八年级上册数学《三角形》与三角形有关的角-知识点整

合集下载

(完整版)人教版-八年级上册-三角形的知识点及题型总结

(完整版)人教版-八年级上册-三角形的知识点及题型总结

三角形的知识点及题型总结一、三角形的认识定义:由不在同一条直线上的三条线段首尾按序相接所构成的图形。

分类:锐角三角形(三个角都是锐角的三角形)按角分类直角三角形(有一个角是直角的三角形)钝角三角形(有一个角是钝角的三角形)三边都不相等的三角形按边分类等腰三角形底边和腰不相等的等腰三角形等边三角形例题 1图1中共几个三角形。

例题 2以下说法正确的选项是()A.三角形分为等边三角形和三边不相等三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形、直角三角形、钝角三角形例题 3 已知a、b、c为△ABC的三边长,b、c知足(b-2)2+|c-3|=0,且 a 为方程 |x -4|=2 的解 .求△ ABC的周长,并判断△ ABC的形状 .二、与三角形相关的边三边的关系:三角形的两边和大于第三边,两边的差小于第三边。

例题 1以以下各组数据为边长,能够成三角形的是(),4,5,4,8,7,10,4,5例题 2已知三角形的两边边长分别为4、5,则该三角形周长L 的范围是()A.1<L<9B.9<L<14C.10<L<18D.没法确立课后练习:1、若三角形的两边长分别为5、8,则第三边可能是()B. 62、等腰三角形的两边长分别为6、13,则它的周长为。

3、等腰三角形的两边长分别为4、已知三角形的两边长为 2 和4、5,则第三边长为。

4,为了使其周长是最小的整数,则第三边的为。

5、若等腰三角形的周长为13cm,此中一边长为 3cm,则等腰三角形的底边为()D.7cm 或3cm6、依据以下已知条件,能独一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠ A=30°C.∠A=60°,∠ B=45°, AB=4D.∠C=90°, AB=68、用7 根火柴棒首尾按序相连摆成一个三角形,能摆成个不一样的三角形。

