】480小时.【解析】()()()()52523.8410810 3.8481010480⨯÷⨯=÷⨯÷=(小时)【总结】本题考查了单项式除以单项式,用整式乘除法解决实际问题时要注意分清量与量之间存在的数量关系.题型三、同底数幂的除法的逆用例3、已知32m =,34n=,求129m n +−的值.【答案与解析】解:121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++−======.当32m =,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 【变式1】(2020秋•宝山区期末)如果2021a =7,2021b =2.那么20212a﹣3b= .【分析】根据幂的乘方以及同底数幂的除法法则计算即可,幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减. 【解答】解:∵2021a =7,2021b =2.∴20212a ﹣3b =20212a ÷20213b =(2021a )2÷(2021b )3=72÷23=.故答案为:.【点评】本题主要考查了同底数幂的除法以及幂的乘方,熟记相关运算法则是解答本题的关键.【变式2】已知2552m m⨯=⨯,求m 的值.【答案】解:由2552m m ⨯=⨯得1152m m −−=,即11521m m −−÷=,1512m −⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1,∴ 15522m −⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,即10m −=,1m =.题型四、同底数幂的除法有关的混合运算例4.(2020秋•浦东新区期末)计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.【分析】分别根据同底数幂的乘除法法则以及积的乘方运算法则化简后,再合并同类项即可. 【解答】解:a •a7﹣(﹣3a4)2+a10÷a2=a8﹣9a8+a8=﹣7a8.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【变式1】(2022y 3•y 5÷(﹣y )4= . 【分析】利用同底数幂的乘除法运算法则进行计算. 【解答】解:原式=﹣y3•y5÷y4=﹣y3+5﹣4=﹣y4, 故答案为:﹣y4.【点评】本题考查同底数幂的乘除法,掌握同底数幂的乘法(底数不变,指数相加),同底数幂的除法(底数不变,指数相减)的运算法则是解题关键. 【变式2】计算: (1)()623x x x ÷⋅;(2)()1243x x x ⋅÷.【答案】(1)x ;(2)13x . 【解析】(1)()6236236565x x x x x x x x x+−÷⋅=÷=÷==;(2)()124312*********x x x x x x x x x −+⋅÷=⋅=⋅==.【总结】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠.【变式3】.计算: (1)()()4334a a −÷−;(2)()()22237a a a a ⋅÷⨯−.【答案】(1)1−;(2)5a .【解析】(1)()()()433412121a a a a −÷−=÷−=−;(2)()()()22223757210725a a a a a a a a a −+⋅÷⨯−=÷⋅==.【总结】本题考查了同底数幂的乘法与除法,m nm na a a +⋅=,()nm mna a =,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠,注意负数的奇次幂还是负数.【变式4】计算:(1)()3232942x x x x x ⋅−+÷;(2)54189t t t t ⋅−÷.【答案】(1)5628x x −;(2)0.【解析】(1)()3232942323945655628828x x x x x x x x x x x x x +⨯−⋅−+÷=−+=−+=−;(2)5418954189990t t t t t tt t +−⋅−÷=−=−=. 【总结】本题考查了同底数幂的乘法与除法以及幂的乘方,注意法则的准确运用.【过关检测】一、单选题1.(2022秋·上海·七年级专题练习)下列计算正确的是( )A .235a a ()=B .3232a b a b −−()= C .448a a a += D .532a a a ÷=【答案】D【分析】利用合并同类项的法则,同底数幂的除法的法则,幂的乘方的法则,单项式乘多项式的法则对各项进行运算即可.【详解】解:A 、623a a ()=,故A 不符合题意;B 、3(a ﹣2b )=3a ﹣6b ,故B 不符合题意;C 、4442a a a +=,故C 不符合题意;D 、532a a a ÷=,故D 符合题意;故选:D .【点睛】本题主要考查幂的乘方,同底数幂的除法,单项式乘多项式,合并同类项,解答的关键是对相应的运算法则的掌握.2.(2023·上海·七年级假期作业)在下列运算中,计算正确的是( ) A .3262()x y x y −= B .339x x x ⋅= C .224x x x += D .62322x x x ÷=【答案】A【分析】按照幂的乘方、积的乘方、合并同类项、同底数幂相乘、同底数幂相除的运算法则.【详解】解:3262x y x y =(-),故A 正确,符合题意; 336x x x ⋅=,故B 错误,不符合题意; 2222x x x +=,故C 错误,不符合题意; 62422x x x ÷=,故D 错误,不符合题意;故选:A .【点睛】本题考查了幂的乘方、积的乘方、合并同类项、同底数幂相乘、同底数幂相除等运算,熟练掌握相关运算法则是解题关键.【答案】B【分析】根据幂的公式逆运算即可求解.【详解】∵3,2m nx x ==,∴23m nx−=(mx )2÷(nx )3=32÷23=98故选B【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.4.(2021秋·上海浦东新·七年级期末)下列运算中,正确的是( ) A .(﹣m )6÷(﹣m )3=﹣m 3 B .(﹣a 3)2=﹣a 6 C .(xy 2)2=xy 4 D .a 2•a 3=a 6【答案】A【分析】根据同底数幂的除法,幂的乘方,积的乘方,同底数幂的乘法逐项分析判断即可. 