2018年高考试题分类汇编之概率统计精校版 2

合集下载

2018年高三最新 概率统计高考题选摘 精品

2018年高三最新 概率统计高考题选摘 精品

2018年全国卷一(理)11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513 B .12516 C .12518 D .12519 答案D18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 答案:18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.18.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.18所以E ξ=0×0.18+1×0.3+2×0.37+3×0.2+4×0.18=1.8.2018年全国卷一(文)11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是 ( )A .95B .94 C .2111 D .2110答案:C 20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求:(I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.答案:20.本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识 解决实际问题的能力,满分12分. 解:(Ⅰ)随机选出的3位同学中,至少有一位男同学的概率为1-6531036=C C ;………………6分(Ⅱ)甲、乙被选中且能通过测验的概率为.1254535431018=⨯⨯C C ;………………12分2018年全国卷二(理)13.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为 答案:13.0.1,0.6,0.3 18.(本小题满分12分) 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率.答案:18.本小题主要考查组合、概率等基本概念,相互独立事件和互斥事件等概率的计算,运用 数学知识解决问题的能力,满分12分.(Ⅰ)解法一:三支弱队在同一组的概率为 .7148154815=+C C C C故有一组恰有两支弱队的概率为.76711=-解法二:有一组恰有两支弱队的概率.76482523482523=+C C C C C C (Ⅱ)解法一:A 组中至少有两支弱队的概率 21481533482523=+C C C C C C 解法二:A 、B 两组有一组至少有两支弱队的概率为1,由于对A 组和B 组来说,至少有两支弱队的概率是相同的,所以A 组中至少有两支弱队的概率为.212018年全国卷二(文)19.(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:(Ⅰ)A、B两组中有一组恰有两支弱队的概率;(Ⅱ)A组中至少有两支弱队的概率.2018年全国卷四(理)19.(本小题满分12分)某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.(Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望;(Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率.答案:19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解决实际问题的能力.满分12分.解:(Ⅰ)ξ的可能值为-300,-100,100,300.P(ξ=-300)=0.23=0.018, P(ξ=-100)=3×0.22×0.8=0.186,P(ξ=100)=3×0.2×0.82=0.384, P(ξ=300)=0.83=0.512,所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望Eξ=(-300)×0.18+(-100)×0.186+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P(ξ≥0)=0.384+0.512=0.896.2018年全国卷四(文)20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率.答案:20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1( i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率 P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6 =0.228.(Ⅱ)这名同学至少得300分的概率 P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3) =0.228+0.8×0.7×0.6 =0.564.2018年福建卷(理)15.某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1; ③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是 (写出所有正 确结论的序号). 答案:15.1,3 18.(本小题满分12分)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率.答案:18.本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力.满分12分.ξ的概率分布如下:甲答对试题数ξ的数学期望 E ξ=0×301+1×103+2×21+3×61=59. (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则P(A)=310361426C C C C +=1202060+=32, P(B)=310381228C C C C +=1205656+=1514. 因为事件A 、B 相互独立,方法一:∴甲、乙两人考试均不合格的概率为 P(B A ⋅)=P(A )P(B )=1-32)(1-1514)=451. ∴甲、乙两人至少有一人考试合格的概率为 P=1-P(B A ⋅)=1-451=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 方法二:∴甲、乙两人至少有一个考试合格的概率为P=P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B) =32×151+31×1514+32×1514=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 2018年福建卷(文)15.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m+k 的个位数字相同,若m=6,则在第7组中抽取的号码是 . 答案:15.63 18.(本小题满分12分)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)分别求甲、乙两人考试合格的概率;(Ⅱ)求甲、乙两人至少有一人考试合格的概率.答案:18.本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力.满分12分.解:(Ⅰ)设甲、乙两人考试合格的事件分别为A 、B ,则P(A)=310361426C C C C +=1202060+=32, P(B)=310381228C C C C +=1205656+=1514. 答:甲、乙两人考试合格的概率分别为.151432和 (Ⅱ)解法一、因为事件A 、B 相互独立,所以甲、乙两人考试均不合格的概率为 P(B A ⋅)=P(A )P(B )=(1-32)(1-1514)=451. ∴甲、乙两人至少有一人考试合格的概率为 P=1-P(B A ⋅)=1-451=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 解法二:因为事件A 、B 相互独立,所以甲、乙两人至少有一人考试合格的概率为 P=P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B) =32×151+31×1514+32×1514=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 2018年广东卷(文理合卷)6.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是 ( ) A .0.1536 B . 0.1818 C . 0.5632 D . 0.9728 答案:D13.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是 (用分数作答) 答案:(13)752018年湖北卷(理)13.设随机变量ξ的概率分布为====a k a ak P k 则为常数,,2,1,,5)( ξ . 答案:42018年湖北卷(文)15.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本;已知从女学生中抽取的人数为80人,则n= . 答案:15.1922018年湖南卷(理)5.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点。

