山东省青岛市2019-2020学年九年级(上)期中数学试卷 含解析
2019-2020学年度九年级数学上学期第二次质检试题(含解析) 新人教版
——教学资料参考参考范本——2019-2020学年度九年级数学上学期第二次质检试题(含解析)新人教版______年______月______日____________________部门一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可用多种不同的方法来选取正确答案.1.已知原点是抛物线y=(m+1)x2的最高点,则m的范围是( )A.m<﹣1 B.m<1 C.m>﹣1 D.m>﹣22.抛物线y=﹣2(x+3)2﹣21的顶点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.下列事件中:①在足球赛中,中国队战胜日本队;②长为2,3,4的三条线段能围成一个直角三角形;③任意两个正数的乘积为正;④抛一枚硬币,硬币落地时正面朝上.其中属于不确定事件的有( )A.1个B.2个C.3个D.4个4.已知二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,则m的值为( )A.2 B.﹣4 C.2或﹣4 D.无法确定5.抛物线y=x2+mx+n可以由抛物线y=x2向上平移2个单位,再向左平移3个单位得到,则mn值为( )A.6 B.12 C.54 D.666.已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是( )A.m≥B.m>C.m≤D.m<7.上数学课时,老师给出了一个一元二次方程x2+ax+b=0,并告诉学生,从数字1、3、5、中随机抽取一个作为a,从数字2、6中随机抽取一个作为b,组成不同的方程共m个,其中有实数解的方程共n 个,则=( )A.B.C.D.8.若实数a,b满足a+b2=2,则a2+6b2的最小值为( )A.﹣3 B.3 C.﹣4 D.49.已知二次函数y=x2+bx﹣4图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )A.x=1 B.x=2 C.x=﹣1 D.x=﹣210.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为( )A.B.C.D.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.三张完全相同的卡片上分别写有函数y=﹣2x﹣3,y=,y=x2+1,从中随机抽取一张,则所得函数的图象在第一象限内y随x 的增大而增大的概率是__________.12.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是__________.13.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式__________;自变量的取值范围__________.14.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为__________.15.已知二次函数y=﹣x2﹣2x+3的图象与x轴分别交于A、B两点(如图所示),与y轴交于点C,点P是其对称轴上一动点,当PB+PC取得最小值时,点P的坐标为__________.16.如图是抛物线y=ax2+bx+c的一部分,且其过点(3,0),对称轴为直线x=1,则下列结论正确的有__________:①abc>0②方程ax2+bx+c=0有两个不相等的实数根③a﹣b+c=0④当x>0时,y随x的增大而增大⑤不等式ax2+bx+c>0的解为x>3⑥3a+2c<0.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.判断下列二次函数的图象与x轴有无交点,若有请求出交点坐标;若无请说明理由.(1)y=﹣6x(2)y=2x2﹣12x+18.18.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小米先从盒子中随机取出一个小球,记下数字为x,且不放回盒子,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率.19.已知抛物线y1=ax2+bx+c的顶点坐标为()且经过点A(1,0),直线y2=x+m恰好也经过点A(1)分别求抛物线和直线的解析式;(2)当x取何值时,函数值y2>y1;(3)当0≤x≤2时,直接写出y2和y1的最小值分别为多少?20.已知二次函数y=ax2+bx+c的图象经过点(﹣2,4),(﹣1,0),(0,﹣2)(1)求这个二次函数的表达式;(2)求此二次函数的顶点坐标及与坐标轴的交点坐标,并根据这些点画出函数大致图象;(3)若0<y<3,求x的取值范围.21.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)若降价的最小单位为1元,则当降价多少元时,每星期的利润最大?最大利润是多少?22.已知A=a+2,B=2a2﹣3a+10,C=a2+5a﹣3,(1)求证:无论a为何值,A﹣B<0成立,并指出A,B的大小关系;(2)请分析A与C的大小关系.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中A点的坐标为(﹣3,0),C为抛物线与y 轴的交点且S△ABC=6(1)求点B的坐标和抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)①设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值;②若点M是抛物线上在A、C之间的一个动点,则三角形ACM的最大面积是多少?20xx-20xx学年浙江省××市××区高桥中学九年级(上)第二次质检数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可用多种不同的方法来选取正确答案.1.已知原点是抛物线y=(m+1)x2的最高点,则m的范围是( )A.m<﹣1 B.m<1 C.m>﹣1 D.m>﹣2【考点】二次函数的性质.【分析】由于原点是抛物线y=(m+1)x2的最高点,这要求抛物线必须开口向下,由此可以确定m的范围.【解答】解:∵原点是抛物线y=(m+1)x2的最高点,∴m+1<0,即m<﹣1.故选A.【点评】此题主要考查了二次函数的性质.2.抛物线y=﹣2(x+3)2﹣21的顶点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】二次函数的性质.【分析】根据抛物线的顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),可直接写出顶点坐标.【解答】解:∵抛物线y=﹣2(x+3)2﹣21的顶点是(﹣3,﹣21),∴顶点(﹣3,﹣21)在第三象限,故选C.【点评】此题主要考查了二次函数的性质,二次函数顶点式y=a (x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.3.下列事件中:①在足球赛中,中国队战胜日本队;②长为2,3,4的三条线段能围成一个直角三角形;③任意两个正数的乘积为正;④抛一枚硬币,硬币落地时正面朝上.其中属于不确定事件的有( )A.1个B.2个C.3个D.4个【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:①在足球赛中,中国队战胜日本队是随机事件,故①正确;②长为2,3,4的三条线段能围成一个直角三角形,是不可能事件,故②错误;③任意两个正数的乘积为正,是必然事件,故③错误;④抛一枚硬币,硬币落地时正面朝上,是随机事件,故④正确;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.已知二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,则m的值为( )A.2 B.﹣4 C.2或﹣4 D.无法确定【考点】二次函数图象上点的坐标特征.【分析】由题意二次函数的解析式为:y=(m﹣2)x2+m2﹣m﹣2知m﹣2≠0,∴m≠2,再根据二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,把(0,0)代入二次函数,解出m的值.【解答】解:∵二次函数的解析式为:y=(m﹣2)x2﹣4x+m2+2m ﹣8,∴(m﹣2)≠0,∴m≠2,∵二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,∴m2+2m﹣8=0,∴m=﹣4或2,∵m≠2,∴m=﹣4.故选B.【点评】此题考查二次函数的基本性质,注意二次函数的二次项系数不能为0,这是容易出错的地方.5.抛物线y=x2+mx+n可以由抛物线y=x2向上平移2个单位,再向左平移3个单位得到,则mn值为( )A.6 B.12 C.54 D.66【考点】二次函数图象与几何变换.【分析】首先在抛物线y=x2确定顶点,进而就可确定顶点平移以后点的坐标,根据待定系数法求函数解析式.【解答】解:抛物线y=x2顶点坐标(0,0)向上平移2个单位,再向左平移3个单位得到(﹣3,2)代入y=(x﹣h)2+k得:y=(x+3)2+2=x2+6x+11,所以m=6,n=11.故mn=66;故选D.【点评】本题考查了二次函数的图象与几何变换,解决本题的关键是得到所求抛物线上的顶点,利用平移的规律即可解答.6.已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是( )A.m≥B.m>C.m≤D.m<【考点】抛物线与x轴的交点.【分析】由题意二次函数y=x2+x+m知,函数图象开口向上,当x 取任意实数时,都有y>0,可以推出△<0,从而解出m的范围.【解答】解:已知二次函数的解析式为:y=x2+x+m,∴函数的图象开口向上,又∵当x取任意实数时,都有y>0,∴有△<0,∴△=1﹣4m<0,∴m>,故选B.【点评】此题主要考查二次函数与一元二次方程的关系,当函数图象与x轴无交点时,说明方程无根则△<0,若有交点,说明有根则△≥0,这一类题目比较常见且难度适中.7.上数学课时,老师给出了一个一元二次方程x2+ax+b=0,并告诉学生,从数字1、3、5、中随机抽取一个作为a,从数字2、6中随机抽取一个作为b,组成不同的方程共m个,其中有实数解的方程共n 个,则=( )A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】画树状图展示所有12种等可能的结果数,则m=12,根据判别式的意义可判断a=3,b=2;a=5,b=2;a=5,b=6时,方程有实数解,则n=3,然后计算的值.【解答】解:画树状图:共有12种等可能的结果数,则m=12,其中a=3,b=2;a=5,b=2;a=5,b=6时,方程有实数解,则n=3,所以==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了根的判别式.8.若实数a,b满足a+b2=2,则a2+6b2的最小值为( )A.﹣3 B.3 C.﹣4 D.4【考点】二次函数的最值.【分析】由a+b2=2得出b2=2﹣a,代入a2+6b2得出a2+6b2=a2+6(2﹣a)=a2﹣6a+12,再利用配方法化成a2+6b2=(a﹣3)2+3,即可求出其最小值.【解答】解:∵a+b2=2,∴b2=2﹣a,∴a2+6b2=a2+6(2﹣a)=a2﹣6a+12=(a﹣3)2+3,当a=3时,a2+6b2可取得最小值为3.故选B.【点评】本题考查了二次函数的最值,根据题意得出a2+6b2=(a ﹣3)2+3是关键.9.已知二次函数y=x2+bx﹣4图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )A.x=1 B.x=2 C.x=﹣1 D.x=﹣2【考点】二次函数的性质;反比例函数图象上点的坐标特征.【分析】设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.【解答】解:∵A在反比例函数图象上,∴可设A点坐标为(a,),∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣),又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得.故选C.【点评】本题主要考查待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意关于原点对称的两点的坐标的关系的广泛应用.10.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为( )A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.三张完全相同的卡片上分别写有函数y=﹣2x﹣3,y=,y=x2+1,从中随机抽取一张,则所得函数的图象在第一象限内y随x 的增大而增大的概率是.【考点】概率公式;一次函数的性质;反比例函数的性质;二次函数的性质.【分析】先求出函数的图象在第一象限内y随x的增大而增大的函数的个数,再根据概率公式即可得出答案.【解答】解:∵函数y=﹣2x﹣3,y=,y=x2+1中,在第一象限内y随x的增大而增大的只有y=x2+1一个函数,∴所得函数的图象在第一象限内y随x的增大而增大的概率是;故答案为:.【点评】此题考查了概率公式,掌握一次函数、反比例函数和二次函数的性质是本题的关键,用到的知识点是概率=所求情况数与总情况数之比.12.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是y=﹣x2﹣1.【考点】二次函数图象与几何变换.【分析】根据关于原点对称的两点的横坐标纵坐标都互为相反数求则可.【解答】解:根据题意,﹣y=(﹣x)2+1,得到y=﹣x2﹣1.故旋转后的抛物线解析式是y=﹣x2﹣1.【点评】考查根据二次函数的图象的变换求抛物线的解析式.13.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式s=﹣3x2+24x;自变量的取值范围≤x<8.【考点】根据实际问题列二次函数关系式.【分析】可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式.【解答】解:由题可知,花圃的宽AB为x米,则BC为(24﹣3x)米.这时面积S=x(24﹣3x)=﹣3x2+24x.∵0<24﹣3x≤10得≤x<8,故答案为:S=﹣3x2+24x,≤x<8.【点评】本题考查了二次函数的综合应用,根据已知条件列出二次函数式是解题的关键.要注意题中自变量的取值范围不要丢掉.14.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为x=﹣3.【考点】二次函数的图象;反比例函数的图象;反比例函数图象上点的坐标特征.【专题】探究型.【分析】先根据点P的纵坐标为1求出x的值,再把于x的方程ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,此方程就化为求函数y=与y=ax2+bx(a>0,b>0)的图象交点的横坐标,由求出的P点坐标即可得出结论.【解答】解:∵P的纵坐标为1,∴1=﹣,∴x=﹣3,∵ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,∴此方程的解即为两函数图象交点的横坐标的值,∴x=﹣3.故答案为:x=﹣3.【点评】本题考查的是二次函数的图象与反比例函数图象的交点问题,能把方程的解化为两函数图象的交点问题是解答此题的关键.15.已知二次函数y=﹣x2﹣2x+3的图象与x轴分别交于A、B两点(如图所示),与y轴交于点C,点P是其对称轴上一动点,当PB+PC取得最小值时,点P的坐标为(﹣1,2).【考点】抛物线与x轴的交点;轴对称-最短路线问题.【分析】首先求得A、B以及C的坐标,和函数对称轴的解析式,然后利用待定系数法求得AC的解析式,AC与二次函数的对称轴的交点就是P.【解答】解:连接AC.在y=﹣x2﹣2x+3中,令y=0,则﹣x2﹣2x+3=0,解得:x=﹣3或1.则A的坐标是(﹣3,0),B的坐标是(1,0),则对称轴是x=﹣1.令x=0,解得y=3,则C的坐标是(0,3).设经过A和C的直线的解析式是y=kx+b.根据题意得:,解得:,则AC的解析式是y=x+3,令x=﹣1,则y=2.则P的坐标是(﹣1,2 ).故答案是(﹣1,2).【点评】本题考查了二次函数的坐标轴的交点,以及对称的性质,确定P的位置是本题的关键.16.如图是抛物线y=ax2+bx+c的一部分,且其过点(3,0),对称轴为直线x=1,则下列结论正确的有①②③⑥:①abc>0②方程ax2+bx+c=0有两个不相等的实数根③a﹣b+c=0④当x>0时,y随x的增大而增大⑤不等式ax2+bx+c>0的解为x>3⑥3a+2c<0.【考点】二次函数图象与系数的关系;二次函数与不等式(组).【分析】根据抛物线的图象,数形结合,逐一解析判断,即可解决问题.【解答】解:∵抛物线的对称轴为x=1,抛物线与x轴有两个交点,∴﹣=1,b=﹣2a,另一个交点为(﹣1,0);∵抛物线开口向上,∴a>0,b<0;由图象知c<0,∴abc>0,故①正确;由图象知抛物线与x轴有两个交点,故②正确;把x=﹣1代入y=ax2+bx+c=a﹣b+c=0,故③正确;由抛物线的对称性及单调性知:x>1时,y随x的增大而增大故④错误;不等式ax2+bx+c>0的解为x>3或x<﹣1,故⑤错误;⑥∵a>0,c<0,∴3a+2c<0,故⑥正确.故答案为:①②③⑥.【点评】该题主要考查了二次函数的图象与系数的关系、抛物线的单调性、对称性及其应用问题;灵活运用有关知识来分析、解答是关键.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.判断下列二次函数的图象与x轴有无交点,若有请求出交点坐标;若无请说明理由.(1)y=﹣6x(2)y=2x2﹣12x+18.【考点】抛物线与x轴的交点.【分析】(1)首先求得判别式△的值,据此即可判断与x轴的交点的个数,若△≥0,然后令y=0,解方程求得与x轴的交点的横坐标即可;(2)首先求得判别式△的值,据此即可判断与x轴的交点的个数,若△≥0,然后令y=0,解方程求得与x轴的交点的横坐标即可.【解答】解:(1)∵a=,b=﹣6,c=0,∴b2﹣4ac=36>0,∴二次函数的图象与x轴有两个交点.令y=0,则x2﹣6x=0,解得:x=0或9.则与x轴的交点是(0,0)和(9,0);(2)∵a=2,b=﹣12,c=18,∴b2﹣4ac=(﹣12)2﹣4×2×18=0,∴二次函数与x轴只有一个交点.令y=0,则2x2﹣12x+18=0,解得:x=3,则与x轴的交点是(3,0).【点评】本题考查了二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标;二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.18.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小米先从盒子中随机取出一个小球,记下数字为x,且不放回盒子,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图求得点(x,y)落在反比例函数y=的图象上的情况,再利用概率公式即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的有(1,4),(4,1),∴P(点(x,y)落在反比例函数y=的图象上)=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.已知抛物线y1=ax2+bx+c的顶点坐标为()且经过点A(1,0),直线y2=x+m恰好也经过点A(1)分别求抛物线和直线的解析式;(2)当x取何值时,函数值y2>y1;(3)当0≤x≤2时,直接写出y2和y1的最小值分别为多少?【考点】二次函数与不等式(组).【分析】(1)根据抛物线的顶点坐标可设出其顶点式,再由抛物线过A(1,0),可得出抛物线的解析式,再把A点坐标代入直线y2=x+m求出m的值即可;(2)在同一坐标系内画出一次函数与二次函数的图象,利用函数图象即可得出结论;(3)根据(2)中函数图象可直接得出结论.【解答】解:(1)∵抛物线y1=ax2+bx+c的顶点坐标为(),∴y1=a(x﹣)2﹣,∵抛物线经过点A(1,0),∴a(1﹣)2﹣=1,解得a=1,∴y1=(x﹣)2﹣.∵直线y2=x+m恰好也经过点A,∴1+m=0,解得m=﹣1,∴y2=x﹣1;(2)如图所示,当1<x<3时,y2>y1;(3)由图可知,当0≤x≤2时y1的最小值为﹣,y2的最小值为﹣1.【点评】本题考查的是二次函数与不等式组,根据题意画出函数图象,利用数形结合求解是解答此题的关键.20.已知二次函数y=ax2+bx+c的图象经过点(﹣2,4),(﹣1,0),(0,﹣2)(1)求这个二次函数的表达式;(2)求此二次函数的顶点坐标及与坐标轴的交点坐标,并根据这些点画出函数大致图象;(3)若0<y<3,求x的取值范围.【考点】待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.【分析】(1)由题意抛物线y=ax2+bx+c(a≠0)经过(﹣2,4),(﹣1,0),(0,﹣2)三点,把三点代入函数的解析式,根据待定系数法求出函数的解析式;(2)把求得的解析式化为顶点式,从而求出其对称轴和顶点坐标;分别令x=0,y=0,得到方程,解方程从而求出抛物线与坐标轴的交点坐标;(3)把y=3代入解析式求得横坐标,从而求出x的取值范围.【解答】解:(1)∵抛物线经过(﹣2,4),(﹣1,0),(0,﹣2)三点,则,解得∴y=x2﹣x﹣2;(2)∵y=x2﹣x﹣2=(x﹣)2﹣∴对称轴为直线x=,顶点坐标为(,﹣);∵x=0,y=﹣2,∴抛物线与y轴的交点坐标为(0,﹣2)∵y=0,∴x2﹣x﹣2=0,∴x1=2,x2=﹣1,∴抛物线与x轴的交点坐标为(2,0)、(﹣1,0).画出函数图象如图:(3)把y=3代入得,x2﹣x﹣2=3,解得x=∴<x<﹣1 或 2<x<.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,待定系数法求函数解析式是常用的方法,需熟练掌握并灵活运用,(2)整理成顶点式形式求解更简便.21.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)若降价的最小单位为1元,则当降价多少元时,每星期的利润最大?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题意,卖出了(60﹣x)(300+20x)元,原进价共40(300+20x)元,则y=(60﹣x)(300+20x)﹣40(300+20x).(2)根据x=﹣时,y有最大值即可求得最大利润.【解答】解:(1)y=(60﹣x)(300+20x)﹣40(300+20x),即y=﹣20x2+100x+6000.因为降价要确保盈利,所以40<60﹣x≤60(或40<60﹣x<60也可).解得0≤x<20(或0<x<20);(2)当x=﹣=2.5时,y有最大值=6125,即当降价2.5元时,利润最大且为6125元.当x=2或3时,y的最大值为6120元.【点评】本题主要考查了二次函数的应用,根据题意正确列出代数式和函数表达式是解决问题的关键.22.已知A=a+2,B=2a2﹣3a+10,C=a2+5a﹣3,(1)求证:无论a为何值,A﹣B<0成立,并指出A,B的大小关系;(2)请分析A与C的大小关系.【考点】配方法的应用;非负数的性质:偶次方.【分析】(1)计算A﹣B后结论,从而判断A与B的大小;(2)同理计算C﹣A,根据结果来比较A与C的大小.【解答】解:(1)A﹣B=﹣2a2+4a﹣8=﹣2(a﹣1)2﹣6<0,∴A<B;(2)C﹣A=a2+4a﹣5,当a<﹣5或a>1时,C>A,当a=﹣5或a=1时,C=A,当﹣5<a<1时,C<A.【点评】本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中A点的坐标为(﹣3,0),C为抛物线与y 轴的交点且S△ABC=6(1)求点B的坐标和抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)①设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值;②若点M是抛物线上在A、C之间的一个动点,则三角形ACM的最大面积是多少?【考点】二次函数综合题.【分析】(1)根据函数值相等两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据根据三角形的面积公式,可得P点的横坐标,根据自变量与函数值的对应关系,可得P点坐标;(3)①根据垂直于x的直线上两点间的距离是大的纵坐标减小的纵坐标,可得函数解析式,根据顶点坐标是函数的最值,可得答案,②根据面积的和差,可得三角形的面积,根据QM最大时,三角形的面积最大,可得答案.【解答】解:(1)由A、B关于x=﹣1对称,得B(1,0),将A、B点坐标代入函数解析式,得,解得抛物线的解析式为y=x2+2x﹣3;(2)S△BOC=•OB•OC=S△poc=•OC•|Px|=4S△BOC=6,|px|=4,解得x=4或x=﹣4,当x=4时,y=42+2×4﹣3=21,即P1(4,21)当x=﹣4时,y=(﹣4)2+2×(﹣4)﹣3=5,即P2(﹣4,5)综上所述:P1(4,21)P2(﹣4,5).(3)①yAC=﹣x﹣3,设点Q(a,﹣a﹣3),则点D(a,a2+2a﹣3),∴QD=﹣a2﹣3a且﹣3≤a≤0,当a=时,QD的最大值为;②如图,S△ACM的最大值=S△AQM+SCQM=QM•AF+QM•OF=QM•OA=××3=.【点评】本题考查了二次函数综合题,(1)利用了待定系数法求函数解析式,函数值相等的两点关于对称轴对称;(2)利用三角形的面积得出P点的横坐标是解题关键;(3)利用垂直于x的直线上两点间的距离是大的纵坐标减小的纵坐标得出函数解析式是解题关键,②利用面积的和差是解题关键.。
山东省青岛市莱西市2019-2020学年上学期人教版九年级(五四学制)期中质量检测数学试题(含解析)
2019-2020学年上学期九年级期中质量检测数学试题一、选择题(共8小题,每小题3分,满分24分)1.已知∠α为锐角,且sinα=,则∠α=()A.30°B.45°C.60°D.90°2.在△ABC中,∠C=90°,AB=12,sin A=,则BC等于()A.B.4 C.36 D.3.抛物线y=﹣3x2+6x+2的对称轴是()A.直线x=2 B.直线x=﹣2 C.直线x=1 D.直线x=﹣1 4.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是()A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是45.如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A.100米B.50米C.米D.50米6.已知二次函数y=ax2+bx+c的图象上部分点的横坐标x与纵坐标y的对应值如表:那么关于它的图象,下列判断正确的是()A.开口向上B.x=3是方程ax2+bx+c=0的一个解C.与y轴交于负半轴D.在直线x=1左侧y随x的增大而减小7.已知二次函数的图象y=ax2+bx+c(0≤x≤3)如图.关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值0,有最大值3 B.有最小值﹣1,有最大值0C.有最小值﹣1,有最大值3 D.有最小值﹣1,无最大值8.已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本题满分18分,共有6道小题,每小题3分)9.以下给出的几何体:球、正方体、圆柱、圆锥中,主视图是矩形,俯视图是圆形的是.10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果BC=3,AC=4,那么cos∠BCD=.11.顶点为(﹣6,0),开口向下,形状与函数y=x2的图象相同的抛物线的表达式是.12.关于x的方程2x2﹣5x sin A+2=0有两个相等的实数根,其中∠A是锐角△ABC的一个内角,则sin A=.13.点P1(﹣1,y1),P2(2,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是.14.有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,则水深超过米时就会影响过往船只在桥下的顺利航行.三、解答题(本题满分78分,共有10道小题)15.计算:(1)|1﹣|+()﹣2﹣4cos30°(2)tan60°+cos45°﹣tan260°+sin30°16.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段PG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出表示小亮在灯光下形成的影子线段.(2)如果灯杆高12m,小亮的身高1.6m,小亮与灯杆的距离13m,请求出小亮影子的长度.17.如图,一座堤坝的横断面为梯形,AD∥BC,AB坡坡角为45°,DC坡坡度为1:2,其他数据如图所示,求BC的长.(结果保留根号)18.已知抛物线y=﹣x2﹣4x+5(1)用配方法把该函数化为y=a(x﹣h)2+k的形式,写出顶点坐标.(2)抛物线的开口,对称轴.当x时,y随x增大而增大.19.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)20.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了46米木栏.(1)若a=26,所围成的矩形菜园的面积为280平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.21.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)22.如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D的坐标.(3)设直线BC为y=mx+n(k≠0),若mx+n≥ax2+bx﹣4a,结合函数图象,写出x的取值范围.23.如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图所示二次函数y1=x2+2x+2与y2=x2﹣2x+2是“关于y轴对称二次函数”.(1)直接写出两条图中“关于y轴对称二次函数”图象所具有的共同特点.(2)二次函数y=2(x+2)2+1的“关于y轴对称二次函数”解析式为;二次函数y=a(x﹣h)2+k的“关于y轴对称二次函数”解析式为;(3)平面直角坐标系中,记“关于y轴对称二次函数”的图象与y轴的交点为A,它们的两个顶点分别为B,C,且BC=6,顺次连接点A,B,O,C得到一个面积为24的菱形,求“关于y轴对称二次函数”的函数表达式.24.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.(1)请求出y与x之间的函数关系式.(2)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?(3)如果每天获得不低于160元的利润,销售单价范围是多少?至少出售多少袋?参考答案与试题解析一.选择题(共8小题)1.已知∠α为锐角,且sinα=,则∠α=()A.30°B.45°C.60°D.90°【分析】根据特殊角的三角函数值解答.【解答】解:∵∠α为锐角,且sinα=,∴∠α=30°.故选:A.2.在△ABC中,∠C=90°,AB=12,sin A=,则BC等于()A.B.4 C.36 D.【分析】根据正弦的定义列式计算即可.【解答】解:在△ABC中,∠C=90°,sin A=,∴=,解得,BC=4,故选:B.3.抛物线y=﹣3x2+6x+2的对称轴是()A.直线x=2 B.直线x=﹣2 C.直线x=1 D.直线x=﹣1 【分析】将抛物线的一般式配方成为顶点式,可确定顶点坐标及对称轴.【解答】解:∵y=﹣3x2+6x+2=﹣3(x﹣1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x=1.故选:C.4.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是()A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4【分析】根据该几何体的三视图可逐一判断.【解答】解:A.主视图的面积为4,此选项正确;B.左视图的面积为3,此选项错误;C.俯视图的面积为4,此选项错误;D.由以上选项知此选项错误;故选:A.5.如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A.100米B.50米C.米D.50米【分析】过B作BM⊥AD,根据三角形内角与外角的关系可得∠ABC=30°,再根据等角对等边可得BC=AC,然后再计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.【解答】解:过B作BM⊥AD,∵∠BAD=30°,∠BCD=60°,∴∠ABC=30°,∴AC=CB=100米,∵BM⊥AD,∴∠BMC=90°,∴∠CBM=30°,∴CM=BC=50米,∴BM=CM=50米,故选:B.6.已知二次函数y=ax2+bx+c的图象上部分点的横坐标x与纵坐标y的对应值如表:那么关于它的图象,下列判断正确的是()A.开口向上B.x=3是方程ax2+bx+c=0的一个解C.与y轴交于负半轴D.在直线x=1左侧y随x的增大而减小【分析】A.函数在对称轴右侧,x增大,y减小,即可求解;B.x=﹣1时,y=0,根据函数的对称性,x=3时,y=0,即可求解;C.x=0,y=3,故与y轴交于负半轴错误,即可求解;D.在直线x=1左侧y随x的增大而减小错误,即可求解.【解答】解:函数的对称轴为:x=1.A.函数在对称轴右侧,x增大,y减小,故开口向上错误,不符合题意;B.x=﹣1时,y=0,根据函数的对称性,x=3时,y=0,故x=3是方程ax2+bx+c=0的一个解正确,符合题意;C.x=0,y=3,故与y轴交于负半轴错误,不符合题意;D.在直线x=1左侧y随x的增大而减小错误,不符合题意;故选:B.7.已知二次函数的图象y=ax2+bx+c(0≤x≤3)如图.关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值0,有最大值3 B.有最小值﹣1,有最大值0C.有最小值﹣1,有最大值3 D.有最小值﹣1,无最大值【分析】根据二次函数的最值问题解答即可.【解答】解:由图可知,0≤x≤3时,该二次函数x=1时,有最小值﹣1,x=3时,有最大值3.故选:C.8.已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.【分析】根据一次函数图象经过的象限,即可得出<0、c>0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:<0、c>0,∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴.故选:A.二.填空题(共6小题)9.以下给出的几何体:球、正方体、圆柱、圆锥中,主视图是矩形,俯视图是圆形的是圆柱.【分析】根据三视图的基本知识,分析各个几何体的三视图然后可解答.