八年级上册第一章三角形整章复习知识点和对应练习

八年级上册第一章三角形整章复习知识点和对应练习

T ——三角形一、知识梳理:专题一:三角形有关的线段;专题二:三角形有关的角;专题三:多边形及其内角和.二、考点分类专题一:三角形有关的线段考点一:三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形分类:(1)按角的关系分类 (2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形 3.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.【例1】【类型一】 判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A .2cm ,3cm ,5cm ;B .5cm ,6cm ,10cm ;C .1cm ,1cm ,3cm ;D .3cm ,4cm ,9cm 解析:选项A 中2+3=5,不能组成三角形,故此选项错误;选项B 中5+6>10,能组成三角形,故此选项正确;选项C 中1+1<3,不能组成三角形,故此选项错误;选项D 中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】 判断三角形边的取值范围一个三角形的三边长分别为4,7,x ,那么x 的取值范围是( )A .3<x <11 ;B .4<x <7 ;C .-3<x <11 ;D .x >3解析:∵三角形的三边长分别为4,7,x ,∴7-4<x <7+4,即3<x <11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.【类型三】等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.考点二:三角形的高、中线与角平分线1.三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高.2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.3.三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形的角平分线.【例2】探究点一:三角形的高【类型一】三角形高的画法画△ABC的边AB上的高,下列画法中,正确的是( )解:过点C 作边AB 的垂线段,即画AB 边上的高CD ,所以画法正确的是D.故选D. 方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.【类型二】 根据三角形的面积求高如图所示①,在△ABC 中,AB =AC =5,BC =6,AD ⊥BC 于点D ,且AD =4,若点P 在边AC 上移动,则BP 的最小值为________.解析:根据垂线段最短,可知当BP ⊥AC 时,BP 有最小值.由△ABC 的面积公式可知12AD ·BC =12BP ·AC ,解得BP =245方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通常称为“面积法”.① ② ③ ④ 探究点二:三角形的中线【类型一】 应用三角形的中线求线段的长如图②在△ABC 中,AC =5cm ,AD 是△ABC 的中线,若△ABD 的周长比△ADC 的周长大2cm ,则BA =________.解析:如图,∵AD 是△ABC 的中线,∴BD =CD ,∴△ABD 的周长-△ADC 的周长=(BA +BD +AD )-(AC +AD +CD )=BA -AC ,∴BA -5=2,∴BA =7cm.方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将△ABD 与△ADC 的周长之差转化为边长的差.【类型二】 利用中线解决三角形的面积问题如图③,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF 和△BEF 的面积分别为S △ABC ,S △ADF 和S △BEF ,且S △ABC =12,则S △ADF -S △BEF =________.解析:∵点D 是AC 的中点,∴AD =12AC .∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,即S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.故答案为2.方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.探究点三:三角形的角平分线如图④,已知:AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC =60°,∠BCE =40°,求∠ADB 的度数.解析:根据AD 是△ABC 的角平分线,∠BAC =60°,得出∠BAD =30°,再利用CE 是△ABC 的高,∠BCE =40°,得出∠B 的度数,进而得出∠ADB 的度数.解:∵AD 是△ABC 的角平分线,∠BAC =60°,∴∠DAC =∠BAD =30°.∵CE 是△ABC 的高,∠BCE =40°,∴∠B =50°,∴∠ADB =180°-∠B -∠BAD =180°-50°-30°=100°.方法总结:通过本题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查.考点三:三角形的稳定性【例3】要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,…,那么要使一个n 边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n 边形的一个顶点可以作(n -3)条对角线,把多边形分成(n -2)个三角形,所以,要使一个n 边形木架不变形,至少需要(n -3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.专题二:三角形有关的角考点四:三角形的内角1.三角形的内角和定理:三角形的内角和等于180°2.直角三角形的性质:直角三角形两锐角互余【例4】探究点一:三角形的内角和【类型一】 求三角形内角的度数已知,如图①,D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E ,若∠A =46°,∠D =50°.求∠ACB 的度数.① ② 解析:在Rt △DFB 中,根据三角形内角和定理,求得∠B 的度数,再在△ABC 中求∠ACB 的度数即可.解:在△DFB 中,∵DF ⊥AB ,∴∠DFB =90°.∵∠D =50°,∠DFB +∠D +∠B =180°,∴∠B =40°.在△ABC 中,∵∠A =46°,∠B =40°,∴∠ACB =180°-∠A -∠B =94°. 方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.【类型二】 判断三角形的形状一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法判定解析:设这个三角形的三个内角的度数分别是x ,2x ,3x ,根据三角形的内角和为180°,得x +2x +3x =180°,解得x =30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.故选A.方法总结:在解决有关比例问题时,通常先设比例系数,然后列方程求解.【类型三】 三角形的内角与角平分线、高的综合运用如图②,在△ABC 中,∠A =12∠B =13∠ACB ,CD 是△ABC 的高,CE 是∠ACB 的角平分线,求∠DCE 的度数.解析:根据已知条件用∠A 表示出∠B 和∠ACB ,利用三角形的内角和求出∠A ,再求出∠ACB ,∠ACD ,最后根据角平分线的定义求出∠ACE 即可求得∠DCE 的度数.解:∵∠A =12∠B =13∠ACB ,设∠A =x ,∴∠B =2x ,∠ACB =3x .∵∠A +∠B +∠ACB =180°,∴x +2x +3x =180°,解得x =30°,∴∠A =30°,∠ACB =90°.∵CD 是△ABC 的高,∴∠ADC =90°,∴∠ACD =180°-90°-30°=60°.∵CE 是∠ACB 的角平分线,∴∠ACE =12×90°=45°,∴∠DCE =∠ACD -∠ACE =60°-45°=15°.方法总结:本题是常见的几何计算题,解题的关键是利用三角形的内角和定理和角平分线的性质,找出角与角之间的关系并结合图形解答.探究点二:直角三角形的性质【类型一】 直角三角形性质的运用如图,CE ⊥AF ,垂足为E ,CE 与BF 相交于点D ,∠F =40°,∠C =30°,求∠EDF 、∠DBC 的度数.解析:根据直角三角形两锐角互余列式计算即可求出∠EDF ,再根据三角形的内角和定理求出∠C +∠DBC =∠F +∠DEF ,然后求解即可.解:∵CE ⊥AF ,∴∠DEF =90°,∴∠EDF =90°-∠F =90°-40°=50°.由三角形的内角和定理得∠C +∠DBC +∠CDB =∠F +∠DEF +∠EDF ,∴30°+∠DBC =40°+90°,∴∠DBC =100°.方法总结:本题主要利用了直角三角形两锐角互余的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.考点五:三角形的外角1.三角形外角的定义:三角形的一边与另一边的延长线组成的角.2.三角形外角的性质:三角形的外角等于与它不相邻的两内角的和;三角形的一个外角大于与它不相邻的任何一个内角.【例5】探究点:三角形的外角【类型一】 应用三角形的外角求角的度数如图所示,P 为△ABC 内一点,∠BPC =150°,∠ABP =20°,∠ACP =30°,求∠A 的度数.解析:延长BP交AC于E或连接AP并延长,构造三角形的外角,再利用外角的性质即可求出∠A的度数.解:延长BP交AC于点E,则∠BPC,∠PEC分别为△PCE,△ABE的外角,∴∠BPC=∠PEC +∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°.∴∠A=∠PEC-∠ABE=120°-20°=100°.方法总结:利用三角形的外角的性质将已知与未知的角联系起来是计算角的度数的方法.【类型二】用三角形外角的性质把几个角的和分别转化为一个三角形的内角和已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.解析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG、∠EGF分别是△BDF、△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.方法总结:解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.【类型三】三角形外角的性质和角平分线的综合应用如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系(写出结论即可);(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.解析:先计算特殊角的情况,再综合运用三角形的内角和定理及其推论结合三角形的角平分线概念解决.解:(1)根据外角的性质得∠ACD =∠A +∠ABC =60°+50°=110°,∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠1=12∠ACD =55°,∠2=12∠ABC =25°.∵∠E +∠2=∠1,∴∠E =∠1-∠2=30°;(2)猜想:∠E =12∠A ; (3)∵BE 、CE 是两外角的平分线,∴∠2=12∠CBD ,∠4=12∠BCF ,而∠CBD =∠A +∠ACB ,∠BCF =∠A +∠ABC ,∴∠2=12(∠A +∠ACB ),∠4=12(∠A +∠ABC ).∵∠E +∠2+∠4=180°,∴∠E +12(∠A +∠ACB )+12(∠A +∠ABC )=180°,即∠E +12∠A +12(∠A +∠ACB +∠ABC )=180°.∵∠A +∠ACB +∠ABC =180°,∴∠E +12∠A =90°. 方法总结:对于本题发现的结论要予以重视:图①中,∠E =12∠A ;图②中,∠E =90°-12∠A .考点六:多边形及其内角和多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n 边形从一个顶点出发的对角线条数为(n -3)条;n 边形共有对角线n (n -3)2条(n ≥3).4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形. 多边形的内角和与外角和1.性质:多边形的内角和等于(n -2)·180°;多边形的外角和等于360°.2.多边形的边数与内角和、外角和的关系:(1)n 边形的内角和等于(n -2)·180°(n ≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.(2)多边形的外角和等于360°,与边数的多少无关.(3).正n 边形:正n 边形的内角的度数为(n -2)·180°n ,外角的度数为360°n. 【例6】探究点一:多边形的概念【类型一】 多边形及其概念下列图形不是凸多边形的是( )解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D 的图形不是凸多边形.故选D. 方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.【类型二】 确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( )A .14或15或16B .15或16C .14或16D .15或16或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A. 方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】 确定多边形的对角线的条数从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n 边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.解析:根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出n (n -3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n 边形的一个顶点出发有(n -3)条对角线,从而推导出n 边形共有n (n -3)2条对角线. 方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有(n -3)条;(2)多边形有n 条边,对角线的条数为n (n -3)2.【类型二】 根据对角线条数确定多边形的边数从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( )A .6B .7C .8D .9解析:设这个多边形是n 边形.依题意,得n -3=5,解得n =8.故这个多边形的边数是8.故选C.【类型三】 根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )A .五边形B .六边形C .七边形D .八边形解析:设原多边形是n 边形,则n -2=6,解得n =8.故选D.方法总结:从n 边形的一个顶点出发可引出(n -3)条对角线,这(n -3)条对角线把n 边形分成(n -2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是( )A .等腰三角形B .长方形C .正方形D .五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C. 方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.探究点一:多边形的内角和【类型一】利用内角和求边数一个多边形的内角和为540°,则它是( )A.四边形 B.五边形C.六边形 D.七边形解析:熟记多边形的内角和公式(n-2)·180°设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.【类型二】求多边形的内角和一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( )A.1620° B.1800°C.1980° D.以上答案都有可能解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.【类型三】复杂图形中的角度计算如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A.450° B.540°C.630° D.720°解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.【类型四】利用方程和不等式确定多边形的边数一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+45°<x<180°×7+45°,因为x为多边形的内角和,所以它是180°的倍数,所以x=180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.方法总结:解题的关键是由题意列出不等式求出这个多边形的边数.探究点二:多边形的外角和【类型一】已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正( )A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是( )A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n =3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.。