2018年高考数学分类汇编:专题十计数原理、统计、概率

2018年高考数学分类汇编:专题十计数原理、统计、概率

《2018年高考数学分类汇编》第十篇:计数原理、统计、概率一、选择题1.【2018全国一卷3】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.【2018全国一卷10】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则 A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 33.【2018全国二卷8】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .B .C .D .4.【2018全国三卷5】的展开式中的系数为30723=+112114115118522x x ⎛⎫+ ⎪⎝⎭4xA .10B .20C .40D .805.【2018全国三卷8】某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则A .0.7B .0.6C .0.4D .0.36.【2018浙江卷7】设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小二、填空题1.【2018全国一卷15】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)2.【2018天津卷10】在5(x -的展开式中,2x 的系数为 .3.【2018江苏卷3.】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .4.【2018江苏卷6】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .5.【2018浙江卷14】二项式81)2x的展开式的常数项是___________. p X 2.4DX =()()46P X P X =<=p =6.【2018浙江卷16】16.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)7.【2018上海卷3】在7)1(x +的二项展开式中,2x 项的系数为 .(结果用数值表示) 8.【2018上海卷9】9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示) 三、解答题1.【2018全国一卷20】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?2.【2018全国二卷18】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:. y y t t 1217,,…,ˆ30.413.5y t =-+t 127,,…,ˆ9917.5yt =+(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.3.【2018全国三卷18】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人。

(精品word)2018年高考试题(卷)分类汇编-概率统计

(精品word)2018年高考试题(卷)分类汇编-概率统计

概率统计1(2017北京文)(本小题13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.2(2017新课标Ⅱ理)(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3).附:,22()()()()()n ad bc K a b c d a c b d -=++++3(2017天津理)(本小题满分13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234. (Ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 4(2017新课标Ⅲ理数)(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(完整版)2018年高考统计与概率专题

(完整版)2018年高考统计与概率专题

2018年高考统计与概率专题(全国卷1文)2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B(全国卷1理)2.如图,正方形ABCD 内的图形来自中国古代的太极图。

正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π4【考点】:几何概型【思路】:几何概型的面积问题,=P 基本事件所包含的面积总面积.【解析】:()21212=82r S P S r ππ==,故而选B 。

(全国卷2理)6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种(全国卷2文)6。

如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90πB 。

63πC 。

42π D.36π【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B 。

(天津卷)文(3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫。

从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(A)45(B)35(C)25(D)15(全国卷2文)11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C。

高三数学-2018年高考数学全国统一考试概率统计分类解析 精品

高三数学-2018年高考数学全国统一考试概率统计分类解析 精品

2018年普通高等学校招生全国统一考试数学分类解析—概率统计一.选择题:1. (安徽理)(10).设两个正态分布2111()(0)N μσσ>,和2222()(0)N μσσ>,的密度函数图像如图所示。

则有( A ) A .1212,μμσσ<<B .1212,μμσσ<>C .1212,μμσσ><D .1212,μμσσ>>2.(福建理)(5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是 (B )A.16625 B.96625 C.192625D.2566253. (福建文)(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 (C )A.12125 B.16125 C.48125 D.961254. (广东理)(3).某校共有学生2000名,各年级男、女生人数如表1.已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C ) A .24 B .18 C .16 D .125.(湖南理) 4.设随机变量ζ服从正态分布N (2,9) ,若P (ζ>c+1)=P (ζ<c -)1,则c =(B)A.1B.2C.3D.46. (江西文)(11).电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 (C )A .1180 B .1288 C .1360D .14807. (辽宁理文)(7).4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C ) A.13 B.12 C.23 D.348.(山东理)(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(B ) (A )511(B )681 (C )3061(D )40819.(山东理) (8)右图是根据《山东统计年整2018》中的资料作成的1997年至2018年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2018年我省城镇居民百户家庭人口数的平均数为(B )(A )318.6 (B )318.6 (C)318.6 (D)301.6 10.(山东文)9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( B )AB C .3D .8510.(陕西文)(3).某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .15 11.(重庆理)(5)已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<=(D )(A)15(B)14(C)13(D)1212. (重庆文)(5)某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是(D )(A)简单随机抽样法(B)抽签法7420136203851192(C)随机数表法 (D)分层抽样法13.(重庆文)(9)从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为 (B )(A)184(B)121(C)25(D)35二.填空题:1.(广东文) (11).为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85, [)85,95由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[)55,75的人数是 13 .2.(海南宁夏理文)(16).从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 318 318 318 318 310 314 319 323 325 325 328 331 334 337 352乙品种:284 292 295 318 318 318 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论: ① ;3 127 7 5 5 0 28 4 5 4 2 29 2 5 8 7 3 3 1 30 4 6 79 4 0 31 2 3 5 5 6 8 8 8 5 5 3 32 0 2 2 4 7 9 7 4 1 33 1 3 6 734 3 2 35 6甲乙② .以下任填两个:(1).乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度). (2).甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大). (3).甲品种棉花的纤维长度的中位数为318mm ,乙品种棉花的纤维长度的中位数为318mm . (4).乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.3. (湖北文)11.一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是 10 . 4.(湖北文)14.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 0.98 .5. (湖南理)15.对有n (n ≥4)个元素的总体{1,2,3,…,n }进行抽样,先将总体分成两个子总体{1,2,…,m }和{m +1、m +2,…,n }(m 是给定的正整数,且2≤m ≤n -2),再从每个子总体中各随机抽取2个元素组成样本,用P i j 表示元素i 和f 同时出现在样本中的概率,则P 1m =4()m n m -;所有P if (1≤i <j ≤)n 的和等于 6 .6. (湖南文)(12)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:则该地区生活不能自理的老人中男性比女性约多____60____人。