【解答】解:俯视图是圆的有球、圆柱、圆锥,主视图是矩形的有正方体、圆柱,故答案为:圆柱.10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果BC=3,AC=4,那么cos∠BCD=.【分析】根据勾股定理和锐角三角函数即可求解.【解答】解:∵∠ACB=90°,∴∠A+∠B=90°∵CD⊥AB,∴∠BCD+∠B=90°∴∠BCD=∠A∵BC=3,AC=4,根据勾股定理,得AB==5∴cos∠BCD=cos∠A==.故答案为11.顶点为(﹣6,0),开口向下,形状与函数y=x2的图象相同的抛物线的表达式是y=﹣(x+6)2.【分析】设抛物线的顶点式,y=a(x﹣h)2+k,确定h、k、a的值即可.【解答】解:设所求的抛物线的关系式为y=a(x﹣h)2+k,∵顶点为(﹣6,0),∴h=﹣6,k=0,又∵开口向下,形状与函数y=x2的图象相同,∴a=﹣,∴抛物线的关系式为:y=﹣(x+6)2,12.关于x的方程2x2﹣5x sin A+2=0有两个相等的实数根,其中∠A是锐角△ABC的一个内角,则sin A=.【分析】根据方程的系数结合根的判别式△=0,即可得出关于sin A的一元二次方程,解之即可得出sin A的值,再结合∠A是锐角△ABC的一个内角,可得出sin A取正值,此题得解.【解答】解:∵关于x的方程2x2﹣5x sin A+2=0有两个相等的实数根,∴△=(﹣5sin A)2﹣4×2×2=0,解得:sin A=±.又∵∠A是锐角△ABC的一个内角,∴sin A=.故答案为:.13.点P1(﹣1,y1),P2(2,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是y2>y1>y3.【分析】求出抛物线的对称轴,根据抛物线的增减性,可知在对称轴的右侧,y随x的增大而减小,再利用对称性得出P1关于对称轴对称的点Q的坐标,再进行比较即可.【解答】解:二次函数y=﹣x2+2x+c的对称轴为:x=﹣=1,由对称性得,P1(﹣1,y1)关于对称轴对称的点Q的坐标为(3,y1),∵a=﹣1<0,∴在对称轴的右侧,即x>1时,y随x的增大而减小,∵P2(2,y2),P3(5,y3),Q(3,y1),∴y2>y1>y3,故答案为:y2>y1>y3.14.有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,则水深超过 2.76 米时就会影响过往船只在桥下的顺利航行.【分析】以拱顶为坐标原点,水平向右为x轴正方向,建立平面直角坐标系.根据题中数据求出抛物线解析式.桥下水面的宽度不得小于18米,即求当x=9时y的值,然后根据正常水位进行解答.【解答】解:设抛物线解析式为y=ax2,把点B(10,﹣4)代入解析式得:﹣4=a×102,解得:a=﹣,∴y=﹣x2,把x=9代入,得:y=﹣=﹣3.24,此时水深=4+2﹣3.24=2.76米.三.解答题(共10小题)15.计算:(1)|1﹣|+()﹣2﹣4cos30°(2)tan60°+cos45°﹣tan260°+sin30°【分析】(1)原式利用绝对值的代数意义,负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)原式利用特殊角的三角函数值计算即可求出值.【解答】解:(1)原式=﹣1+9﹣4×=8﹣;(2)原式=×+×﹣3+=3+1﹣3+=1.16.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段PG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出表示小亮在灯光下形成的影子线段.(2)如果灯杆高12m,小亮的身高1.6m,小亮与灯杆的距离13m,请求出小亮影子的长度.【分析】(1)连接EG进而延长交DF于点N,得出FN进而得出答案;(2)直接利用相似三角形的判定与性质得出答案.【解答】解:(1)如图所示:FN即为所求;(2)∵AB∥DE,∴△CAB∽△CDE,∴=,∵灯杆高12m,小亮的身高1.6m,小亮与灯杆的距离13m,∴=,解得:CA=,答:小亮影子的长度为m.17.如图,一座堤坝的横断面为梯形,AD∥BC,AB坡坡角为45°,DC坡坡度为1:2,其他数据如图所示,求BC的长.(结果保留根号)【分析】根据题意可以作辅助线AE⊥BC,作DF⊥BC,然后根据AB坡坡角为45°,DC 坡坡度为1:2和题目中的数据可以分别求得CF和BE的长,从而可以求得BC的长.【解答】解:作AE⊥BC于点E,作DF⊥BC于点F,如右图所示,由题意可得,tan∠C=,CD=10m,∠B=45°,AD=6m,∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,AE=DF,设DF=x,则CF=2x,∴=102,解得,x=2,∴DF=2m,CF=4m,AE=2m,∵∠AEB=90°,∠ABE=45°,AE=2m,∴BE=2m,∴BC=BE+EF+CF=2+6+4=(6+6)m,即BC的长是(6+6)m.18.已知抛物线y=﹣x2﹣4x+5(1)用配方法把该函数化为y=a(x﹣h)2+k的形式,写出顶点坐标.(2)抛物线的开口向下,对称轴直线x=﹣2 .当x<﹣2 时,y随x增大而增大.【分析】(1)根据配方法的要求,把抛物线的一般式转化为顶点式,可求顶点坐标;(2)根据顶点式确定对称轴,然后根据对称轴确定增减性即可.【解答】解:(1)∵y=﹣x2﹣4x+5=﹣(x2+4x+4)+9=﹣(x+2)2+9,顶点坐标为(﹣2,9);(2)∵a=﹣1<0,∴开口向下,对称轴为x=﹣2,当x<﹣2时,y随着x的增大而增大,故答案为:向下,直线x=﹣2,<﹣2.19.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)【分析】根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.【解答】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC•cos∠ACD=27.2海里,在直角三角形BCD中,BD=CD•tan∠BCD=20.4海里.答:还需航行的距离BD的长为20.4海里.20.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了46米木栏.(1)若a=26,所围成的矩形菜园的面积为280平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(46﹣2x+2)m,根据题意得方程即可得到结论;(2)设AD=xm,根据题意得函数解析式S=x(46﹣x+2)=﹣(x﹣24)2+288,当a≥24时,则x=24时,S的最大值为288;当0<a<24时,于是得到结论.【解答】解:(1)设AB=xm,则BC=(46﹣2x+2)m,根据题意得x(46﹣2x+2)=280,解得x1=10,x2=14,当x=10时,46﹣2x+2=28>26,不合题意舍去;当x=14时,46﹣2x+2=20,答:AD的长为20m;(2)设AD=xm,∴S=x(46﹣x+2)=﹣(x﹣24)2+288,当a≥24时,则x=24时,S的最大值为288;当0<a<24时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为24a ﹣a2,综上所述,当a≥24时,S的最大值为288m2;当0<a<24时,S的最大值为(24a﹣a2)m2.21.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)【分析】过点D作DF⊥AB于点F,过点C作CH⊥DF于点H,则DE=BF=CH=10m,根据直角三角形的性质得出DF的长,在Rt△CDE中,利用锐角三角函数的定义得出CE的长,根据BC=BE﹣CE即可得出结论.【解答】解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.22.如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D的坐标.(3)设直线BC为y=mx+n(k≠0),若mx+n≥ax2+bx﹣4a,结合函数图象,写出x的取值范围.【分析】(1)将点A、C的坐标代入函数表达式,即可求解;(2)将点D的坐标代入抛物线表达式得:m+1=﹣m2+3m+4,即可求解;(3)y=﹣x2+3x+4,令y=0,则x=4或﹣1,故点B(4,0),由图线知,x的取值范围为:x≤0或x≥4.【解答】解:(1)将点A、C的坐标代入函数表达式得:,解得:,故抛物线的表达式为:y=﹣x2+3x+4;(2)将点D的坐标代入抛物线表达式得:m+1=﹣m2+3m+4,解得:m=3或﹣1(舍去﹣1),故点D的坐标为:(3,4);(3)y=﹣x2+3x+4,令y=0,则x=4或﹣1,故点B(4,0),由图象知,x的取值范围为:x≤0或x≥4.23.如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图所示二次函数y1=x2+2x+2与y2=x2﹣2x+2是“关于y轴对称二次函数”.(1)直接写出两条图中“关于y轴对称二次函数”图象所具有的共同特点.(2)二次函数y=2(x+2)2+1的“关于y轴对称二次函数”解析式为y=2(x﹣2)2+1 ;二次函数y=a(x﹣h)2+k的“关于y轴对称二次函数”解析式为y=a(x+h)2+k;(3)平面直角坐标系中,记“关于y轴对称二次函数”的图象与y轴的交点为A,它们的两个顶点分别为B,C,且BC=6,顺次连接点A,B,O,C得到一个面积为24的菱形,求“关于y轴对称二次函数”的函数表达式.【分析】(1)根据“关于y轴对称二次函数”,可得答案;(2)根据“关于y轴对称二次函数”,可得答案;(3)根据“关于y轴对称二次函数”,菱形的面积,可得顶点坐标,图象与y轴的交点,根据待定系数法,可得答案.【解答】解:(1)直接写出两条图中“关于y轴对称二次函数”图象所具有的共同特点时顶点关于y轴对称,对称轴关于y轴对称,(2)二次函数y=2(x+2)2+1的“关于y轴对称二次函数”解析式为y=2(x﹣2)2+1;二次函数y=a(x﹣h)2+k的“关于y轴对称二次函数”解析式为y=a(x+h)2+k.故答案为:y=2(x﹣2)2+1,y=a(x+h)2+k;(3)如图:由BC=6,顺次连接点A,B,O,C得到一个面积为24的菱形,得OA=8,A点坐标为(0,8),B点的坐标为(﹣3,4),设一个抛物线的解析式为y=a(x+3)2+4,将A点坐标代入,得9a+4=8,解得a=,y=(x+3)2+4关于y轴对称二次函数的函数表达式y=(x﹣3)2+4.根据对称性,开口向下的抛物线也符合题意,“关于y轴对称二次函数”的函数表达式为y=﹣(x+3)2﹣4关于y轴对称二次函数的函数表达式y=﹣(x﹣3)2﹣4.24.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.(1)请求出y与x之间的函数关系式.(2)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?(3)如果每天获得不低于160元的利润,销售单价范围是多少?至少出售多少袋?【分析】(1)根据每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,可设y=kx+b,再将x=3.5,y=280;x=5.5,y=120代入,利用待定系数法即可求解;(2)根据每天的利润=每天每袋的利润×销售量﹣每天还需支付的其他费用,列出w 关于x的函数解析式,再根据二次函数的性质即可求解;(3)根据每天获得160元的利润列出方程(x﹣3)(﹣80x+560)﹣80=160,解方程并结合3.5≤x≤5.5即可求解.【解答】解:(1)设y=kx+b,将x=3.5,y=280;x=5.5,y=120代入,得,解得:,则y与x之间的函数关系式为y=﹣80x+560;(2)由题意得:w=(x﹣3)(﹣80x+560)﹣80=﹣80x2+800x﹣1760=﹣80(x﹣5)2+240,∵3.5≤x≤5.5,∴当x=5时,w有最大值为240.故当销售单价定为5元时,每天的利润最大,最大利润是240元;(3)由题意,得(x﹣3)(﹣80x+560)﹣80=160,整理,得x2﹣10x+24=0,解得:x1=4,x2=6.∵3.5≤x≤5.5,∴4≤x≤5.5,当x=5.5时,y=﹣80x+560最小为:120袋.。
2020-2021学年山东省青岛市九年级(上)期中数学试卷(附答案详解)
2020-2021学年山东省青岛市九年级(上)期中数学试卷1.下列方程是一元二次方程的是()A. 2x2+y=1B. 9y=3y−1C. 2x2=1D. 3x−2x2=82.如图所示的4个三角形中,相似三角形有()A. 1对B. 2对C. 3对D. 4对3.根据表格中的信息,估计一元二次方程ax2+bx+c=10(a、b、c为常数,a≠0)的一个解x的范围为()x00.51 1.52 ax2+bx+c−15−8.75−2 5.2513A. 0<x<0.5B. 0.5<x<1C. 1<x<1.5D. 1.5<x<24.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作BD的垂线,垂足为E,已知∠EAB:∠EAD=1:3,则∠EOA的度数为()A. 30°B. 35°C. 40°D. 45°5.青岛第四届海上马拉松比赛将在2020年11月举行,小明和小刚分别从A、B、C三个组中随机选择一个组参加志愿者活动,假设每人参加这三个组的可能性都相同,小明和小刚恰好选择同一组的概率是()A. 13B. 23C. 19D. 296.如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点O为BD的中点,过点A作AE⊥BC交CB的延长线于点E,连接OE,则线段OE的长度是()A. 3cmB. 4cmC. 4.8cmD. 5cm7.下列结论正确的是()A. 如果一个四边形是轴对称图形,而且有两条互相垂直的对称轴,那么这个四边形一定是菱形.B. 如果一个四边形,既是轴对称图形,又是中心对称图形,那么这个四边形一定是正方形.C. 如果一个菱形绕对角线的交点旋转90°后,所得图形与原来的图形重合,那么这个菱形是正方形.D. 一个直角三角形绕斜边的中点旋转180°后,原图形与所得的图形构成的四边形一定是正方形.8.如图,在Rt△ABC中,∠C=90°,∠ABC的角平分线交AC于点D,过点D分别作BC和AB的平行线,交AB于点E,交BC于点H,连接EH交BD于点G,在AE上截取EF=BE,连接DF.下列说法中正确的有()(1)GH:FD=1:2;(2)BD2=BF⋅BC;(3)四边形EBHD是菱形;(4)S△ADF=29S△ABC.A. 1个B. 2个C. 3个D. 4个9.已知x2=y4≠0,则3x+y2y=______ .10.在一个不透明的口袋里装有黑、白两种颜色的球30个,这些球除颜色外都相同.某学习小组进行摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再把它放回袋中,不断重复上述过程,试验数据如下表:摸球的次数10020050080010001200摸到白球的次数4281201324402481根据上表数据,估算口袋中黑球有______ 个.11.如图,直线a//b//c,直线AC与DF交于点O,且与直线a、b、c分别交于点A、B、D、E、F,如果DE=2,EF=5,AC=6,那么AB的长为______ .12.书香相伴,香满校园,某校9月份借阅图书500本,11月份借阅图书845本,该校这两个月借阅图书的月均增长率是______ .13.如图,四边形ABCD是面积为6cm2的正方形,△ACE是等边三角形,图中阴影部分的面积是______ cm2.14.现有30张相同的菱形纸片(如图1,有一个内角为60°),小亮用其中3张密铺成一个如图2所示的正六边形;若小芳想密铺出一个与图②相似但面积比它大的正六边形,则她至少要用______ 张菱形纸片(不得将菱形纸片剪开).15.已知:如图,四边形ABCD是平行四边形.求作:一个菱形,使它的四个顶点分别在平行四边形ABCD的四条边上.16.解方程:x2+2x+2=8x+4(配方法).17.解方程:8x2−2x−3=0.18.已知:关于x的一元二次方程(k−1)x2+2x−1=0有两个不相等的实数根.求:k的最小整数解.19.用如图所示的两个可以自由转动的转盘进行“配紫色“游戏:游戏者同时转动两个转盘,若其中一个转盘转出了红色,另一个转盘转出了蓝色,那么他就赢了.(1)利用画树状图或列表的方法表示游戏所有可能出现的结果;(2)求游戏者获胜的概率.20.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,ADAB =25,求BC的长.21.有一个面积为54cm2的长方形,将它的一边剪短5cm,另一边剪短2cm,恰好变成一个正方形,求这个正方形的边长.22.已知:在△ABC中,CB=CA,点D、E分别是AB、AC的中点,连接DE并延长交外角∠ACM的平分线CN与点F.(1)求证:AD=CF;(2)连接CD,AF,当△ABC满足什么条件时,四边形ADCF为正方形?请证明你的结论.23.尊老爱幼是中华民族的传统美德,九九重阳节前夕,某商店为老人推出一款特价商品,每件商品的进价为15元,促销前销售单价为25元,平均每天能售出80件;根据市场调查,销售单价每降低0.5元,平均每天可多售出20件.(1)若每件商品降价5元,则商店每天的平均销量是______ 件(直接填写结果);(2)不考虑其他因素的影响,若商店销售这款商品的利润要平均每天达到1280元,每件商品的定价应为多少元?(3)在(2)的前提下,若商店平均每天至少要销售200件该商品,求商品的销售单价.24.古希腊数学家欧多克索斯曾提出:能否将一条线段分成不相等的两部分,使较短线段与较长线段的比等于较长线段与原线段的比?这就是黄金分割问题,这个相等的比又被称为黄金比,其比值是√5−12.古希腊很多矩形建筑中,宽与长之比都等于黄金比,在艺术领域,许多优美的曲线也与黄金比有关,黄金比在我们的生活中彰显着丰富的美学价值.【探索发现】:如图1,若点P1是线段AB靠近点B的黄金分割点,则AP1=√5−12AB,所以BP1=(1−√5−12)AB=3−√52AB.若P2是线段BP1靠近点B的黄金分割点,则BP2=3−√52BP1,所以BP2=______ AB.若P3是线段BP2靠近点B的黄金分割点,则BP3=3−√52BP2,所以BP3=______ AB.……【归纳提炼】若P n是线段BP n−1靠近点B的黄金分割点,则BP n=______ AB.【解释应用】:如图2,矩形ABCD中,宽BC与长AB的比为黄金比,则称矩形ABCD为“黄金矩形”.在课本“想一想”中我们已经知道,该矩形有如下特点:作正方形①,剩下的矩形仍是“黄金矩形”,且点P1为线段AB的黄金分割点;以此类推:作正方形②,剩下的矩形仍是“黄金矩形”,且点Q1为线段BC的黄金分割点;作正方形③,剩下的矩形仍是“黄金矩形”,且点P2为线段______ 的黄金分割点;作正方形④,剩下的矩形仍是“黄金矩形”,且点Q2为线段______ 的黄金分割点;……显然,这样变换可以无限的进行下去.借助对“BP2与AB,BQ2与BC的比例关系”的探究,写出当“黄金矩形”ABCD 的周长为a时,以BP2,BQ2为领边的“黄金矩形”的周长y与a的关系式:______ .【拓展延伸】:(1)设图2中四个正方形①,②,③,④的边长分别为a1,a2,a3,a4,请直接写出a1+a2+a3+a4=______ .(用含有a的代数式表示)(2)如图3,将正方形③和④的位置重新排列,再分别在每个正方形中作四分之一圆弧,四段弧可以连出一条优美的曲线,称为“黄金螺旋线”.请直接写出这条曲线的长度:______ .(用含有a的代数式表示)25.已知:如图1,在矩形ABCD中,AC是对角线,AB=6cm,BC=8cm.点P从点A出发,沿AB方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CA方向匀速运动,速度为2cm/s.过点Q作QE⊥AC,QE与BC相交于点E,连接PQ.设),解答下列问题:运动时间为t(s)(0<t≤165(1)连接BQ,当t为何值时,点E在线段BQ的垂直平分线上?(2)设四边形BPQC的面积为y(cm2),求y与t之间的函数关系式;(3)如图2,取点E关于AC的对称点F,是否存在某一时刻t,使△CDF为等腰三角形?若存在,直接写出t的值(不需提供解答过程);若不存在,请说明理由.答案和解析1.【答案】C【解析】解:A.是二元二次方程,不是一元二次方程,故本选项不符合题意;B.是一元一次方程,不是一元二次方程,故本选项不符合题意;C.是一元二次方程,故本选项符合题意;D.是分式方程,不是一元二次方程,故本选项不符合题意;故选:C.根据一元二次方程的定义逐个判断即可.本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数最高是2的整式方程,叫一元二次方程.2.【答案】A【解析】解:观察图象可知,图中有3个直角三角形,一个锐角三角形,其中左边的两个直角三角形的直角边的比都是1:2,所以这两个直角三角形相似.故选:A.根据相似三角形的判定方法判断即可.本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定方法,属于中考常考题型.3.【答案】D【解析】解:由表格可知:当x=1.5时,ax2+bx+c=5.25,则ax2+bx+c−10=−4.75,当x=2时,ax2+bx+c=13,则ax2+bx+c−10=3,∴关于x的一元二次方程ax2+bx+c=10(a≠0)的一个解x的范围是1.5<x<2,故选:D.根据ax2+bx+c的符号即可估算ax2+bx+c=10的解.本题考查一元二次方程,解题的关键是正确理解一元二次方程的近似解,本题属于基础题型.4.【答案】D【解析】解:∵四边形ABCD是矩形,∴OA=OB,∠BAD=90°,∴∠OAB=∠OBA,∵∠EAB:∠EAD=1:3,∴∠EAB=22.5°,∵AE⊥BD于点E,∴∠AEB=90°,∴∠ABE=67.5°,∴∠OBA=∠OAB=67.5°,∴∠AOB=45°,即∠EOA的度数为45°,故选:D.根据∠EAB:∠EAD=1:3,∠BAD=90°,可以求得∠BAE的度数,再根据矩形的性质和三角形内角和,即可得到∠EOA的度数.本题考查矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.5.【答案】A【解析】解:画树状图得:∵共有9种等可能的结果,小明和小刚恰好选择同一组的有3种情况,∴两人恰好选择同一组的概率为39=13;故选:A.首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及小明和小刚选到同一组的情况,再利用概率公式求解即可求得答案.本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.【答案】B【解析】解:∵四边形ABCD是菱形,∴BD⊥AC,∵BD=6cm,S菱形ABCD ═12AC×BD=24cm2,∴AC=8cm,∵AE⊥BC,∴∠AEC=90°,∴OE=12AC=4cm,故选:B.由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线性质即可得出结果.本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.7.【答案】C【解析】解:A.若一个四边形是轴对称图形,且有两条互相垂直的对称轴,则这个四边形是菱形或矩形,故本选项不合题意;B.如果一个四边形,既是轴对称图形,又是中心对称图形,那么这个四边形可以是菱形,故本选项不合题意;C.若一个菱形绕对角线的交点旋转90°后所得图形与原图形重合,则这个菱形是正方形,本选项符合题意;D.一个直角三角形绕斜边的中点旋转180°后,原图形与所得的图形构成的四辺形一定是矩形,故本选项不合题意;故选:C.依据菱形、矩形以及正方形的判定方法,即可得出结论.本题考查了菱形、矩形、正方形的判定与性质;熟练掌握特殊平行四边形的判定和性质,并能进行推理论证是解答本题的关键.8.【答案】C【解析】解:∵DE//BC,DH//AB,∴四边形DEBH是平行四边形,∴GH=EG,BG=DG,又∵EF=BE,∴EG//DF,GE=12DF,∴GH=12DF,∴GH:DF=1:2,故①正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵DE//BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴BE=DE,∴BE=DE=EF,∴∠BDF=90°=∠C,又∵∠ABD=∠DBC,∴△BDF∽△BCD,∴BDBC =BFBD,∴BD2=BC⋅BF,故②正确;∵BE=DE,四边形DEBH是平行四边形,∴四边形DEBH是菱形,故③正确;条件不足,无法证明S△ADF=29S△ABC.故④错误,故选:C.①由题意可证四边形DEBH是平行四边形,可得GH=EG,BG=DG,由三角形中位线定理可得EG//DF,GE=12DF,可得GH=12DF;②通过证明△BDF∽△BCD,可得BDBC =BFBD,可证BD2=BC⋅BF;③由菱形的判定可证四边形EBHD 是菱形;④条件不足,无法证明.本题是三角形综合题,考查了直角三角形的性质,菱形的判定和性质,三角形中位线定理,相似三角形的判定与性质等知识点,数形结合并熟练掌握相关性质及定理是解题的关键.9.【答案】54【解析】解:∵x 2=y 4≠0, ∴y =2x ,则3x+y 2y =3x+2x 4x=54. 故答案为:54.直接利用已知得出y =2x ,即可代入化简得出答案.此题主要考查了比例的性质,得出y 与x 之间的关系是解题关键.10.【答案】18【解析】解:根据图表给出的数据可得,摸到白球的频率将会接近0.4,所以可估计口袋中白种颜色的球的个数是:30×0.4=12(个),则口袋中黑球有30−12=18(个).故答案为:18.根据图表给出的数据得出白球的频率,再用总球的个数乘以白球的频率,求出白球的个数,再用总个数减去白球的个数即可得出黑球的个数.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.11.【答案】127【解析】解:∵直线a//b//c,∴DEEF =ABBC=25,∴ABAC =DEDF=22+5,∴AB6=27,解得:AB=127,故答案为:127.平行线分线段成比例定理的内容是:一组平行线截两条直线,所截的线段对应成比例,根据平行线分线段成比例解答即可.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.12.【答案】30%【解析】解:该校这两个月借阅图书的月均增长率是x,依题意,得:500(1+x)2=845,解得:x1=0.3=30%,x2=−2.3(不合题意,舍去).故答案为:30%.该校这两个月借阅图书的月均增长率是x,根据该校9月份及11月份借阅图书数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.【答案】(3√3−3)【解析】解:如图,连接BE,交AC于O,∵△ACE是等边三角形,四边形ABCD是正方形,∴EA=EC,BA=BC,∴BE垂直平分AC,∵四边形ABCD是面积为6cm2的正方形,△ACE是等边三角形,∴AB=BC=√6(cm),∴AC=√2AB=2√3(cm),∴AE=2√3(cm),AO=12AC=√3(cm),∴Rt△AOE中,EO=√AE2−AO2=3(cm),∴阴影部分面积=S△ACE−S△ACD=12×AC×EO−12×6=12×2√3×3−3=(3√3−3)cm2,故答案为:(3√3−3).连接BE,交AC于O,依据等边三角形和正方形的性质,即可得到AO的长,依据勾股定理即可得到EO的长,最后根据阴影部分面积=S△ACE−S△ACD进行计算.本题主要考查了正方形的性质、等边三角形的性质以及勾股定理的运用,正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.14.【答案】12【解析】解:观察图象可知,至少要用12张菱形纸片.故答案为:12.利用图象法,画出图形判断即可.本题考查相似多边形的性质,菱形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用图象法解决问题.15.【答案】解:如图,四边形EFGH即为所求.【解析】过平行四边形的对角线的交点,画两条互相垂直直线EG ,FH ,J 交平行四边形ABCD 的边于E ,G ,F ,H ,连接EF ,FG ,GH ,HE ,四边形EFGH 即为所求. 本题考查作图−复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】解:x 2+2x +2=8x +4,x 2+2x −8x =−2+4,x 2−6x =2,配方得:x 2−6x +9=2+9,(x −3)2=11,开方得:x −3=±√11,解得:x 1=3+√11,x 2=3−√11.【解析】移项,合并同类项,配方,开方,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能够正确配方是解此题的关键.17.【答案】解:8x 2−2x −3=0,b 2−4ac =(−2)2−4×8×(−3)=100,x =−b±√b 2−4ac 2a=2±√1002×8, x 1=34,x 2=−12.【解析】先求出b 2−4ac 的值,再代入公式求出即可.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键.18.【答案】解:根据题意,得:△=22−4×(k −1)×(−1)>0且k −1≠0, 解得k >0且k ≠1,所以k 的最小整数解为2.【解析】根据一元二次方程有两个不相等的实数根得出△=22−4×(k −1)×(−1)>0,结合一元二次方程的定义知k −1≠0,从而得出答案.本题主要考查根的判别式和一元二次方程的定义,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.19.【答案】解:(1)根据题意画图如下:共有6种等可能的结果数;(2)∵共有6种等可能的结果数,其中一个转盘转出了红色,另一个转盘转出了蓝色的有3种,∴游戏者获胜的概率是36=12.【解析】(1)根据题意画出树状图得出所有等可能的情况数即可;(2)找出一个转盘转出了红色,另一个转盘转出了蓝色的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.【答案】(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴ADAB =DEBC,∵ADAB =25,BC=3,∴25=3BC,∴BC=152.【解析】(1)由直角三角形的性质得出∠B=∠ADG,可证明△ABC∽△ADE;(2)由相似三角形的性质可得出答案.本题考查了相似三角形的判定与性质,直角三角形的性质,熟练掌握相似三角形的判定与性质是解题的关键.21.【答案】解:设这个正方形的边长为x cm,则原长方形的长为(x+5)cm,宽为(x+ 2)cm,依题意,得:(x+5)(x+2)=54,整理,得:x2+7x−44=0,解得:x1=4,x2=−11(不合题意,舍去).答:这个正方形的边长为4cm.【解析】设这个正方形的边长为xcm,则原长方形的长为(x+5)cm,宽为(x+2)cm,根据原长方形的面积为54cm2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【答案】(1)证明:∵CB=CA,∴∠A=∠B,∵∠ACM=∠A+∠B,∴∠A=12∠ACM,∵CN平分∠ACM,∴∠ACF=12∠ACM,∴∠A=∠ACF,∵E是AC的中点,∴AE=CE,在△ADE与△CFE中,{∠A=∠ECFAE=CE∠AED=∠CEF,∴△ADE≌△CFE(ASA),∴AD=CF;(2)解:当∠ACB=90°,四边形ADCF是正方形,理由:∵AC=BC,∠ACB=90°,∴△ACB是等腰直角三角形,∴∠BAC=45°,∵CN平分∠ACM,∴∠ACF=12∠ACM=45°,∴∠DAC=∠ACF,∴AD//CF,由(1)知AD=CF,∴四边形ADCF是平行四边形,∵点D是AB的中点,∴AD=CD,∴∠ACD=∠CAD=45°,∴∠DCF=90°,∴矩形ADCF是正方形.【解析】(1)根据等腰三角形的性质得到∠A=∠B,根据外角的性质定理得到∠A=1 2∠ACM,由角平分线的定义得到∠ACF=12∠ACM,求得∠A=∠ACF,根据全等三角形的判定和性质定理即可得到结论;(2)由已知条件得到△ACB是等腰直角三角形,求得∠BAC=45°,推出AD//CF,由(1)知AD=CF,得到四边形ADCF是平行四边形,根据直角三角形的性质得到AD=CD,求得∠ACD=∠CAD=45°,根据正方形的判定定理得到结论.本题考差了正方形的判定,全等三角形的判定和性质,三角形的中位线的性质,熟练掌握全等三角形的判定和性质是解题的关键.23.【答案】280【解析】解:(1)80+5÷0.5×20=280(件). 故答案为:280.(2)设每件商品降价x 元,则销售每件商品的利润为(25−15−x)元,平均每天可售出80+x0.5×20=(40x +80)件,依题意,得:(25−15−x)(40x +80)=1280, 整理,得:x 2−8x +12=0, 解得:x 1=2,x 2=6, ∴25−x =23或19.答:每件商品的定价应为23元或19元.(3)当x =2时,40x +80=160<200,不合题意,舍去; 当x =6时,40x +80=320>200,符合题意, ∴25−x =19.答:商品的销售单价为19元.(1)根据每天的平均销售量=80+降低的价格÷0.5×20,即可求出结论;(2)设每件商品降价x 元,则销售每件商品的利润为(25−15−x)元,平均每天可售出80+x 0.5×20=(40x +80)件,根据每天的总利润=销售每件商品的利润×平均每天的销售量,即可得出关于x 的一元二次方程,解之即可得出结论;(3)由(2)的结论结合平均每天至少要销售200件该商品,可确定x 的值,再将其代入(40x +80)中即可求出结论.本题考查了一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)找准等量关系,正确列出一元二次方程;(3)将x 的值代入(40x +80)中,求出平均每天的销售量.24.【答案】(3−√52)2(3−√52)3 (3−√52)n BP 1 BQ 1 y =(√5−12)4a (√5−1)223a +(√5−1)324a +(√5−1)425a +(√5−1)526a πa ⋅[(√5−1)22+(√5−1)322+(√5−1)423+(√5−1)423]【解析】解:【探索发现】:由题意可知:BP 2=(3−√52)2AB ,BP 3=(3−√52)3AB , 故答案为:(3−√52)2,(3−√52)3.【归纳提炼】:由规律可知:BP n =(3−√52)nAB . 故答案为:(3−√52)n.【解释应用】:且点P 2为线段P 1B 的黄金分割点,点Q 2为线段BQ 1的黄金分割点, ∵BC =√5−12AB ,BP 1=√5−12BC ,BQ 1=√5−12BP 1,BP 2=√5−12BQ 1,所有矩形相似, ∴BP 2,BQ 2为领边的“黄金矩形”的周长y 与a 的关系式:y =(√5−12)4a. 故答案为:BP 1,BQ 2,y =(√5−12)4a.【拓展延伸】:(1)设图2中四个正方形①,②,③,④的边长分别为a 1,a 2,a 3,a 4, 设AB =x ,BC =y ,则2x +2y =a , ∴2x +2⋅√5−12x =a , ∴x =√5−14a ,y =(√5−1)223a , ∴a 1+a 2+a 3+a 4=(√5−1)223a +(√5−1)324a +(√5−1)425a +(√5−1)526a.(2)如图3,将正方形③和④的位置重新排列,再分别在每个正方形中作四分之一圆弧,四段弧可以连出一条优美的曲线,称为“黄金螺旋线”. 请直接写出这条曲线的长度:14⋅π(a 1+a 2+a 3+a 4)=14π⋅[(√5−1)223a +(√5−1)324a +(√5−1)425a +(√5−1)526a]=πa ⋅[(√5−1)22+(√5−1)322+(√5−1)423+(√5−1)423]. 故答案为:πa ⋅[(√5−1)22+(√5−1)322+(√5−1)423+(√5−1)423]. 【探索发现】:根据黄金分割的定义计算即可; 【归纳提炼】:探究规律,利用规律解决问题即可;【解释应用】:根据相似多边形的性质相似比等于周长比,解决问题即可; 【拓展延伸】:(1)分别求出a 1,a 2,a 3,a 4即可解决问题; (2)利用弧长公式计算即可.本题属于四边形综合题,考查了矩形的性质,黄金分割,解直角三角形,相似多边形的性质等知识,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.25.【答案】解:(1)∵四边形ABCD是矩形,∴∠B=90°,∵AB=6cm,BC=9cm,∴AC=√AB2+BC2=√62+82=10,∵EQ⊥AC,∴∠EQC=∠B=90°,∵∠ECQ=∠ACB,∴△ECQ∽△ACB,∴EQAB =CQCB=ECAC,∴EQ6=2t8=EC10,∴EQ=32t,EC=52t,∵点E在BQ的垂直平分线上,∴EB=EQ,∴8−52t=32t,∴t=2.(2)如图2中,过点Q作QH⊥AB于H,则AQ=10−2t,QH=45AQ=45(10−2t),∵AP=t,∴S△APQ=12⋅AP⋅QH=12⋅t⋅45(10−2t)=−45t2+4t,∴y=S△ABC−S△APQ=12×6×8−(−45t2+4t)=45t2−4t+24(0<t≤165).(3)①如图2−1中,当DC=DF时,连接DF,取AC的中点J,连接BJ,和点B作BH⊥AC于H,过点F作FK⊥CD于K.∵∠ABC=90°,AJ=JC,∴BJ=AJ=JC=12AC=5,∴∠JBC=∠JCB,∴∠BJH=∠BCJ+∠JCB=2∠JCB,∵E,F关于AC对称,∴∠ACE=∠ACF,CF=CE=52t ∴∠FCE=2∠ACB=∠BJH,∵FK⊥CD,CB⊥CD,∴FK//CB,∴∠CFK=∠FCE=∠BJH,∵BH⊥AC,∴S△ACB=12⋅AB⋅CB=12⋅AC⋅BH,∴BH=AB⋅BCAC =245,∵FD=FC,FK⊥CD,∴CK=KD=3,∵∠BJH=∠CFK,∴sin∠BJH=sin∠CFK,∴BHBJ =CKCF,∴2455=352t,∴t=54,②当CF=CD时,52t=6,∴t=125,综上所述,满足条件的t 的值为54或125.【解析】(1)证明△ECQ∽△ACB ,可得EQAB =CQCB =ECAC ,可得EQ6=2t 8=EC10,推出EQ =32t ,EC =52t ,由题意点E 在BQ 的垂直平分线上,推出EB =EQ ,由此构建方程,求解即可.(2)如图2中,过点Q 作QH ⊥AB 于H ,则AQ =10−2t ,QH =45AQ =45(10−2t),根据y =S △ABC −S △APQ ,求解即可.(3)分两种情形:①如图2−1中,当DC =DF 时,连接DF ,取AC 的中点J ,连接BJ ,和点B 作BH ⊥AC 于H ,过点F 作FK ⊥CD 于K.证明∠BJH =∠CFK ,可得sin∠BJH =sin∠CFK ,由此构建方程求解.②当CF =CD 时,构建方程,求解即可.本题属于四边形综合题,考查了矩形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