八年级上册数学- 与三角形有关的角

八年级上册数学- 与三角形有关的角

【模块一】三角形内角和定理及应用 方法技巧任意一个三角形的三个内角的和都等于180°,当已知三角形两角和时,可求第三个角. 题型一 三角形内角和定理【例1】(2018长春)如图,在△ABC 中,CD 平分ACB ∠交AB 于点D 作BC DE //交AC 于点E ,若48,54=∠=∠B A ,求CDE ∠的度数.EB CDA题型二 三角形内角和定理的应用【例2】如图,在ABC ∆中,ACB ABC ∠=∠,点P 为ABC ∆内的一点,且PCA PBC ∠=∠,110=∠BPC ,求A ∠的度数.BCP A题型三 利用互余互补导角(1)已知CE BD ,是ABC ∆的两条高,直线CE BD ,相交于点H . 如图,①在图中找出与DBA ∠相等的角,并说明理由;②若 100=∠BAC ,求DHE ∠的度数;(2)在ABC ∆中,50=∠A ,直接写出DHE ∠的度数是E HBCDA针对练习11. 在下列条件中①C B A ∠=∠+∠;②3:2:1::=∠∠∠C B A ③C B A ∠=∠=∠3121;④C B A ∠=∠=∠2;⑤C B A ∠=∠=∠21中能确定ABC ∆为直角三角形的条件有 ( )A.2个B.3个C.4个D.5个 2. 已知:如图,在ABC∆中,BD C ABC ,∠=∠是ABC ∠的角平分线,且,BED BDE ∠=∠ 100=∠A ,求DEC ∠的度数.EBCDA3. 如图,在ABC ∆中,AD 平分BAC ∠,P 为线段AD 上一点,AD PE ⊥交BC 的延长线于点E ,若35=∠B , 85=∠ACB ,求E ∠的度数.PEBCDA【板块二】 三角形外角性质及应用 方法技巧任意一个三角形的外角都等于和它不相邻的两个内角的和,利用这个性质可以更快捷地建立角与角之间的关系或计算角的角度.2E 1BCDA【例4】如图,ABC ∆为直角三角形, 90=∠C ,若沿图中虚线剪去C ∠,求21∠+∠的度数.针对练习21. 如图,已知AD 是ABC ∆的角平分线,CF 是ABC ∆的高, 45,60=∠=∠BCE BAC ,求ADC ∠的度数.E pBCDA2.如图,在ABC ∆中,BAC ∠的角平分线交BC 于点D. (1)如图1,若68=∠B ,32=∠C ,BC AE ⊥交于E ,EAD ∠的度数为 ;(2)如图2,若点F 是AD 延长线上一点,BAF ∠,BDF ∠的平分线交于点G ,x B =∠,y C =∠(y x >),求G ∠的度数.图2图1FB CDAG E BCD A【模块三】三角形的折叠与求角 方法技巧1.充分利用折叠问题中的已知条件和隐含条件是解题关键;2.一副直角三角板各内角度数如图. 题型一 三角板的叠放求角【例6】生活中到处都存放着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如下两幅图都是同一副三角板拼凑而得到的: 如图1,(1)求ABC ∠的度数;(2)如图2,若BC AE //,则AFD ∠= .图1图245°60°45°30°EFBCD AE F B C DA【例7】(1)如图1,把ABC ∆纸片沿DE 折叠,使点A 落在四边形BCDE 内部点A `的位置.试写出A ∠与21∠+∠之间的关系,并说明理由;(2)如果把ABC ∆纸片沿DE 折叠,使点A 落在四边形BCDE 内部点A `的位置.如图②所示,试写出A ∠与21∠+∠之间的关系?直接写出(3)如果把ABC ∆纸片沿EF 折叠,使点D A ,落在四边形BCEF 内部点A `,D `的的位置.如图③所示,试写出`A ∠,`D ∠与21∠+∠之间的 关系.图3图1图212A′D′2A′E F BCD AE 1BCDA EA′BCD A21针对练习31.将直角三角形(ACB ∠为直角)沿线段CD 折叠使点B 落在点`B 处,若`ACB ∠=50°,求ACD ∠的度数.B′BCAD。