高考数学真题分类汇编专题16:概率与统计(综合题)

高考数学真题分类汇编专题16:概率与统计(综合题)

2018年高考数学真题分类汇编专题16:概率与统计(综合题)1.(2018•卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验。

设每件产品为不合格的概率为品p (错误!未找到引用源。

),且各件产品是否为不合格品相互独立。

(1)记20件产品中恰有2件不合格品的概率为错误!未找到引用源。

,求错误!未找到引用源。

的最大值点错误!未找到引用源。

(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的错误!未找到引用源。

作为错误!未找到引用源。

的值。

已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用(i)若不对该箱余下的产品作检验,这一箱的检验费用与赔偿费用的和记为错误!未找到引用源。

,求错误!未找到引用源。

;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 【答案】(1)解:20件产品中恰有2件不合格品的概率为()()182220C 1f p p p =-.因此()()()()()1817172222020C 211812C 1110f p p p p p p p p ⎡⎤='---=--⎣⎦.令错误!未找到引用源。

,得错误!未找到引用源。

. 当错误!未找到引用源。

时,错误!未找到引用源。

; 当错误!未找到引用源。

时,错误!未找到引用源。

.所以错误!未找到引用源。

的最大值点为错误!未找到引用源。

. (2)解:由(1)知,错误!未找到引用源。

.(i )令错误!未找到引用源。

表示余下的180件产品中的不合格品件数,依题意知错误!未找到引用源。

,错误!未找到引用源。

,即错误!未找到引用源。

. 所以错误!未找到引用源。

.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于错误!未找到引用源。

2018年高考试题分类汇编(统计与概率)

2018年高考试题分类汇编(统计与概率)

2018年高考试题分类汇编(统计与概率)考点1 简单计数1.(2018·浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成____个没有重复数字的四位数.(用数字作答)2.(2018·全国卷Ⅰ理科)从2位女生,4位男生中选3位参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)考点2 随机事件的概率考法1古典概型1. (2018·全国卷Ⅱ文科)从2名男同学和3名女同学中任选2人参加社区服务,则选中的两人都是女同学的概率为A.0.6 B.0.5 C.0.4 D.0.32.(2018·全国卷Ⅱ理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示成两个素数的和”.例如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112B.114C.115D.1183.(2018·江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.4.(2018·上海卷)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是_ __.(结果用最简分数表示)5.(2018·天津卷文科)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用,,,,,,A B C D E F G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(1)试用所给字母列举出所有可能的抽取结果;(2)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.考法2 几何概型1.(2018·全国卷Ⅰ文理)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB ,AC .ABC ∆的三边所围成的区域记为Ⅰ,黑色区域记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A.12p p =B. 13p p =C. 23p p =D. 123p p p =+考法3 互斥事件与相互独立事件 1.(2018·全国卷Ⅲ文科)某群中的成员只用现金支付的概率为0.45,既用现金也用非现金支付的概率为0.15,则不用现金支付的概率为A .0.3B .0.4C . 0.6D .0.72.(2018·全国卷Ⅲ理科)某群中的每位成员使用移动支付的概率都为p ,各成 员的支付方式互相独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)p X =<(6)p X =,则p =A .0.7B .0.6C .0.4D .0.3考点3 统计初步考法1 抽样方法1.(2018·全国卷Ⅲ文科)某公司有大量客户,且不同年龄段客户对其服务的平价有较大的差异.为了解客户的平价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最适合的抽样方法为 . 考法2 统计图表1.(2018·江苏卷)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .2.(2018·全国卷Ⅰ文理)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解高该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:4% 6% 30% 60% 养殖收入 其他收入 第三产业收入 种植收入 建设前经济收入构成比例5% 28% 30% 37% 养殖收入 其他收入 第三产业收入 种植收入 建设后经济收入构成比例 8 9 9 9 0 1 1则下面结论中不正确的是A.新农村建成后,种植收入减少B.新农村建成后,其他收入增加一倍以上C.新农村建成后,养植收入增加一倍D.新农村建成后,养植收入与第三产业收入的总和超过了经济收入的一半考点4 统计与概率考法1 分布列、期望、方差1.(2018·天津卷理科)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(1)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(2)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.2.(2018·全国卷Ⅰ理科)某工厂的某种产品成箱包装,每箱200件,每箱产品在交付用户之前要对产品作检验,如检验出不合格产品,则更换为合格产品.检验时,先从这箱产品种任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为(01)<<,且各件产品是否为不合格产品互相独立.p p(Ⅰ)记20件产品中恰有2件不合格品的概率为()p.f p的最大值f p,求()0(Ⅱ)现对一箱产品检验了20件,结果恰有2件不合格品,以(Ⅰ)中确定的p0作为p的值.已知每件产品的检验费为2元,若有不合格品进入用户手中,则工厂要对每件不合格产品支付25元的赔偿费用.(1)若不对该产箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(2)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?3.(2018·北京卷文科)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)4.(2018·北京卷理科)好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(1,2,3,4,5,6k =).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.考法2 线性回归分析1.(2018·全国卷Ⅱ文理)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图,为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016的数据(时间变量t 的值依次为1,2,,17 )建立模型① 30.413.5y t =-+;根据2010年至2016的数据(时间变量t 的值依次为1,2,,7 )建立模型② 9917.5y t =+.(Ⅰ)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (Ⅱ)你认为哪个模型的预测值更可靠?并说明理由.考法3 用样本估计总体1.(2018·全国卷Ⅰ文科)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用节水龙头50天的日用水量数据,得到频率分布表如下:(Ⅰ)在答题卡上作出使用了节水龙头50天的日用水量频率分布直方图: (Ⅱ)估计该家庭使用了节水龙头后,日用水量小于3(Ⅲ)估计该家庭使用了节水龙头后,一年 能节省多少水?(一年按365天计算,同一 组中的数据以这组数据所在区间的中点的值 作代表.) 2000 2001 2002 20032004 2005 2006 2008 2007 2009 2010 2012 2014 2013 2015考法4 独立性检验1.(2018·全国卷Ⅲ文理)某工厂为了提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20名工人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(Ⅰ)根据茎叶图判断哪种生产方式的效率更高?并说明理由.(Ⅱ)求40名工人完成生产任务所需的时间的中位数m , 并将完成生产任务所(Ⅲ)根据(Ⅱ)中列联表,能否有99%把握认为两种生产方式的效率有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++第一种生产方式 第二种生产方式 8 8 7 6 5 5 6 8 9 0 1 2 2 3 4 5 6 6 8 1 4 4 5 09 9 7 6 2 9 8 7 7 6 5 4 3 3 2 2 1 1 0 0。