【详解】解:A 、(﹣m )6÷(﹣m )3=﹣m3,故本选项符合题意; B 、(﹣a3)2=a6,故本选项不符合题意; C 、(xy2)2=x2y4,故本选项不符合题意; D 、a2•a3=a5,故本选项不符合题意; 故选:A .【点睛】本题考查了幂的运算,掌握幂的运算是解题的关键. 5.(2023·上海·七年级假期作业)下列计算结果中,正确的是( ) A .a 3+a 3=a 6 B .(2a )3=6a 3 C .(a ﹣7)2=a 2﹣49 D .a 7÷a 6=a .【答案】D【分析】根据合并同类项法则、积的乘方的运算法则、完全平方公式、同底数幂的除法的运算法则逐项计算得出结果即可得出答案.【详解】解:A 、3332a a a +=,原计算错误,故此选项不符合题意;B 、33(2)8a a =,原计算错误,故此选项不符合题意;C 、22(7)1449a a a =−−+,原计算错误,故此选项不符合题意;D 、76a a a ÷=,原计算正确,故此选项符合题意.故选:D .【点睛】本题考查合并同类项、积的乘方、完全平方公式和同底数幂的除法.掌握各运算法则是解题关键. 6.(2023·上海·七年级假期作业)下列运算正确的是( ) A .()323a a = B .623a a a ÷= C .235a a a += D .235a a a ⋅=【答案】D【分析】根据幂的乘方,同底数幂的乘法和除法,以及合并同类项法则,逐一进行计算即可.【详解】解:A 、()326a a =,选项错误,不符合题意;B 、624a a a ÷=,选项错误,不符合题意;C 、235a a a +≠,选项错误,不符合题意;D 、235a a a ⋅=,选项正确,符合题意;故选D .【点睛】本题考查幂的乘方,同底数幂的乘法和除法,以及合并同类项法.熟练掌握相关法则,是解题的关键.二、填空题7.(2023·上海·七年级假期作业)42()()n n y y −÷−=________;4232()()()a b a b a b ⎡⎤⎡⎤−⨯−÷−=⎣⎦⎣⎦___________.【答案】 2n y 9()a b −【分析】利用同底数幂的乘法、除法、幂的乘方化简,先算乘方,再算乘除.【详解】解:42()()n n y y −÷−=42()n n y −−=2()ny −=2n y ,4232()()()a b a b a b ⎡⎤⎡⎤−⨯−÷−⎣⎦⎣⎦=124()()()a a b a b −⨯−÷−=124()()()a b a b a b −⨯−÷−=1214()a b +−−=9()a b −.故答案为:2n y ,9()a b −.【点睛】此题考查了同底数幂的乘法、除法、幂的乘方运算,解题的关键是掌握同底数幂的乘法、除法、幂的乘方的运算法则.8.(2023·上海·七年级假期作业)计算:结果用幂的形式表示94()()a b b a −÷−=_____. 【答案】5()a b −【分析】利用同底数幂的除法的法则进行运算即可.【详解】解:94()()a b b a −÷−94()()a b a b =−÷−5()a b =−.故答案为:5()a b −.【点睛】本题主要考查同底数幂的除法,解答的关键是对同底数幂除法法则的掌握.9.(2023秋·上海青浦·七年级校考期末)计算:()()2333142a b a b b −−−⋅÷=____________.(结果只含有正整数指数幂) 【答案】934b a【分析】根据幂的运算法则和整式的混合运算法则计算可得.【详解】解:()()2333142a b a b b −−−⋅÷293464a b a b b −−=⋅÷()492634a b +−−−=934a b −=394b a =.【点睛】本题主要考查整式的混合运算,解题的关键是熟练掌握幂的运算法则和整式的混合运算法则.10.(2022秋·上海·七年级专题练习)计算:62a a ÷(-)(-)=______. 【答案】4a −【分析】先依据公式得出正确的符号,再利用幂的除法公式计算.【详解】62624a a a a a −÷−−÷−()()=()=.故答案为:4a −.【点睛】本题考查幂的运算,正确运用公式是解题的关键.11.(2019秋·上海·七年级上海市张江集团中学校考期中)已知3m a =,5n a =,则32m n a +=_______________ 【答案】675【分析】根据幂的乘方以及同底数幂的乘法法则解答即可. 【详解】∵am=3,an=5,∴a3m+2n=(am)3•(an)2=33×52=27×25=675. 故答案为:675.【点睛】本题考查了幂的乘方与积的乘方以及同底数幂的乘法,熟记幂的运算法则是解答本题的关键.【答案】9【分析】根据同底数幂除法的逆用、幂的乘方的逆用进行计算即可得.【详解】解:因为102a =,109b=,所以112210100100b aa b −=÷1222(10)(10)b a=÷1222(10)10b a ⨯=÷2210b=÷49=÷49=,故答案为:49.【点睛】本题考查了同底数幂除法的逆用、幂的乘方的逆用,熟练掌握各运算法则是解题关键.13.(2023秋·上海静安·七年级新中初级中学校考期末)若15m x =,5n x =,则m n x −等于_____. 【答案】3【分析】逆向运算同底数幂的除法法则计算即可.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.【详解】解:∵xm=15,xn=5, ∴xm-n=xm÷xn=15÷5=3. 故答案为:3.【点睛】本题考查了同底数幂的除法,掌握幂的运算法则是解答本题的关键.14.(2023·上海·七年级假期作业)已知5m a =,5n b =,则25m n +=______,235m n −=______.(请用含有a ,b 的代数式表示)【答案】 2a b /2ba 23a b【分析】逆用同底数幂的乘法,幂的乘方,同底数幂的除法运算法则,进行计算即可.【详解】解:∵5m a =,5nb =,∴()222255555m n m n m n a b+=⋅=⋅=;()()223232323355555m nmnm n a a b b −=÷=÷=÷=.故答案为:2a b ;23a b .【点睛】本题主要考查了同底数幂的乘法,同底数幂的除法,幂的乘方,解题的关键是熟练掌握同底数幂的乘法,幂的乘方,同底数幂的除法运算法则.15.