八年级上册数学知识点总结:与三角形有关的线段、角

八年级上册数学知识点总结:与三角形有关的线段、角

八年级上册数学知识点总结:与三角形有关的线段、角学习是一个循序渐进的过程,也是一个不断积累不断创新的过程。

下面小编为大家整理了八年级上册数学知识点总结:与三角形有关的线段、角,欢迎大家参考阅读! 【一】三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

【二】三角形的边和角三边关系:三角形中任意两边之和大于第三边。

由三边关系可以推出:三角形任意两边之差小于第三边。

【三】三角形内、外角的关系1.三角形的内角和等于180°。

2.直角三角形的两个锐角互余。

3.三角形的一外角等于和它不相邻的两个内角之和,三角形的一个外角大于任何一个和它不相邻的内角。

4.三角形的外角和为360°。

【四】等腰三角形与直角三角形:1.等腰三角形:有两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰,三条边都相等的三角形叫做等边三角形(或正三角形)。

说明:等边三角形是等腰三角形的特殊情况。

2.直角三角形:有一个角是直角的三角形是直角三角形,它的两个锐角互余。

以上就是查字典数学网为大家整理的八年级上册数学知识点总结:与三角形有关的线段、角,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!。

与三角形有关的角(2)-人教版八年级数学上册教材知识点变式提高培训系列

 与三角形有关的角(2)-人教版八年级数学上册教材知识点变式提高培训系列

人教版八年级数学上册教材知识点变式提高培训系列11.2 与三角形有关的角(1)知识点三:表示方位的角方位角是指以南北方向为准,向两边偏的角度大小,即“南偏东 x”“南偏西 x”“北偏东45称为西北方向。

x”“北偏西 x”,我们通常把南偏东45称为东南方向,北偏西【例题3】如图所示,一艘渔船在B处测得灯塔A在北偏东60°的方向,另一艘货轮在C处测得灯塔A在北偏东40°的方向,那么在灯塔A处观看B和C时的视角∠BAC是多少度?【练习】1.如图所示,有一艘渔船上午9点在A处沿正东方向航行,在A处测得灯塔C在北偏东60°方向上,行驶2h到达B处,在B处测得灯塔C,在北偏东15°方向上,试求∠ABC内角的度数.知识点四:三角形的外角(1)定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.注意:三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形外角的特点:∠顶点在三角形的一个顶点上;∠一条边是三角形的一边;∠另一条边是三角形某条边的延长线.(3)三角形的外角性质:∠三角形的外角和为360°.∠三角形的一个外角等于和它不相邻的两个内角的和.∠三角形的一个外角大于任何一个和它不相邻的内角.【例题1】1.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A.80°B.100°C.120°D.140°2.一副三角板有两个三角形,如图叠放在一起,则∠α的度数是()A.120°B.135°C.150°D.165°【练习】1.在∠ABC 中,∠A=35°,∠B=72°,则与∠C 相邻的外角为 .2.如图,在∠ABC 中,D 、E 分别是AB 、AC 上的点,点F 在BC 的延长线上,DE∠BC ,∠A=44°,∠1=57°,则∠2= .3.在∠ABC 中,∠A=25°,∠C=45°,则与∠B 相邻的外角的度数为 .4.在∠ABC 中,∠A=25°,∠C=45°,则与∠B 相邻的外角的度数为 .附解析:知识点三:表示方位的角方位角是指以南北方向为准,向两边偏的角度大小,即“南偏东 x ”“南偏西x ”“北偏东 x ”“北偏西 x ”,我们通常把南偏东 45称为东南方向,北偏西 45称为西北方向。

八年级上册数学三角形的角知识点结论

八年级上册数学三角形的角知识点结论

八年级上册数学三角形的角知识点结论在学习八年级上册数学课程中,我们经常会接触到三角形的相关知识。

三角形是初中数学中一个重要的基础概念,而其中的角知识点更是我们需要深入掌握的内容之一。

接下来,我将从简单到复杂,由浅入深地探讨八年级上册数学三角形的角知识点结论。

1. 三角形的定义三角形是由三条线段所围成的一个平面图形,它是几何中的基本图形之一。

三角形中有三个角,我们需要了解它们各自的特点和性质。

2. 角的概念在三角形中,角是由两条线段所围成的图形部分。

角的大小通常用度来表示,一个完整的圆周角为360度。

在三角形中,我们通常会接触到三种角:内角、外角和对顶角。

3. 内角的性质在三角形ABC中,若角A、角B、角C分别为α、β、γ,则有以下结论:(1)三角形内角和等于180度:α+β+γ=180度;(2)三角形内角和小于等于180度:α+β+γ≤180度;(3)三角形内角和大于180度:α+β+γ≥180度。