2018高考文科数学分类汇编 概率与统计

2018高考文科数学分类汇编 概率与统计

概率与统计1.(2018全国卷1文)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2018全国卷1文)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量 [)00.1, [)0.10.2, [)0.20.3, [)0.30.4, [)0.40.5, [)0.50.6, [)0.60.7,频数13249265使用了节水龙头50天的日用水量频数分布表日用水量 [)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,频数151310165(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)3.(2018全国卷2文)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.0.6B.0.5C.0.4D.0.34.(2018全国卷2文)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5=-+;根据2010y t 年至2016年的数据(时间变量t的值依次为1,2,,7)建立模型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.5.(2018全国卷3文)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.76.(2018全国卷3文)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.7.(2018全国卷3文)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++,2()0.0500.0100.0013.8416.63510.828P K kk≥.10.(2018北京卷文)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数140 50 300 200 800 510好评率0.4 0.2 0.15 0.25 0.2 0.1 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;学科%网(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)11.(2018天津卷文)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.12.(2018江苏卷)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.13.(2018江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.14.(2018浙江卷)设0<p<1,随机变量ξ的分布列是ξ0 1 2P 12p122p则当p在(0,1)内增大时,A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小15.(2018上海卷)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)。

2018年各地高考数学文科分类汇编——统计与概率

2018年各地高考数学文科分类汇编——统计与概率

(全国1卷3)答案:(全国1卷19)答案:(全国2卷5)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6B.0.5C.0.4 D.0.3答案:D(全国2卷18)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5根据2010年至y t=-+;2016年的数据(时间变量t的值依次为1,2,,7)建立模型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由. 答案:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y $=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y $=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y$=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.(全国3卷5)答案:B(全国3卷14)答案:分层抽样(全国3卷18)答案:(北京卷17)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)答案:(天津卷15)(15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(I)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(II)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.答案:(I)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比分别为3:2:2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的志愿者中分别抽取3人,2人,2人. (II)(i)解:从抽取的7名同学中随机抽取2名同学的所有可能结果为{},A B ,{},A C ,{},A D ,{},A E ,{},A F ,{},A G ,{},B C ,{},B D ,{},B E ,{},B F ,{},B G ,{},C D ,{},C E ,{},C F ,{},C G ,{},D E ,{},D F ,{},D G ,{},E F ,{},E G ,{},F G ,共21种.(ii)解:由(I),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{},A B ,{},A C ,{},B C ,{},D E ,{},F G ,共5种.所以,事件M 发生的概率5()21P M =.。

2018年数学高考分类汇编解答题(理)02——概率与统计

2018年数学高考分类汇编解答题(理)02——概率与统计

概率与统计1.(2018天津卷理)16.(本小题满分13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在1次游戏中,(i )摸出3个白球的概率; (ii )获奖的概率;(Ⅱ)求在2次游戏中获奖次数X 的分布列及数学期望()E X . 【解析】16.本小题主要考查古典概型及其概率计算公式、离散型随机变量的分布列、互斥事件和相互独立事件等基础知识,考查运用概率知识解决简单的实际问题的能力.满分13分. (I )(i )解:设“在1次游戏中摸出i 个白球”为事件(0,1,2,3),i A i ==则2132322531().5C C P A C C =⋅=(ii )解:设“在1次游戏中获奖”为事件B ,则23B A A =,又22111322222222253531(),2C C C C C P A C C C C =⋅+⋅= 且A 2,A 3互斥,所以23117()()().2510P B P A P A =+=+= (II )解:由题意可知X 的所有可能取值为0,1,2.212279(0)(1),101007721(1)(1),101050749(2)().10100P X P X C P X ==-===-====X 的数学期望()012.100501005E X =⨯+⨯+⨯= 2. (2018北京理)17.本小题共13分以下茎叶图记录了甲、乙两组各四名同学的植树棵树。