(2023·上海·七年级假期作业)已知2m a =,3n a =,那么3m n a −=___________. 【答案】83【分析】根据同底数幂的除法底数不变指数相减,可得答案. 【详解】解:2m a =,3n a =,∴3m na−3mnaa =÷3()m na a =÷323=÷83=.故答案为:83.【点睛】本题考查了同底数幂的除法,逆用同底数幂除法的计算法则是解题关键.16.(2022秋·上海·七年级阶段练习)﹣y 3•y 5÷(﹣y )4=_____.【答案】﹣y4【分析】先计算幂的乘方,再计算同底数幂的乘、除法,注意负号的作用.【详解】解:﹣y3•y5÷(﹣y )4=﹣y8÷y4=﹣y4故答案为:﹣y4【点睛】本题考查幂的乘方、同底数幂的乘除法等知识,是基础考点,掌握相关知识是解题关键.17.(2022秋·七年级单元测试)已知5230x y −−=,则324x y ÷=________.【答案】8【分析】先求出523x y −=,然后逆用幂的乘方法则对所求式子变形,再根据同底数幂的除法法则计算.【详解】解:∵5230x y −−=,∴523x y −=,∴5253228324222x y x y x y −===÷=÷, 故答案为:8.【点睛】本题考查了代数式求值,涉及幂的乘方的逆用,同底数幂的除法,有理数的乘方运算,熟练掌握运算法则是解题的关键.18.(2023·上海·七年级假期作业)已知2320x y −−=,则927x y ÷的值为________.【答案】9【分析】先变形,再根据同底数幂的除法进行计算,最后整体代入求出即可.【详解】解:∵2320x y −−=,∴232x y −=,∴927x y ÷2333x y =÷233x y −=23=9= 故答案为9.【点睛】本题考查了同底数幂的除法、幂的乘方等知识点,能正确根据法则进行变形是解此题的关键.三、解答题19.(2023·上海·七年级假期作业)计算:(1)()()105x y x y +÷+;(2)()()97a b b a −÷−. 【答案】(1)()5x y +(2)222a ab b −+− 【分析】(1)利用同底数幂的除法进行运算;(2)先将底数均化为a b −,再利用同底数幂的除法运算.【详解】(1)解:1055()()()x y x y x y +÷+=+;(2)解:97()()a b b a −÷−97()()a b a b ⎡⎤=−÷−−⎣⎦2()a b =−−222a ab b =−+−. 【点睛】本题考查了同底数幂的除法,熟练掌握相关运算规则是解题的关键.20.(2022秋·上海·七年级校考期中)计算:()()222334222a a a a a a +−−÷ 【答案】6a【分析】根据同底数幂乘法的法则,积的乘方的运算法则,同底数幂除法的运算法则先化简计算,然后合并同类项即可.【详解】解:()()222334222a a a a a a +−−÷668244a a a a =+−÷66644a a a =+−6a = 【点睛】本题考查了整式的混合运算,解题的关键是掌握相关公式并灵活运用.幂的乘方法则:底数不变,指数相乘.积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘. 21.(2023·上海·七年级假期作业)计算:(1)()()4334a a −÷−; (2)()()22237a a a a ⋅÷⨯−. 【答案】(1)1−(2)5a【分析】(1)先计算幂的乘方,再计算同底数幂的除法;(2)先计算同底数幂的乘法、乘方,再计算同底数幂的乘法与除法.【详解】(1)解:()()()433412121a a a a −÷−=÷−=−;(2)解:()()()22223757210725a a a a a a a a a −+⋅÷⨯−=÷⋅==.【点睛】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,()n m mn a a =,m n m n a a a −÷=(0a ≠,m ,n 都是正整数),注意负数的奇次幂还是负数.22.(2022秋·上海·七年级专题练习)已知3m =4,3n =5,分别求3m +n 与32m ﹣n 的值.【答案】20,165【分析】利用同底数幂的乘法的逆用法则,同底数幂的除法的逆用法则,幂的乘方的逆用法则对所求的式子进行整理,再代入运算即可.【详解】解:3334520m m n n +=⋅=⨯=;222233316(53)534m n m n m n −=÷=÷=÷=.【点睛】本题考查同底数幂的乘法的逆用,同底数幂的除法的逆用,幂的乘方的逆用.掌握各运算法则是解题关键.23.(2022秋·上海·七年级专题练习)已知34m =,35n =,分别求3m n +与23m n −的值.【答案】20,165【分析】同底数幂的除法的逆用法则,幂的乘方的逆用法则对所求的式子进行整理,再代入运算即可.【详解】解:3m n +33m n =⋅45=⨯20=;23m n −233m n =÷()233m n =÷245=÷165=.【点睛】本题考查同底数幂的乘法的逆用,同底数幂的除法的逆用,幂的乘方的逆用.掌握各运算法则是解题关键.24.(2022秋·上海·七年级校考期中)已知96,32b a ==,求323a b −的值. 【答案】43【分析】先根据幂的乘方求出3336,38b a ==,再逆用同底数幂的除法计算即可. 【详解】∵96,32b a ==, ∴233396,328b b a ====,∴3243863a b −=÷=.【点睛】本题考查了幂的乘方,同底数幂的除法,熟练掌握运算法则是解题的关键.25.(2021秋·上海浦东新·七年级期末)计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.【答案】﹣7a8【分析】根据同底数幂的乘除法,积的乘方运算法则,幂的乘方运算,最后合并同类项即可【详解】解:a•a7﹣(﹣3a4)2+a10÷a2=a8﹣9a8+a8=﹣7a8.【点睛】本题考查了同底数幂的乘除法,积的乘方运算法则,幂的乘方运算,掌握幂的运算是解题的关键.26.(2023·上海·七年级假期作业)若32x =,35y =,求23x y −的值. 【答案】45【分析】逆用幂的乘方,除法法则计算即可.【详解】()22233333x y x y x y −=÷=÷,把32x =,35y =代入得()224333455x y x y −=÷=÷=.【点睛】本题考查了同底数幂的乘方与除法,熟练掌握运算法则是解题的关键.。