4. 外角的性质在三角形ABC中,若角A、角B、角C分别为α、β、γ,则有以下结论:(1)三角形外角和等于360度:180度;(2)三角形外角和小于等于360度:α+β+γ≤360度;(3)三角形外角和大于360度:α+β+γ≥360度。

5. 对顶角的性质在三角形ABC中,若角A、角B、角C分别为α、β、γ,则有以下结论:(1)角A、角B的对顶角相等:α=β;(2)角B、角C的对顶角相等:β=γ;(3)角C、角A的对顶角相等:γ=α。

总结回顾:通过对三角形的角知识点进行全面的评估和分析,我们可以清晰地了解三角形内角、外角和对顶角的性质和关系。

对于三角形的内角和定理、外角和定理以及对顶角定理,我们需要掌握其基本概念和相关的推导过程。

通过反复练习和操练,我们可以更加深入、全面地理解和掌握这些知识点。

个人观点和理解:在学习三角形的角知识点时,我们不仅要注重理论的学习,更需要注重实际问题的应用和解决能力的培养。

8年级-上册-数学-第1章《三角形的初步知识》1.3证明(2)与三角形外角性质有关的证明

8年级-上册-数学-第1章《三角形的初步知识》1.3证明(2)与三角形外角性质有关的证明

浙教版-8年级-上册-数学-第1章《三角形的初步知识》1.3证明(2)与三角形外角性质有关的证明【知识点-部分】一、三角形的内角和定理及推论:1、三角形的内角和定理:三角形三个内角的和等于180°;推论:由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论;推论可以当做定理使用。

2、三角形内角和定理的推论:推论1:三角形的一个外角等于和它不相邻的两个内角的和;推论2:三角形的一个外角大于任何一个和它不相邻的内角。

二、辅助线:1、当问题的条件不够用、不够集中时,需添加辅助线,构造新图形,形成新关系,找到已知与未知的联系,把问题转化成已经会解的情况,我们把在原图上添加的线叫做辅助线。

注:(1)辅助线通常画为虚线;(2)添加辅助线往往结合学习过的定理或概念。

【典型例题-精选部分】【例1】如图所示,∠A,∠1,∠2的从大到小关系是。

【例2】如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为。

【例3】如图,在△ABC中,外角∠CBD和∠BCE的平分线交于点O,且∠BOC=40°,则∠A的度数为。

【例4】将一把直尺与一块三角尺如图放置,若∠1=45°,则∠2的度数为。

【例5】将一副三角尺如图叠放,则图中∠α=°。

【例6】如图,将一张三角形纸片ABC的一角折叠,使点A落在外的处,折痕为DE。

如果,,,那么下列式子中正确的是()A、B、C、D、【例7】已知:如图,∠ADE=∠A+∠B,求证:DE∥BC。

【例8】如图,已知四边形ABDC,求证:∠BDC=∠A+∠B+∠C。

【例9】如图,∠B=36∘,∠D=50∘,AM,CM分别平分∠BAD和∠BCD,AM交BC于点R,CM交AD于点Q,BC与AD交于点P,求∠M的度数。

【例10】如图,在△ABC中,点E在AC上,∠AEB=∠ABC。

(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD=∠ADC;(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?【例11】已知:如图一:△ABC 中,BO 平分∠ABC,CO 平分外角∠ACD。

八年级三角形知识点归纳

八年级三角形知识点归纳

三角形按角分类 第二章 三角形知识点归纳一、三角形1.定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形。

“三角形” 用符号“△”表示,顶点是ABC 的三角形记做“△ABC ”读作“三角形ABC ”。

三角形基本元素(三条边、三个内角、三个顶点)2.性质:三角形三个内角和为180°三角形任何两边之和大于第三边;三角形的任何两边之差小于第三边(两点之间线段最短) ★注:判断三条线段能否组成三角形,只有把最长的一条线段与另外两条线段的和作比较。

3.三角形的外角及外角的性质外角:由三角形的一条边的延长线和另一条相邻的边组成的角叫该三角形的外角。

三角形的一个外角等于和它不相邻的两个内角的和。

三角形的一个外角大于任何一个和它不相邻的内角。

三角形的外角和为360°锐角三角形(三个内角都小于90°)直角三角形(有一个角是90°,记作Rt △ABC )钝角三角形(有一个角大于90°)★三角形的角平分线、中线和高线角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段就叫三角形的角平分线。

三个角的角平分线的交点叫内心∠1=∠2线段BD是∠ABC的角平分线中线:在三角形中,连接一个顶点与它对边中点的线段叫做这个三角形的中线。

三条中线交点叫重心AD=CD线段BD是△ABC的中线高线:从三角形的一个顶点向它的对边所在的直线作垂线,定点和垂足之间的线段叫做三角形的高。

三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)AD⊥BC线段AD是△ABC的高★重要性质:1角平分线上的点到角的两边距离相等;中线平分与它相交的边。

2一个三角形有三条角平分线、三条中线,并且都在三角形内部,交于一点。

3三种三角形都有三条高线,高线是顶点到对边所在直线的垂线段,所以垂足有可能在边的延长线上。

★同高等底的两个三角形面积相等。

三角形的中线把三角形分成两个面积相等的三角形。

八年级上册数学第十一章三角形知识点总结

八年级上册数学第十一章三角形知识点总结

八年级上册数学第十一章三角形知识点总结一、与三角形有关的线段1. 三角形的概念- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