山东省青岛市九年级(上)期末数学试卷(含解析)
山东省青岛市九年级(上)期末数学试卷一、选择题(本题满分24分,共有8道小题,每题3分)1.如图所示的几何体,它的左视图是()A.B.C.D.2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长3.如果两个相似三角形的相似比是1:2,那么它们的周长比是()A.2:1B.1:4C.1:D.1:24.如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1B.x<﹣2C.0<x<1D.﹣2<x<0或x>15.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1056B.x(x﹣1)=1056×2C.x(x﹣1)=1056D.2x(x+1)=10566.如图,在Rt△ABC中,∠C=90°,AB=6,AC=2,CD⊥AB于D,设∠ACD=α,则cosα的值为()A.B.C.2D.7.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①abc<0;②2a+b=0;③a﹣b+c =0;④点(3,y1),(﹣2,y2)都在抛物线上,则有y1>y2,⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤8.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1,还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A 落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2,按上述方法不断操作下去…经过第2018次操作后得到的折痕D2017E2017到BC的距离记为h2018,若h1=1,则h2018的值为()A .2﹣B .C .1﹣D .2﹣二、填空题(本题满分18分,共有6道小题,每小题3分)9.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数 100 1000 5000 10000 50000 100000 摸出黑球次数464872506500824996 50007根据列表,可以估计出n 的值是 .10.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某家快递公司今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,该公司每月的投递总件数的平均增长率为 .11.将矩形纸片ABCD 按如图方式折叠,BE 、CF 为折痕,折叠后点A 和点D 都落在点O 处,若△EOF 是等边三角形,则的值为 .12.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管的长为 .13.给定一个边长为3的正方形,存在一个矩形,使它的周长和面积分别是这个正方形周长和面积的2倍,则这个矩形较长边的边长为 .14.如图,在正方形ABCD 中,∠BAC 的平分线交BC 边于G ,AG 的中垂线与CB 的延长线交于E ,与AB 、AC 、DC 分别交于点M ,N ,F ,下列结论:①tan ∠E =,②△AGC ≌△EMG ,③四边形AMGN 是菱形,④S △CFN =S 四边形AMGN ,其中正确的是 (填序号).三、作图题(本题满分4分)15.已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).以点O为位似中心,将△ABC放大为原来的2倍,得到△A1B1C1,请在第一象限画出△A1B1C1,并写出点B1的坐标.四、解答题(本大题满分74分,共有9道小题)16.(6分)(1)解下列方程:(x+1)(x+2)=2x+4(2)若抛物线y=x2+3x+a与x轴有交点,求实数a的取值范围.17.(6分)在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且a=7,c=7,求出直角三角形的其他元素.18.(6分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时甲同学先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由乙同学从中随机抽取一张卡片,甲、乙两同学按各自抽取的内容进行诵读比赛.请用列表或画树状图的方法求甲、乙两同学诵读两个不同材料的概率.19.(6分)如图,1号楼在2号楼的南侧,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=35m.请求出两楼之间的距离AB的长度(结果保留整数)(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)20.(6分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象与直线y=x交于点D,且反比例函数y=交BC于点E,AD=3.(1)求D点的坐标及反比例函数的关系式;(2)若矩形的面积是24,请写出△CDE的面积(不需要写解答过程).21.(8分)已知:如图,在平行四边形ABCD中,BC=AC,E,F分别是AB,CD的中点,连接CE并延长交DA的延长线于M,连接AF并延长交BC的延长线于N.(1)求证:△ABN≌△CDM;(2)当平行四边形ABCD的边或角满足什么关系时,四边形AECF是正方形?请说明理由.22.(8分)某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.①求出商场每天销售这种文具的销售量y(件)与销售单价x(元)之间的函数关系式;②求每天的销售利润w(元)与销售单价x(元)之间的函数关系式;③商场制定了销售计划,规定每天销售量至少是200件,为了保证销售量,销售单价为多少元时,该文具每天的销售利润最大,最大利润是多少?23.(8分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?24.(10分)问题提出:求n个相同的长方体(相邻面的面积不相同)摆放成一个大长方体的表面积.问题探究:探究一:为了研究这个问题,同学们建立了如下的空间直角坐标系:空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向.将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标系内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.问题一:如图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为.组成这个几何体的单位长方体的个数为个.探究二:为了探究有序数组(x ,y ,z )的几何体的表面积公式S (x ,y ,z ),同学们针对若干个单位长方体进行码放,制作了下列表格几何体 有序数组 单位长方体的个数 表面上面积为S 1的个数表面上面积为S 2的个数表面上面积为S 3的个数表面积(1,1,1) 1 2 2 2 2S 1+2S 2+2S 3 (1,2,1) 2 4 2 4 4S 1+2S 2+4S 3 (3,1,1) 3 2 6 6 2S 1+6S 2+6S 3 (2,1,2) 4 4 8 4 4S 1+8S 2+4S 3 (1,5,1) 5 10 2 10 10S 1+2S 2+10S 3(1,2,3)6 ……………………………… 问题二:请将上面表格补充完整:当单位长方体的个数是6时,表面上面积为S 1的个数是. 表面上面积为S 2的个数是 ;表面上面积为S 3的个数是 ;表面积为 . 问题三:根据以上规律,请写出有序数组(x ,y ,z )的几何体表面积计算公式S (x ,y ,z )= (用x 、y 、z 、S 1、S 2、S 3表示) 探究三:同学们研究了当S 1=2,S 2=3,S 3=4时,用3个单位长方体码放的几何体中,有三种码放的方法,有序数组分别为(1,1,3),(1,3,1),(3,1,1).而S (1,1,3)=38,S (1,3,1)=42,S=46.容易发现个数相同的长方体,由于码放的方法不同,组成的几何体的表面积(3,1,1)就不同.拓展应用:要将由20个相同的长方体码放的几何体进行打包,其中每个长方体的长是8,宽是5,高是6.为了节约外包装材料,请直接写出使几何体表面积最小的有序数组,并写出这个最小面积(不需要写解答过程).(缝隙不计)25.(10分)已知:△EFP 和矩形ABCD 如图①摆放(点C 与点E 重合),点B ,C (E ),F 在同一直线上,AB =3cm ,BC =9cm ,EF =8cm ,PE =PF =5cm ,如图②,△EFP 从图①的位置出发,沿CB 方向匀速运动,速度为2cm /s ,当点F 与点C 重合时△EFP 停止运动停止.设运动时间为t (s )(0<t <4),解答下列问题:(1)当0<t <2时,EP 与CD 交于点M ,请用含t 的代数式表示CE = ,CM = ;(2)当2<t <4时,如图③,PF 与CD 交于点N ,设四边形EPNC 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)当2<t <4时,且S 四边形EPNC :S 矩形ABCD =1:4时,请求出t 的值;(4)连接BD ,在运动过程中,当BD 与EP 相交时,设交点为O ,当t = 时;O 在∠BAD 的平分线上.(不需要写解答过程)参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每题3分)1.如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长【分析】在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.【解答】解:在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选:D.【点评】本题综合考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.3.如果两个相似三角形的相似比是1:2,那么它们的周长比是()A.2:1B.1:4C.1:D.1:2【分析】直接根据相似三角形周长的比等于相似比即可得出结论.【解答】解:∵两个相似三角形的相似比是1:2,∴这两个相似三角形的周长比是1:2.故选:D.【点评】本题考查的是相似三角形的性质,熟知相似三角形对应周长的比等于相似比是解答此题的关键.4.如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1B.x<﹣2C.0<x<1D.﹣2<x<0或x>1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是根据两函数图象的上下位置关系解不等式.本题属于基础题,难度不大,解决该题型题目时,根据两函数图象的上下位置关系结合交点坐标得出不等式的解集是关键.5.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1056B.x(x﹣1)=1056×2C.x(x﹣1)=1056D.2x(x+1)=1056【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.【解答】解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1056.故选:C.【点评】本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.6.如图,在Rt△ABC中,∠C=90°,AB=6,AC=2,CD⊥AB于D,设∠ACD=α,则cosα的值为()A.B.C.2D.【分析】根据勾股定理得到BC==4,根据余角的性质得到∠ACD=∠B=α,根据三角函数的定义即可得到结论.【解答】解:∵∠C=90°,AB=6,AC=2,∴BC==4,∵CD⊥AB,∴∠ADC=90°,∴∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B=α,∴cosα=cos B===,故选:A.【点评】本题考查了解直角三角形,锐角三角函数的定义,勾股定理,同角的余角相等的性质,熟记各性质并求出∠α=∠B是解题的关键.7.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①abc<0;②2a+b=0;③a﹣b+c =0;④点(3,y1),(﹣2,y2)都在抛物线上,则有y1>y2,⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】根据题意和函数图象,可以判断各个小题中的结论是否成立,本题得以解决.【解答】解:由图象可得,a<0,b>0,c>0,则abc<0,故①正确,∵﹣=1,∴2a+b=0,故②正确,∵函数图象与x轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是x=1,∴函数图象与x轴的另一个交点在点(0,0)和点(﹣1,0)之间,∴当x﹣1时,y=a﹣b+c<0,故③错误,∵点(3,y1),(﹣2,y2)都在抛物线上,对称轴为x=1,∴y1>y2,故④正确,∵函数图象与x轴的交点没有具体说明交点的坐标,∴当﹣1<x<3时,y>0不一定成立,故⑤错误,故选:A.【点评】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.8.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1,还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A 落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2,按上述方法不断操作下去…经过第2018次操作后得到的折痕D 2017E 2017到BC 的距离记为h 2018,若h 1=1,则h 2018的值为( )A .2﹣B .C .1﹣D .2﹣【分析】根据中点的性质及折叠的性质可得DA =DA '=DB ,从而可得∠ADA '=2∠B ,结合折叠的性质可得∠ADA '=2∠ADE ,可得∠ADE =∠B ,继而判断DE ∥BC ,得出DE 是△ABC 的中位线,证得AA 1⊥BC ,得到AA 1=2,求出h 1=2﹣1=1,同理h 2=2﹣,h 3=2﹣×=2﹣,于是经过第n 次操作后得到的折痕D n ﹣1E n ﹣1到BC 的距离h n =2﹣,据此可得答案. 【解答】解:连接AA 1.由折叠的性质可得:AA 1⊥DE ,DA =DA 1,又∵D 是AB 中点,∴DA =DB ,∴DB =DA 1,∴∠BA 1D =∠B ,∴∠ADA 1=2∠B ,又∵∠ADA 1=2∠ADE ,∴∠ADE =∠B ,∴DE ∥BC ,∴AA 1⊥BC ,∴AA 1=2,∴h1=2﹣1=1,同理,h2=2﹣,h3=2﹣×=2﹣…∴经过第n次操作后得到的折痕D n﹣1E n﹣1到BC的距离h n=2﹣.∴h2018=2﹣,故选:A.【点评】本题考查了相似三角形的判定和性质,三角形中位线的性质,平行线等分线段定理,找出规律是解题的关键.二、填空题(本题满分18分,共有6道小题,每小题3分)9.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出n的值是n=10.【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【解答】解:∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,∴=0.5,解得:n=10.故答案为:10.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黑球的频率得到相应的等量关系.10.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某家快递公司今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,该公司每月的投递总件数的平均增长率为10%.【分析】设该公司每月的投递总件数的平均增长率为x,根据该公司三月份与五月份完成投递的快递总件数,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该公司每月的投递总件数的平均增长率为x,根据题意得:10(1+x)2=12.1,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:该公司每月的投递总件数的平均增长率为10%.故答案为:10%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.11.将矩形纸片ABCD按如图方式折叠,BE、CF为折痕,折叠后点A和点D都落在点O处,若△EOF是等边三角形,则的值为.【分析】由△EOF是等边三角形,可得EF=OE=OF,∠OEF=60°,又由由折叠的性质可得:OE=AE,OF=DF,∠AEB=∠OEB,则可得AD=3AE,∠AEB=60°,则可证得AB=AE,继而求得答案.【解答】解:∵△EOF是等边三角形,∴EF=OE=OF,∠OEF=60°,由折叠的性质可得:OE=AE,OF=DF,∠AEB=∠OEB,∴AD=3AE,∠AEB==60°,∵四边形ABCD是矩形,∴∠A=90°,∴tan∠AEB==,∴AB=AE,∴=.故答案为:.【点评】此题考查了折叠的性质、等边三角形的性质、矩形的性质以及三角函数等知识.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.12.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管的长为 2.25m.【分析】设抛物线的解析式为y=a(x﹣1)2+3(0≤x≤3),将(3,0)代入求得a值,则x=0时得的y值即为水管的长.【解答】解:由于在距池中心的水平距离为1m时达到最高,高度为3m,则设抛物线的解析式为:y=a(x﹣1)2+3(0≤x≤3),代入(3,0)求得:a=﹣.将a值代入得到抛物线的解析式为:y=﹣(x﹣1)2+3(0≤x≤3),令x=0,则y==2.25.则水管长为2.25m.故答案为:2.25m.【点评】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.13.给定一个边长为3的正方形,存在一个矩形,使它的周长和面积分别是这个正方形周长和面积的2倍,则这个矩形较长边的边长为6+3.【分析】设矩形较长边的边长为x(x>6),则较短边的边长为(3×4﹣x),由矩形的面积公式结合矩形的面积,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:设矩形较长边的边长为x(x>6),则较短边的边长为(3×4﹣x),由题意得:x(3×4﹣x)=2×3×3,整理得:x2﹣12x+18=0,解得:x1=6+3,x2=6﹣3(不合题意,舍去).故答案为:6+3.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.如图,在正方形ABCD 中,∠BAC 的平分线交BC 边于G ,AG 的中垂线与CB 的延长线交于E ,与AB 、AC 、DC 分别交于点M ,N ,F ,下列结论:①tan ∠E =,②△AGC ≌△EMG ,③四边形AMGN 是菱形,④S △CFN =S 四边形AMGN ,其中正确的是 ②③④ (填序号).【分析】在正方形ABCD 中,∠BAC 的平分线交BC 边于G ,可得∠BAG =∠CAG =∠BAC =22.5°,∠AGB =67.5°,因为AG 的中垂线与CB 的延长线交于E ,可得AM =MG ,AN =NG ,∠E =22.5°,即可判断①错误,证明AM =AN ,可得AM =GM =NG =AN ,即四边形AMGN 是菱形,可判断③正确;用“角角边”可证明△AGC ≌△EMG ,可判断②正确;证明意△AMN ∽△CFN ,可得S △CFN =2S △AMN =S 四边形AMGN ,可判断④正确.【解答】解:∵在正方形ABCD 中,∠BAC 的平分线交BC 边于G ,∴∠BAG =∠CAG =∠BAC =22.5°,∵∠ABC =90°,∴∠AGB =90°﹣22.5°=67.5°,∵AG 的中垂线与CB 的延长线交于E ,∴AM =MG ,AN =NG ,∠E =90°﹣∠AGB =22.5°,∴tan ∠E =错误,即①错误;∵∠AMN =∠ANM =90°﹣22.5°=67.5°,∴AM =AN ,∴AM =GM =NG =AN ,∴四边形AMGN 是菱形,即③正确;∵四边形AMGN 是菱形,∴MG ∥AC ,AB ∥NG ,∴∠ACG =∠MGE =45°,∠NGC =∠ABC =90°,∴GC =GN =GM ,∵∠GAC =∠E =22.5°,∴△AGC ≌△EMG (AAS ),即②正确;由题意△AMN ∽△CFN , ∴,∴S △CFN =2S △AMN =S 四边形AMGN ,即④正确. 故答案为:②③④.【点评】本题考查正方形的性质,全等三角形的判定和性质,菱形的判定和性质,相似三角形的判定和性质.解题的关键是熟练掌握菱形的判定和性质,相似三角形面积的比等于相似比的平方的性质.三、作图题(本题满分4分)15.已知:△ABC 三个顶点的坐标分别为A (﹣2,﹣2),B (﹣5,﹣4),C (﹣1,﹣5).以点O 为位似中心,将△ABC 放大为原来的2倍,得到△A 1B 1C 1,请在第一象限画出△A 1B 1C 1,并写出点B 1的坐标.【分析】连接AO ,延长AO 到A 1,使得OA 1=2OA ,同法作出点B 1,C 1即可. 【解答】解:△A 1B 1C 1如图所示,点B 1的坐标为(10,8).【点评】本题考查位似变换,解题的关键是熟练掌握位似变换的性质,属于中考常考题型.四、解答题(本大题满分74分,共有9道小题)16.(6分)(1)解下列方程:(x+1)(x+2)=2x+4(2)若抛物线y=x2+3x+a与x轴有交点,求实数a的取值范围.【分析】(1)根据一元二次方程即可求出答案.(2)根据判别式与0的大小关系即可求出答案.【解答】解:(1)x2+3x+2=2x+4,x2+x﹣2=0,x=1或x=﹣2;(2)抛物线y=x2+3x+a与x轴有交点,∴△=9﹣4a≥0,∴a≤;【点评】本题考查一元二次方程的解法以及抛物线的性质,解题的关键是熟练运用一元二次方程的解法以及抛物线的性质,本题属于基础题型.17.(6分)在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且a=7,c=7,求出直角三角形的其他元素.【分析】根据勾股定理可以推出b的值,然后根据三边的关系可以推出∠A,∠B的度数.【解答】解:∵在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且a=7,c=7,a2+b2=c2,可得b=7.∴a=b.∴∠A=∠B.∵∠A+∠B=90°,∴∠A=∠B=45°.故这个直角三角形的其他元素为:b=7,∠A=45°,∠B=45°.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.解决本题的关键是灵活运用勾股定理和等腰三角形的判定与性质.18.(6分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时甲同学先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由乙同学从中随机抽取一张卡片,甲、乙两同学按各自抽取的内容进行诵读比赛.请用列表或画树状图的方法求甲、乙两同学诵读两个不同材料的概率.【分析】画树状图展示所有9种等可能的结果数,再找出甲、乙两同学诵读两个不相同材料的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有9种等可能的结果数,其中甲、乙两同学诵读两个不相同材料的结果数为6,所以甲、乙两同学诵读两个不相同材料的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.(6分)如图,1号楼在2号楼的南侧,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=35m.请求出两楼之间的距离AB的长度(结果保留整数)(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)【分析】构造出两个直角三角形,利用两个角的正切值即可求出答案.【解答】解:过点C作CE⊥PB,垂足为E,过点D作DF⊥PB,垂足为F,则∠CEP=∠PFD=90°,由题意可知:设AB=x,在Rt△PCE中,tan32.3°=,∴PE=x•tan32.3°,同理可得:在Rt△PDF中,tan55.7°=,∴PF=x•tan55.7°,由PF﹣PE=EF=CD=35,可得x•tan55.7°﹣x•tan32.3°=35,解得:x=42.∴楼间距AB的长度约为42m.【点评】本题考查解直角三角形的应用,解题的关键是正确运用锐角三角函数来求出相应的线段,本题属于中等题型.20.(6分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象与直线y=x交于点D,且反比例函数y=交BC于点E,AD=3.(1)求D点的坐标及反比例函数的关系式;(2)若矩形的面积是24,请写出△CDE的面积(不需要写解答过程).【分析】(1)根据AD=3,得到点D的纵坐标为3,代入y=x,解之,求得点D的坐标,再代入y=,得到k的值,即可得到反比例函数的关系式,(2)根据“矩形的面积是24”,结合AD=3,求得线段AB,线段CD的长度,得到点B,点C=CE×CD”,代入求值的横坐标,代入反比例函数的解析式,得到点E的坐标,根据“S△CDE即可得到答案.【解答】解:(1)根据题意得:点D的纵坐标为3,把y=3代入y=x得:x=3,解得:x=4,即点D的坐标为:(4,3),把点D(4,3)代入y=得:3=,解得:k=12,即反比例函数的关系式为:y=,(2)设线段AB,线段CD的长度为m,根据题意得:3m=24,解得:m=8,。
精品人教版2019-2020学年九年级数学上册期中模拟试卷(二)解析版
人教版2019-2020学年九年级数学上册期中模拟试卷(二)一.选择题(共8小题,满分6分)1.一元二次方程x2=3x的解为()A.x=0B.x=3C.x=0或x=3D.x=0 且x=32.方程2x2+5=7x根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根3.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是()A.y=﹣3(x﹣1)2﹣2B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2D.y=﹣3(x+1)2+24.(3分)如图,∠CAB=25°,CA、CB是等腰△ABC的两腰,将△ABC绕点A顺时针进行旋转,得到△ADE.当点B恰好在DE的延长线时,则∠EAB的度数为()A.155°B.130°C.105°D.75°5.在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°后得到点P′,则点P′的坐标是()A.(﹣2,3)B.(3,﹣2)C.(﹣3,2)D.(2,﹣3)6.如图,∠AOB=100°,点C在⊙O上,且点C不与A、B重合,则∠ACB的度数为()A.50°B.80°或50°C.130°D.50°或130°7.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°8.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个二.填空题(共8小题,满分18分)9.(3分)当a=时,(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程.10.(3分)平面直角坐标系中,一点P(﹣2,3)关于原点的对称点P′的坐标是.11.(3分)二次函数y=﹣x2﹣2x+3的最大值是.12.(3分)已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c=.13.(3分)已知关于x的方程x2+kx﹣3=0的一个根是x=﹣1,则另一根为.14.(3分)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.15.如图,P是⊙O的直径AB延长线上的一点,PC切⊙O于点C,∠APC的平分线交AC于点D.若∠APC=40°,则∠CDP=.16.如图,已知点C是的一点,圆周角∠ACB为125°,则圆心角∠AOB=度.三.解答题(共2小题,满分16分,每小题8分)17.(8分)解方程与不等式:(1)(x﹣3)(x﹣2)+33=(x+9)(x+1)(2)(2x+3)(2x﹣3)<4(x﹣2)(x+3)18.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.四.解答题(共2小题)19.如图,在正方形网格中,△ABC的三个顶点都在格点上,点O也在格点上.(1)画△A'B'C',使△A'B'C'与△ABC关于直线OP成轴对称,点A的对应点是A';(2)画△A''B''C'',使△A''B''C''与△A'B'C'关于点O成中心对称,点A'的对应点是A''.20.在平面直角坐标系中,O为原点,点A(2,0),点B(0,),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.五.解答题(共2小题,满分20分,每小题10分)21.(10分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△OA′B′的面积.22.(10分)如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D 的直线于F,且∠BDF=∠CDB,BD与CG交于点N.(1)求证:DF是⊙O的切线;(2)连结MN,猜想MN与AB的位置有关系,并给出证明.六.解答题(共2小题,满分20分,每小题10分)23.(10分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?24.(10分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?七.解答题(共1小题)25.在矩形ABCD中,AB=6,AD=8,点E是对角线BD上一动点.(1)如图1,当CE⊥BD时,求DE的长;(2)如图2,作EM⊥EN分别交边BC于M,交边CD于N,连MN.①若,求tan∠ENM;②若E运动到矩形中心O,连CO.当CO将△OMN分成两部分面积比为1:2时,直接写出CN的长.八.解答题(共1小题)26.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共8小题,满分6分)1.【解答】解:方程移项得:x2﹣3x=0,分解因式得:x(x﹣3)=0,解得:x=0或x=3,故选:C.2.【解答】解:方程化为2x2﹣7x+5=0,因为△=(﹣7)2﹣4×2×5=9>0,所以方程有两个不相等的实数根.故选:A.3.【解答】解:将抛物线y=﹣3x2向左平移1个单位所得直线解析式为:y=﹣3(x+1)2;再向下平移2个单位为:y=﹣3(x+1)2﹣2,即y=﹣3(x+1)2﹣2.故选:C.4.【解答】解:∵CA=CB,∴∠CBA=∠CAB=25°,∵△ABC绕点A顺时针进行旋转,得到△ADE.点B恰好在DE的延长线上,∴∠D=∠ABC=25°,∠DAE=∠BAC=25°,AD=AB,∴∠ABD=25°,∴∠ABD=∠CAB,∴AC∥BD,∴∠D+∠DAC=180°,∴∠EAB=180°﹣25°﹣25°﹣25°=105°.