第一章第03讲 同底数幂的除法(6类热点题型讲练)(原卷版)--初中数学北师大版7年级下册

第一章第03讲 同底数幂的除法(6类热点题型讲练)(原卷版)--初中数学北师大版7年级下册

第03讲同底数幂的除法(6类热点题型讲练)1.经历同底数幂的除法法则的探索过程,理解同底数幂的除法法则;2.理解零次幂和负整数指数幂的意义,并能进行负整数指数幂的运算;3.会用同底数幂的除法法则进行计算.知识点01同底数幂的除法m n m n a a a -÷=(其中,m n 都是正整数).即同底数幂相除,底数不变,指数相减.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)逆用公式:即=m nm n aa a -÷(,m n 都是正整数).知识点02零指数幂:01a =(a ≠0)知识点03负指数幂:1pp aa-=(a ≠0,p 是正整数)题型01同底数幂的除法【例题】(2023上·八年级课时练习)计算:(1)()()()722ab ab ab -÷-÷-;(2)()243m m ÷;(3)()()426x x x -⋅÷-.【变式训练】1.(2023上·全国·八年级课堂例题)计算:(1)93m m -÷;(2)63()()a a -÷-;(3)2366m m +÷.2.(2023上·全国·八年级课堂例题)计算:(1)1023a a a ÷÷;(2)255a a a ⋅÷;(3)()()5222x y x y ÷;(4)432()()()p q q p p q -÷-⋅-.题型02同底数幂除法的逆用【例题】(2023上·八年级课时练习)已知2a x =,6b x =.(1)求a b x -的值;(2)求2a b x -的值.【变式训练】1.(2023下·安徽安庆·七年级校考期中)已知3x a =,5y a =,求:(1)x y a -的值;(2)2x y a -的值.2.(2023上·河南南阳·八年级统考期中)根据条件求值:(1)已知3m a =,4n a =,求23m n a -的值;(2)已知129372n n +-=,求n 的值.题型03幂的混合运算【例题】(2023·上海·七年级假期作业)计算:(1)()()4334a a -÷-;(2)()()22237a a a a ⋅÷⨯-.【变式训练】题型04零指数幂题型05负整数指数幂【例题】计算:(1)2(5)--;(2)0(3)-;(3)510-;(4)3(0.25)--.【变式训练】题型06用科学计数法表示绝对值小于1的数一、单选题1.(2023上·河南濮阳·八年级校联考期中)下列各式运算结果为6x 的是()A .24x x ⋅B .()42x C .122x x ÷D .33x x +2.(2023上·四川宜宾·八年级统考期中)下列计算正确的是()A .426235a a a +=B .824a a a ÷=C .53822a a a ⋅=D .()236a ba b=3.(2023上·吉林松原·八年级校联考期末)经测算,一粒芝麻的质量约为0.00000201kg ,数据0.00000201用科学记数法表示为()A .320.110-⨯B .42.0110-⨯C .50.20110-⨯D .62.0110-⨯4.(2023上·河南濮阳·八年级校联考期中)若()021x +=,则x 的取值范围是()A .2x ≥-B .2x ≤-C .2x ≠-D .2x =-5.(2023上·河南新乡·八年级校考阶段练习)下列四个算式:①()()4322x x x -÷-=-;②()()2122242n n x x x +--÷-=-;③()2522a b a b a ÷=;④()2642221832a b a b a b ÷-=.其中计算不正确的是()A .①②B .①③C .②④D .②③(1)求m n a +的值;(2)求2m n a -的值.16.(2023上·陕西延安·八年级校联考阶段练习)按要求解答下面各题.(1)已知2430x y ++=,求981x y ⨯的值;(2)已知314748216a a a +++⨯÷=,求a 的值.17.(2023下·江苏泰州·七年级校联考期中)已知32a =,36b =,324c =.(1)求()23a 的值;(2)求3b c -的值;(3)直接写出a 、b 、c 之间的数量关系为______.18.(2023上·陕西延安·八年级陕西延安中学校考阶段练习)将幂的运算逆向思维可以得到m n m n a a a +=⋅,m nmnaa a -=÷,()=nmn m a a ,()=mm m a b ab ,在解题过程中,根据算式的结构特征,逆向运用幂的运算法则,常可化繁为简,化难为易,使问题巧妙获解.(1)已知2m a =,3n a =,求3m n a -的值;(2)已知2328162x ⨯⨯=,求x 的值.。