乙组记录中有一个数据模糊,无法确认,在图中以X 表示。

(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望。

(注:方差()()()2222121n s x x x xx x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为1x ,2x ,…… nx 的平均数)【解析】(17)(共13分)解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为;435410988=+++=方差为.1611])43510()4359()4358()4358[(4122222=-+-+-+-=s(Ⅱ)当X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10。

2018年全国2卷省份高考模拟理科数学分类汇编--概率统计

2018年全国2卷省份高考模拟理科数学分类汇编--概率统计

2018年全国2卷省份高考模拟理科数学分类汇编——概率统计1.(海南模拟)把一枚质地均匀、半径为的圆形硬币抛掷在一个边长为的正方形托盘上,已知硬币平放在托盘上且没有掉下去,则该硬币完全落在托盘上(即没有任何部分在托盘以外)的概率为()BA. B. C. D.【答案】B【解析】由题意可知,硬币的圆心必须落在小正方形中,如图:该硬币完全落在托盘上(即没有任何部分在托盘以外)的概率为,故选:B2. (海南模拟)某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:乘坐站数现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站.甲、乙乘坐不超过站的概率分别为,;甲、乙乘坐超过站的概率分别为,.(1)求甲、乙两人付费相同的概率;(2)设甲、乙两人所付费用之和为随机变量,求的分布列和数学期望.【答案】(1) (2)【解析】试题分析:(1) 由题意知甲乘坐超过站且不超过站的概率为,乙乘坐超过站且不超过站的概率为,利用乘法概率公式及互斥原理得到甲、乙两人付费相同的概率;(2) 由题意可知的所有可能取值为:,,,,.求得相应的概率值,即可得到的分布列和数学期望.试题解析:(1)由题意知甲乘坐超过站且不超过站的概率为,乙乘坐超过站且不超过站的概率为,设“甲、乙两人付费相同”为事件,则,所以甲、乙两人付费相同的概率是.(2)由题意可知的所有可能取值为:,,,,.,,,,.因此的分布列如下:所以的数学期望.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.3.(辽宁实验中学模拟)甲、乙两名同学准备参加考试,在正式考试之前进行了十次模拟测试,测试成绩如下:甲:137,121,131,120,129,119,132,123,125,133乙:110,130,147,127,146,114,126,110,144,146(1)画出甲、乙两人成绩的茎叶图,求出甲同学成绩的平均数和方差,并根据茎叶图,写出甲、乙两位同学平均成绩以及两位同学成绩的中位数的大小关系的结论;(2)规定成绩超过127为“良好”,现在老师分别从甲、乙两人成绩中各随机选出一个,求选出成绩“良好”的个数的分布列和数学期望.(注:方差,其中为的平均数)【答案】(1),甲的中位数大于乙的中位数,甲的平均成绩小于乙的平均成绩(2)【解析】试题分析:(1)根据根据所给数据,利用茎叶图的作法可得茎叶图,根据茎叶图可得甲乙两人成绩的中位数,根据平均值公式可得甲乙两人的平均成绩根据方差公式可得甲的方程,比较两人的成绩的中位数及平均成绩即可的结果;(2)的可能取值为0,1,2,分别求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望..试题解析:(1)茎叶图如图乙的均值为,中位数为;甲的平均值为,中位数为,甲的方差为,所以甲的中位数大于乙的中位数,甲的平均成绩小于乙的平均成绩;(2)由已知,的可能取值为0,1,2,分布列为:,,, .【方法点睛】本题主要考查茎叶图的画法、方差与平均值的求法、中位数的定义以及离散型随机变量的分布列与数学期望,属于中档题. 求解该离散型随机变量的分布列与数学期望,首项要理解问题的关键,其次要准确无误的随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.4.(哈师大附中模拟) 在2018年初的高中教师信息技术培训中,经统计,哈尔滨市高中教师的培训成绩,若已知,则从哈市高中教师中任选位教师,他的培训成绩大于90分的概率为( )DA .0.85B .0.65C .0.35D .0.155.(哈师大附中模拟)已知实数满足,则函数存在极值的概率为( )A A . B . C. D .6.(哈师大附中模拟)哈师大附中高三学年统计甲、乙两个班级一模数学分数(满分150分),每个班级20名同学,现有甲、乙两班本次考试数学分数如下列茎叶图所示:(I)根据基叶图求甲、乙两班同学数学分数的中位数,并将乙班同学的分数的频率分布直方图填充完整;(Ⅱ)根据基叶图比较在一模考试中,甲、乙两班同学数学分数的平均水平和分数的分散程度(不要求计算出()~85.9X N ()8085=0.35P X <≤,a b 01,01a b ≤≤≤≤()321f x x ax bx =-++19132589具体值,给出结论即可)(Ⅲ)若规定分数在的成绩为良好,分数在的成绩为优秀,现从甲、乙两班成绩为优秀的同学中,按照各班成绩为优秀的同学人数占两班总的优秀人数的比例分层抽样,共选出12位同学参加数学提优培训,求这12位同学中恰含甲、乙两班所有140分以上的同学的概率.解(1)甲班数学分数的中位数:乙班数学分数的中位数:(2)乙班学生数学考试分数的平均水平高于甲班学生数学考试分数的平均水平;甲班学生数学考试分数的分散程度高于乙班学生数学考试分数的分散程度.(3)有频率分布直方图可知:甲、乙两班数学成绩为优秀的人数分别为10、14, 若从中分层抽样选出12人,则应从甲、乙两班各选出5人、7人,设“选出的12人中恰含有甲、乙两班的所有140分以上的同学”为事件A则[)100,120[)120,150所以选出的12人中恰含有甲、乙两班的所有140分以上的同学的概率为.7.(西北师大附中模拟)已知小李每次打靶命中靶心的概率都是40%,现采用随机模拟的方法估计小李三次打靶恰有两次命中靶心的概率.先由计算器产生0到9之间取整数值的随机数,指定0,1,2,3表示命中靶心,4,5,6,7,8,9表示未命中靶心,再以每三个随机数为一组,代表三次打靶的结果,经随机摸拟产生了如下20组随机数:321 421 191 925 271 932 800 478 589 663531 297 396 021 546 388 230 113 507 965据此估计,小李三次打靶恰有两次命中的概率为()BA、0.25B、0.30C、0.35D、0.408.(西北师大附中)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50的学生人数为X,求X的分布列和数学期望.附:22()()()()()n ad bc K a b c d a c b d -=++++解:(1)设各组的频率为(1,2,3,4,5,6)i f i =, 由图可知,第一组有3人,第二组7人,第三组27人, 因为后四组的频数成等差数列, 所以后四组频数依次为27,24,21,18 ,所以视力在5.0以下的频率为3+7+27+24+21=82人, 故全年级视力在5.0以下的人数约为821000820100⨯= . (2)22100(4118329)3004.110 3.8415050732773k ⨯⨯-⨯==≈>⨯⨯⨯,因此在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系. (3)依题意9人中年级名次在1~50名和951~1000名分别有3人和6人,X 可取0、1、2、3 ,363920(0)84C P X C ===, 21633945(1)84C C P X C ===, 12633918(2)84C C P X C ===, 33391(3)84C P X C ===, X 的分布列为X 的数学期望()0123184848484E X =⨯+⨯+⨯+⨯=. 