- 三角形有三条边、三个内角和三个顶点。

2. 三角形的分类- 按角分类:- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角为直角的三角形。

直角三角形可以用“Rt△”表示,直角所对的边称为斜边,另外两条边称为直角边。

- 钝角三角形:有一个角是钝角的三角形。

- 按边分类:- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形。

相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

等腰三角形中,三边都相等的三角形叫做等边三角形(也叫正三角形),等边三角形是特殊的等腰三角形。

3. 三角形的三边关系- 三角形两边之和大于第三边,即a + b>c,a + c>b,b + c>a。

- 三角形两边之差小于第三边,即| a - b|<c,| a - c|<b,| b - c|<a。

- 判断三条线段能否组成三角形,只需判断较短两条线段之和是否大于最长的线段。

4. 三角形的高、中线与角平分线- 三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

三角形有三条高,锐角三角形的三条高都在三角形内部;直角三角形有两条高即两条直角边,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部。

- 三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

三角形的三条中线相交于一点,这点称为三角形的重心。

三角形的每一条中线都把三角形分成面积相等的两个部分。

- 三角形的角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

三角形的三条角平分线相交于一点。

二、与三角形有关的角1. 三角形的内角- 三角形内角和定理:三角形三个内角的和等于180°。

八年级数学上册《与三角形有关的角》讲义

八年级数学上册《与三角形有关的角》讲义

与三角形有关的角【要点梳理】知识点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.【典型例题】类型一、三角形的内角和1.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A= .举一反三:【变式1】如图所示,α∠的度数是()A.10︒B.20︒C.30︒D.40︒【变式2】三角形中至少有一个角不小于________度.类型二、三角形的外角2.如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)举一反三:【变式】将一副直角三角板如图放置,使两直角边重合,则α∠的度数为()A.75︒B.105︒C.135︒D.165︒类型三、三角形有关角的实际应用3.星期天,小明见爸爸愁眉苦脸在看一张图纸,他便悄悄地来到爸爸身边,想看爸爸为什么犯愁.爸爸见到他,高兴地对他说:“来帮我一个忙,你看这是一个四边形零件的平面图,它要求BDCB∠=︒,∠=︒,19A∠等于140︒才算合格,小明通过测量得90∠=︒后就下结论说此零件不合格,于是爸爸让小明解释这是为什么,小明很轻松地40C说出了原因,并用如下的三种方法解出此题.请你代小明分别说出不合格的理由.(1)如图1,连接AD并延长.(2)如图2,延长CD交AB于E.(3)如图3,连接BC.举一反三:【变式】探究与发现:有一块直角三角板DEF放置在ABC∆上,三角板DEF的两条直角边DE、DF恰好分别经过点B、C.请写出BDC∠+∠+∠之间的数量关∠与A ABD ACD 系,并说明理由.应用:某零件如图所示,图纸要求90∠=︒,21∠=︒,当检验员量得CBA∠=︒,32∠=︒,就断定这个零件不合格,你能说出其中的道理吗?145BDC【复习巩固】1.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.45°B.50°C.55°D.80°2.如图,将一块直角三角板DEF放置在锐角三角形ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=45°,则∠ABD+∠ACD的值为()A.40°B.45°C.50°D.55°3.如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,如果∠BDC=140°,∠BGC=110°,则∠A=.4.如图,将△ABC纸片沿DE折叠,点A的对应点为A′,∠B=60°,∠C=80°,则∠1+∠2等于.5.如图,把△ABC纸片沿DE折叠,当点C落在四边形ABDE的外部时,此时测得∠1=108°,∠C=35°,则∠2=.6.如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=26°,则∠DAE的度数为.7.如图,△ABC中,∠B=38°,∠C=74°,AD是BC边上的高,D为垂足,AE平分∠BAC,交BC于点E,DF⊥AE,求∠ADF的度数.8.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=30°,∠ACB=40°,求∠E的度数;(2)求证:∠BAC=∠B+2∠E.9.如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.(1)求证:∠A=2∠E;(2)若∠A=∠ABC,求证:AB∥CE.。

人教版八年级上册数学与三角形有关的角知识点

人教版八年级上册数学与三角形有关的角知识点

人教版八年级上册数学与三角形有关的角知识点认识自我、表现自我,从学习活动中获得成功的快乐,大家的初中生活已经开始啦。

查字典数学网为大家准备了与三角形有关的角知识点,欢迎阅读与选择!知识点一三角形的内角和定理:三角形内角和为180°知识点二三角形外角的性质:1.三角形的一个外角与相邻的内角互补;2.三角形的一个外角等于不相邻的两个内角的和;3. 三角形的一个外角大于任何一个不相邻的内角.课后小练习1.一个三角形的两个内角和小于第三个内角,这个三角形是( )三角形.A.锐角B.钝角C.直角D.等腰2.三角形的三个内角( )A.至少有两个锐角B.至少有一个直角C.至多有两个钝角D.至少有一个钝角3.一个三角形的一个内角等于另外两个内角的和,这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.何类三角形不能确定4.一个三角形的两个内角之和小于第三个内角,那么该三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.都有可能5.一个三角形的三个内角的度数比是1:2:1,这个三角形是( ).A.锐角三角形B.直角三角形我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。

特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。

人教版八年级上册第十一章 三角形知识点复习及习题练习

人教版八年级上册第十一章 三角形知识点复习及习题练习

第十一章三角形知识框架【三角形的概念】1、三角形的定义由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

要点:①三条线段;②不在同一条直线上;③首尾顺次相连。

2、基本概念:三角形有三条边,三个内角,三个顶点。

边:组成三角形的线段,表示方法:AB(c)、BC(a)、AC(b)内角:相邻两边所组成的角,表示方法:∠A、∠B、∠C顶点:相邻两边的公共端点,表示方法:A、B、C三角形ABC用符号表示为△ABC。