同底数幂的除法讲义

同底数幂的除法讲义

6.若b a y x ==3,3,求的yx -23的值。

的值。

同底数幂的除法知识点一:同底数幂的除法法则:同底数幂相除,底数不变,知识点一:同底数幂的除法法则:同底数幂相除,底数不变,指数指数相减。

用字母表示为ma÷n a =n m a -(a ≠0,m,n 都是正都是正整数整数,且m >n) 知识点二:零底数幂与负底数幂知识点二:零底数幂与负底数幂规定:0a =1=1((a ≠0),即任何非零数的零次幂都等于1。

p a -=p a 1(a ≠0,p 为正整数为正整数)),即任何非零数的即任何非零数的-p -p (p 为正整数)次幂等于这个数p 次幂的倒数。

次幂的倒数。

知识点三:科学技术法表示知识点三:科学技术法表示绝对值绝对值小于1的数。

的数。

一个绝对值小于一个绝对值小于1的数,用的数,用科学计数法科学计数法可以表示成na 10´,其中101££a ,n 是负整数。

是负整数。

练习题:练习题:(一)基础题(一)基础题 1.下列计算中错误的有(.下列计算中错误的有( ))A.1个B.2个C.3个D.4个5210)1(a a a =¸ 55)2(a a a a =¸235)())(3(a a a -=-¸- 33)4(0= 2.计算()()2232a a -¸的结果正确的是(的结果正确的是( ) A.2a - B.2a C.-a D.a 3.用.用科学记数法科学记数法表示下列各数:表示下列各数:(1)0.000876 (2)-0.0000001 4.(1)已知,32,52==n m 则=-n m 22______________ (2)已知,0323=--y x 则=¸yx 231010___________ 5.计算=¸¸3927m m7.若,153=-k 则k=__________________. 8.设,16,8==n m a a 则=-nm a_____________ 9.(1)若0)5(-x 无意义,则x 的值为_______________. (2)若1)3(42=-+m ,则m 的值为__________________ (3)若2713=x ,则x=_______________. 10.计算:|-2|+02013)4()1(---p。

初中数学《同底数幂的除法》解题技巧

初中数学《同底数幂的除法》解题技巧

《同底数幂的除法》解题技巧题型1 同底数幂相除问题中的“整体”思想【例 1】计算:(-3x 2y )6÷(-3x 2y )3【分析】首先看做同底数幂相除,其中将-3x 2y 看做整体作为同底数,可得(-3x 2y )3,再用积的乘方、幂的乘方进行计算。

【 解 】(-3x 2y )6÷(-3x 2y )3=(-3x 2y )6-3=(-3)3·(x 2)3·y 3=-27x 6y 3【小结】同底数幂相除问题中常会用到整体思想,即底数看做一个整体,应用同底数幂除法法则运算。

巩固练习题:⑴24)()(xy xy ÷;⑵2252)()(ab ab -÷-;⑶24)32()32(y x y x +÷+题型 2 间接运用同底数幂相除法则【例 2】 计算:[(x -2y )3]3÷[(2y -x )2]4【分析】 先化为同底数幂,再运用同底数幂法则相除。

【 解 】 [(x -2y )3]3÷[(2y -x )2]4=(x -2y )9÷(x -2y )8= x -2y【例 3】 计算:5m ·1252m ÷25m -1【分析】 可把3个幂中的底数都化为5,再进行计算。

【 解 】 5m ·1252m ÷25m -1=5m ·56m ÷52m -2=5m +6m -2m +2=55m +2【小结】 可以通过转化,把几个式子化成同底数幂,然后在运用同底数幂法则进行乘除。

巩固练习题:1. 275÷97×8122. 3147927381m m m +++⨯÷=题型 3 逆用同底数幂的除法法则求代数式的值【例 4】 已知3m =2,3n =5,求92m -n 的值。

【分析】 由92m -n 的指数是2m -n 联想到同底数幂相除,指数相减,逆用法则由已知条件可以求解。

七年级下册数学同底数幂的除法

七年级下册数学同底数幂的除法

七年级下册数学同底数幂的除法全文共四篇示例,供读者参考第一篇示例:同底数幂的除法是数学中一个基础而重要的概念,也是七年级下册数学课程中的一个重点内容。

同底数幂的除法需要我们掌握一定的方法和技巧,才能正确地解答问题。

在本文中,我们将通过详细的解析和例题,帮助同学们更好地理解和掌握同底数幂的除法。

我们来看一下什么是同底数幂。

同底数幂是指底数相同,指数不同的幂。

2的3次方和2的4次方就是同底数幂。

同底数幂的除法就是计算两个同底数幂之间的商。

在进行同底数幂的除法时,我们需要注意以下几点:1. 若两个同底数幂相除,底数相同,则指数相减,即a的m次方除以a的n次方等于a的(m-n)次方。

2的5次方除以2的3次方等于2的(5-3)次方,即2的2次方。

2. 如果被除数的指数小于除数的指数,那么商的指数为负数。

3的2次方除以3的4次方等于3的(2-4)次方,即3的-2次方,这时需要将结果化简为倒数形式,即1/3的2次方。

3. 如果两个同底数幂的底数不相同,那么它们无法进行除法运算。

在这种情况下,我们需要先将它们化为同底数幂,再进行运算。

下面我们通过几个例题来演示同底数幂的除法:例题1:计算2的6次方除以2的3次方。

通过以上例题的演示,相信同学们已经初步掌握了同底数幂的除法的方法和技巧。

在实际的解题过程中,同学们可以根据题目的要求,灵活运用同底数幂的除法规则,正确地解答问题。

同底数幂的除法在数学运算中有着广泛的应用,特别是在代数方程组的求解、求幂函数的导数等问题中经常会涉及到。

掌握同底数幂的除法不仅有助于同学们在数学课堂上取得优异的成绩,更能提高他们的数学思维能力和解决问题的能力。

希望通过本文的讲解,同学们能够更好地理解和掌握同底数幂的除法,为今后的学习打下坚实的基础。

也希望同学们在学习数学的过程中能够保持耐心和勤奋,不断提升自己的数学水平,取得更好的成绩。

祝愿同学们在学习数学的道路上越走越顺利,越来越优秀!共同进步,共同努力!第二篇示例:七年级下册数学同底数幂的除法在七年级数学课程中,我们学习了关于指数的知识,其中包括同底数幂的加法、减法、乘法等运算。