9.(黑龙江模拟)已知,{1,2,3,4,5,6}x y ∈,且7x y +=,则2xy ≥的概率为( )B A .13 B .23 C .12 D .5610. (黑龙江模拟)为普及学生安全逃生知识与安全防护能力,某学校高一年级举办了安全知识与安全逃生能力竞赛,该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛,现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.(1)求表中x ,y ,z ,s ,p 的值;(2)按规定,预赛成绩不低于90分的选手参加决赛.已知高一(2)班有甲、乙两名同学取得决赛资格,记高一(2)班在决赛中进入前三名的人数为X ,求X 的分布列和数学期望.解析:(1)由题意知,参赛选手共有16500.32p ==(人), 所以90.1850x ==,500.3819y =⨯=,50919166z =---=,10.180.380.320.12s =---=. (2)由(1)知,参加决赛的选手共6人,随机变量X 的可能取值为0,1,2,34361(0)5C P X C ===,2142363(1)5C C P X C ===,1242361(2)5C C P X C ===, 随机变量X 的分布列为:因为()0121555E X =⨯+⨯+⨯=,所以随机变量X 的数学期望为1. 11. (吉林实验中学模拟)参加2018年某市第一次诊断性测试的10万名理科考生的数学成绩近似地服从正态分布,估计这些考生成绩落在的人数为 A(附:,则 )(A) 13590 (B ) 27180 (C )311740 (D )456012.(吉林实验中学模拟)随着电子产品的不断更新完善,更多的电子产品逐步走入大家的世界,给大家带来了丰富多彩的生活,但也带来了一些负面的影响,某公司随即抽取人对某电子产品是否对日常生活有益进行了问卷调查,并对参与调查的人中的年龄层次以及意见进行了分类,得到的数据如下表所示:Z ()70,25N (]75,80()2,Z N μσ~()0.6826P Z μσμσ-<≤+=(22)0.9544P Z μσμσ-<≤+=10001000(Ⅰ)根据表中的数据,能否在犯错误的概率不超过的前提下,认为电子产品的态度与年龄有关系? (Ⅱ)为了答谢参与问卷调查的人员,该公司对参与本次问卷调查的人员进行抽奖活动,奖金额以及发放的概率如下:现在甲、乙两人参与了抽奖活动,记两人获得的奖金总金额为,求的分布列和数学期望. 参与公式:临界值表:试题解析:(1)依题意,在本次的实验中,的观测值,故可以在犯错误的概率不超过的前提下,认为对电子产品的态度与年龄有关系. (2)的可能取值为,,,,,0.1%Y Y ()()()()()22n ad bc K a b c d a c b d -=++++, ,,,,.13. (沈阳模拟)刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )BA B C.12π D .14π14.(沈阳模拟)已知随机变量2(1,)N ξσ,若(3)0.2P ξ>=,则(1)P ξ≥-=. 0.815. (沈阳模拟)高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况是:选择家的占25、朋友聚集的地方占15、个人空间占25.美国高中生答题情况是:家占15、朋友聚集的地方占35、个人空间占15.为了考察高中生的“恋家(在家里感到最幸福)”是否与国别有关,构建了如下22⨯列联表.(Ⅰ)请将22⨯列联表补充完整;试判断能否有95%的把握认为“恋家”与否与国别有关;(Ⅱ)从中国高中生的学生中以“是否恋家”为标准采用分层抽样的方法,随机抽取了5人,再从这5人中随机抽取2人.若所选2名学生中的“恋家”人数为X ,求随机变量X 的分布列及期望.附:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.解析:(Ⅰ)∴2100(2236933)31695545K ⨯⨯-⨯=⨯⨯⨯100113 4.628 3.8413123⨯⨯=≈>⨯∴有95%的把握认为“恋家”与否与国别有关.(Ⅱ)依题意得,5个人中2人来自于“在家中”是幸福,3人来自于“在其他场所”是幸福,X 的可能取值为0,1,20223253(0)10C C P X C ===,1123253(1)5C C PX C ===,2023251(2)10C C P X C ===∴X 的分布列为∴3314()012105105E X =⨯+⨯+⨯=.16.(呼和浩特模拟) 有10000人参加某次考试,其成绩X 近似服从正态分布()2100,13N .()611390.997P X <<=.则此次考试中成绩不低于139分的人数约为( )CA .10B .30 C.15 D .2317. (呼和浩特模拟)某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在[)100,150,[)150,200,[)200,250,[)250,300,[)300,350,[)350,400(单位:克)中,经统计得到的频率分布直方图如图所示.(Ⅰ)现按分层抽样从质量为[)250,300,[)300,350的芒果中随机抽取9个,再从这9个中随机抽取3个,记随机变量X 表示质量在[)300,350内的芒果个数,求X 的分布列及数学期望;(Ⅱ)以各组数据的中间数代表这组数据的平均值,将频率视为概率,某经销商来收购芒果,该种植园中还未摘下的芒果大约还有10000个,经销商对这10000个芒果提出如下两种收购方案: A :所有芒果以10元/千克收购;B :对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购.通过计算确定种植园选择哪种方案获利更多?解:(Ⅰ)由分层抽样的定义可知,从质量在[)250,300中抽取的芒果数为6.则X 的取值为0,1,2,3,且()()33630,1,2,3k kC C P X k k C -===,于是分在列为数学期望()319E x =⨯=.(Ⅱ)由题目数据可知,这10000个芒果的总质量的平均值为()100001250.11750.12250.152750.43250.23750.052575000g 2575kg ⨯⨯+⨯+⨯+⨯+⨯+⨯==故,利用方案A 的获利为25750元.对于方案B ,由频率分布直方图可得,质量低于250g 的芒果出现的频率为0.35,所以在10000个芒果中,有3500个质量低于250g 的芒果,故利用方案B 的获利为350026*********⨯+⨯=元.综上,利用方案B 获利更大.18. (银川一中模拟)A 地的天气预报显示,A 地在今后的三天中,每一天有强浓雾的概率为30%,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生0—9之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:则这三天中至少有两天有强浓雾的概率近似为 DA.14B.25C.710D.1519.(银川一中模拟)第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。