故选:C.5.【解答】解:如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,∵线段OP绕点O顺时针旋转90°,∴∠POP′=∠AOB=90°,∴∠AOP=∠P′OB,且OP=OP′,∠P AO=∠P′BO=90°,∴△OAP≌△OBP′,即P′B=P A=3,BO=OA=2,∴P′(3,﹣2).故选:B.6.【解答】解:当点C在优弧上时,∠AC′B=∠AOB=×100°=50°,当点C在劣弧上时,∠ACB=(360°﹣∠AOB)=×(360°﹣100°)=130°.故选:D.7.【解答】解:由题意得∠A=∠BOC=×100°=50°.故选:B.8.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.二.填空题(共8小题,满分18分)9.【解答】解:∵(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程,∴a﹣3≠0,|a|﹣1=2,解得:a=﹣3,即当a=﹣3时,(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程,故答案为:﹣3.10.【解答】解:根据中心对称的性质,得点P(﹣2,﹣3)关于原点对称点P′的坐标是(2,﹣3).故答案为:(2,﹣3).11.【解答】解:∵y=﹣x2﹣2x+3=y=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴当x=﹣1时,y取得最大值4,故答案为:4.12.【解答】解:∵抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,∴抛物线y=ax2+x+c经过(﹣1,0),∴a﹣1+c=0,∴a+c=1,故答案为1.13.【解答】解:设方程的另一个根为x2,则﹣1×x2=﹣3,解得:x2=3,故答案为:3.14.【解答】解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).15.【解答】解:如图,连接OC,∵PC为圆O的切线,∴PC⊥OC,即∠PCO=90°,∴∠CPO+∠COP=90°,∵OA=OC,∴∠A=∠ACO=∠COP,∵PD为∠APC的平分线,∴∠APD=∠CPD=∠CPO,∴∠CDP=∠APD+∠A=(∠CPO+∠COP)=45°.故答案为:45°.16.【解答】解:在优弧AB上取点D,连接AD,BD,∵∠ACB=125°,∴∠ADB=180°﹣125°=55°,∴∠AOB=110°,故答案为:110.三.解答题(共2小题,满分16分,每小题8分)17.【解答】解:(1)x2﹣5x+6+33=x2+10x+9,x2﹣5x﹣x2﹣10x=9﹣6﹣33,﹣15x=﹣30,x=2;(2)4x2﹣9<4(x2+x﹣6),4x2﹣9<4x2+4x﹣24,4x2﹣4x2﹣4x<﹣24+9,﹣4x<﹣15,x>.18.【解答】解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.四.解答题(共2小题)19.【解答】解:(1)如图所示,△A'B'C'为所求三角形;(2)如图所示,△A''B''C''为所求三角形.20.【解答】解:∵点A(2,0),点B(0,),∴OA=2,OB=.在Rt△ABO中,由勾股定理得AB=.根据题意,△A′BO′是△ABO绕点B逆时针旋转900得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=,∴AA′==.五.解答题(共2小题,满分20分,每小题10分)21.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.22.【解答】(1)证明:∵直径AB经过弦CD的中点E,∴AB⊥CD,.∴∠BOD=2∠CDB.∵∠BDF=∠CDB,∴∠BOD=∠CDF,∵∠BOD+∠ODE=90°,∴∠ODE+∠CDF=90°,即∠ODF=90°,∴DF是⊙O的切线;(2)猜想:MN∥AB.证明:连结CB.∵直径AB经过弦CD的中点E,∴,.∴∠CBA=∠DBA,CB=BD.∵OB=OD,∴∠DBA=∠ODB.∴∠AOD=∠DBA+∠ODB=2∠DBA=∠CBD,∵∠BCG=∠BAG,∴△CBN∽△AOM,∴.∵AO=OD,CB=BD,∴,∴,∵∠ODB=∠MDN,∴△MDN∽△ODB,∴∠DMN=∠DOB,∴MN∥AB.六.解答题(共2小题,满分20分,每小题10分)23.【解答】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(40﹣30﹣y)(4×+48)=510,解得:y1=1.5,y2=2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元.24.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.七.解答题(共1小题)25.【解答】解:(1)∵矩形ABCD中,AB=6,AD=8∴∠BCD=90°,BC=AD=8,CD=AB=6∴BD==10∵CE⊥BD∴∠CED=∠BCD=90°∵∠CDE=∠BDC∴△CDE∽△BDC∴∴DE=(2)①如图1,过点M作MF⊥BD于点F,过点N作NG⊥BD于点G∵,BD=10∴BD=BE+DE=3DE+DE=4DE=10∴DE=,BE=设MF=a,NG=b∵∠BFM=∠C=90°,∠FBM=∠CBD∴△FBM∽△CBD∴∴BF==a∴EF=BE﹣BF=a同理可证:△GDN∽△CDB∴∴DG==b∴EG=DE﹣DG=b∵EM⊥EN∴∠MEN=∠MFE=∠NGE=90°∴∠MEF+∠NEG=∠MEF+∠EMF=90°∴∠EMF=∠NEG∴△EMF∽△NEG∴∴EF•EG=NG•MF∴(a)(b)=ba整理得:16a=90﹣27b∴在Rt△MEN中,tan∠ENM==②如图2,过点M作MF⊥BD于点F,MP⊥OC于点P,过点N作NG⊥BD于点G,NQ⊥OC于点Q,设OC 与MN交点为H∵点O为矩形中心,BD=10∴OB=OD=OC=BD=5由①可得,设MF=a,NG=b,则BF==a,DG==b,OF•OG=NG•MF∴OF=OB﹣BF=5﹣a,OG=OD﹣DG=5﹣b∴(5﹣a)(5﹣b)=ab整理得:16a=60﹣9b∴=设CN=5x∵∠NCQ=∠BDC,∠NQC=∠BCD=90°∴△NCQ∽△BDC∴=∴CQ=CN=3x,NQ=CN=4x∴OQ=OC﹣CQ=5﹣3x∵∠MPO=∠MON=∠OQN=90°∴∠MOP+∠NOQ=∠NOQ+∠ONQ=90°∴∠MOP=∠ONQ∴△MOP∽△ONQ∴i)若S△OMH=2S△ONH,且两三角形都以OH为底∴MP=2NQ=8x∴解得:x=∴CN=ii)若2S△OMH=S△ONH,则MP=NQ=2x∴解得:x=∴CN=综上所述,CN的长为或.八.解答题(共1小题)26.【解答】解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得1分∴二次函数的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4)设直线MB的解析式为y=kx+n,则有解得:,∴直线MB的解析式为y=﹣2x+6∵PD⊥x轴,OD=m,∴点P的坐标为(m,﹣2m+6)S三角形PCD=×(﹣2m+6)•m=﹣m2+3m(1≤m<3);(3)∵若∠PDC是直角,则点C在x轴上,由函数图象可知点C在y轴的正半轴上,∴∠PDC≠90°,在△PCD中,当∠DPC=90°时,当CP∥AB时,∵PD⊥AB,∴CP⊥PD,∴PD=OC=3,∴P点纵坐标为:3,代入y=﹣2x+6,∴x=,此时P(,3).∴线段BM上存在点P(,3)使△PCD为直角三角形.当∠P′CD′=90°时,△COD′∽△D′CP′,此时CD′2=CO•P′D′,即9+m2=3(﹣2m+6),∴m2+6m﹣9=0,解得:m=﹣3±3,∵1≤m<3,∴m=3(﹣1),∴P′(3﹣3,12﹣6)综上所述:P点坐标为:(,3),(3﹣3,12﹣6).。
2019-2020学年北师大版山东省青岛市四区联考九年级第一学期期中数学试卷含解析
2019-2020学年九年级上学期期中数学试卷一、选择题1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2 2.下列说法中,错误的是()A.有一组邻边相等的平行四边形是菱形B.两条对角线互相垂直且平分的四边形是菱形C.对角线相等的平行四边形是矩形D.有一组邻边相等的菱形是正方形3.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.5.如图,矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAD交BC于点E,∠CAE=15°,则∠AOE的度数为()A.120°B.135°C.145°D.150°6.根据表格中的数据,估计一元二次方程ax2+bx+c=6(a,b,c为常数,a≠0)一个解x 的范围为()x0.5 1 1.5 2 3ax2+bx+c28 18 10 4 ﹣2 A.0.5<x<1 B.1<x<1.5 C.1.5<x<2 D.2<x<37.如图,在△ABC中,点E在BC边上,连接AE,点D在线段AE上,GD∥BA,且交BC于点G,DF∥BC,且交AC于点F,则下列结论一定正确的是()A.=B.=C.=D.=8.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H.则下列结论正确的有()①△ADF∽△ECF;②△AEH为等腰直角三角形;③点F是CD的中点;④FH=A.1个B.2个C.3个D.4个二、填空题(共6小题)9.已知,则=.10.一个不透明的口袋里装有除颜色外都相同的5个红球和若干个白球,再往该口袋中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则口袋中原来有个白球.11.某校去年对实验器材的投资为20万元,预计今明两年的投资总额为75万元,若设该校今明两年在实验器材投资上的平均增长率是x,则根据题意可列方程为.12.现有大小相同的正方形纸片20张,小亮用其中2张拼成一个如图所示的长方形,小芳也想拼一个与它形状相同但比它大的长方形,则她至少要用张正方形纸片(不得把每个正方形纸片剪开).13.如图,在菱形ABCD中,AB=2,∠DAB=60°,对角线AC,BD相交于点O,过点C作CE∥BD交AB的延长线于点E,连接OE,则OE长为.14.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即方程x2=﹣1的一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•﹣i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2019+i2020的值为.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹15.已知:∠MAN和线段a.求作:菱形ABCD,使顶点B,D分别在射线AM,AN上,且对角线AC=a.四、解答题(本大题共9小题,共74分)16.解方程(1)2x2﹣4x+1=0(配方法)(2)3(x﹣1)2=x2﹣117.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.请判断四边形AECD的形状,并说明理由.18.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.19.如图,某农场要建一个面积为140平方米的矩形仓库,仓库的一边靠墙(墙长18米),另三边用木板材料围成,为了方便进出,在与墙垂直的一边上要开一扇2米宽的门,已知围建仓库的现有木板材料总长为32米,那么这个仓库的两边长分别为多少米?20.如图,在矩形ABCD中,点E是BC的中点,EF⊥AE交CD于点F(1)求证:△ABE∽△ECF;(2)若AB=3,BC=8,求EF的长.21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB 于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.22.为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为40万元,若每台设备售价为45万元时,平均每月能售出300台;根据市场调研发现:这种设备的售价每提高0.5万元,其销售量就将减少5台.根据相关规定,此设备的销售单价不低于45万元,且获利不高于30%.如果该公司想实现每月2500万元的利润,则该设备的销售单价应是多少万元?23.【问题提出】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有多少种不同的选择方法?【问题探究】为发现规律,我们采用一般问题特殊化的策略,先从最简单的问题入手,再逐次递进,最后得出一般性的结论探究一:如果从1,2,3……m,m个连续的自然数中选择2个连续的自然数,会有多少种不同的选择方法?如图1,当m=3,n=2时,显然有2种不同的选择方法;如图2,当m=4,n=2时,有1,2;2,3;3,4这3种不同的选择方法;如图3,当m=5,n=2时,有种不同的选择方法;……由上可知:从m个连续的自然数中选择2个连续的自然数,有种不同的选择方法.探究二:如果从1,2,3……100,100个连续的自然数中选择3个,4个……n(n≤100)个连续的自然数,分别有多少种不同的选择方法?我们借助下面的框图继续探究,发现规律并应用规律完成填空1 2 3 …93 94 95 96 97 98 99 100从100个连续的自然数中选择3个连续的自然数,有种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有种不同的选择方法.【问题解决】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有种不同的选择方法.【实际应用】我们运用上面探究得到的结论,可以解决生活中的一些实际问题.(1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有种不同的选择.(2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排3号到15号的电影票让他们选择,如果他们想拿三张连号票,则一共有种不同的选择方法.【拓展延伸】如图4,将一个2×2的图案放置在8×6的方格纸中,使它恰好盖住其中的四个小正方形,共有种不同的放置方法.24.已知:如图,在等腰△ABC中,AB=10cm,BC=12cm,动点P从点A出发以1cm/s的速度沿AB匀速运动,动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动,设运动时间为t(s)(0<t<10).过点P 作PE∥BC交AC于点E,以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)设四边形BPFQ的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S四边形BPFQ:S△ABC=7:6?若存在,求出t 的值;若不存在,请说明理由;(4)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由.参考答案一、选择题1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2 解:∵x2=2x,∴x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴一元二次方程x2=2x的根x1=0,x2=2.故选:C.2.下列说法中,错误的是()A.有一组邻边相等的平行四边形是菱形B.两条对角线互相垂直且平分的四边形是菱形C.对角线相等的平行四边形是矩形D.有一组邻边相等的菱形是正方形解:A、有一组邻边相等的平行四边形是菱形,故A选项不符合题意;B、两条对角线互相垂直且平分的四边形是菱形,故B选项不符合题意;C、对角线相等的平行四边形是矩形,故C选项不符合题意;D、有一组邻边线段的菱形不是正方形,故D选项符合题意;故选:D.3.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根解:∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根,故选:A.4.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.解:画树状图为:共有6种等可能的结果数,其中一个为红色,另一个转出蓝色的占3种,所以可配成紫色的概率==.故选:A.5.如图,矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAD交BC于点E,∠CAE=15°,则∠AOE的度数为()A.120°B.135°C.145°D.150°解:∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=45°,∴△ABE是等腰直角三角形,∴AB=BE,∵∠CAE=15°,∴∠ACE=∠AEB﹣∠CAE=45°﹣15°=30°,∴∠BAO=90°﹣30°=60°,∵矩形中OA=OB,∴△ABO是等边三角形,∴OB=AB,∠ABO=∠AOB=60°,∴OB=BE,∵∠OBE=∠ABC﹣∠ABO=90°﹣60°=30°,∴∠BOE=(180°﹣30°)=75°,∴∠AOE=∠AOB+∠BOE,=60°+75°,=135°.故选:B.6.根据表格中的数据,估计一元二次方程ax2+bx+c=6(a,b,c为常数,a≠0)一个解x 的范围为()x0.5 1 1.5 2 3 ax2+bx+c28 18 10 4 ﹣2 A.0.5<x<1 B.1<x<1.5 C.1.5<x<2 D.2<x<3解:由表格可知:当x=2时,ax2+bx+c=4,当x=3时,ax2+bx+c=﹣2,∴关于x的一元二次方程ax2+bx+c=0(a≠0)的一个解x的范围是2<x<3,故选:D.7.如图,在△ABC中,点E在BC边上,连接AE,点D在线段AE上,GD∥BA,且交BC于点G,DF∥BC,且交AC于点F,则下列结论一定正确的是()A.=B.=C.=D.=解:∵DG∥AB,∴=,故本选项不符合题意;B、∵DF∥CE,∴△ADF∽△AEC,∴=≠,故本选项不符合题意;C、∵DF∥CE,∴△ADF∽△AEC,∴=,∵DG∥AB,∴=,∴=,故本选项符合题意;D、∵DF∥CE,∴=,∵DG∥AB,∴△DGE∽△ABE,∴=,∴≠,故本选项不符合题意;故选:C.8.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H.则下列结论正确的有()①△ADF∽△ECF;②△AEH为等腰直角三角形;③点F是CD的中点;④FH=A.1个B.2个C.3个D.4个解:∵四边形ABCD是正方形,∴∠B=∠C=∠D=∠BAD=90°,AB=BC=CD=AD=3,∵将△ABE,△ADF分别沿折痕AE,AF向内折叠,∴AB=AG=AD,BE=EG=1,DF=GF,∠BAE=∠GAE,∠DAF=∠GAF,∵∠BAE+∠GAE+∠DAF+∠GAF=90°,∴∠EAG+∠GAF=45°,即∠EAF=45°,∵EH⊥AE,∴∠EAH=∠H=45°,∴AE=EH,且EH⊥AE,∴△AEH是等腰直角三角形,故②符合题意,设DF=FG=x,在Rt△EFC中,∵EF=1+x,EC=3﹣1=2,FC=3﹣x,∴(x+1)2=22+(3﹣x)2,解得x=,∴DF=,∴DF=CF=DC,∴点F是CD中点,故③符合题意,由勾股定理可得:AF===,AE===,∴EH=AE=,∴AH===2,∴FH=AH﹣AF=,故④符合题意,∵=2,,∴∴△ADF与△ECF不相似,故①不合题意,故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.已知,则=.解:∵,∴y=x,∴===,故答案为:.10.一个不透明的口袋里装有除颜色外都相同的5个红球和若干个白球,再往该口袋中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则口袋中原来有10 个白球.解:设盒子中原有的白球的个数为x个,根据题意得:,解得:x=10,经检验:x=10是原分式方程的解;∴盒子中原有的白球的个数为10个.故答案为:10;11.某校去年对实验器材的投资为20万元,预计今明两年的投资总额为75万元,若设该校今明两年在实验器材投资上的平均增长率是x,则根据题意可列方程为20(1+x)+20(1+x)2=75 .解:设该校今明两年在实验器材投资上的平均增长率是x,依题意,得:20(1+x)+20(1+x)2=75.故答案为:20(1+x)+20(1+x)2=75.12.现有大小相同的正方形纸片20张,小亮用其中2张拼成一个如图所示的长方形,小芳也想拼一个与它形状相同但比它大的长方形,则她至少要用8 张正方形纸片(不得把每个正方形纸片剪开).解:如图所示:根据图形的相似拼一个与它形状相同但比它大的长方形,相似比为1:2,所以至少要用8张正方形纸片.故答案为8.13.如图,在菱形ABCD中,AB=2,∠DAB=60°,对角线AC,BD相交于点O,过点C作CE∥BD交AB的延长线于点E,连接OE,则OE长为.解:∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30°,∠AOB=90°.OB=OD,AO=CO,∵AB=2,∴OB=1,AO=OC=,∴DB=2,∵CE∥DB,∴四边形DBEC是平行四边形.∴CE=DB=2,∠ACE=90°,∴OE===,故答案为:.14.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即方程x2=﹣1的一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•﹣i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2019+i2020的值为0 .解:∵i4n+1=i,i4n+2=﹣1,i4n+3=﹣i,i4n+4=1,∴i+i2+i3+i4+…+i2019+i2020=i+(﹣1)+(﹣i)+1+i+(﹣1)+(﹣i)+1+…+i+(﹣1)+(﹣i)+1=0.故答案为0.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹15.已知:∠MAN和线段a.求作:菱形ABCD,使顶点B,D分别在射线AM,AN上,且对角线AC=a.解:如图,四边形ABCD为所作.四、解答题(本大题共9小题,共74分)16.解方程(1)2x2﹣4x+1=0(配方法)(2)3(x﹣1)2=x2﹣1解:(1),则,∴.(2)3(x﹣1)2﹣(x2﹣1)=0,3(x﹣1)2﹣(x﹣1)(x+1)=0,(x﹣1)(3x﹣3﹣x﹣1)=0,(x﹣1)(2x﹣4)=0,∴x1=1,x2=2.17.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.请判断四边形AECD的形状,并说明理由.解:四边形AECD是菱形,理由:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=BC=EC,∴平行四边形AECD是菱形.18.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.解:不公平,列表如下:4 5 64 8 9 105 9 10 116 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;19.如图,某农场要建一个面积为140平方米的矩形仓库,仓库的一边靠墙(墙长18米),另三边用木板材料围成,为了方便进出,在与墙垂直的一边上要开一扇2米宽的门,已知围建仓库的现有木板材料总长为32米,那么这个仓库的两边长分别为多少米?解:设仓库的边AB为x米,由题意得:x(32﹣2x+2)=140,整理,得x2﹣17x+70=0,解,得x1=10,x2=7,当x=10时,BC=14<18;当x=7 时,BC=20>18,∴x=7不合题意,应舍去.答:仓库的边AB为10米,BC为14米.20.如图,在矩形ABCD中,点E是BC的中点,EF⊥AE交CD于点F(1)求证:△ABE∽△ECF;(2)若AB=3,BC=8,求EF的长.【解答】证明:(1)∵四边形ABCD是矩形∴∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵EF⊥AE,∴∠AEF=90°,∴∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF;(2)解:∵E是BC的中点,BC=8,∴BE=EC=BC=4,∵∠B═90°,AB=3,∴AE===5,∵△ABE∽△ECF,∴,即∴EF=.21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB 于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠BAD=∠BCD=90°∴∠GAB=∠B=∠BCH,∵AD∥BC,EF∥AC,∴四边形AGEC是平行四边形,∴AG=EC,∵AB∥CD,EF∥AC∴四边形AFHC是平行四边形,∴AF=CH,∴△AFG≌△CHE(SAS).(2)四边形ABCD是正方形理由:∵EF∥AC,∴∠G=∠CAD,∵∠G=∠BAC,∴∠BAC=∠CAD,∵∠BAD=90°,∴∠BAC=45°,∵∠B=90°,∴∠BAC=∠ACB=45°,∴BA=BC,∴矩形ABCD是正方形.22.为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为40万元,若每台设备售价为45万元时,平均每月能售出300台;根据市场调研发现:这种设备的售价每提高0.5万元,其销售量就将减少5台.根据相关规定,此设备的销售单价不低于45万元,且获利不高于30%.如果该公司想实现每月2500万元的利润,则该设备的销售单价应是多少万元?解:设该设备的销售单价为x万元.由题意列方程,得,整理,得x2﹣115x+3250=0解这个方程,得x1=50,x2=65,∵获利不高于30%∴∴x≤52∴x=65不合题意,舍去.∴x=50答:该设备的销售单价为50万元.23.【问题提出】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有多少种不同的选择方法?【问题探究】为发现规律,我们采用一般问题特殊化的策略,先从最简单的问题入手,再逐次递进,最后得出一般性的结论探究一:如果从1,2,3……m,m个连续的自然数中选择2个连续的自然数,会有多少种不同的选择方法?如图1,当m=3,n=2时,显然有2种不同的选择方法;如图2,当m=4,n=2时,有1,2;2,3;3,4这3种不同的选择方法;如图3,当m=5,n=2时,有 4 种不同的选择方法;……由上可知:从m个连续的自然数中选择2个连续的自然数,有m﹣1 种不同的选择方法.探究二:如果从1,2,3……100,100个连续的自然数中选择3个,4个……n(n≤100)个连续的自然数,分别有多少种不同的选择方法?我们借助下面的框图继续探究,发现规律并应用规律完成填空1 2 3 …93 94 95 96 97 98 99 100从100个连续的自然数中选择3个连续的自然数,有98 种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有97 种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有93 种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有(100﹣n+1)种不同的选择方法.【问题解决】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有(m ﹣n+1)种不同的选择方法.【实际应用】我们运用上面探究得到的结论,可以解决生活中的一些实际问题.(1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有 6 种不同的选择.(2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排3号到15号的电影票让他们选择,如果他们想拿三张连号票,则一共有11 种不同的选择方法.【拓展延伸】如图4,将一个2×2的图案放置在8×6的方格纸中,使它恰好盖住其中的四个小正方形,共有35 种不同的放置方法.解:探究1:当m=5,n=2时,由图可知有4种不同的选择方法,根据根据规律可知:从m个连续的自然数中选择2个连续的自然数,有(m﹣1)种不同的选择方法;故答案为:4、m﹣1.探究2:选择3个连续的自然数,选择方法的数量比数的个数少2,选择4个连续的自然数,选择方法的数量比数的个数少3,以此类推,选择8个连续的自然数,选择方法的数量比数的个数少7,选择n个连续自然数,选择方法的数量比数的个数少(n﹣1);故从100个连续的自然数中选择3个连续的自然数,有100﹣2=98种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有100﹣3=97种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有100﹣7=93种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有(100﹣n+1)种不同的选择方法.故答案为:98、97、93、100﹣n+1.【问题解决】由规律可知:从m个连续的自然数中选择n个连续的自然数(n≤m),有(m﹣n+1)种不同的选择方法.故答案为:(m﹣n+1).【实际应用】(1)从连续7天选择连续2天,则m=7,n=2,总共有(7﹣2+1)=6种选择;(2)3号到15号总共13张电影票,选择3连号,则m=13,n=3,总共有(13﹣3+1)=11种不同的选择;故答案为:6、11.【拓展延伸】图案向右移动,每次一格,可看作8选2,可得7种放置方法,图案向下移动,每次一格,可看作,6选2,可得5种放置方法,故总共7×5=35种放置方法.故答案为:35.24.已知:如图,在等腰△ABC中,AB=10cm,BC=12cm,动点P从点A出发以1cm/s的速度沿AB匀速运动,动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动,设运动时间为t(s)(0<t<10).过点P 作PE∥BC交AC于点E,以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)设四边形BPFQ的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S四边形BPFQ:S△ABC=7:6?若存在,求出t 的值;若不存在,请说明理由;(4)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由.解:(1)过点A作AD⊥BC于点D,如图1所示:则∠ADB=90°,∵AB=AC,∴BD=BC=6,若△BPQ为直角三角形,根据题意只能∠BPQ=90°,则∠ADB=90°=∠BPQ,∵∠B=∠B,∴△ABD∽△QBP,∴,即,解得,答:当t为s时,△BPQ为直角三角形.(2)在Rt△ABD中,,过点P作PM⊥BC于点M,如图2所示:∴∠PMB=90°,∵∠ADB=90°,∴∠PMB=∠ADB,∵∠C=∠C,∴△ABD∽△BPM,∴,即,∴,∵PE∥BC,∴∠C=∠AEP,∠B=∠APE,∴△ABC∽△APE,∴,即,∴,∵四边形CQFE是平行四边形,∴EF=t,∴y=S梯形BPFQ=,==答:y与t的函数关系式是y=.(3)存在,理由如下:若S四边形BPFQ:S△ABC=7:6,则y=S△ABC∵S△ABC=∴=解得t1=5,答:t的值为5s或s时,S四边形BPFQ:S△ABC=7:6;(4)存在,理由如下:连接BF,如图3所示:若点F在∠ABC的平分线上,∴BF平分∠ABC,∴∠ABF=∠FBQ,∵PF∥BC,∴∠PFB=∠FBQ,∴∠ABF=∠PFB,∴PB=PF,即:,∴,答:当s时,点F在∠ABC的平分线上.。
2019_2020学年山东青岛初三上学期期中数学试卷(局属四校)-详解版