同底数幂的除法讲解

同底数幂的除法讲解

同底数幂的除法讲解
嘿,朋友们!今天咱来聊聊同底数幂的除法呀!这玩意儿就好像是一场奇妙的数字游戏。

你看啊,同底数幂就像是一群有着相同“姓氏”的小伙伴。

比如说 2 的几次方,那这些幂都是“2 家族”的。

那同底数幂的除法呢,就像是在这个家族里分东西。

比如说 2 的 5 次方除以 2 的 3 次方,这就好比是“2 家族”里有一堆东西,5 个 2 相乘那么多,然后要分成 3 个 2 相乘那么多份,那最后剩下多少呢?嘿嘿,不就是 2 个 2 相乘嘛,也就是 2 的 2 次方呀!这是不是挺有意思的?
咱再打个比方,就好像你有一堆苹果,都是同一个品种的,然后你要把它们分成几堆。

同底数幂的除法就是在计算这样的分法之后,还剩下多少个苹果。

而且啊,同底数幂的除法还有个特别重要的规则,那就是底数不变,指数相减。

这就像是分苹果的时候,苹果的品种不变,只是数量在变化。

你想想,要是没有这个规则,那咱得多混乱呀!就好像分苹果的时候没个准儿,那可不行。

同底数幂的除法在我们生活中其实也有不少应用呢!虽然可能不是那么直接明显,但你仔细想想,很多地方都有它的影子。

比如说计算一些比例关系的时候,或者在科学研究中分析数据的时候,都可能会用到同底数幂的除法。

这就像是一把神奇的钥匙,可以帮我们打开很多知识的大门。

哎呀呀,说了这么多,同底数幂的除法真的很重要啊!它就像是数字世界里的一个小魔法,能让我们更清楚地了解数字之间的关系。

所以啊,大家可一定要好好掌握这个知识呀,别把它当成一个难事儿,就当成是和数字小伙伴们玩游戏,多有趣呀!只要用心去理解,去感受,你肯定能把同底数幂的除法搞得明明白白的。

相信我,没错的!。

苏教版七年级下册数学[同底数幂的除法 知识点整理及重点题型梳理]

苏教版七年级下册数学[同底数幂的除法 知识点整理及重点题型梳理]

苏教版七年级下册数学重难点突破知识点梳理及重点题型巩固练习同底数幂的除法【学习目标】1. 会用同底数幂的除法性质进行计算.2. 掌握零指数幂和负整数指数幂的意义. 3.掌握科学记数法. 【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a-÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式. 要点三、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nnaa -=(a ≠0,n 是正整数).引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠);()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0naa -≠是n a 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy -=(0xy ≠),()()551a b a b -+=+(0a b +≠). 要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10na -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法. 【典型例题】类型一、同底数幂的除法1、计算:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号. 【答案与解析】 解:(1)83835x x xx -÷==.(2)3312()a a aa --÷=-=-.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===.(4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.【399108 整式的除法 例1】2、计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再计算,尽可能地去变偶次幂的底数,如1212(52)(25)a b b a -=-.(2)注意指数为1的多项式.如x y -的指数为1,而不是0. 【答案与解析】解:(1)5514()()()()x y x y x y x y --÷-=-=-.(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=- (3)64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯.(4)3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-.【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行计算.【 整式的除法 例2】3、已知32m =,34n =,求129m n+-的值.【答案与解析】 解: 121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======. 当32m=,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 举一反三:【变式】(2015春•苏州)已知以ma =2,na =4,ka =32.则32m n ka +-的值为 .【答案】解:3ma=32=8,2n a =24=16,32m n k a +-=3m a •2n a ÷k a =8×16÷32=4,故答案为:4.类型二、负整数次幂的运算4、计算:(1)223-⎛⎫- ⎪⎝⎭;(2)23131()()a b a b ab ---÷.【答案与解析】解:(1)222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭; (2)2313123330()()a b a b ab a b a b ab a b b -----÷===.【总结升华】要正确理解负整数指数幂的意义. 举一反三:【变式】计算:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭45311111122116212223228=++⨯⨯+=++⨯⨯+ 1151611732832=+++= 5、 已知1327m =,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________.【答案与解析】 解: ∵ 331133273m-===,∴ 3m =-. ∵ 122n n -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-.∴ 4411(3)(3)81nm -=-==-. 【总结升华】先将127变形为底数为3的幂,122nn -⎛⎫= ⎪⎝⎭,4162=,然后确定m 、n 的值,最后代值求nm . 举一反三:【变式】计算:(1)1232()a b c --;(2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭;【答案】解:(1)原式424626b a b c a c--==.(2)原式8236981212888b b c b c b cc---=⨯==. 类型三、科学记数法6、(2014秋•福州)观察下列计算过程:(1)∵33÷53=332231333=⨯,33÷53=353-=23-,∴23-=(2)当a≠0时,∵2a ÷7a =27a a =225a a a ⨯=51a ,2a ÷7a =27a -=5a -,5a -=51a, 由此可归纳出规律是:pa-=1p a(a≠0,P 为正整数) 请运用上述规律解决下列问题: (1)填空:103-= ;259x x x ⨯÷= .(2)用科学记数法:3×410-= .(写成小数形式)(3)把0.00000002写成如(2)的科学记数法10na ⨯的形式是: . 【答案与解析】 解:(1)103-=1013; 259x x x ⨯÷ =259x +-=221x x -=; (2)3×410-=0.0003,(3)0.00000002=2×810-.【总结升华】本题考查用科学记数法表示较小的数,一般形式为10na ⨯,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.。