高三数学-2018年高考数学试题知识分类汇编概率与统计 精品

高三数学-2018年高考数学试题知识分类汇编概率与统计 精品

2018年高考数学试题汇编概率与统计重庆理(7)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为(A )41 (B )12079 (C )43 (D )242318.(本小题满分13分,其中(Ⅰ)小问4分,(Ⅱ)小问9分)某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金,对在一年内发生此种事故的每辆汽车,单位可获9000元的赔偿(假设每辆车最多只赔偿一次),设这三辆车在一年内发生此种事故的概率分别为19,110,111,且各车是否发生事故相互独立,求一年内该单位在此保险中: (Ⅰ)获赔的概率;(Ⅱ)获赔金额ξ的分布列与期望. (18)(本小题13分)解:设k A 表示第k 辆车在一年内发生此种事故,123k =,,.由题意知1A ,2A ,3A 独立, 且11()9P A =,21()10P A =,31()11P A =. (Ⅰ)该单位一年内获赔的概率为123123891031()1()()()19101111P A A A P A P A P A -=-=-⨯⨯=.(Ⅱ)ξ的所有可能值为0,9000,18000,27000.12312389108(0)()()()()9101111P P A A A P A P A P A ξ====⨯⨯=,123123123(9000)()()()P P A A A P A A A P A A A ξ==++ 123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++19108110891910119101191011=⨯⨯+⨯⨯+⨯⨯ 2421199045==, 123123123(18000)()()()P P A A A P A A A P A A A ξ==++ 123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++1110191811910119101191011=⨯⨯+⨯⨯+⨯⨯ 273990110==, 123123(27000)()()()()P P A A A P A P A P A ξ===111191011990=⨯⨯=. 综上知,ξ的分布列为ξ0 9000 18000 27000P811 1145 3110 1990求ξ的期望有两种解法: 解法一:由ξ的分布列得811310900018000270001145110990E ξ=⨯+⨯+⨯+⨯ 299002718.1811=≈(元).解法二:设k ξ表示第k 辆车一年内的获赔金额,123k =,,, 则1ξ有分布列1ξ0 9000P89 19故11900010009E ξ=⨯=. 同理得21900090010E ξ=⨯=,319000818.1811E ξ=⨯≈. 综上有1231000900818.182718.18E E E E ξξξξ=++≈++=(元). 四川理(12)已知一组抛物线1212++=bx ax y ,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线相互平行的概率是(A )121 (B )607 (C )256 (D )255(18)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及期望ξE ,并求该商家拒收这批产品的概率.(18)本题考察相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力。