2019~2020学年⼭东⻘岛初三上学期期中数学试卷(局⼀、选择题(本⼤题共8⼩题,每⼩题3分,共24分)2. A.D.【答案】A 选项:B 选项:C 选项:D 选项:【解析】如图,在平⾏四边形,添加下列条件不能判定四边形是菱形的只有( ).C根据对⾓线互相垂直的平⾏四边形是菱形,可得到菱形,故错误;根据邻边相等的平⾏四边形是菱形,可得到菱形,故错误;根据对⾓线相等的平⾏四边形是矩形,可知不能判定其为菱形,故正确;∵⼜∵A.,【答案】【解析】⽅程的解是( ).D ,移项得提公因式得解得,故选.∴,∴,根据邻边相等的平⾏四边形是菱形,可得到菱形,故错误.故选 C .3. A.B.C.D.【答案】【解析】随着居⺠经济收⼊的不断提⾼以及汽⻋业的快速发展,家⽤汽⻋已越来越多地进⼊普通家庭,抽样调查显⽰,截⽌年底某市汽⻋拥有量为万辆.⼰知年底该市汽⻋拥有量为万辆,设年底⾄年底该市汽⻋拥有量的平均增⻓率为,根据题意列⽅程得().A 设年底⾄年底该市汽⻋拥有量的平均增⻓率为,根据题意,可列⽅程:.4. A.B.C.D.【答案】【解析】在数字,,,中任选两个组成⼀个两位数,这个两位数能被整除的概率为( ).A从个数中任意抽取两个组成两位数的所有可能有、、、、、、、、、、、共种,其中能被整除的数分别为、、、共种,所以根据概率的计算公式,可得.故选.事件可能出现的次数所有可能出现的次数5. A.B. C. D.【答案】如图,在中,,,,则的⻓是( ).A【解析】∵,∴,∴,∵,,∴,∵,∴,∴.故选.6. A. B. C. D.【答案】【解析】如图,把沿着的⽅向平移到的位置,它们重叠部分的⾯积是⾯积的⼀半,若,则移动的距离是( ).D ∵沿边平移到的位置,∴,∴,∴,∴,∵,∴,∴.7. A.B.C.D.【答案】⼀个菱形的边⻓为,⾯积为,则该菱形的两条对⾓线的⻓度之和为( ).C【解析】如图所⽰:∵四边形是菱形,∴,,,∵⾯积为,∴①,∵菱形的边⻓为,∴②,由①②两式可得:.∴,∴,即该菱形的两条对⾓线的⻓度之和为.故选.8. A.B. C. D.【答案】【解析】如图,点为正⽅形的中⼼,,平分交于点,延⻓到点,使,连结交的延⻓线于点,连结交于点,连结.则以下四个结论中,①,②,③,④,⑤.正确结论的个数为( ).D①∵,,,∴≌,∴,∵,,∴,∴,∵,,∴≌,∴,∵,∴是的中位线,∴,故①正确;②③∵点为正⽅形的中⼼,,,∴.由三⾓形中位线定理知,,,∴,故②错误,③正确;④∵四边形是正⽅形,是的平分线,∴,,,∵,∴≌,∴,∴,∵是的中位线,,∴是的垂直平分线,∴,∴,∴,∴,∵∴∴∴∵∴∵∴∴∴∴∴⑤正确.∴①③④⑤正确.故选.⼆、填空题(本⼤题共8⼩题,每⼩题3分,共24分)9.【答案】【解析】若⼀元⼆次⽅程 .∵⼀元⼆次⽅程,∴把,∴故答案为:10.【答案】【解析】∵,是⼀个直⾓三⾓形两条直⾓边的⻓,设斜边为∴即∵∴解得则直⾓三⾓形的斜边⻓为 故答案为:11.【答案】【解析】若点是线段的⻩⾦分割点( .∵点是线段∴∴设∴∴∴∴∴12.【答案】【解析】⼀个不透明的⼝袋⾥装有除颜⾊外都相同的个⽩球和若干个红球,在不允许将球倒出来数的前提下,⼩亮为估计⼝袋中红球的个数,采⽤了如下的⽅法:先把⼝袋中的球摇勻,再从⼝袋⾥随机摸出⼀球,记下颜⾊,然后把它放回⼝袋中,不断重复上述过程,⼩亮共摸了次,其中有次摸到⽩球,因此⼩亮估计⼝袋中的红球⼤约为 .∵⼩亮共摸了次,其中次摸到⽩球,则有次摸到红球,∴⽩球与红球的数量之⽐为,∵⽩球有个,∴红球有(个).13.【答案】【解析】经过三边都不相等的三⾓形的⼀个顶点的线段把三⾓形分成两个⼩三⾓形,如果其中⼀个是等腰三⾓形,另外⼀个三⾓形和原三⾓形相似,那么把这条线段定义为原三⾓形的“和谐分割线”.如图,线段是的“和谐分割线”,为等腰三⾓形,和相似,,则的度数为 .或∵,∴,∵是等腰三⾓形,∵,∴,即,①当时,,∴,②当时,,∴.14.如图,为了测量⼀棵树的⾼度,测量者在处⽴了⼀根⾼为的标杆,观测者从处可以看到杆顶,树顶在同⼀条直线上,若测得,,,则树⾼为.【答案】【解析】如图,过点作交于,交于,则,∴,∵,,∴,∵、都与底⾯垂直,∴.∴,∴,即,解得:,所以⼤树⾼:.15.如图,将⼀张⻓⽅形纸板的四个⾓上分别剪掉个⼩正⽅形和个⼩⻓⽅形(阴影部分即剪掉的部分),剩余的部分可以折成⼀个有盖的⻓⽅体盒⼦(纸板的厚度忽略不计).若⻓⽅形纸板边⻓分别为和,且折成的⻓⽅体盒⼦表⾯积是,此时⻓⽅体盒⼦的体积为 .【答案】【解析】设剪掉的⼩正⽅形的边⻓为,根据题意得:,整理得:,解这个⽅程得:,(不合题意,应舍去),当时,⻓⽅体盒⼦的体积为:.故此时⻓⽅体盒⼦的体积.16.【答案】【解析】如图,在平⾯直⾓坐标系中,矩形的两边、分别在轴和轴上,且,.在第⼆象限内,将矩形以原点为位似中⼼放⼤为原来的倍,得到矩形,再将矩形以原点为位似中⼼放⼤倍,得到矩形,以此类推,得到的矩形的对⾓线交点的坐标为 .xyO∵在第⼆象限内,将矩形以原点为位似中⼼放⼤为原来的倍,∴矩形与矩形是位似图形,点与点是对应点,∵,.∵点的坐标为,∴点的坐标为,∵将矩形以原点为位似中⼼放⼤倍,得到矩形…,∴,∴,∵矩形的对⾓线交点,即.三、作图题(本⼤题共1⼩题,共4分)17.【答案】【解析】⽤圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段和.求作:菱形,使菱形的边⻓为,其中⼀个内⾓等于.画图⻅解析.四、解答题(本⼤题共8⼩题,共68分)18.(1)(2)(1)(2)【答案】(1)【解析】⽤指定⽅法解⽅程:(配⽅法解).(公式法解).,.,.(2)或,..∵,∴⽅程有两个不相等的实根,∴,.即,.19.【答案】【解析】第⼀盒中有个⽩球、个红球,第⼆盒中有个⽩球、个红球,这些球除颜⾊外⽆其他差别.分别从每个盒中随机取出个球,求取出的个球中有个⽩球、个红球的概率.请通过列表格或画树状图说明理由.,画图⻅解析.列表法①②⽩⽩红⽩⽩⽩⽩⽩⽩红红红⽩红⽩红红红红⽩红⽩红红∴取出个⽩球,个红球概率为.20.如图,梯形中..且,,分别是,的中点.与相交于点.(1)(2)(1)(2)【答案】(1)(2)【解析】求证:.若,求.证明⻅解析..∵点、分别是、的中点且,∴.∵,∴四边形是平⾏四边形.∴.∴.∵,∴.∵,∴.∵,∴.∵,∴.21.(1)(2)(1)(2)【答案】⽅法⼀:(1)【解析】已知关于的⼀元⼆次⽅程有实数根.求的取值范围.如果⽅程的两个实数根为,,且,求的取值范围...根据题意得,解得.⽅法⼆:⽅法⼀:⽅法⼆:(2)根据题意得,,,.根据题意得,,⽽,所以,解得,⽽,所以的范围为.根据题意,,,,,,,,⼜∵,∴.22.(1)(2)(1)(2)【答案】(1)【解析】如图,四边形是正⽅形,点是边上⼀点,延⻓⾄使,连接.求证:.过点作,过点作,问四边形是什么特殊的四边形,并证明.证明⻅解析.四边形是正⽅形;证明⻅解析.∵四边形是正⽅形,(2)∴,,∴,在与中,∴≌∴.四边形是正⽅形,理由:∵,,∴四边形是平⾏四边形,∵≌,∴,∴四边形是菱形,∵,∴,∴四边形是正⽅形.23.(1)(2)(1)(2)【答案】(1)(2)【解析】某商店经销⼀种销售成本为每千克元的⽔产品,据市场分析,若每千克元销售,⼀个⽉能售出,销售单价每涨元,⽉销售量就减少,针对这种⽔产品情况,请解答以下问题:当销售单价定为每千克元时,计算销售量和⽉销售利润.商品想在⽉销售成本不超过元的情况下,使得⽉销售利润达到元,销售单价应为多少.千克,元.元.当销售单价定为每千克元时,⽉销量为(千克),所以⽉销售利润为:元.由于⽔产品不超过,定价为元,则,解得:,,当时,进货,符合题意,当时,进货,舍去.答:商品想在⽉销售成本不超过元的情况下,使得⽉销售利润达到元,销售单价应为元.24.(1)(2)【阅读资料】同学们,我们学过⽤配⽅法解⼀元⼆次⽅程,也可⽤配⽅法求代数式的最值.()求的最⼩值.解:,因⼤于等于,所以⼤于等于,即的最⼩值是,此时.()求的最⼤值.解:,因⼤于等于,所以⼩于等于,所以⼩于等于,即的最⼤值是,此时,.【探索发现】如图①,是⼀张直⾓三⾓形纸⽚,,,,⼩明想从中剪出⼀个以为内⾓且⾯积最⼤的矩形,经过多次操作发现,当沿着中位线、剪下时,所得的矩形的⾯积最⼤.下⾯给出了未写完的证明,请你阅读下⾯的证明并写出余下的证明部分,并求出矩形的最⼤⾯积与原三⾓形⾯积的⽐值.图解:在上任取点,作,,得到矩形.设,易证,则,,,,请你写出剩余部分.【拓展应⽤】矩形(3)(4)(1)(2)(3)(4)【答案】(1)【解析】如图②,在中,,边上的⾼,矩形的顶点、分别在边、上,顶点、在边上,则矩形⾯积的最⼤值为 .(⽤含,的代数式表⽰)图【灵活应⽤】如图③,有⼀块“缺⾓矩形”,,,,,⼩明从中剪出了⼀个⾯积最⼤的矩形(为所剪出矩形的内⾓),该矩形的⾯积为 .(直接写出答案)图【实际应⽤】如图④,现有⼀块四边形的⽊块余料,经测量,,,且,⽊匠徐师傅从这块余料中裁出了顶点、在边上且⾯积最⼤的矩形,该矩形的⾯积为 .(直接写出答案)图证明⻅解析;矩形的最⼤⾯积与原三⾓形⾯积的⽐值为.【探索发现】,矩形(2)(3)∵,∴,∴矩形的⾯积的最⼤值为.∵原三⾓形⾯积,故矩形的最⼤⾯积与原三⾓形⾯积的⽐值为:.【拓展应⽤】设,∵,∴,∴,∵,边上的⾼,∴,,∴,∴的最⼤值为:.则矩形⾯积的最⼤值为.故答案为:.【灵活应⽤】如图③,延⻓、交于点,延⻓、交于点,延⻓、交于点,取中点,的中点,图由题意知四边形是矩形,∵,,,,∴,,∴,,在和中,矩形(4)∵,∴≌,∴,同理≌,∴,∴,∵,∴中位线的两端点在线段和上,过点作于点.由【探索发现】知矩形的最⼤⾯积为.故答案为:.【实际应⽤】如图④,延⻓、交于点,过点作于点.图∵,∴,∵,∴,∵,设,则,∵,,∴,,∴,∵,∴,∴的中点在线段上,∵,∴的中点在线段上,∴中位线的两端点在线段、上,由【拓展应⽤】知,矩形的最⼤⾯积为,故答案为:.25.(1)(2)(3)(4)(1)(2)(3)(4)【答案】(1)(2)【解析】如图,在矩形中,,,为对⾓线.点从点出发,沿线段向点运动,点从点出发,沿线段向点运动,两点同时出发,速度都为每秒个单位⻓度,当点运动到时,两点都停⽌.设运动时间为秒.(备⽤图)是否存在某⼀时刻,使得?若存在,求出的值;若不存在,则说明理由.设四边形的⾯积为,求与之间的函数关系式.是否存在某⼀时刻,使得?若存在.求出的值;若不存在,则说明理由.是否存在某⼀时刻,使得?若存在,求出的值;若不存在,则说明理由.存在,..存在,.存在,.,.∵,∴∴..,,四边形矩形四边形。
2020年山东省青岛市中考数学试卷(含解析)印刷版
2020年山东省青岛市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣4的绝对值是()A.4B.﹣4C.D.2.(3分)下列四个图形中,中心对称图形是()A.B.C.D.3.(3分)2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为()A.2.2×108B.2.2×10﹣8C.0.22×10﹣7D.22×10﹣94.(3分)如图所示的几何体,其俯视图是()A.B.C.D.5.(3分)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)6.(3分)如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°7.(3分)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.48.(3分)已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=的图象如图所示,则一次函数y=x﹣b的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:(﹣)×=.10.(3分)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么将被录用(填甲或乙).应聘者项目甲乙学历98经验76工作态度5711.(3分)如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB 的面积为6.若点P(a,7)也在此函数的图象上,则a=.12.(3分)抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.13.(3分)如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G.若DE=2,OF=3,则点A到DF的距离为.14.(3分)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)已知:△ABC.求作:⊙O,使它经过点B和点C,并且圆心O在∠A的平分线上.四、解答题(本大题共9小题,共74分)16.(8分)(1)计算:(+)÷(﹣);(2)解不等式组:17.(6分)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.18.(6分)如图,在东西方向的海岸上有两个相距6海里的码头B,D,某海岛上的观测塔A距离海岸5海里,在A处测得B位于南偏西22°方向.一艘渔船从D出发,沿正北方向航行至C处,此时在A处测得C位于南偏东67°方向.求此时观测塔A与渔船C之间的距离(结果精确到0.1海里).(参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈)19.(6分)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.20.(8分)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.22.(10分)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?23.(10分)实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数1,21,32,32个整数之和345如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数1,21,31,42,32,43,42个整数之和345567如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有种不同的结果.24.(12分)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).解答下列问题:(1)当t为何值时,点M在线段CQ的垂直平分线上?(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;(4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.2020年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣4的绝对值是()A.4B.﹣4C.D.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣4|=4,∴﹣4的绝对值是4.故选:A.2.(3分)下列四个图形中,中心对称图形是()A.B.C.D.【分析】根据中心对称图形的概念结合各图形的特点求解.【解答】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选:D.3.(3分)2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为()A.2.2×108B.2.2×10﹣8C.0.22×10﹣7D.22×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000000022用科学记数法表示为2.2×10﹣8.故选:B.4.(3分)如图所示的几何体,其俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.5.(3分)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)【分析】根据平移和旋转的性质,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,即可得点A的对应点A′的坐标.【解答】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.6.(3分)如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°【分析】根据圆周角定理得到∠BAD=90°,∠DAC=∠COD=63°,再由=得到∠B=∠D=45°,然后根据三角形外角性质计算∠AGB的度数.【解答】解:∵BD是⊙O的直径,∴∠BAD=90°,∵=,∴∠B=∠D=45°,∵∠DAC=∠COD=×126°=63°,∴∠AGB=∠DAC+∠D=63°+45°=108°.故选:B.7.(3分)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.4【分析】由矩形的性质,折叠轴对称的性质,可求出AF=FC=AE=5,由勾股定理求出AB,AC,进而求出OA即可.【解答】解:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD,∴∠EFC=∠AEF,由折叠得,∠EFC=∠AFE,∴∠AFE=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB==4,在Rt△ABC中,AC==4,∴OA=OC=2,故选:C.8.(3分)已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=的图象如图所示,则一次函数y=x﹣b的图象可能是()A.B.C.D.【分析】根据反比例函数图象和二次函数图象经过的象限,即可得出a<0、b>0、c>0,由此即可得出<0,﹣b<0,即可得出一次函数y=x﹣b的图象经过二三四象限,再对照四个选项中的图象即可得出结论.【解答】解:∵二次函数开口向下,∴a<0;∵二次函数的对称轴在y轴右侧,左同右异,∴b符号与a相异,b>0;∵反比例函数图象经过一三象限,∴c>0,∴<0,﹣b<0,∴一次函数y =x﹣b的图象经过二三四象限.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:(﹣)×=4.【分析】先化简括号内的二次根式,再合并括号内的同类二次根式,最后计算乘法即可得.【解答】解:原式=(2﹣)×=×=4,故答案为:4.10.(3分)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么乙将被录用(填甲或乙).应聘者项目甲乙学历98经验76工作态度57【分析】根据加权平均数的定义列式计算,比较大小,平均数大者将被录取.【解答】解:∵==,==,∴<,∴乙将被录用,故答案为:乙.11.(3分)如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB 的面积为6.若点P(a,7)也在此函数的图象上,则a=.【分析】根据反比例函数系数k的几何意义求得k的值,即可求得反比例函数的解析式,代入点P,即可求得a.【解答】解:∵AB垂直于x轴,垂足为B,∴△OAB的面积=|k|,即|k|=6,而k>0,∴k=12,∴反比例函数为y=,∵点P(a,7)也在此函数的图象上,∴7a=12,解得a=.故答案为.12.(3分)抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是2.【分析】先令y=0,得出关于x的一元二次方程,由△>0得方程有两个不相等的实数根,即抛物线与x轴有两个不同的交点.【解答】解:∵抛物线y=2x2+2(k﹣1)x﹣k(k为常数),∴当y=0时,0=2x2+2(k﹣1)x﹣k,∴△=[2(k﹣1)]2﹣4×2×(﹣k)=4k2+4>0,∴0=2x2+2(k﹣1)x﹣k有两个不相等的实数根,∴抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴有两个交点,故答案为:2.13.(3分)如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G.若DE=2,OF=3,则点A到DF的距离为.【分析】解法一:根据正方形的性质得到AO=DO,∠ADC=90°,求得∠ADE=90°,根据直角三角形的性质得到DF=AF=EF=AE,根据三角形中位线定理得到FG=DE=1,求得AD=CD=4,过A作AH⊥DF于H,根据相似三角形的性质和勾股定理即可得到结论.解法二:同理得FG的长,利用勾股定理计算DF的长,最后根据△ADF的面积列等式可得AH的长.【解答】解:解法一:∵在正方形ABCD中,对角线AC与BD交于点O,∴AO=DO,∠ADC=90°,∴∠ADE=90°,∵点F是AE的中点,∴DF=AF=EF=AE,∴OF垂直平分AD,∴AG=DG,∴FG=DE=1,∵OF=3,∴OG=2,∵AO=CO,∴CD=2OG=4,∴AD=CD=4,∴AE===2.过A作AH⊥DF于H,∴∠H=∠ADE=90°,∵AF=DF,∴∠ADF=∠DAE,∴△ADH∽△EAD,∴=,∴=,∴AH=,即点A到DF的距离为,解法二:在正方形ABCD中,对角线AC与BD交于点O,∴AO=DO,∠ADC=90°,∴∠ADE=90°,∵点F是AE的中点,∴DF=AF=EF=AE,∴OF垂直平分AD,∴AG=DG,∴FG=DE=1,∵OF=3,∴OG=2,∵AO=CO,∴CD=2OG=4,∴AD=CD=4,∴DG=2,∴DF===,过A作AH⊥DF于H,∴∠H=∠ADE=90°,∴S△ADF=DF•AH=AD•FG,∴AH=,故答案为:.14.(3分)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为24﹣3﹣3π.【分析】连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC =120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=,进而可求图中阴影部分的面积.【解答】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵的长为π,∴=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=,∴AM=AN=,∴BM+CN=AB+AC﹣(AM+AN)=16﹣2,∴S阴影=S△OBM+S△OCN﹣(S扇形MOE+S扇形NOF)=3×(BM+CN)﹣()=(16﹣2)﹣3π=24﹣3﹣3π.故答案为:24﹣3﹣3π.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)已知:△ABC.求作:⊙O,使它经过点B和点C,并且圆心O在∠A的平分线上.【分析】作出∠A的平分线和线段BC的垂直平分线,找到它们的交点,即为圆心O,再以OB为半径画出⊙O,得出答案.【解答】解:如图所示:⊙O即为所求.四、解答题(本大题共9小题,共74分)16.(8分)(1)计算:(+)÷(﹣);(2)解不等式组:【分析】(1)先计算括号内分式的加减运算,再将除法转化为乘法,最后约分即可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=(+)÷(﹣)=÷=•=;(2)解不等式2x﹣3≥﹣5,得:x≥﹣1,解不等式x+2<x,得:x>3,则不等式组的解集为x>3.17.(6分)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.【分析】用列表法表示所有可能出现的结果情况,进而求出小亮、小颖去的概率,进而判断游戏是否公平.【解答】解:这个游戏公平,理由如下:用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中配成紫色的有3种,配不成紫色的有3种,∴P(小颖)==,P(小亮)==,因此游戏是公平.18.(6分)如图,在东西方向的海岸上有两个相距6海里的码头B,D,某海岛上的观测塔A距离海岸5海里,在A处测得B位于南偏西22°方向.一艘渔船从D出发,沿正北方向航行至C处,此时在A处测得C位于南偏东67°方向.求此时观测塔A与渔船C之间的距离(结果精确到0.1海里).(参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈)【分析】过点A作AE⊥BD于点E,过点C作CF⊥AE于点F,得矩形CDEF,再根据锐角三角函数即可求出观测塔A与渔船C之间的距离.【解答】解:如图,过点A作AE⊥BD于点E,过点C作CF⊥AE于点F,得矩形CDEF,∴CF=DE,根据题意可知:AE=5,∠BAE=22°,∴BE=AE•tan22°=5×=2,∴DE=BD﹣BE=6﹣2=4,∴CF=4,在Rt△AFC中,∠CAF=67°,∴AC==4×≈4.3(海里).答:观测塔A与渔船C之间的距离约为4.3海里.19.(6分)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=20%;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是84.5分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.【分析】(1)求出调查人数,和“90﹣100”的人数即可补全频数直方图;(2)用“70﹣80”的频数10除以调查人数50 即可得出m的值;(3)利用中位数的意义,求出中间位置的两个数的平均数,即可得出中位数;(4)样本估计总体,样本中优秀所占的百分比为,因此估计总体1200人的是优秀的人数.【解答】解:(1)8÷16%=50(人),50﹣4﹣8﹣10﹣12=16(人),补全频数直方图如图所示:(2)m=10÷50=20%,故答案为:20%;(3)将50个数据从小到大排列后,处在第25、26位的两个数的平均数为=84.5,因此中位数是84.5,故答案为:84.5;(4)1200×=672(人),答:全校1200名学生对海洋科普知识了解情况为优秀的学生有672人.20.(8分)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?【分析】(1)根据函数图象中的数据,可以求得游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并计算出同时打开甲、乙两个进水口的注水速度;(2)根据题意和(1)中的结果,可以得到甲进水管的进水速度,从而可以求得单独打开甲进水口注满游泳池需多少小时.【解答】解:(1)设y与t的函数解析式为y=kt+b,,解得,,即y与t的函数关系式是y=140t+100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m3/h);(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.∴甲进水口进水的速度是乙进水口进水速度的,∵同时打开甲、乙两个进水口的注水速度是140m3/h,∴甲进水口的进水速度为:140÷(+1)×=60(m3/h),480÷60=8(h),即单独打开甲进水口注满游泳池需8h.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.【分析】(1)根据四边形ABCD是平行四边形,可以得到AD=CB,AD∥BC,从而可以得到∠ADE=∠CBF,然后根据SAS即可证明结论成立;(2)根据BD平分∠ABC和平行四边形的性质,可以证明▱ABCD是菱形,从而可以得到AC⊥BD,然后即可得到AC⊥EF,再根据题目中的条件,可以证明四边形AFCE是平行四边形,然后根据AC⊥EF,即可得到四边形AFCE是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADB=∠CBD,∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.22.(10分)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?【分析】(1)根据图形和直角坐标系可得点D和点E的坐标,代入y=kx2+m,即可求解;(2)根据M和N的横坐标相等,求出N点坐标,再求出矩形FGMN的面积,即可求解;(3)根据题意得到w关于n的二次函数,根据二次函数的性质即可求解.【解答】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH﹣OH=4﹣3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式为:y=kx2+1,把点D(2,0)代入,得k=﹣,∴该抛物线的函数表达式为:y=﹣x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=,∴N(1,),∴MN=,∴S矩形MNFG=MN•GM=×2=,∴每个B型活动板房的成本是:425+×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n﹣500)[100+]=﹣2(n﹣600)2+20000,∵每月最多能生产160个B型活动板房,∴100+≤160,解得n≥620,∵﹣2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有最大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.23.(10分)实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数1,21,32,32个整数之和345如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数1,21,31,42,32,43,42个整数之和345567如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有7种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有(2n ﹣3)种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有4种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有(3n ﹣8)种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有(4n﹣15)种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有[a(n﹣a)+1]种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有476种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有[a(n﹣a+1)+1]种不同的结果.【分析】根据整数的总个数n,与任取的a个整数,分别计算这a个整数之和的最大值、最小值,进而得出共有多少种不同结果情况,然后延伸到一般情况.【解答】解:探究一:(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和最小值为1+2=3,最大值为4+5。
青岛市局属四校2019-2020学年九年级(上)期中数学试卷
2019-2020学年九年级(上)期中数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.方程x2=x的解是()A.x=1 B.x=0 C.x1=﹣1,x2=0 D.x1=1,x2=0 2.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠23.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.94.在数字1,2,3,4中任选两个组成一个两位数,这个两位数能被3整除的概率为()A.B.C.D.5.如图,在△ABC中,DE∥BC,BD=3AD,BC=12,则DE的长是()A.3 B.4 C.5 D.66.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8 B.12 C.16 D.328.如图,点O为正方形ABCD的中心,AD=1,BE平分∠DBC交DC于点E,延长BC到点F,使BD=BF,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:OH∥BF;②OG:GH=2:1;③GH=;④∠CHF=2∠EBC;⑤CH2=HE•HB.正确结论的个数为()A.1 B.2 C.3 D.4二、填空题(本题满分24分,共有8道小题,每小题3分)9.若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=.10.若是一个直角三角形两条直角边的长a,b,满足(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为.11.若点C是线段AB的黄金分割点(AC>BC),AB=8cm,则AC=.12.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为估计口袋中红球的个数,采用了如下的方法:先把口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为.13.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.14.如图,为了测量一棵树CD的高度,测量者在B处立了一根高为2.5m的标杆,观测者从E处可以看到杆顶A,树顶C在同一条直线上,若测得BD=7m,FB=3m,EF=1.6m,则树高为m.15.如图,将一张长方形纸板的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若长方形纸板边长分别为40cm和30cm,且折成的长方体盒子表面积是950cm2,此时长方体盒子的体积为cm3.16.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n O∁n B n的对角线交点的坐标为.三.解答题(共72分)17.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段a和∠α.求作:菱形ABCD,使菱形ABCD的边长为a,其中一个内角等于∠α.18.用指定方法解方程:(1)2x2+4x﹣3=0(配方法解)(2)5x2﹣8x=﹣2(公式法解)19.第一盒中有2个白球、1个红球,第二盒中有1个白球、2个红球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个红球的概率.请通过列表格或画树状图,说明理由.20.如图梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.21.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.22.如图,四边形ABCD是正方形,点E是边AB上一点,延长AD至F使DF=BE,连接CF.(1)求证:∠BCE=∠DCF;(2)过点E作EG∥CF,过点F作FG∥CE,问四边形CEGF是什么特殊的四边形,并证明.23.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出50kg,销售单价每涨2元,月销售量就减少20kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克56元时,计算销售量和月销售利润;(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?24.【阅读资料】同学们,我们学过用配方法解一元二次方程,也可用配方法求代数式的最值.(1)求4x2+16x+19的最小值.解:4x2+16x+19=4x2+16x+16+3=4(x+2)2+3因(x+2)2大于等于0,所以4x2+16x+19大于等于3,即4x2+16x+19的最小值是3.此时,x=﹣2(2)求﹣m2﹣m+2的最大值解:﹣m2﹣m+2=﹣(m2+m)+2=﹣因大于等于0,所以﹣小于等于0,所以﹣+小于等于,即﹣m2﹣m+2的最大值是,此时,m=﹣.【探索发现】如图①,是一张直角三角形纸片,∠B=90°,AB=8,BC=6,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.下面给出了未写完的证明,请你阅读下面的证明并写出余下的证明部分,并求出矩形的最大面积与原三角形面积的比值.解:在AC上任取点E,作ED⊥BC,EF⊥AB,得到矩形BDEF.设EF=x易证△AEF∽△ACB,则,,,…请你写出剩余部分【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),该矩形的面积为.(直接写出答案)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=70cm,BC=108cm,CD=76cm,且∠B=∠C=60°,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,该矩形的面积为.(直接写出答案)25.如图,在矩形ABCD中,AB=4,BC=3,BD为对角线.点P从点B出发,沿线段BA向点A运动,点Q从点D出发,沿线段DB向点B运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到A时,两点都停止.设运动时间为t秒.(1)是否存在某一时刻t,使得PQ∥AD?若存在,求出t的值;若不存在,说明理由.(2)设四边形BPQC的面积为S,求S与t之间的函数关系式.(3)是否存在某一时刻t,使得S四边形BPQC:S矩形ABCD=9:20?若存在,求出t的值;若不存在,则说明理由.(4)是否存在某一时刻t,使得PQ⊥CQ?若存在,求出t的值;若不存在,则说明理由.。
2020-2021青岛市九年级数学上期中试卷(带答案)
24.现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从 一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次. (1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 ; (2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用 画树状图或列表等方法求解) 25.某商场销售一批名牌衬衫,平均每天可以销售 20 件,每件盈利 40 元,为了扩大销 售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬 衫降价 1 元,商场平均每天多售出 2 件,若商场平均每天要盈利 1200 元,每件衬衫应降价 多少元?