初中数学 中考重点难点 同底数幂的运算法则 这个知识点必须掌握

初中数学 中考重点难点 同底数幂的运算法则 这个知识点必须掌握

初中数学中考重点难点同底数幂的运算法则这个知识点必须掌握同底数幂的运算法则是初中数学中比较重要的一个知识点,也是中考中难点之一。

同底数幂是指底数相同,指数不同的幂,例如2的3次方和2的4次方。

在计算同底数幂的时候,必须掌握一定的运算法则。

下面我将从定义、性质和例题等方面详细讲解同底数幂的运算法则,帮助大家掌握这个知识点。

一、定义同底数幂是指底数相同,指数不同的幂。

例如:2的3次方和2的4次方就是同底数幂。

3的5次方和3的6次方也是同底数幂。

二、性质1. 同底数幂乘法法则同底数幂的乘法法则是:底数不变,指数相加。

即:若a的m次方和a的n次方是同底数幂,则有:a的m次方乘a的n次方等于a的m+n次方。

例如:2的3次方乘2的4次方等于2的7次方。

2. 同底数幂除法法则同底数幂的除法法则是:底数不变,指数相减。

即:若a的m次方和a的n次方是同底数幂,则有:a的m次方除a的n次方等于a的m-n次方。

例如:2的4次方除以2的3次方等于2的1次方。

3. 同底数幂乘方法则同底数幂的乘方法则是:底数不变,指数相乘。

即:若a的m次方是同底数幂,则有:a的m次方的n次方等于a 的mn次方。

例如:2的3次方的4次方等于2的12次方。

三、例题例题1:计算2的5次方乘以2的2次方。

解析:根据同底数幂的乘法法则,底数不变,指数相加。

即:2的5次方乘2的2次方可以表示成2的5+2次方。

所以:2的5次方乘2的2次方等于2的7次方,即答案为128。

例题2:计算4的7次方除以4的5次方。

解析:根据同底数幂的除法法则,底数不变,指数相减。

即:4的7次方除以4的5次方可以表示成4的7-5次方。

所以:4的7次方除以4的5次方等于4的2次方,即答案为16。

例题3:将2的2次方的3次方化为同底数幂。

解析:根据同底数幂的乘方法则,底数不变,指数相乘。

即:2的2次方的3次方可以表示成2的2×3次方。

所以:2的2次方的3次方等于2的6次方,即答案为64。

同底数幂的除法笔记

同底数幂的除法笔记

同底数幂的除法笔记同底数幂的除法笔记1、同底数幂的乘法与同底数幂的除法笔记对于任意一个非零自然数,都可以表示成(a×b)n这样的形式,这种形式称为a与b的“同底数幂的乘法”或简称“同底数幂的乘法”。

2、自然数与非零自然数的乘法,是把这些自然数分别与相应的同底数幂的乘法相乘,积的末尾仍然添上与这个乘数相同的幂,并且只需要把各个因数的幂相乘,把所得的结果看做各个因数的积,再把各个因数的积加起来。

4、商的变化规律: a、在两个相乘的同底数幂中,相乘的次数越多,则积越大; b、相乘的次数越少,则积越小。

这就是说,同底数幂的乘法,积的末尾,可以有99这样的无穷多个零。

如果你仔细观察,就会发现这种现象:例如,积是sqrt( 3),即300的300次方,它可以看成6个3的和,也可以看成3个3的和,因此, 6个3可以写成6×3的形式。

3、列竖式计算时,应注意以下几点:①在列竖式计算时,商的末尾对齐,若不够商1,则用0补足;②如果被除数和除数同时扩大或缩小相同的倍数,商不变。

例如, 4.6÷4.2=2.8, 4.6÷2.8=2.8;③小数除法的计算法则同整数除法。

同底数幂的除法是小学阶段最重要的数学内容之一,但要真正掌握好,却不是件容易的事。

根据多年来我在课堂上的讲解和辅导经验,我认为要掌握好同底数幂的除法,关键要做到以下四点: 1、熟练掌握同底数幂的乘法的运算顺序; 2、注意引导学生理解同底数幂乘法的算理,找出同底数幂乘法与除法之间的联系; 3、强调学生计算的准确性,避免错误; 4、教会学生灵活运用知识。

下面谈谈我的具体做法: 1、熟练掌握同底数幂的乘法的运算顺序从横向看,同底数幂的乘法先算乘数与乘数的积,后算乘数与被乘数的积,再算被乘数与积的差;从纵向看,同底数幂的乘法先算乘数,后算乘数与被乘数。

2、注意引导学生理解同底数幂乘法的算理,找出同底数幂乘法与除法之间的联系根据同底数幂乘法的特点,教师要引导学生在理解同底数幂乘法算理的基础上进行思考,得出同底数幂乘法与除法之间存在着联系,其本质相同,都是“用乘数的积去除以乘数,用除数的商去乘除数,求出积的最大公因数”,但二者在实际操作中又是有区别的。