高三数学-2018年高考题分章节汇编-概率与统计 精品

高三数学-2018年高考题分章节汇编-概率与统计 精品

2018年高考题分章节汇编选修Ⅱ第一章概率与统计一、选择题1.(2018年高考.湖北卷.理11文12)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,...,270;使用系统抽样时,将学生统一随机编号1,2, (270)并将整个编号依次分为10段。

如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是(D )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样2.(2018年高考·江西卷·文12)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a, b的值分别为( A )A.0,27,78 B.0,27,83C.2.7,78 D.2.7,833.(2018年高考·江苏卷7)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(D)A.9.4,0.484 B.9.4,0.016 C.9.5,0.18 D.9.5,0.0164.(2018年高考·浙江卷·文6)从存放号码分别为1,2,…,10的卡片的盒子中,在放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是( A ) A.0.53B.0.5C.0.47D.0.37二、填空题1.(2018年高考·湖南卷·理11文12)一工厂生产了某种产品16800件,它们来自甲.乙.丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲.乙.丙三条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 件产品. 56002.(2018年高考·山东卷·文13)某学校共有教师490人,其中不到40岁的有140人,岁即以上的有人。

[实用参考]2018高考试题分类汇编-概率统计

[实用参考]2018高考试题分类汇编-概率统计

概率统计1(2017北京文)(本小题13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.2(2017新课标Ⅱ理)(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3).附:,22()()()()()n ad bc K a b c d a c b d -=++++3(2017天津理)(本小题满分13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234. (Ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 4(2017新课标Ⅲ理数)(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量G (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为P (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,P 的数学期望达到最大值?5(2017山东理)(本小题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙中心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名B 1,B 2, B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考试题分类汇编之概率统计一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017课标I理)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()41.A8.πB21.C4.πD2.(2017课标III理)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是().A月接待游客量逐月增加.B年接待游客量逐年增加.C各年的月接待游客量高峰期大致在8,7月.D各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳3.(2017课标Ⅱ文)从分别写有5,4,3,2,1的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为().A110.B15.C310.D254.(2017课标I文)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为n xxx⋯,,21,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()nxxxA⋯,,.21的平均数n xxxB⋯,,.21的标准差nxxxC⋯,,.21的最大值n xxxD⋯,,.21的中位数5.(2017天津文)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5(第1题)(第2题)支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ).A 45 .B 35 .C 25 .D 156.(2017山东文)如图所示的茎叶图记录了甲、乙 两组各5名工人某日的产量数据(单位:件).若这 两组数据的中位数相等,且平均值也相等,则x 和y 的 值分别为( )5,3.A 5,5.B 7,3.C 7,5.D7.(2017浙江)已知随机变量i ξ满足2,1,1)0(,)1(=-====i p P p P i i i i ξξ. 若21021<<<p p ,则( ) .A 1E()ξ<2E()ξ,1D()ξ<2D()ξ.B 1E()ξ<2E()ξ,1D()ξ>2D()ξ.C 1E()ξ>2E()ξ,1D()ξ<2D()ξ.D 1E()ξ>2E()ξ,1D()ξ>2D()ξ8.(2017山东理)为了研究某班学生的脚长x (单位厘米)和身高y (单位厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为( ).A 160 .B 163 .C 166 .D 1709.(2017山东理)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是( ).A 518 .B 49 .C 59.D 79 二、填空题(将正确的答案填在题中横线上)10.(2017江苏) 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为100,300,400,200件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.11.(2017江苏) 记函数2()6f x x x =+-D .在区间[4,5]-上随机取一个数x , 则x D ∈的概率是 .12.(2017课标II 理)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则=DX 。

三、解答题(应写出必要的文字说明、证明过程或演算步骤)13.(2017北京文)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:]90,80[),40,30[),30,20[,⋯,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间)50,40[内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.14.(2017课标I 文)为了监控某种零件的一条生产线的生产过程,检验员每隔min 30从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5)2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到01.0)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑0.09≈.15.(2017山东理)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者654321,,,,,A A A A A A 和4名女志愿者4321,,,B B B B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含1A 但不包含3B 的频率。

(2)用x 表示接受乙种心理暗示的女志愿者人数,求x 的分布列与数学期望Ex .16.(2017天津理)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为.41,31,21 (1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.17.(2017课标III 理)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位C 0)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间)25,20[,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量x (单位瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为y (单位:元).当六月份这种酸奶一天的进货量n (单位瓶)为多少时,y 的数学期望达到最大值?(文科)(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.22()()()()()n ad bc K a b c d a c b d -=++++18.(2017课标II 理)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位kg :)某频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于kg 50, 新养殖法的箱产量不低于kg 50”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有%99的把握认为箱产量与养殖方法有关箱产量kg 50<箱产量kg 50≥旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到01.0)附19.(2017课标I 理)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记x 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=0.09≈.20.(2017北京理)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中DCBA,,,四人中随机选出两人,记ξ为选出的两人中指标x的值大于7.1的人数,求ξ的分布列和数学期望)(ξE;(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)21.(2017江苏)已知一个口袋有m个白球,n个黑球(,*,2m n n∈N≥),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,,m n+的抽屉内,其中第k次取出的球放入编号为k的抽屉(1,2,3,,)k m n=+.(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量X表示最后一个取出的黑球所在抽屉编号的倒数,()E X是X的数学期望,证明()()(1)nE Xm n n<+-1 2 3 m n+。

相关文档
最新文档