A.
B.
C.
D.
10.已知 x2 y2 2 y2 x2 6 ,则 x2 y2 的值是( )
A.-2
B.3
C.-2 或 3
D.-2 且 3
11.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透
空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )
A.
B.
C.
D.
12.一元二次方程 x2+2x+2=0 的根的情况是( )
A.有两个不相等的实数根 D.没有实数根
B.有两个相等的实数根 C.只有一个实数根
二、填空题
13.圆锥的底面半径为 14cm,母线长为 21cm,则该圆锥的侧面展开图的圆心角为_____ 度.
14.如图,△ODC 是由△OAB 绕点 O 顺时针旋转 40°后得到的图形,若点 D 恰好落在
10.B
解析:B 【解析】
试题分析:根据题意,先移项得 x2 y2 2 y2 x2 6 0 ,即
山东省青岛市九年级(上)期中数学试卷(含解析)
山东省青岛市九年级(上)期中数学试卷一、选择题(每小题2分,共30分)1.下列一组数值中,是方程x2﹣3x+2=0的解是()A.﹣1 B.2 C.﹣3 D.1或22.关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4 B.k=4 C.k≥﹣4 D.k≥43.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形;B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形4.关于频率和概率的关系,下列说法正确的是()A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D.实验得到的频率与概率不可能相等5.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED的面积为()A.2B.4 C.4D.86.一元二次方程x2+2x﹣6=0的根是()A.x1=x2=B.x1=0,x2=﹣2C.x1=,x2=﹣3D.x1=﹣,x2=37.一元二次方程x2﹣10x+21=0可以转化的两个一元一次方程正确的是()A.x﹣3=0,x+7=0 B.x+3=0,x+7=0C.x﹣3=0,x﹣7=0 D.x+3=0,x﹣7=08.如图,正方形ABCD的边长为1,E、F分别是BC、CD上的点,且△AEF是等边三角形,则BE 的长为()A.B.C.D.9.如图,在▱ABCD中,对角线AC、BD相交于O,α=60°.若AB=OD=2,则▱ABCD的面积是()A.8 B.C.2D.410.用配方法解方程3x2﹣4x﹣2=0时,配方正确的是()A.B.C.D.11.为了塑造宜居宜业的“皖北江南”,我县决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是()A.19% B.20% C.21% D.22%12.已知正方形ABCD的边长是10cm,△APQ是等边三角形,点P在BC上,点Q在CD上,则BP的边长是()A.cm B.cm C.cm D.cm13.有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为()A.B.C.D.14.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.215.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°二、填空题(每小题3分,共24分)16.如图,菱形ABCD中,BD=24,AC=10,则该菱形的周长为.17.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为.18.已知一元二次方程x2+3x﹣4=0的两根为x1、x2,则x12+x1x2+x22=.19.两个数的积为12,和为7,设其中一个数为x,则依题意可列方程.20.代数式﹣x2+bx+c与x的部分对应值如下表:x﹣3 ﹣2 ﹣1 1﹣x2+bx+c﹣14 ﹣7 ﹣2 2根据表格中的信息得知:一元二次方程﹣x2+bx+c=0的一个解的范围在与之间.21.甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红球的概率是.22.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向向右平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于.23.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是.三、解答题(66分)24.(12分)解下列方程:(1)2(x+1)2﹣8=0;(2)x2﹣3x﹣1=0(配方法);(3)3x2﹣5x+1=0(公式法).25.(8分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?26.(8分)如图,AC是▱ABCD的对角线,∠BAC=∠DA C.(1)求证:AB=BC;(2)若AB=2,AC=2,求▱ABCD的面积.27.(8分)如图矩形ABCD中,DP平分∠ADC交BC于P点,将一个直角三角板的直角顶点放在P点处,且使它的一条直角边过A点,另一条直角边交CD于E.找出图中与P A相等的线段.并说明理由.28.(8分)在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.29.(10分)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.30.(12分)如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2.(1)AE=,正方形ABCD的边长=;(2)如图2,将∠AEG绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上.①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.参考答案与试题解析一、选择题(每小题2分,共30分)1.下列一组数值中,是方程x2﹣3x+2=0的解是()A.﹣1 B.2 C.﹣3 D.1或2【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣3x+2=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,即方程x2﹣3x+2=0的解是1或2,故选:D.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.2.关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4 B.k=4 C.k≥﹣4 D.k≥4【分析】根据判别式的意义得到△=42﹣4k=0,然后解一次方程即可.【解答】解:∵一元二次方程x2+4x+k=0有两个相等的实根,∴△=42﹣4k=0,解得:k=4,故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【分析】根据平行四边形的判定、矩形的判定,菱形的判定以及正方形的判定对各选项分析判断即可得解.【解答】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选:D.【点评】本题考查了正方形的判定,平行四边形、矩形和菱形的判定,熟练掌握各四边形的判定方法是解题的关键.4.关于频率和概率的关系,下列说法正确的是()A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D.实验得到的频率与概率不可能相等【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【解答】解:A、频率只能估计概率;B、正确;C、概率是定值;D、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同.故选:B.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.5.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED的面积为()A.2B.4 C.4D.8【分析】连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到ODEC为平行四边形,根据邻边相等的平行四边形为菱形得到四边形ODEC为菱形,得到对角线互相平分且垂直,求出菱形OCED的面积即可.【解答】解:连接OE,与DC交于点F,∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,∵OD∥CE,OC∥DE,∴四边形ODEC为平行四边形,∵OD=OC,∴四边形ODEC为菱形,∴DF=CF,OF=EF,DC⊥OE,∵DE∥OA,且DE=OA,∴四边形ADEO为平行四边形,∵AD=2,DE=2,∴OE=2,即OF=EF=,在Rt△DEF中,根据勾股定理得:DF==1,即DC=2,则S菱形ODEC=OE•DC=×2×2=2.故选:A.【点评】此题考查了矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键.6.一元二次方程x2+2x﹣6=0的根是()A.x1=x2=B.x1=0,x2=﹣2C.x1=,x2=﹣3D.x1=﹣,x2=3【分析】找出方程中二次项系数a,一次项系数b及常数项c,再根据x=,将a,b 及c的值代入计算,即可求出原方程的解.【解答】解:∵a=1,b=2,c=﹣6∴x====﹣±2,∴x1=,x2=﹣3;故选:C.【点评】此题考查了利用公式法求一元二次方程的解,利用公式法解一元二次方程时,首先将方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,当根的判别式≥0时,将a,b及c的值代入求根公式即可求出原方程的解.7.一元二次方程x2﹣10x+21=0可以转化的两个一元一次方程正确的是()A.x﹣3=0,x+7=0 B.x+3=0,x+7=0C.x﹣3=0,x﹣7=0 D.x+3=0,x﹣7=0【分析】先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程.【解答】解:∵(x﹣3)(x﹣7)=0,∴x﹣3=0或x﹣7=0,故选:C.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.8.如图,正方形ABCD的边长为1,E、F分别是BC、CD上的点,且△AEF是等边三角形,则BE 的长为()A.B.C.D.【分析】由于四边形ABCD是正方形,△AEF是等边三角形,所以首先根据已知条件可以证明△ABE≌△ADF,再根据全等三角形的性质得到BE=DF,设BE=x,那么DF=x,CE=CF=1﹣x,那么在Rt△ABE和Rt△ADF利用勾股定理可以列出关于x的方程,解方程即可求出BE.【解答】解:∵四边形ABCD是正方形,∴∠B=∠D=90°,AB=AD,∵△AEF是等边三角形,∴AE=EF=AF,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,设BE=x,那么DF=x,CE=CF=1﹣x,在Rt△ABE中,AE2=AB2+BE2,在Rt△CEF中,FE2=CF2+CE2,∴AB2+BE2=CF2+CE2,∴x2+1=2(1﹣x)2,∴x2﹣4x+1=0,∴x=2±,而x<1,∴x=2﹣,即BE的长为=2﹣.故选:A.【点评】此题主要考查了正方形、等边三角形的知识,把求线段长放在正方形的背景中,利用勾股定理列出一元二次方程解决问题.9.如图,在▱ABCD中,对角线AC、BD相交于O,α=60°.若AB=OD=2,则▱ABCD的面积是()A.8 B.C.2D.4【分析】根据等边三角形的判定得出△DOC是等边三角形,再根据平行四边形的性质和的面积公式即可求解.【解答】解:∵在▱ABCD中,∴AB=DC,∵α=60°.AB=OD=2,∴△DOC是等边三角形,∴△DOC的面积=,∴▱ABCD的面积=4△DOC的面积=4,故选:D.【点评】本题考查了平行四边形的性质和面积,解此题的关键是熟练掌握平行四边形的性质.10.用配方法解方程3x2﹣4x﹣2=0时,配方正确的是()A.B.C.D.【分析】方程常数项移到右边,二次项系数化为1,两边加上一次项系数一半的平方,变形得到结果,即可作出判断.【解答】解:方程整理得:x2﹣x=,配方得:x2﹣x+=+,即(x﹣)2=,故选:B.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.11.为了塑造宜居宜业的“皖北江南”,我县决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是()A.19% B.20% C.21% D.22%【分析】设两年平均每年绿地面积的增长率是x,原来的景区绿地面积为1,那么经过第一年景区绿地面积为(1+x),再过一年景区绿地面积为(1+x)(1+x),然后根据风景区绿地面积增加44%,即可列出方程解决问题.【解答】解:设两年平均每年绿地面积的增长率是x,依题意得(1+x)2=1+44%,∴1+x=±1.2,∴x=0.2=20%或x=﹣2.2(不合题意,舍去).答:这两年平均每年绿地面积的增长率是20%.故选:B.【点评】此题主要考查了一元二次方程的应用中增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用﹣.12.已知正方形ABCD的边长是10cm,△APQ是等边三角形,点P在BC上,点Q在CD上,则BP的边长是()A.cm B.cm C.cm D.cm【分析】在Rt△ABP和△PCQ中,可将等边三角形的AP和PQ的长表示出来,根据等边三角形的性质,两边长相等进行求解.【解答】解:设BP的长为x,则PC=CQ=10﹣x在Rt△ABP中,AP==在Rt△PCQ中,PQ=(10﹣x)∵AP=PQ,∴=(10﹣x)解得:x1=,x2=>10(舍去)∴BP的边长是;故选C.【点评】本题主要考查正方形和等边三角形的性质及应用.13.有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为()A.B.C.D.【分析】列表得出所有等可能的情况数,找出差为负数的情况数,即可求出所求的概率.【解答】解:列表得:2 3 43 (2,3)(3,3)(4,3)4 (2,4)(3,4)(4,4)5 (2,5)(3,5)(4,5)所有等可能的情况有9种,其中差为负数的情况有6种,∴差为负数的概率为=,故选:D.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.2【分析】首先连接OP,由矩形的两条边AB、BC的长分别为6和8,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF求得答案.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴S矩形ABCD∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故选:A.【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.15.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【解答】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.【点评】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.二、填空题(每小题3分,共24分)16.如图,菱形ABCD中,BD=24,AC=10,则该菱形的周长为52.【分析】先根据菱形的性质得AB=CD=AD=BC,AC⊥BD,OA=OC=5,BO=DO=12,再在Rt△AOB中利用勾股定理计算出AB的长,然后求菱形的周长.【解答】解:∵四边形ABCD为菱形,∴AB=CD=AD=BC,AC⊥BD,OA=OC=5,BO=DO=12,在Rt△AOB中,AB==13,∴该菱形的周长=4×13=52.故答案为52.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.17.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为15.【分析】由在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,∴口袋中球的总个数为:3÷=15.故答案为:15.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.18.已知一元二次方程x2+3x﹣4=0的两根为x1、x2,则x12+x1x2+x22=13.【分析】根据根与系数的关系得到x1+x2=﹣3,x1x2=﹣4,再利用完全平方公式变形得到x12+x1x2+x22=(x1+x2)2﹣x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=﹣3,x1x2=﹣4,所以x12+x1x2+x22=(x1+x2)2﹣x1x2=(﹣3)2﹣(﹣4)=13.故答案为13.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.19.两个数的积为12,和为7,设其中一个数为x,则依题意可列方程x2﹣7x+12=0.【分析】如果设其中一个数为x,那么另一个数为(6﹣x),根据乘积等于5,那么可列出方程.【解答】解:设其中一个数为x,那么另一个数为(7﹣x),∵两个数的积为12,∴x(7﹣x)=12,整理得:x2﹣7x+12=0.故答案为:x2﹣7x+12=0.【点评】此题考查一元二次方程的运用,题目不难,重在看准题.20.代数式﹣x2+bx+c与x的部分对应值如下表:x﹣3 ﹣2 ﹣1 1﹣x2+bx+c﹣14 ﹣7 ﹣2 2根据表格中的信息得知:一元二次方程﹣x2+bx+c=0的一个解的范围在﹣1与1之间.【分析】观察表格可知,随x的值逐渐增大,﹣x2+bx+c的值在﹣1~1之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在﹣1~1之间.【解答】解:根据表格可知,ax2+bx+c=0时,对应的x的值在﹣1~1之间.故答案为:﹣1,1.【点评】本题考查了二次函数图象与一元二次方程的解之间的关系.关键是观察表格,确定函数值由负到正时,对应的自变量取值范围.21.甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红球的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取出的两个球都是红的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,取出的两个球都是红的有1种情况,∴取出的两个球都是红的概率为:.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向向右平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于4或8.【分析】根据平移的性质,结合阴影部分是平行四边形,△AA′H与△HCB′都是等腰直角三角形,则若设AA′=x,则阴影部分的底长为x,高A′D=12﹣x,根据平行四边形的面积公式即可列出方程求解.【解答】解:设AC交A′B′于H,∵A′H∥CD,AC∥CA′,∴四边形A′HCD是平行四边形,∵∠A=45°,∠D=90°∴△A′HA是等腰直角三角形设AA′=x,则阴影部分的底长为x,高A′D=12﹣x∴x•(12﹣x)=32∴x=4或8,即AA′=4或8cm.故答案为:4或8.【点评】考查了平移的性质及一元二次方程的解法等知识,解决本题关键是抓住平移后图形的特点,利用方程方法解题.23.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是15°或165°.【分析】利用正方形的性质和等边三角形的性质证明△ABE≌△ADF(SSS),有相似三角形的性质和已知条件即可求出当BE=DF时,∠BAE的大小,应该注意的是,正三角形AEF可以再正方形的内部也可以在正方形的外部,所以要分两种情况分别求解.【解答】解:①当正三角形AEF在正方形ABCD的内部时,如图1,∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴,∴△ABE≌△ADF(SSS),∴∠BAE=∠F AD,∵∠EAF=60°,∴∠BAE+∠F AD=30°,∴∠BAE=∠F AD=15°,②当正三角形AEF在正方形ABCD的外部时.∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴AB=AD BE=DF AE=AF,∴△ABE≌△ADF(SSS),∴∠BAE=∠F AD,∵∠EAF=60°,∴∠BAE=(360°﹣90°﹣60°)×+60°=165°,∴∠BAE=∠F AD=165°故答案为:15°或165°.【点评】本题考查了正方形的性质、等边三角形的性质、旋转的性质以及全等三角形的判定和全等三角形的性质和分类讨论的数学思想,题目的综合性不小.三、解答题(66分)24.(12分)解下列方程:(1)2(x+1)2﹣8=0;(2)x2﹣3x﹣1=0(配方法);(3)3x2﹣5x+1=0(公式法).【分析】(1)直接开平方法求解可得;(2)配方法求解可得;(3)公式法求解可得.【解答】解:(1)2(x+1)2﹣8=0,(x+1)2﹣8=4,∴x+1=±2,∴x1=1,x2=﹣3;(2)x2﹣3x﹣1=0,x2﹣3x+=1+,即(x﹣)2=,∴x﹣=±,∴x1=,x2=;(3)3x2﹣5x+1=0,∵a=3,b=﹣5,c=1,△=25﹣4×3×1=13,∴x==,∴x1=,x2=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.25.(8分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?【分析】利用销售利润=售价﹣进价,根据题中条件可以列出利润与x的关系式,求出即可.【解答】解:设每个商品的定价是x元,由题意,得(x﹣40)[180﹣10(x﹣52)]=2000,整理,得x2﹣110x+3000=0,解得x1=50,x2=60.当x=50时,进货180﹣10(50﹣52)=200个>180个,不符合题意,舍去;当x=60时,进货180﹣10(60﹣52)=100个<180个,符合题意.答:当该商品每个定价为60元时,进货100个.【点评】此题主要考查了一元二次方程的应用;找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.26.(8分)如图,AC是▱ABCD的对角线,∠BAC=∠DA C.(1)求证:AB=BC;(2)若AB=2,AC=2,求▱ABCD的面积.【分析】(1)由平行四边形的性质得出∠DAC=∠BCA,再由已知条件得出∠BAC=∠BCA,即可得出AB=BC;(2)连接BD交AC于O,证明四边形ABCD是菱形,得出AC⊥BD,OA=OC=AC=,OB=OD= BD,由勾股定理求出OB,得出BD,▱ABCD的面积=AC•BD,即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,∵∠BAC=∠DAC,∴∠BAC=∠BCA,∴AB=BC;(2)解:连接BD交AC于O,如图所示:∵四边形ABCD是平行四边形,AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=,OB=OD=BD,∴OB===1,∴BD=2OB=2,∴▱ABCD的面积=AC•BD=×2×2=2.【点评】本题考查了平行四边形的性质、等腰三角形的判定、勾股定理、菱形面积的计算;熟练掌握平行四边形的性质,证明四边形是菱形是解决问题的关键.27.(8分)如图矩形ABCD中,DP平分∠ADC交BC于P点,将一个直角三角板的直角顶点放在P点处,且使它的一条直角边过A点,另一条直角边交CD于E.找出图中与P A相等的线段.并说明理由.【分析】可由∠B=∠C=90°,AB=PC,∠APB=∠PEC,证得△ABP≌△PCE,所以P A=PE.【解答】解:图中与P A相等的线段是PE.理由如下:∵DP平分∠ADC,∴∠ADP=∠PDC=45°,又∵AD∥BC,∴∠ADP=∠DPC,∴∠PDC=∠DPC,所以PC=D C.∵AB=DC,∴AB=P C.∵直角三角板的直角顶点放在点P处,∴∠APE=90°.∵∠APB+∠EPC=90°.∵∠EPC+∠PEC=90°.∴∠APB=∠PE C.在△P AB和△EPC中,∵∠B=∠C=90°,AB=PC,∠APB=∠PEC,∴△P AB≌△EPC(AAS),∴PE=P A.【点评】本题把角平分线置于矩形的背景之中,与平行线组合使用,沟通了角与角之间的关系.由于角平分线、平行线都具有转化角的作用,在两者共存的图形中常会出现等腰三角形,所以命题者常将两者组合,设计出精彩纷呈的题目.28.(8分)在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:(1)树状图如下;列表如下白红黑甲乙白白,白红,白黑,白红白,红红,红黑,红黑白,黑红,黑黑,黑(2)乙摸到与甲相同颜色的球有三种情况,∴乙能取胜的概率为.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.29.(10分)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.【分析】(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.【解答】(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,∴OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∵OD=AC,∴OA=OB=OC=OD,∴四边形ABCD是平行四边形,∵BD=AC,∴平行四边形ABCD为矩形.【点评】此题考查了全等三角形的判定与性质,矩形的判定与性质,以及平行线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.30.(12分)如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2.(1)AE=1,正方形ABCD的边长=;(2)如图2,将∠AEG绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上.①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.【分析】(1)利用已知得出△AED≌△DGC(AAS),即可得出AE,以及正方形的边长;(2)①过点B′作B′M垂直于l1于点M,进而得出Rt△AE′D′≌Rt△B′MA(HL),求出∠B′AD′与α的数量关系即可;②首先过点E′作ON垂直于l1分别交l1,l2于点O,N,若α=30°,则∠E′D′N=60°,可求出AE′=1,E′O,E′N,ED′的长,进而由勾股定理可知菱形的边长.【解答】解:(1)由题意可得:∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,在△AED和△DGC中,,∴△AED≌△DGC(AAS),∴AE=GD=1,又∵DE=1+2=3,∴正方形ABCD的边长==,故答案为:1,;(2)①∠B′AD′=90°﹣α;理由:过点B′作B′M垂直于l1于点M,在Rt△AE′D′和Rt△B′MA中,,。
山东省青岛市2019-2020学年四区联考九年级(上)期中数学试卷(含答案)