夹边、夹角、对边、对角3、数三角形个数技巧1)按组成三角形的图形个数来数(如单个三角形、由2个图形组成的三角形……最后求和)2)从图中的某一条线段开始,按一定的顺序找出能组成三角形的另外两条边;3)先固定一个顶点,再变换另外两个顶点,找出不共线的三点共有多少组。

练:1、下列说法中正确的是()A、由三个角组成的图形叫三角形B、由三条直线组成图形叫三角形C、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形D、由三条线段组成的图形叫三角形2、右图中三角形的个数是()A、6B、7C、8D、93、如右图所示:(1)图中有几个三角形?把它们一一写出来。

(2)写出△ABD的三个内角。

(3)以∠C为内角的三角形有哪些?(4)以AB为边的三角形有哪些?【分类】在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

练:1、如果三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B.钝角三角形C.直角三角形D.无法判断2、若△ABC三边长分别为m,n,p,且| m - n |+( n - p)2= 0 ,则这个三角形为()A、等腰三角形B、等边三角形C、直角三角形D、等腰直角三角形3、三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形4、根据下列所给条件,判断△ABC的形状(若已知的是角,则按角的分类标准去判断;若已知的是边,则按边的分类标准去判断)(1)∠A=45°,∠B=65°,∠C=70°;(2)∠C=90°;(3)∠C=120°;(4)AB=BC=4,AC=5.【三边的关系】①三角形任意两边之和大于第三边,b + c > a;②三角形任意两边之差小于第三边,b - c < a。

八年级数学《三角形》知识点归纳

八年级数学《三角形》知识点归纳

21D CB AD CBAD CB A八年级数学《三角形》知识点⒈ 三角形的定义三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的“△”没有意义. ⒉ 三角形的分类 (1)按边分类 (2)按角分类:⒊ 三角形的主要线段的定义 (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:1.AD 是△ABC 的BC 上的中线. 2.BD=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点;这个点叫做三角形的重心。

④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD 是△ABC 的∠BAC 的平分线. 2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;这个点叫做三角形的内心。

④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:1.AD 是△ABC 的BC 上的高线.2.AD ⊥BC 于D.3.∠ADB=∠ADC=90°.注意:①三角形的高是线段; ②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;三角形等腰三角形不等边三角形 底边和腰不相等的等腰三角形 等边三角形 三角形 直角三角形斜三角形锐角三角形钝角三角形_C_B _A③三角形三条高所在直线交于一点.这个点叫做三角形的垂心。

人教版八年级数学上册第十一章三角形知识点 整理(完整版)

人教版八年级数学上册第十一章三角形知识点 整理(完整版)

人教版八年级数学上册知识点整理(完整版)第十一章三角形一、三角形的有关概念(一)三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

(二)基本元素1、三个顶点:点A、点B、点C2、三个内角:∠A、∠B、∠C3、三条边(1)表示方法①线段AB、AC、BC②a(∠A所对的边BC用a表示)、b、c(2)三角形的三边关系(依据:两点之间线段最短)①三角形两边之和大于第三边,数学语言:a+b>c,a+c>b,b+c>a。

;②三角形两边之差小于第三边,数学语言:a−b<c,a−c<b,b−c<a。

③判断三条线段能否组成三角形,只需判断“两条较短的线段之和大于第三条”即可。

4、三角形的表示方法:顶点是A、B、C的三角形,记作∆ABC,读作“三角形ABC”。

(三)三角形的稳定性:三角形三条边的长度确定之后,三角形的形状就唯一确定了。

二、三角形的分类(一)按边分类1、三边都不相等的三角形2、等腰三角形(1)概念:有两条边相等的三角形叫做等腰三角形,其中相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