同底数幂的乘法和除法的法则

同底数幂的乘法和除法的法则

同底数幂的乘法和除法的法则
同底数幂的乘法和除法的法则是指当两个幂具有相同的底数时,可以通过运用一些特定的规则来简化计算过程。

这些规则可以帮助我们在处理幂运算时更加高效和方便。

一、同底数幂的乘法法则:
当两个幂具有相同的底数时,它们的乘积等于底数不变,指数相加。

假设我们有两个幂:a^m和a^n,其中a是底数,m和n是指数。

根据同底数幂的乘法法则,它们的乘积可以表示为:a^m * a^n = a^(m+n)。

这个规则告诉我们,在进行同底数幂的乘法时,我们只需要将它们的指数相加,并保持底数不变。

这样就能够简化计算过程。

举例说明:
假设我们要计算2^3 * 2^4。

根据同底数幂的乘法法则,我们可以将指数3和4相加得到7,所以结果为2^7。

二、同底数幂的除法法则:
当两个幂具有相同的底数时,它们的商等于底数不变,指数相减。

假设我们有两个幂:a^m和a^n,其中a是底数,m和n是指数。

根据同底数幂的除法法则,它们的商可以表示为:a^m / a^n =
a^(m-n)。

这个规则告诉我们,在进行同底数幂的除法时,我们只需要将被除数和除数的指数相减,并保持底数不变。

这样就能够简化计算过程。

举例说明:
假设我们要计算2^5 / 2^2。

根据同底数幂的除法法则,我们可以将指数5减去指数2得到3,所以结果为2^3。

同底数幂的乘法和除法的法则是非常有用的运算规则。

它们可以帮助我们在处理幂运算时更加高效和方便。

通过运用这些规则,我们可以简化计算过程,并得到准确的结果。

同底数幂的除法的讲解

同底数幂的除法的讲解

同底数幂的除法的讲解
我们要讲解的是同底数幂的除法。

首先,我们要理解什么是同底数幂。

同底数幂是指底数相同的幂。

例如,2^3 和 2^4 都是以2为底的幂,我们称之为同底数幂。

接下来,我们来看同底数幂的除法规则。

假设有两个同底数幂 a^m 和 a^n (其中a是底数,m和n是指数),它们的除法可以表示为:
a^m ÷ a^n = a^(m-n)
这个规则告诉我们,当两个同底数的幂相除时,我们只需要将它们的指数相减。

为了更好地理解这个规则,我们可以举一个例子:
假设 m=3, n=2,那么:
a^3 ÷ a^2 = a^(3-2) = a^1 = a
这就是同底数幂的除法规则。

希望这个讲解能帮助你理解这个概念。

同底数幂的除法教育叙事-概述说明以及解释

同底数幂的除法教育叙事-概述说明以及解释

同底数幂的除法教育叙事-概述说明以及解释1.引言1.1 概述同底数幂的除法是数学中的一个重要概念,它涉及到对具有相同底数的幂进行除法运算。

通过对同底数幂的除法进行深入研究和应用,我们可以更好地理解和解决数学中的各种问题。

在本文中,我们将首先介绍同底数幂的除法原理,即如何进行同底数幂的除法运算。

然后,我们将探讨同底数幂的除法在实际生活中的应用,并展示它在解决各种问题中的重要性。

通过本文的学习,读者将能够掌握同底数幂的除法的基本知识和操作技巧,进一步提升数学能力和解决问题的能力。

同时,对于那些对数学感兴趣的人来说,本文也将为他们提供一个深入了解同底数幂的除法的机会,拓宽他们的数学视野。

总体而言,本文将通过讲解同底数幂的除法原理和应用,帮助读者深入掌握这一概念,并鼓励他们在解决实际问题中灵活应用这一知识。

通过理论和实践相结合的方法,我们相信读者对于同底数幂的除法将有更加深入的理解,为他们在学术和职业生涯中的成功打下坚实的基础。

1.2文章结构文章结构部分的内容:本文主要分为引言、正文和结论三个部分。

引言部分主要包括概述、文章结构和目的。

在概述部分,将简要介绍同底数幂的除法这一主题的背景和重要性,以及引起对该主题研究的原因。

在文章结构部分,将明确列出本文的基本结构,以便读者能够更好地理解整篇文章的脉络和内容。

在目的部分,明确指出本文的目标是为了解释同底数幂的除法原理和应用,并提供相关实例和解析,以帮助读者更好地理解和应用这一概念。

正文部分将分为同底数幂的除法原理和同底数幂的除法应用两个小节进行论述。

在同底数幂的除法原理部分,将详细解释同底数幂的除法的基本原理和规则,并通过数学公式和推导过程进行说明。

在同底数幂的除法应用部分,将列举一些相关的实际问题和应用场景,并通过具体例子和解析,展示同底数幂的除法在实际问题中的应用方法和技巧。

结论部分将总结全文,回顾同底数幂的除法原理和应用的关键概念和方法,并对其在数学学习和实际问题中的重要性进行强调。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 1
《同底数幂的除法》要点解读
知识点: 同底数幂的除法
同底数幂相除,底数不变,指数相减.
用字母表示为n m n m a a a -=÷(0≠a ,m 、n 为正整数,m >n )
注意事项:
(1)因为零不能作除数,所以底数0≠a ;
(2)同底数幂的除法运算与同底数幂的乘法运算互为逆运算;
(3)运用法则的关键是看底数是否相同,若不相同则不能运用该法则,指数相减是指被除式的指数减去除式的指数;
(4)注意指数是“1”的情况,如155-=÷a a a 而不是05-a ;
(5)该法则可以推广运用,如p n m p n m a a a a --=÷÷(0≠a ,m 、n 、p 为正整数,m >p n +);
(6)底数a 可以取除零之外的任何数、单项式或多项式;
(7)注意同底数幂的除法法则的逆用,n m n m a a a ÷=-(0≠a ,m 、n 为正整数,m >n );
(8)同底数幂的除法的结果可用乘法来验证.
例1 计算:
(1)36)()(a a -÷-;
(2)24)1()1(+÷+a a ;
(3)237)()()(x x x -÷-÷-.
分析:利用同底数幂的除法法则进行运算时关键要找准底数和指数. 解:(1)原式3336)()(a a a -=-=-=-;
(2)原式224)1()1(+=+=-a a ;
(3)原式22237237)()()()()(x x x x x x =-=-=-÷-÷-=--.。

相关文档
最新文档