2019-2020学年九年级上学期期中数学试卷一、选择题1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2 2.下列说法中,错误的是()A.有一组邻边相等的平行四边形是菱形B.两条对角线互相垂直且平分的四边形是菱形C.对角线相等的平行四边形是矩形D.有一组邻边相等的菱形是正方形3.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.5.如图,矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAD交BC于点E,∠CAE =15°,则∠AOE的度数为()A.120°B.135°C.145°D.150°6.根据表格中的数据,估计一元二次方程ax2+bx+c=6(a,b,c为常数,a≠0)一个解x 的范围为()x0.5 1 1.5 2 3ax2+bx+c28 18 10 4 ﹣2 A.0.5<x<1 B.1<x<1.5 C.1.5<x<2 D.2<x<37.如图,在△ABC中,点E在BC边上,连接AE,点D在线段AE上,GD∥BA,且交BC于点G,DF∥BC,且交AC于点F,则下列结论一定正确的是()A.=B.=C.=D.=8.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF 分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H.则下列结论正确的有()①△ADF∽△ECF;②△AEH为等腰直角三角形;③点F是CD的中点;④FH=A.1个B.2个C.3个D.4个二、填空题(共6小题)9.已知,则=.10.一个不透明的口袋里装有除颜色外都相同的5个红球和若干个白球,再往该口袋中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则口袋中原来有个白球.11.某校去年对实验器材的投资为20万元,预计今明两年的投资总额为75万元,若设该校今明两年在实验器材投资上的平均增长率是x,则根据题意可列方程为.12.现有大小相同的正方形纸片20张,小亮用其中2张拼成一个如图所示的长方形,小芳也想拼一个与它形状相同但比它大的长方形,则她至少要用张正方形纸片(不得把每个正方形纸片剪开).13.如图,在菱形ABCD中,AB=2,∠DAB=60°,对角线AC,BD相交于点O,过点C 作CE∥BD交AB的延长线于点E,连接OE,则OE长为.14.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即方程x2=﹣1的一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•﹣i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2019+i2020的值为.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹15.已知:∠MAN和线段a.求作:菱形ABCD,使顶点B,D分别在射线AM,AN上,且对角线AC=a.四、解答题(本大题共9小题,共74分)16.解方程(1)2x2﹣4x+1=0(配方法)(2)3(x﹣1)2=x2﹣117.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.请判断四边形AECD的形状,并说明理由.18.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.19.如图,某农场要建一个面积为140平方米的矩形仓库,仓库的一边靠墙(墙长18米),另三边用木板材料围成,为了方便进出,在与墙垂直的一边上要开一扇2米宽的门,已知围建仓库的现有木板材料总长为32米,那么这个仓库的两边长分别为多少米?20.如图,在矩形ABCD中,点E是BC的中点,EF⊥AE交CD于点F (1)求证:△ABE∽△ECF;(2)若AB=3,BC=8,求EF的长.21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.22.为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为40万元,若每台设备售价为45万元时,平均每月能售出300台;根据市场调研发现:这种设备的售价每提高0.5万元,其销售量就将减少5台.根据相关规定,此设备的销售单价不低于45万元,且获利不高于30%.如果该公司想实现每月2500万元的利润,则该设备的销售单价应是多少万元?23.【问题提出】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有多少种不同的选择方法?【问题探究】为发现规律,我们采用一般问题特殊化的策略,先从最简单的问题入手,再逐次递进,最后得出一般性的结论探究一:如果从1,2,3……m,m个连续的自然数中选择2个连续的自然数,会有多少种不同的选择方法?如图1,当m=3,n=2时,显然有2种不同的选择方法;如图2,当m=4,n=2时,有1,2;2,3;3,4这3种不同的选择方法;如图3,当m=5,n=2时,有种不同的选择方法;……由上可知:从m个连续的自然数中选择2个连续的自然数,有种不同的选择方法.探究二:如果从1,2,3……100,100个连续的自然数中选择3个,4个……n(n≤100)个连续的自然数,分别有多少种不同的选择方法?我们借助下面的框图继续探究,发现规律并应用规律完成填空1 2 3 …93 94 95 96 97 98 99 100从100个连续的自然数中选择3个连续的自然数,有种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有种不同的选择方法.【问题解决】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有种不同的选择方法.【实际应用】我们运用上面探究得到的结论,可以解决生活中的一些实际问题.(1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有种不同的选择.(2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排3号到15号的电影票让他们选择,如果他们想拿三张连号票,则一共有种不同的选择方法.【拓展延伸】如图4,将一个2×2的图案放置在8×6的方格纸中,使它恰好盖住其中的四个小正方形,共有种不同的放置方法.24.已知:如图,在等腰△ABC中,AB=10cm,BC=12cm,动点P从点A出发以1cm/s 的速度沿AB匀速运动,动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动,设运动时间为t(s)(0<t<10).过点P作PE∥BC交AC于点E,以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)设四边形BPFQ的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S四边形BPFQ:S△ABC=7:6?若存在,求出t的值;若不存在,请说明理由;(4)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由.参考答案一、选择题1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2 解:∵x2=2x,∴x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴一元二次方程x2=2x的根x1=0,x2=2.故选:C.2.下列说法中,错误的是()A.有一组邻边相等的平行四边形是菱形B.两条对角线互相垂直且平分的四边形是菱形C.对角线相等的平行四边形是矩形D.有一组邻边相等的菱形是正方形解:A、有一组邻边相等的平行四边形是菱形,故A选项不符合题意;B、两条对角线互相垂直且平分的四边形是菱形,故B选项不符合题意;C、对角线相等的平行四边形是矩形,故C选项不符合题意;D、有一组邻边线段的菱形不是正方形,故D选项符合题意;故选:D.3.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根解:∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根,故选:A.4.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.解:画树状图为:共有6种等可能的结果数,其中一个为红色,另一个转出蓝色的占3种,所以可配成紫色的概率==.故选:A.5.如图,矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAD交BC于点E,∠CAE =15°,则∠AOE的度数为()A.120°B.135°C.145°D.150°解:∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=45°,∴△ABE是等腰直角三角形,∴AB=BE,∵∠CAE=15°,∴∠ACE=∠AEB﹣∠CAE=45°﹣15°=30°,∴∠BAO=90°﹣30°=60°,∵矩形中OA=OB,∴△ABO是等边三角形,∴OB=AB,∠ABO=∠AOB=60°,∴OB=BE,∵∠OBE=∠ABC﹣∠ABO=90°﹣60°=30°,∴∠BOE=(180°﹣30°)=75°,∴∠AOE=∠AOB+∠BOE,=60°+75°,=135°.故选:B.6.根据表格中的数据,估计一元二次方程ax2+bx+c=6(a,b,c为常数,a≠0)一个解x 的范围为()x0.5 1 1.5 2 3 ax2+bx+c28 18 10 4 ﹣2 A.0.5<x<1 B.1<x<1.5 C.1.5<x<2 D.2<x<3解:由表格可知:当x=2时,ax2+bx+c=4,当x=3时,ax2+bx+c=﹣2,∴关于x的一元二次方程ax2+bx+c=0(a≠0)的一个解x的范围是2<x<3,故选:D.7.如图,在△ABC中,点E在BC边上,连接AE,点D在线段AE上,GD∥BA,且交BC于点G,DF∥BC,且交AC于点F,则下列结论一定正确的是()A.=B.=C.=D.=解:∵DG∥AB,∴=,故本选项不符合题意;B、∵DF∥CE,∴△ADF∽△AEC,∴=≠,故本选项不符合题意;C、∵DF∥CE,∴△ADF∽△AEC,∴=,∵DG∥AB,∴=,∴=,故本选项符合题意;D、∵DF∥CE,∴=,∵DG∥AB,∴△DGE∽△ABE,∴=,∴≠,故本选项不符合题意;故选:C.8.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF 分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H.则下列结论正确的有()①△ADF∽△ECF;②△AEH为等腰直角三角形;③点F是CD的中点;④FH=A.1个B.2个C.3个D.4个解:∵四边形ABCD是正方形,∴∠B=∠C=∠D=∠BAD=90°,AB=BC=CD=AD=3,∵将△ABE,△ADF分别沿折痕AE,AF向内折叠,∴AB=AG=AD,BE=EG=1,DF=GF,∠BAE=∠GAE,∠DAF=∠GAF,∵∠BAE+∠GAE+∠DAF+∠GAF=90°,∴∠EAG+∠GAF=45°,即∠EAF=45°,∵EH⊥AE,∴∠EAH=∠H=45°,∴AE=EH,且EH⊥AE,∴△AEH是等腰直角三角形,故②符合题意,设DF=FG=x,在Rt△EFC中,∵EF=1+x,EC=3﹣1=2,FC=3﹣x,∴(x+1)2=22+(3﹣x)2,解得x=,∴DF=,∴DF=CF=DC,∴点F是CD中点,故③符合题意,由勾股定理可得:AF===,AE===,∴EH=AE=,∴AH===2,∴FH=AH﹣AF=,故④符合题意,∵=2,,∴∴△ADF与△ECF不相似,故①不合题意,故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.已知,则=.解:∵,∴y=x,∴===,故答案为:.10.一个不透明的口袋里装有除颜色外都相同的5个红球和若干个白球,再往该口袋中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则口袋中原来有10个白球.解:设盒子中原有的白球的个数为x个,根据题意得:,解得:x=10,经检验:x=10是原分式方程的解;∴盒子中原有的白球的个数为10个.故答案为:10;11.某校去年对实验器材的投资为20万元,预计今明两年的投资总额为75万元,若设该校今明两年在实验器材投资上的平均增长率是x,则根据题意可列方程为20(1+x)+20(1+x)2=75.解:设该校今明两年在实验器材投资上的平均增长率是x,依题意,得:20(1+x)+20(1+x)2=75.故答案为:20(1+x)+20(1+x)2=75.12.现有大小相同的正方形纸片20张,小亮用其中2张拼成一个如图所示的长方形,小芳也想拼一个与它形状相同但比它大的长方形,则她至少要用8张正方形纸片(不得把每个正方形纸片剪开).解:如图所示:根据图形的相似拼一个与它形状相同但比它大的长方形,相似比为1:2,所以至少要用8张正方形纸片.故答案为8.13.如图,在菱形ABCD中,AB=2,∠DAB=60°,对角线AC,BD相交于点O,过点C 作CE∥BD交AB的延长线于点E,连接OE,则OE长为.解:∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30°,∠AOB=90°.OB=OD,AO=CO,∵AB=2,∴OB=1,AO=OC=,∴DB=2,∵CE∥DB,∴四边形DBEC是平行四边形.∴CE=DB=2,∠ACE=90°,∴OE===,故答案为:.14.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即方程x2=﹣1的一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•﹣i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2019+i2020的值为0.解:∵i4n+1=i,i4n+2=﹣1,i4n+3=﹣i,i4n+4=1,∴i+i2+i3+i4+…+i2019+i2020=i+(﹣1)+(﹣i)+1+i+(﹣1)+(﹣i)+1+…+i+(﹣1)+(﹣i)+1=0.故答案为0.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹15.已知:∠MAN和线段a.求作:菱形ABCD,使顶点B,D分别在射线AM,AN上,且对角线AC=a.解:如图,四边形ABCD为所作.四、解答题(本大题共9小题,共74分)16.解方程(1)2x2﹣4x+1=0(配方法)(2)3(x﹣1)2=x2﹣1解:(1),则,∴.(2)3(x﹣1)2﹣(x2﹣1)=0,3(x﹣1)2﹣(x﹣1)(x+1)=0,(x﹣1)(3x﹣3﹣x﹣1)=0,(x﹣1)(2x﹣4)=0,∴x1=1,x2=2.17.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.请判断四边形AECD的形状,并说明理由.解:四边形AECD是菱形,理由:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=BC=EC,∴平行四边形AECD是菱形.18.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.解:不公平,列表如下:4 5 64 8 9 105 9 10 116 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;19.如图,某农场要建一个面积为140平方米的矩形仓库,仓库的一边靠墙(墙长18米),另三边用木板材料围成,为了方便进出,在与墙垂直的一边上要开一扇2米宽的门,已知围建仓库的现有木板材料总长为32米,那么这个仓库的两边长分别为多少米?解:设仓库的边AB为x米,由题意得:x(32﹣2x+2)=140,整理,得x2﹣17x+70=0,解,得x1=10,x2=7,当x=10时,BC=14<18;当x=7 时,BC=20>18,∴x=7不合题意,应舍去.答:仓库的边AB为10米,BC为14米.20.如图,在矩形ABCD中,点E是BC的中点,EF⊥AE交CD于点F (1)求证:△ABE∽△ECF;(2)若AB=3,BC=8,求EF的长.【解答】证明:(1)∵四边形ABCD是矩形∴∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵EF⊥AE,∴∠AEF=90°,∴∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF;(2)解:∵E是BC的中点,BC=8,∴BE=EC=BC=4,∵∠B═90°,AB=3,∴AE===5,∵△ABE∽△ECF,∴,即∴EF=.21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠BAD=∠BCD=90°∴∠GAB=∠B=∠BCH,∵AD∥BC,EF∥AC,∴四边形AGEC是平行四边形,∴AG=EC,∵AB∥CD,EF∥AC∴四边形AFHC是平行四边形,∴AF=CH,∴△AFG≌△CHE(SAS).(2)四边形ABCD是正方形理由:∵EF∥AC,∴∠G=∠CAD,∵∠G=∠BAC,∴∠BAC=∠CAD,∵∠BAD=90°,∴∠BAC=45°,∵∠B=90°,∴∠BAC=∠ACB=45°,∴BA=BC,∴矩形ABCD是正方形.22.为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为40万元,若每台设备售价为45万元时,平均每月能售出300台;根据市场调研发现:这种设备的售价每提高0.5万元,其销售量就将减少5台.根据相关规定,此设备的销售单价不低于45万元,且获利不高于30%.如果该公司想实现每月2500万元的利润,则该设备的销售单价应是多少万元?解:设该设备的销售单价为x万元.由题意列方程,得,整理,得x2﹣115x+3250=0解这个方程,得x1=50,x2=65,∵获利不高于30%∴∴x≤52∴x=65不合题意,舍去.∴x=50答:该设备的销售单价为50万元.23.【问题提出】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有多少种不同的选择方法?【问题探究】为发现规律,我们采用一般问题特殊化的策略,先从最简单的问题入手,再逐次递进,最后得出一般性的结论探究一:如果从1,2,3……m,m个连续的自然数中选择2个连续的自然数,会有多少种不同的选择方法?如图1,当m=3,n=2时,显然有2种不同的选择方法;如图2,当m=4,n=2时,有1,2;2,3;3,4这3种不同的选择方法;如图3,当m=5,n=2时,有4种不同的选择方法;……由上可知:从m个连续的自然数中选择2个连续的自然数,有m﹣1种不同的选择方法.探究二:如果从1,2,3……100,100个连续的自然数中选择3个,4个……n(n≤100)个连续的自然数,分别有多少种不同的选择方法?我们借助下面的框图继续探究,发现规律并应用规律完成填空1 2 3 …93 94 95 96 97 98 99 100从100个连续的自然数中选择3个连续的自然数,有98种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有97种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有93种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有(100﹣n+1)种不同的选择方法.【问题解决】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有(m ﹣n+1)种不同的选择方法.【实际应用】我们运用上面探究得到的结论,可以解决生活中的一些实际问题.(1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有6种不同的选择.(2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排3号到15号的电影票让他们选择,如果他们想拿三张连号票,则一共有11种不同的选择方法.【拓展延伸】如图4,将一个2×2的图案放置在8×6的方格纸中,使它恰好盖住其中的四个小正方形,共有35种不同的放置方法.解:探究1:当m=5,n=2时,由图可知有4种不同的选择方法,根据根据规律可知:从m个连续的自然数中选择2个连续的自然数,有(m﹣1)种不同的选择方法;故答案为:4、m﹣1.探究2:选择3个连续的自然数,选择方法的数量比数的个数少2,选择4个连续的自然数,选择方法的数量比数的个数少3,以此类推,选择8个连续的自然数,选择方法的数量比数的个数少7,选择n个连续自然数,选择方法的数量比数的个数少(n﹣1);故从100个连续的自然数中选择3个连续的自然数,有100﹣2=98种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有100﹣3=97种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有100﹣7=93种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有(100﹣n+1)种不同的选择方法.故答案为:98、97、93、100﹣n+1.【问题解决】由规律可知:从m个连续的自然数中选择n个连续的自然数(n≤m),有(m﹣n+1)种不同的选择方法.故答案为:(m﹣n+1).【实际应用】(1)从连续7天选择连续2天,则m=7,n=2,总共有(7﹣2+1)=6种选择;(2)3号到15号总共13张电影票,选择3连号,则m=13,n=3,总共有(13﹣3+1)=11种不同的选择;故答案为:6、11.【拓展延伸】图案向右移动,每次一格,可看作8选2,可得7种放置方法,图案向下移动,每次一格,可看作,6选2,可得5种放置方法,故总共7×5=35种放置方法.故答案为:35.24.已知:如图,在等腰△ABC中,AB=10cm,BC=12cm,动点P从点A出发以1cm/s 的速度沿AB匀速运动,动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动,设运动时间为t(s)(0<t<10).过点P作PE∥BC交AC于点E,以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)设四边形BPFQ的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S四边形BPFQ:S△ABC=7:6?若存在,求出t的值;若不存在,请说明理由;(4)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由.解:(1)过点A作AD⊥BC于点D,如图1所示:则∠ADB=90°,∵AB=AC,∴BD=BC=6,若△BPQ为直角三角形,根据题意只能∠BPQ=90°,则∠ADB=90°=∠BPQ,∵∠B=∠B,∴△ABD∽△QBP,∴,即,解得,答:当t为s时,△BPQ为直角三角形.(2)在Rt△ABD中,,过点P作PM⊥BC于点M,如图2所示:∴∠PMB=90°,∵∠ADB=90°,∴∠PMB=∠ADB,∵∠C=∠C,∴△ABD∽△BPM,∴,即,∴,∵PE∥BC,∴∠C=∠AEP,∠B=∠APE,∴△ABC∽△APE,∴,即,∴,∵四边形CQFE是平行四边形,∴EF=t,∴y=S梯形BPFQ=,==答:y与t的函数关系式是y=.(3)存在,理由如下:若S四边形BPFQ:S△ABC=7:6,则y=S△ABC∵S△ABC=∴=解得t1=5,答:t的值为5s或s时,S四边形BPFQ:S△ABC=7:6;(4)存在,理由如下:连接BF,如图3所示:若点F在∠ABC的平分线上,∴BF平分∠ABC,∴∠ABF=∠FBQ,∵PF∥BC,∴∠PFB=∠FBQ,∴∠ABF=∠PFB,∴PB=PF,即:,∴,答:当s时,点F在∠ABC的平分线上.。
2019-2020学年青岛版九年级上册数学期中测试题
AD 的长度之比为( )
A. tanα tanβ
B. sinβ sinα
C. sinα sinβ
D. cosβ cosα
8. 如图,点 D(0,3), O (0,0),C(4,0),D 在⊙A 上,BD 是⊙A 的一条弦,则 sin∠OBD =
()
A. 1
B. 3
C. 4
D. 3
2
4
5
5
9. 如图,⊙ O 中,半径 O C⊥弦 AB 于点 D,点 E 在⊙ O 上,∠E =22.5°,AB =4,则半
则船 C 到海岸线 l 的距离是
km.
16. 如图,AB 是⊙ O 的直径,C 是⊙ O 上的点,过点 C 作⊙ O 的切线,交 AB 的延长线于
点 D.若∠A =32°,则∠D =
.
17. 如图,在矩形 ABCD 中,AB =3,BC =4,点 O 为矩形 ABCD 的中心,以 D 为圆心 1 为
第 2 题图
第 3 题图
第 4 题图
4. 如图,要测定被池塘隔开的 A、B 两点的距离.可以在 AB 外选一点 C,连接 AC,BC,
并分别找出它们的中点 D,E,连接 ED.现测得 AC =30m,BC =40m,DE =24m,则 AB =( )
A.50m
B.48m
C.45m
D.35m
5. 如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是 上的点,若∠BOC =40°, 则∠D 的度数为( )
向右行走 20 米到达点 C,再经过一段坡度(或坡比)为 i =1:0.75、坡长为 10 米的斜坡 CD 到达点 D,然后再沿水平方向向右行走 40 米到达点 E(A,B,C,D,E 均在同一平面 内).在 E 处测得建筑物顶端 A 的仰角为 24°,则建筑物 AB 的高度约为多少?(参考数
山东省青岛市市南区2022-2023学年九年级上学期期中考试数学试卷
2022—2023学年第一学期阶段性教学质量检测九年级(上)期中数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.已知32xy=,那么下列等式中,不一定成立的是()A.2322xy+=+B.2x=3y C.52x yy+=D.35xx y=+2.关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤94B.m<94C.m≤49D.m<493.用配方法解下列方程时,配方正确的是()A.x2-2x-99=0化为(x-1)2=98 B.x2+8x+9=0化为(x+4)2=25C.2t2-7t-4=0化为2781216t⎛⎫-=⎪⎝⎭D.3y2-4y-2=0化为221039y⎛⎫-=⎪⎝⎭4.有两个可以自由转动的转盘,每个转盘被分成如图所示的几个扇形,游戏者同时转动两个转盘,如果一个转盘转出了红色,另一个转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为1 65.在四边形ABCD中,AB=BC=CD=DA,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A.AC⊥BD B.AB∥CD C.∠A=90°D.∠A=∠C6.“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司交付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果.预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台.设福田欧辉清洁能源公交车平均每年的出口增长率为x,可列方程为()A.1000 (1+x%)2=3000B.1000 (1-x%)2=3000C.1000 (1+x)2=3000D.1000 (1-x)2=30007.如图,点P是菱形ABCD对角线BD上一点,PE⊥AB于点E,且PE=2.连接PC,若菱形的周长为24,则△BCP的面积为()A.4B.6 C.8D.128.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC =3.其中正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题(本题满分18分,共有6道小题,每小题3分)9.已知关于x的方程x2+x-a=0的一个根为2,则另一个根是.10.一个不透明纸袋中装有黑白两种颜色的小球400个,为了估计两种颜色的球各有多少个,现将纸袋中的球搅匀后从中随机摸出一个球几下颜色,再把它放回袋中,多次重复上述过程后,发现摸到黑球的频率稳定在0.65,据此可以估计黑球的个数约是.11.如图,l1∥l2∥l3,已知AB=6cm,BC=3cm,A1B1=4cm,则线段B1C1的长为cm.12.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,那么点P 到矩形的两条对角线AC和BD的距离之和是.13.如图,四边形ABCD 是矩形,BE ⊥EF ,DF ⊥EF ,BC =5cm ,CD =2.5cm ,BE =3cm ,那么EF 的长为cm .14.如图,在△ABC 中,中线BE 、CD 相交于点O ,连接DE ,下列结论:①12DE BC =;②12DOE COB S S =;③AD OE AB OB =;④16DOE ADC S S =;其中正确的个数有 (写序号).三、解答题(共10道题,满分78分)15.作图题:(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:矩形ABCD .求作:菱形AECF ,使E 、F 分别在边BC 、AD 上.16.(本题满分6分)如图,△ABC 三个顶点坐标分别为A (1,2),B (3,1),C (2,3),以原点O 为位似中心,将△ABC 放大为原来的2倍得△A ’B ’C ’.(1)在图中第一象限内画出符合要求的△A ’B ’C ’(不要求写画法);(2)请求出△A ’B’C’的面积.17.(本题满分8分,每小题4分)解方程:(1)4x2﹣8x+1=0(2)(x+1)( x+2)=2x+418.(本题满分6分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4,随机地一次摸取两张纸牌,请用列表或画树状图的方法解决下列问题.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两人进行游戏,如果两次摸取纸牌上数字之和为奇数,则甲胜;如果两次摸取纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.19.(本题满分8分)如图某小区要建一个长方形的花园,花园的一边靠墙(墙长18m),另三边用木栏围成,并留出一个1m 宽的入口,木栏长35m.花园的面积能达到154m2吗?如果能,请你给出设计方案;如果不能,请说明理由.20.(本题满分8分)如图所示,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.(1)证明:四边形BCEO是平行四边形;(2)判断四边形OCED的形状,并说明理由.21.(本题满分8分)如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,则小方行走的路程AC是多少米?22.(本题满分8分)某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x只熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30x,P=170-2x.(1)当日产量为40只时,每日获利多少元?(2)当日产量为多少时每日获得的利润为1750元?23.(本题满分10分)已知正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N,AH⊥MN于点H.图1 图2 图3(1)如图1,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系;(2)如图2,当∠MAN绕点A旋转到BM≠DN时,(1)中结论还成立吗?如果成立,请给出证明;如果不成立,请写出理由;(3)如图3,已知∠MAN=45°,AH⊥MN于点H,且MH=2,AH=6,求NH的长(可利用(2)得到的结论).24.(本题满分10分)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从点A出发,沿AB方向以每秒2cm速度向终点B运动,同时动点Q从点B出发,沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC 翻折,点P的对应点为点P’.设点Q运动的时间为t秒.(1)若△ACP的面积为y,请用t表示y;(2)t为何值时,△BPQ与△ABC相似?(3)t为何值时,四边形QPCP’为菱形?。
2019-2020学年山东省青岛市崂山区九年级(上)期中数学试卷(PDF版 含解析)
D.14
6.(3 分)某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,
则符合这一结果的实验可能是 ( )
A.抛一枚硬币,出现正面朝上 B.从标有 1,2,3,4,5,6 的六张卡片中任抽一张,出现偶数 C.从一个装有 6 个红球和 3 个黑球的袋子中任取一球,取到的是黑球 D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃 7.(3 分)如图,在平行四边形 ABCD 中, M 、 N 是 BD 上两点, BM DN ,连接 AM 、 MC 、 CN 、 NA ,添加一个条件,使四边形 AMCN 是矩形,这个条件是 ( )
ABC 与 DEF 的周长比为 ( )
A.1: 2
B.1: 2
C.1: 3
【解答】解:如图,设正方形网格的边长为 1,
D.1: 4
由勾股定理得: DE2 22 22 , EF 2 22 42 , DE 2 2 , EF 2 5 ;
同理可求: AC 2 , BC 10 ,
B. 1 9
C. a 1, a 1 D. a 1 , a 1
9
9
【解答】解:一元二次方程 x2 (3a 1)x a 0 有两个相等实根,
△ [(3a 1)]2 4 1 (a) 0 , 解得: a 1或 1 ,
9 故选: C . 5.(3 分)如图,在 ABCD 中, BF 平分 ABC ,交 AD 于点 F , CE 平分 BCD ,交 AD
DF 2 , AB 2 , BC AB AC 1 ,
EF DE DF 2 BAC∽EDF ,
CABC : CDEF 1: 2 , 故选: A .