(2)等边三角形:三边都相等的三角形叫做等边三角形(特殊的等腰三角形)。

(二)按角分类1、锐角三角形:三个内角都是锐角。

2、直角三角形:有一个内角是直角的三角形。

3、钝角三角形:有一个内角是钝角的三角形。

三、与三角形有关的线段(一)三角形的高1、定义:从三角形的一个顶点向它所对的边所在直线画垂线,顶点和垂足之间的线段叫做三角形的这条边上的高。

从∠ABC的顶点A向它所对的边BC所在直线画垂线,垂足为D,所得线段AD叫做∠ABC 的边BC上的高,记作AD∠BC于点D。

3、几何语言(1)AD是三角形的边BC上的高。

(2)AD⊥BC于点D。

4、三角形三条高的位置(1)锐角三角形:三条高及其交点都在三角形内部。

(2)直角三角形:有两条高与两条直角边重合,斜边上的高在三角形内部,三条高交于三角形的直角顶点。

精品 2014年八年级数学上册-三角形初步认识 02 与三角形有关的角

精品 2014年八年级数学上册-三角形初步认识 02 与三角形有关的角

5.如图所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE 等于( A.120° B.115° C.110°
5.如图所示,AD 是∠CAE 的平分线,∠B=35°,∠DAC=60°,那么∠ACD 等于( A.25° B.85° C.60° )
) D.95°
6.如图所示,在△ABC 中,E,F 分别在 AB,AC 上,则下列各式不能成立的是( A.∠BOC=∠2+∠6+∠A B.∠2=∠5-∠A C.∠5=∠1+∠4 ) C.∠1+∠4=∠2+∠3
第 02 课 与三角形有关的角
知识点: 三角形的内角与外角 组成的角,叫做三角形的内角。 组成的角,叫做三角形的外角。 个内角,有 对外角。 。三角形的外角和等于 。
注意:三角形有 三角形的内角和等于 三角形外角的性质 (1)三角形的一个外角等于与它不相邻的两个内角之和。 (2)三角形的一个外角大于与它不相邻的任何一个内角。 例 1.求证:三角形内角和为 1800.(三种证明方法)
第 2 页 共 6 页
课堂练习:
1.三角形的一个内角是另一个内角的 A.60°,90°,75°
2 4 ,是第三个内角的 ,则这个三角形各内角度数分别为( 3 5
C.48°,32°,38° ) C.直角三角形 ) C.钝角三角形 D.等腰三角形 D.等边三角形
)
B.48°,72°,60°
D.40°,50°,90°
例 4.如图,在△ABC 中, (1)PB,PC 平分∠ABC 和∠ACB,交于点 P,则∠BPC 与∠A 的关系式为 (2)PB,PC 平分∠EBC 和∠BCF,交于点 P,则∠BPC 与∠A 的关系式为 (3)PB,PC 平分∠ABC 和∠ACE,交于点 P,则∠BPC 与∠A 的关系式为

人教版八年级上数学第十一章-三角形-知识点+考点+典型例题(含答案)

人教版八年级上数学第十一章-三角形-知识点+考点+典型例题(含答案)

第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。

②三角形按边分为两类:等腰三角形和不等边三角形。

2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。

注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。

但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。

)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。

(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与三角形有关的角
一、本节学习指导
本节知识点比较多要熟练掌握知识点:1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题;4.学会添加辅助线构造基本图形解决问题.
二、知识要点
1、三角形内角
(1)三角形内角和定理:三角形三个内角的和等于180°.
表示为:在△ABC中,有∠A+∠B+∠C=180°.
由三角形内角和定理可得:
①直角三角形的两个锐角互余.
②有两个角互余是三角形是直角三角形.
(2)作用:
在三角形中已知两角可求第三角,或已知各角之间关系,求各角;已经知道了三角形的内角和等于180°,但要注意的是在解决实际问题时,这一点是不会在已知中说出,往往要把它作为隐含的条件来用.
三角形内角和定理证明方法很多,定理的证明需要添加辅助线,通过辅助线将角转移和集中,把隐含的条件显现出来.
如几种常见的证明思路:
思路1:如图1所示,延长BC到E,作CD∥AB.
因为AB∥CD(已知),
所以∠1=∠A(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).
又∠ACB+∠1+∠2=180°(平角定义),
所以∠ACB+∠A+∠B=180°(等量代换).
思路2:如图2所示,在BC边上任取一点D,作DE∥AB,交AC于E,DF∥AC,交AB于点F.
因为DF∥AC(已作),
所以∠1=∠C(两直线平行,同位角相等),
∠2=∠DEC(两直线平行,内错角相等).
因为DE∥AB(已作).
所以∠3=∠B,∠DEC=∠A(两直线平行,同位角相等).
所以∠A=∠2(等量代换).
又∠1+∠2+∠3=180°(平角定义),
所以∠A+∠B+∠C=180°(等量代换).
思路3:如图3所示,过A点任作直线l1,过B点作l2∥l1,过C点作l3∥l1,
因为l3∥l1(已知).
所以∠1=∠2(两直线平行,内错角相等).
同理∠3=∠4.
又l2∥l1(已知),
所以∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).
所以∠5+∠2+∠6+∠3=180°(等量代换).
又∠2+∠3=∠ACB,
所以∠BAC+∠ABC+∠ACB=180°(等量代换).
思路4:如图4,将ΔABC的三个内角剪下,拼成以C为顶点的平角。

思路5:如图5-1和图5-2,在图5-1中作∠1=∠A,得CD∥AB,有∠2=∠B;
在图5-2中过A作MN∥BC有∠1=∠B,∠2=∠C,进而将三个内角拼成平角。

2、三角形的外角
(1)概念:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
(2)三角形有六个外角,每个顶点处有两个外角,但算三角形外角和时,每个顶点处只算一个外角,外角和是指三个外角的和,三角形的外角和为360°;和外角有共同顶点的内角叫做和这个外角相邻的内角,它们是互补的,互为邻补角,另外两个内角叫做和这个外角不相邻的内角.
3、三角形外角的性质
(1)、三角形的一个外角等于“与它不相邻”的两个内角的和.
①推理过程:
如图所示:
因为∠ACD+∠ACB=180°(邻补角定义),
∠ACB+∠A+∠B=180°(内角和定理),
所以∠ACD=∠A+∠B(等量代换).
②作用:已知外角和与它不相邻两个内角中的一个可求“另一个”;
可证一个角等于另两个角的和;
经常利用它作为中间关系式证明两个角相等。

(2)、三角形的一个外角大于与它不相邻的任何一个内角. 如上图所示,∠ACD>∠A或∠ACD>∠B.
注意:应用三角形内角和定理的推论时,一定要理解其意思.如“和它不相邻”的意义.
4、解题小技巧
(1)、三角形内角和为180°,三角形三个外角的和是360°,这是在做题时题设不用加以说明的已知条件.在三个角中已知其中两个角的度数便能求第三个角的大小.
(2)、在一个三角形中最多只能有一个钝角或者一个直角,最少有两个锐角.
(3)、三角形内角和定理和三角形外角的性质是求角度数及有关的推理论证时经常使用的理论依据.外角的性质应用:①证明一个角等于另两个角的和;②作为中间关系式证明两角相等;③证明角的不等关系.
(4)、添加辅助线求解问题,会使问题变得简便.
三、经验之谈:
本节知识点比较多,运用比较广泛,需要多做题,多掌握技巧.总之本节我们要认真学习。

本文由索罗学院整理。

相关文档
最新文档