4.(3 分)一元二次方程 x2 (3a 1)x a 0 有两个相等实根,则 a 为 ( )
2018-2019学年山东省青岛市李沧区九年级(上)期中数学试卷(解析版)
2018-2019学年山东省青岛市李沧区九年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.一元二次方程x2﹣x=0的根为()A.x=1B.x=0C.x1=0,x2=1D.x1=1,x2=﹣12.下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形3.已知x=2是一元二次方程x2﹣mx﹣10=0的一个根,则m等于()A.﹣5B.5C.﹣3D.34.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm5.用图中两个可自由转动的转盘做“配紫色”游戏;分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.6.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644D.100x+80x=3567.如图,在菱形ABCD中,AE⊥BC与E,将△ABE沿AE所在直线翻折得△AEF,若AB=2,∠B=45°,则△AEF与菱形ABCD重叠部分(阴影部分)的面积为()A.2B.2﹣C.4﹣2D.2﹣28.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(本题满分21分,共有7道小题,每小题3分)9.已知3x=5y,则=.10.已知一个菱形的周长是20,两条对角线的长的比是4:3,则这个菱形的面积是.11.现有50张大小、质地及背面图案均相同的《三国演义》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后,原样放回,洗匀后再抽,通过多次试验后,发现抽到绘有“诸葛亮”这个人物卡片的频率约为0.3,估计这些卡片中绘有“诸葛亮”这个人物的卡片张数约为张.12.一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为.13.如图,把一个长方形纸片对折两次,然后剪下一个角,为了得到一个正方形,剪刀与折痕所成的角为度.14.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为.15.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2018的纵坐标是.三、作图题(本题满分4分用圆规、直尺作图、不写作法、但要保留作图痕迹)16.(4分)已知:线段a,b,求作一菱形,使其两对角线长分别等于a,b.四、解答题(本题满分71分,共有8道小题)17.(16分)(1)x2﹣2x﹣2=0(用配方法解)(2)3x2+1=4x(3)2(x﹣3)2=x2﹣9(4)关于x的一元二次方程2x2+3x﹣m=0有实数根,求m的取值范围.18.(5分)振华贸易公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是324万元,假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本是多少?19.(6分)2018年9月,第24届山东省运动会在青岛举行,有20名志愿者参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工程只在甲、乙两人选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取1张,不放回,再取1张,若牌面数字之和为偶数,则甲参加;否则乙参加,试问这个游戏公平吗?请用树状图或列表法说明理由.20.(6分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=6,求BC的长.21.(8分)利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价毎降低2元,平均每天可多售出4件.(1)若降价6元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?22.(8分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN与E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形CDBE是什么特殊四边形?说明理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形CDBE是正方形?请说明你的理由.23.(10分)几何模型:条件:如图1,A、B是直线l同旁的两个顶点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小时,点P的横坐标是,此时PA+PB=.(2)如图3,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称,则PB+PE的最小值是.(3)如图4,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的最小值为.(4)如图5,在菱形ABCD中,AB=8,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是.24.(12分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个动点到达终点时,另一个动点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15),过点D作DF⊥BC于点F,连接DE,EF.(1)当t为何值,DF=DA?(2)当t为何值时,△ADE为直角三角形?请说明理由.(3)是否存在某一时刻t,使点F在线段AC的中垂线上,若存在,请求出t值,若不存在,请说明理由.(4)请用含有t式子表示△DEF的面积,并判断是否存在某一时刻t,使△DEF的面积是△ABC面积的,若存在,请求出t值,若不存在,请说明理由.2018-2019学年山东省青岛市李沧区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.一元二次方程x2﹣x=0的根为()A.x=1B.x=0C.x1=0,x2=1D.x1=1,x2=﹣1【分析】方程左边含有公因式x,可先提取公因式,然后再分解因式求解.【解答】解:原方程可化为:x(x﹣1)=0,x=0或x﹣1=0;解得x1=0,x2=1;故选C.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.2.下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.故选:D.【点评】本题主要考查平行四边形的判定与命题的真假区别.正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,难度适中.3.已知x=2是一元二次方程x2﹣mx﹣10=0的一个根,则m等于()A.﹣5B.5C.﹣3D.3【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:将x=2代入x2﹣mx﹣10=0,∴4﹣2m﹣10=0∴m=﹣3故选:C.【点评】本题考查一元二次方程的解定义,解题的关键是熟练运用一元二次方程的解的定义,本题属于基础题型.4.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【解答】解:∵OA=3OC,OB=3OD,∴OA:OC=OB:OD=3:1,∠AOB=∠DOC,∴△AOB∽△COD,∴==,∴AB=3CD=3×1.8=5.4(cm).故选:B.【点评】本题考查的是相似三角形的应用,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了数形转化思想的应用.5.用图中两个可自由转动的转盘做“配紫色”游戏;分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A .B .C .D .【分析】根据题意,用列表法将所有可能出现的结果,分析可能得到紫色的概率,得到结论.【解答】解:用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.上面等可能出现的12种结果中,有5种情况可以得到紫色,所以可配成紫色的概率是,故选:B .【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.6.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A .100×80﹣100x ﹣80x=7644B .(100﹣x )(80﹣x )+x 2=7644C.(100﹣x)(80﹣x)=7644D.100x+80x=356【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选:C.【点评】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.7.如图,在菱形ABCD中,AE⊥BC与E,将△ABE沿AE所在直线翻折得△AEF,若AB=2,∠B=45°,则△AEF与菱形ABCD重叠部分(阴影部分)的面积为()A.2B.2﹣C.4﹣2D.2﹣2【分析】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,可求得AE的长,求得△ABF、△AEF、△CGF的面积,计算即可.【解答】解:∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,∴AE=,由折叠的性质可知,△ABF为等腰直角三角形,=AB•AF=2,S△ABE=1,∴S△ABF∴CF=BF﹣BC=2﹣2,∵AB∥CD,∴∠GCF=∠B=45°,又由折叠的性质知,∠F=∠B=45°,∴CG=GF=2﹣.=GC•GF=3﹣2,∴S△CGF∴重叠部分的面积为:2﹣1﹣(3﹣2)=2﹣2,故选:D.【点评】本题考查的是翻转变换的性质、菱形的性质以及等腰直角三角形的性质,掌握翻转变换的性质、灵活运用数形结合思想是解题的关键.8.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是()A.1个B.2个C.3个D.4个【分析】根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断.【解答】解:∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∴①EG⊥FH,正确;②四边形EFGH是菱形,正确;③HF平分∠EHG,正确;④当AD∥BC,如图所示:E,G分别为BD,AC中点,∴连接CD,延长EG到CD上一点N,∴EN=BC,GN=AD,∴EG=(BC﹣AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误.综上所述,①②③共3个正确.故选:C.【点评】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.二、填空题(本题满分21分,共有7道小题,每小题3分)9.已知3x=5y,则=.【分析】根据两外项的积等于两内项的积,可得答案.【解答】解:∵3x=5y,∴=,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质:外项的积等于内项的积.10.已知一个菱形的周长是20,两条对角线的长的比是4:3,则这个菱形的面积是24.【分析】由菱形ABCD的周长是20,AC:BD=4:3,即可得AD=5,AC⊥BD,AC=2OA,BD=2OD,则可得OA:OD=4:3,然后设OA=4x,OD=3x,由勾股定理即可求得AD 的长,继而求得两条对角线的长,由菱形的面积等于其对角线积的一半,即可求得答案.【解答】解:如图,菱形ABCD的周长是20,AC:BD=4:3,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,AC⊥BD,AC=2OA,BD=2OD,∴OA:OD=4:3,设OA=4x,OD=3x,在Rt△AOD中,AD==5x=5,∴x=1,∴OA=4,OD=3,∴AC=8,BD=6,=AC•BD=×8×6=24.∴∴S菱形ABCD故答案为:24.【点评】此题考查了菱形的性质与勾股定理.此题难度不大,注意掌握数形结合思想与方程思想的应用.11.现有50张大小、质地及背面图案均相同的《三国演义》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后,原样放回,洗匀后再抽,通过多次试验后,发现抽到绘有“诸葛亮”这个人物卡片的频率约为0.3,估计这些卡片中绘有“诸葛亮”这个人物的卡片张数约为15张.【分析】利用频率估计概率得到抽到绘有诸葛亮这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有诸葛亮这个人物的卡片张数,于是可估计出这些卡片中绘有诸葛亮这个人物的卡片张数.【解答】解:因为通过多次试验后,发现抽到绘有诸葛亮这个人物卡片的频率约为0.3,所以估计抽到绘有诸葛亮这个人物卡片的概率为0.3,则这些卡片中绘有诸葛亮这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有诸葛亮这个人物的卡片张数约为15张.故答案为:15.【点评】本题考查了用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.12.一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为16.【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.【解答】解:解方程x2﹣10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.【点评】本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.13.如图,把一个长方形纸片对折两次,然后剪下一个角,为了得到一个正方形,剪刀与折痕所成的角为45度.【分析】根据翻折变换的性质及正方形的判定进行分析从而得到最后答案.【解答】解:一张长方形纸片对折两次后,剪下一个角,是菱形,而出现的四边形的两条对角线分别是两组对角的平分线,所以当剪口线与折痕成45°角,菱形就变成了正方形.故答案为:45.【点评】本题考查了剪纸的问题,同时考查了菱形和正方形的判定及性质,以及学生的动手操作能力.14.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为x(x﹣1)=21.【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x﹣1),即可列方程.【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故答案为:x(x﹣1)=21.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.15.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2018的纵坐标是22017.【分析】根据一次函数图象上点的坐标特征结合正方形的性质即可得出点B1、B2、B3、…的坐标,根据点坐标的变化找出点B n的坐标,依此即可得出结论.【解答】解:当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵A1B1C1O为正方形,∴点C1的坐标为(1,0),点B1的坐标为(1,1).同理,可得:B2(3,2),B3(7,4),B4(15,8),∴点B n的坐标为(2n﹣1,2n﹣1),∴点B2018的坐标为(22018﹣1,22017).故答案为:22017.【点评】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据点坐标的变化找出变化规律“点B n的坐标为(2n﹣1,2n﹣1)”是解题的关键.三、作图题(本题满分4分用圆规、直尺作图、不写作法、但要保留作图痕迹)16.(4分)已知:线段a,b,求作一菱形,使其两对角线长分别等于a,b.【分析】根据菱形的对角线相互垂直平分,先画两条垂直平分的线段,得到菱形的4个顶点,再顺次连接即可.【解答】解:如图,(1)先画线段AC=a,(2)作AC的中垂线,与AC的交点为O,以交点O为圆心,b为半径画弧交B、D 的两点.(3)顺次连接ABCD,就是所求作的菱形.【点评】本题主要考查作图﹣复杂作图,解题的关键是利用菱形的对角线相互垂直平分进行尺规作图.四、解答题(本题满分71分,共有8道小题)17.(16分)(1)x2﹣2x﹣2=0(用配方法解)(2)3x2+1=4x(3)2(x﹣3)2=x2﹣9(4)关于x的一元二次方程2x2+3x﹣m=0有实数根,求m的取值范围.【分析】(1)运用配方法,首先移常数项,再方程两边加一次项系数一半的平方,配方即可,再开平方求出方程的解.(2)移项后利用十字相乘法求解可得;(3)利用因式分解法求解可得;(4)根据方程有实数根,得到根的判别式大于或等于0,求出m的范围即可.【解答】解:(1)∵x2﹣2x﹣2=0,∴x2﹣2x=2,∴x2﹣2x+1=2+1,即(x﹣1)2=3,则x﹣1=±,∴x=1±,即x1=1+,x2=1﹣;(2)∵3x2+1=4x,∴3x2﹣4x+1=0,则(3x﹣1)(x﹣1)=0,∴3x﹣1=0或x﹣1=0,解得:x1=,x2=1;(3)∵2(x﹣3)2=(x+3)(x﹣3),∴2(x﹣3)2﹣(x+3)(x﹣3)=0,则(x﹣3)(x﹣9)=0,∴x﹣3=0或x﹣9=0,解得:x1=3,x2=9;(4)∵关于x的一元二次方程2x2+3x﹣m=0有实数根,∴△=9﹣4×2×(﹣m)≥0,解得:m≥﹣.【点评】此题主要考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法熟练掌握一元二次方程的几种解法是解决问题的关键.18.(5分)振华贸易公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是324万元,假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本是多少?【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=324,解得:x1=0.01=1%,x2=1.90(不合题意,舍去).答:每个月生产成本的下降率为1%.(2)324×(1﹣1%)=320.76(万元).答:预测4月份该公司的生产成本为320.76万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.19.(6分)2018年9月,第24届山东省运动会在青岛举行,有20名志愿者参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工程只在甲、乙两人选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取1张,不放回,再取1张,若牌面数字之和为偶数,则甲参加;否则乙参加,试问这个游戏公平吗?请用树状图或列表法说明理由.【分析】(1)直接利用概率公式求出即可;(2)利用树状图表示出所有可能,进而利用概率公式求出即可.【解答】解:(1)∵共20名志愿者,女生12人,∴选到女生的概率是:=;(2)不公平,根据题意画图如下:∵共有12种情况,和为偶数的情况有4种,∴牌面数字之和为偶数的概率是=,∴甲参加的概率是,乙参加的概率是,∴这个游戏不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个人的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=6,求BC的长.【分析】根据等边三角形性质求出OA=OB=AB=6,根据平行四边形的性质求出OA=OC,OB=OD,得出AC=BD=12,证出四边形ABCD是矩形,得出∠ABC=90°,由勾股定理求出BC即可.【解答】解:∵△ABO是等边三角形,∴OA=OB=AB=6,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OA=OC=OB=OD,∴AC=BD=12,∴四边形ABCD是矩形,∴∠ABC=90°,由勾股定理得:BC=.【点评】本题考查了等边三角形的性质、平行四边形的性质,勾股定理,矩形的判定与性质;熟练掌握平行四边形和等边三角形的性质,证明四边形是矩形是解决问题的关键.21.(8分)利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价毎降低2元,平均每天可多售出4件.(1)若降价6元,则平均每天销售数量为32件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【解答】解:(1)若降价6元,则平均每天销售数量为20+4×3=32件.故答案为:32;(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40﹣x)(20+2x)=1200,整理,得x2﹣30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,解得:x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.【点评】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.22.(8分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN与E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形CDBE是什么特殊四边形?说明理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形CDBE是正方形?请说明你的理由.【分析】(1)证出AC∥DE,得出四边形ADEC是平行四边形,即可得出结论;(2)先证出BD=CE,得出四边形BECD是平行四边形,再由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BECD是菱形;(3)当△ABC是等腰直角三角形,由等腰三角形的性质得出CD⊥AB,即可得出四边形BECD是正方形.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=AB=BD,∴四边形BECD是菱形;(3)当△ABC是等腰直角三角形时,四边形BECD是正方形;理由如下:∵∠ACB=90°,当△ABC是等腰直角三角形,∵D为AB的中点,∴CD⊥AB,∴∠CDB=90°,∴四边形BECD是正方形;【点评】本题考查了平行四边形的判定与性质、正方形的判定、菱形的判定、直角三角形斜边上的中线性质;熟练掌握平行四边形的判定与性质,并能进行推理论证是解决问题的关键.23.(10分)几何模型:条件:如图1,A、B是直线l同旁的两个顶点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小时,点P的横坐标是1,此时PA+PB=2.(2)如图3,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称,则PB+PE的最小值是.(3)如图4,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的最小值为2.(4)如图5,在菱形ABCD中,AB=8,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是4.【分析】(1)取点A关于x轴对称的点A′,连接A′B,交x轴于P,作BH⊥x轴于H,求出OP,得到点P的横坐标,根据勾股定理求出A′B,得到答案;(2)根据正方形的性质求出AE,根据勾股定理计算即可;(3)由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE 最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.(4)作DH⊥AC垂足为H与AG交于点E,根据菱形的性质、勾股定理计算.。
2019-2020学年山东省青岛市平度市、西海岸新区九年级上学期期末数学试卷
2019-2020学年山东省青岛市平度市、西海岸新区九年级(上)期末数学试卷一、选择题1.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是()A.B.C.D.2.在一个10万人的小镇,随机调查了3000人,其中450人看某电视台的早间新闻,在该镇随便问一个人,他看该电视台早间新闻的概率大约是()A.0.0045B.0.03C.0.0345D.0.153.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和10cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm4.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是()A.①②③④B.④③②①C.④③①②D.②③④①5.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.B.1C.D.6.如图,矩形ABCD中,AC,BD交于点O,M,N分别为BC,OC的中点.若MN=3,AB=6,则∠ACB的度数为()A.30°B.35°C.45°D.60°7.如图,点C在反比例函数y=(x>0)的图象上,过点C的直线x轴、y轴分别交于点A、B,且AB =BC,△AOB的面积为2,则k的值为()A.2B.4C.6D.88.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量与对应的函数值如下表x……﹣10245……y1……01356……y2……0﹣1059……当y2>y1时,自变量x的取值范围是()A.﹣1<x<2B.4<x<5C.x<﹣1或x>5D.x<﹣1或x>4二、填空题(本大题共6小题,每小题3分,共18分)9.已知一元二次方程x2+k﹣3=0有一个根为﹣2,则k的值为.10.如图,在平行四边形ABCD中,添加一个条件,使平行四边形ABCD是矩形.11.二次函数y=ax2+bx+c的图象如图,则方程ax2+bx+c=0的解为.12.某剧场共有448个座位,已知每行的座位数都相同,且每行的座位数比总行数少12,求每行的座位数.如果设每行有x个座位,根据题意可列方程为.13.将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)14.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3…在x 轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2020B2020C2020D2020的边长为.三、作图题(本大题满分4分)15.请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:如图,∠ABC=90°,点D在射线BC上.求作:正方形DBEF,使线段BD为正方形DBEF的一条边,且点F在∠ABC内部.四、解答题(本大题共9小题,共74分)16.(1)解方程:x2﹣2x﹣1=0;(2)求二次函数y=(x﹣1)2﹣16的图象与坐标轴的交点坐标.17.2019年5月,以“寻根国学,传承文明”为主题的兰州市第三届“国学少年强﹣﹣国学知识挑战赛”总决赛拉开序幕.小明晋级了总决赛,比赛过程分两个环节,参赛选手须在每个环节中各选一道题目.第一环节:写字注音、成语故事、国学常识、成语接龙(分别用A1,A2,A3,A4表示);第二环节:成语听写、诗词对句、经典诵读(分别用B1,B2,B3表示).(1)请用树状图或列表的方法表示小明参加总决赛抽取题目的所有可能结果;(2)求小明参加总决赛抽取题目都是成语题目(成语故事、成语接龙、成语听写)的概率.18.请用学过的方法研究一类新函数y=(k为常数,k≠0)的图象和性质.(1)在给出的平面直角坐标系中画出函数y=的图象(可以不列表);(2)对于函数y=,当自变量x的值增大时,函数值y怎样变化?(3)函数y=的图象可以经过怎样的变化得到函数y=的图象?19.如图,一块材料的形状是锐角三角形ABC,边BC=12cm,高AD=8cm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?20.太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.22.交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征.其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量q与速度v之间关系的部分数据如下表:速度v(千米/小时)…51020324048…流量q(辆/小时)…55010001600179216001152…(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是(只填上正确答案的序号)①q=90v+100;②q=;③q=﹣2v2+120v.(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知q,v,k满足q=vk,请结合(1)中选取的函数关系式继续解决下列问题.①市交通运行监控平台显示,当12≤v<18时道路出现轻度拥堵.试分析当车流密度k在什么范围时,该路段将出现轻度拥堵;②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值.23.空间任意选定一点O,以点O为端点,作三条互相垂直的射线Ox,Oy,Oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为Ox(水平向前),Oy(水平向右),Oz (竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为S1,S2,S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,二轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.(1)有序数组(3,2,4)所对应的码放的几何体是;A.B.C.D.(2)图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(,,),组成这个几何体的单位长方体的个数为个.(3)为了进一步探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),某同学针对若干个单位长方体进行码放,制作了下列表格:几何体有序数组单位长方体的个数表面上面积为S1的个数表面上面积为S2的个数表面上面积为S3的个数表面积(1,1,1)12222S1+2S2+2S3(1,2,1)24244S1+2S2+4S3(3,1,1)32662S1+6S2+6S3(2,1,2)44844S1+8S2+4S3(1,5,1)51021010S1+2S2+10S3(1,2,3)6126412S1+6S2+4S3(1,1,7)71414214S1+14S2+2S3(2,2,2)88888S1+8S2+8S3………………根据以上规律,请直接写出有序数组(x,y,z)的几何体表面积S(x,y,z)的计算公式;(用x,y,z,S1,S2,S3表示)(4)当S1=2,S2=3,S3=4时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对12个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(,,),此时求出的这个几何体表面积的大小为(缝隙不计).24.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,动点D从点C出发,沿CA方向匀速运动,速度为2cm/s;同时,动点E从点A出发,沿AB方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.设点D,E运动的时间是t(s)(0<t<5).过点D作DF⊥BC于点F,连接DE ,EF.(1)t为何值时,DE⊥AC?(2)设四边形AEFC的面积为S,试求出S与t之间的关系式;(3)是否存在某一时刻t,使得S四边形AEFC:S△ABC=17:24,若存在,求出t的值;若不存在,请说明理由;(4)当t为何值时,∠ADE=45°?。
青岛开发区初三数学期中2019-2020学年度试题(四区统考)答案
2019—2020学年度第一学期期中教学质量检测题九年级数学参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、选择题(本题满分24分,共有8道小题,每小题3分)1—4 CDAB 5—8 BCDC二、填空题(本题满分18分,共有6道小题,每小题3分)9. 12 10.10 11.20(1+ x )+20(1+x )2=75 12.8 13 14.0三、解答题(本题满分78分,共有10道小题)15.作图题(共4分)正确作图,可酌情分步得分.作出角平分线 …… ………………1分 作出对角线等于a …… ………………2分 作对角线的垂直平分线,作出菱形 …… ………………3分 结论 …… ………………4分 16.(本题满分8分,每小题4分) (1)2241=0x x -+解: 2121=2x x -+ ()211=2x -… ………………2分1=x -±∴12=1+22x x .… ………………4分 (未按规定使用配方法,最多得2分)(2)()2231=1x x --解:()()22311=0x x ---()()()23111=0x x x ---+ …… ………………2分()()1331=0x x x ----()()124=0x x --∴ 12=1=2x x , …… ………………4分 17.(本题满分6分) 解:四边形AECD 是菱形 …… ………………1分 理由:∵AD ∥BC ,AE ∥DC∴四边形AECD 是平行四边形 …… ………………3分 ∵∠BAC =90°,E 是BC 的中点∴AE =12BC =EC …… ………………5分 ∴平行四边形AECD 是菱形 …… ………………6分18.(本题满分6分)解:列表或树状图正确 …… ………………3分P(和为偶数)=59 P(和为奇数)= 49…… ………………5分5499≠ ∴ 游戏对双方不公平. …… ………………6分 19.(本小题满分8分)解: 设仓库的边AB 为x 米,由题意得:x (32-2x +2)=140 ……………………4分 整理,得x 2-17x +70=0解,得x 1=10,x 2=7 ……………………6分 当x =10时,BC =14<18; 当x =7 时,BC =20>18 ∴x =7不合题意,应舍去答:仓库的边AB 为10米,BC 为14米 ……………………8分 20.(本小题满分8分) 证明:(1)∵四边形ABCD 是矩形∴∠B =∠C =90°…… ………………1分 ∴∠BAE +∠AEB =90° ∵EF ⊥AE ∴∠AEF =90°∴∠AEB +∠CEF =90°∴∠BAE =∠CEF …… ………………3分 ∴△ABE ∽△ECF …… ………………4分 (2)∵E 是BC 的中点,BC =8 ∴BE =EC=12BC =4 ∵∠B ==90°,AB =3 ∴AE =5∴△ABE ∽△ECF …… ………………6分∴AB AE EC EF =即354EF= ∴EF=203…… ………………8分 21.(本小题满分8分)证明:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,AB ∥CD ,∠B AD =∠BCD =90° ∴∠GAB =∠BCH ,∵AD ∥BC ,EF ∥AC∴四边形AGEC 是平行四边形, …… ………………2分∴AG =EC∵AB ∥CD ,EF ∥AC∴四边形AFHC 是平行四边形,∴AF =CH∴△AFG ≌△CHE . …… ………………4分 (2)四边形ABCD 是正方形 …… ………………5分 理由:∵EF ∥AC∴∠G =∠CAD , ∵AD ∥BC , ∴∠ACB =∠CAD , ∵∠G =∠BAC ∴∠ACB =∠BAC∴BA =BC∴矩形ABCD 是正方形. … …………………8分22.(本小题满分8分)解:设该设备的销售单价为x 万元.由题意列方程,得()4540300525000.5x x -⎛⎫--⨯= ⎪⎝⎭…… ………………4分 整理,得211532500x x -+=解这个方程,得150x =,265x = …… ………………6分∵获利不高于30%∴4030%40x-≤∴52x≤65x=不合题意,舍去……………………7分∴50x=答:该设备的销售单价为50万元.……………………8分23.(本小题满分10分,每空1分)探究1: 4;m-1.探究2:98;97;93;100-n+1.【问题解决】m-n+1【实际应用】(1)6;(2)11.【拓展延伸】3524.(本小题满分12分)解:(1)过点A作AD⊥BC于点D,∴∠ADB=90°∵AB=A C∴BD=12BC=6若△BPQ∵∠B=∠B∴△ABD∽△QBP∴PB BQBD AB=即1012610t t-+=解得,74t=答:当t为74s时,△BPQ为直角三角形.(2)在Rt△DEC中,8AD=过点P作PM⊥BC于点M∴∠ PMB=90°∵∠ADB=90°∴∠ PMB=∠ADB∵∠C=∠C∴△ABD∽△BPM∴PM BPAD BA=即10810PM t-=∴485PM t=-∵PE∥BC∴∠C =∠AEP ,∠B =∠APE ∴△ABC ∽△APE ∴PE AP BC AB = 即1210PE t = ∴65PE t =∵四边形CQFE 是平行四边形 ∴EF t =∴y =S 梯形BPFQ =()12PF BQ PM +⋅=164128255t t t t ⎛⎫⎛⎫+++⋅- ⎪ ⎪⎝⎭⎝⎭ =23284825t t -++答:y 与t 的函数关系式是y =23284825t t -++. ……………………6分(3)若S 四边形BPFQ ∶S △ABC = 7∶6,则y =76S △ABC∵S △ABC =111284822BC AD ⋅=⨯⨯=∴23284825t t -++=7486⨯解得15t =,254t =答:t 的值为5s 或54s 时, S 四边形BPFQ ∶S △ABC(4)连接BF若点F 在∠ABC 的平分线上 ∴BF 平分∠ABC ∴∠ABF =∠FBQ , ∵PF ∥BC , ∴∠PFB =∠FBQ , ∴∠ABF =∠PFB ∴PB =PF即:610=5t t t -+∴258t =答:当258t =时,点F 在∠ABC 的平分线上. ……………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年九年级(上)期中数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.方程x2=x的解是()A.x=1 B.x=0 C.x1=﹣1,x2=0 D.x1=1,x2=0 2.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠23.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.94.在数字1,2,3,4中任选两个组成一个两位数,这个两位数能被3整除的概率为()A.B.C.D.5.如图,在△ABC中,DE∥BC,BD=3AD,BC=12,则DE的长是()A.3 B.4 C.5 D.66.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8 B.12 C.16 D.328.如图,点O为正方形ABCD的中心,AD=1,BE平分∠DBC交DC于点E,延长BC到点F,使BD=BF,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:OH∥BF;②OG:GH=2:1;③GH=;④∠CHF=2∠EBC;⑤CH2=HE•HB.正确结论的个数为()A.1 B.2 C.3 D.4二、填空题(本题满分24分,共有8道小题,每小题3分)9.若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=.10.若是一个直角三角形两条直角边的长a,b,满足(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为.11.若点C是线段AB的黄金分割点(AC>BC),AB=8cm,则AC=.12.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为估计口袋中红球的个数,采用了如下的方法:先把口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为.13.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.14.如图,为了测量一棵树CD的高度,测量者在B处立了一根高为2.5m的标杆,观测者从E处可以看到杆顶A,树顶C在同一条直线上,若测得BD=7m,FB=3m,EF=1.6m,则树高为m.15.如图,将一张长方形纸板的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若长方形纸板边长分别为40cm和30cm,且折成的长方体盒子表面积是950cm2,此时长方体盒子的体积为cm3.16.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n O∁n B n的对角线交点的坐标为.三.解答题(共72分)17.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段a和∠α.求作:菱形ABCD,使菱形ABCD的边长为a,其中一个内角等于∠α.18.用指定方法解方程:(1)2x2+4x﹣3=0(配方法解)(2)5x2﹣8x=﹣2(公式法解)19.第一盒中有2个白球、1个红球,第二盒中有1个白球、2个红球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个红球的概率.请通过列表格或画树状图,说明理由.20.如图梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.21.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.22.如图,四边形ABCD是正方形,点E是边AB上一点,延长AD至F使DF=BE,连接CF.(1)求证:∠BCE=∠DCF;(2)过点E作EG∥CF,过点F作FG∥CE,问四边形CEGF是什么特殊的四边形,并证明.23.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出50kg,销售单价每涨2元,月销售量就减少20kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克56元时,计算销售量和月销售利润;(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?24.【阅读资料】同学们,我们学过用配方法解一元二次方程,也可用配方法求代数式的最值.(1)求4x2+16x+19的最小值.解:4x2+16x+19=4x2+16x+16+3=4(x+2)2+3因(x+2)2大于等于0,所以4x2+16x+19大于等于3,即4x2+16x+19的最小值是3.此时,x=﹣2(2)求﹣m2﹣m+2的最大值解:﹣m2﹣m+2=﹣(m2+m)+2=﹣因大于等于0,所以﹣小于等于0,所以﹣+小于等于,即﹣m2﹣m+2的最大值是,此时,m=﹣.【探索发现】如图①,是一张直角三角形纸片,∠B=90°,AB=8,BC=6,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.下面给出了未写完的证明,请你阅读下面的证明并写出余下的证明部分,并求出矩形的最大面积与原三角形面积的比值.解:在AC上任取点E,作ED⊥BC,EF⊥AB,得到矩形BDEF.设EF=x易证△AEF∽△ACB,则,,,…请你写出剩余部分【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),该矩形的面积为.(直接写出答案)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=70cm,BC=108cm,CD=76cm,且∠B=∠C=60°,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,该矩形的面积为.(直接写出答案)25.如图,在矩形ABCD中,AB=4,BC=3,BD为对角线.点P从点B出发,沿线段BA向点A运动,点Q从点D出发,沿线段DB向点B运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到A时,两点都停止.设运动时间为t秒.(1)是否存在某一时刻t,使得PQ∥AD?若存在,求出t的值;若不存在,说明理由.(2)设四边形BPQC的面积为S,求S与t之间的函数关系式.(3)是否存在某一时刻t,使得S四边形BPQC:S矩形ABCD=9:20?若存在,求出t的值;若不存在,则说明理由.(4)是否存在某一时刻t,使得PQ⊥CQ?若存在,求出t的值;若不存在,则说明理由.参考答案与试题解析一.选择题(共8小题)1.方程x2=x的解是()A.x=1 B.x=0 C.x1=﹣1,x2=0 D.x1=1,x2=0 【分析】利用提公因式法解方程即可.【解答】解:x2=x,移项得x2﹣x=0,提公因式得x(x﹣1)=0,解得x1=1,x2=0.故选:D.2.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.3.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.【解答】解:设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.4.在数字1,2,3,4中任选两个组成一个两位数,这个两位数能被3整除的概率为()A.B.C.D.【分析】先列举出所有满足条件的两位数,然后找出能被3整除的两位数,即可得到能被3整除的概率.【解答】解:可以得到的所有两位数为:12,13,14,23,24,34,43,42,41,32,31,21,共有12个.其中能被3整除的有4个,所以两位数能被3整除的概率是=,故选:A.5.如图,在△ABC中,DE∥BC,BD=3AD,BC=12,则DE的长是()A.3 B.4 C.5 D.6【分析】由DE∥BC,可以判断△ADE∽△ABC,根据AD:BD=1:3即可得出结论.【解答】解:∵BD=3AD,∴AD:BD=1:3,∴AD:AB=1:4,∵DE∥BC,∴△ADE∽△ABC,∴==,∵BC=12,∴DE=3,故选:A.6.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8 B.12 C.16 D.32【分析】由菱形的性质可知AC⊥BD,2OD•AO=28①,进而可利用勾股定理得到OD2+OA2=36②,结合①②两式化简即可得到OD+OA的值.【解答】解:如图所示:∵四边形ABCD是菱形,∴AO=CO=AC,DO=BO=BD,AC⊥BD,∵面积为28,∴AC•BD=2OD•AO=28 ①∵菱形的边长为6,∴OD2+OA2=36 ②,由①②两式可得:(OD+AO)2=OD2+OA2+2OD•AO=36+28=64.∴OD+AO=8,∴2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.故选:C.8.如图,点O为正方形ABCD的中心,AD=1,BE平分∠DBC交DC于点E,延长BC到点F,使BD=BF,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:OH∥BF;②OG:GH=2:1;③GH=;④∠CHF=2∠EBC;⑤CH2=HE•HB.正确结论的个数为()A.1 B.2 C.3 D.4【分析】①只要证明OH是△DBF的中位线即可得出结论;②③根据OH是△BFD的中位线,得出OH=BF=BD可得出结论;④根据四边形ABCD是正方形,BE是∠DBC的平分线可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出结论;⑤证明△HEC∽△HCB,则HC:HB=HE:HC,即HC2=HE•HB,由HC=HF,即可得到⑤正确.【解答】解:①∵EC=CF,∠BCE=∠DCF,BC=DC,∴△BCE≌△DCF(SAS),∴∠CBE=∠CDF,∵∠CBE+∠BEC=90°,∠BEC=∠DEH,∴∠DEH+∠CDF=90°,∴∠BHD=∠BHF=90°,∵BH=BH,∠HBD=∠HBF,∴△BHD≌△BHF(ASA),∴DH=HF,∵OD=OB∴OH是△DBF的中位线∴OH∥BF;故①正确;②③∵点O为正方形ABCD的中心,AD=1,BD=BF,∴BD=BF=.由三角形中位线定理知,OG=BC=,GH=CF=(﹣1),∴OG:GH=1:(﹣1),故②错误,③正确;④∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF=90°,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF(SAS),∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,∴∠CHF=2∠EBC.故④正确;⑤∵∠ECH=∠CBH,∠CHE=CHB,∴△HEC∽△HCB,∴HC:HB=HE:HC,即HC2=HE•HB,而HC=HF,∴HF2=HC•HB,故⑤正确.故选:D.二.填空题(共8小题)9.若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=2019 .【分析】直接把x=﹣1代入一元二次方程ax2﹣bx﹣2019=0中即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2019=0得a+b﹣2019,所以a+b=2019.故答案为2019.10.若是一个直角三角形两条直角边的长a,b,满足(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为.【分析】根据勾股定理c2=a2+b2代入方程求解即可.【解答】解:∵a,b是一个直角三角形两条直角边的长设斜边为c,∴(a2+b2)(a2+b2+1)=12,根据勾股定理得:c2(c2+1)﹣12=0即(c2﹣3)(c2+4)=0,∵c2+4≠0,∴c2﹣3=0,解得c=或c=﹣(舍去).则直角三角形的斜边长为.故答案为:11.若点C是线段AB的黄金分割点(AC>BC),AB=8cm,则AC=4(﹣1)cm.【分析】根据黄金分割的定义:如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.列出方程即可求解.【解答】解:设AC的长为xcm,根据黄金分割定义可知:=即AC2=AB•BC,x2=8(8﹣x)x2+8x﹣64=0,解得x1=4(﹣1),x2=﹣4(+1)(不符合题意,舍去).所以AC的长为4(﹣1)cm.故答案为4(﹣1)cm.12.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为估计口袋中红球的个数,采用了如下的方法:先把口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为40 .【分析】由条件共摸了1000次,其中200次摸到白球,则有800次摸到红球;所以摸到白球与摸到红球的次数之比可求出,由此可估计口袋中白球和红球个数之比,进而可计算出红球数.【解答】解:∵小亮共摸了1000次,其中200次摸到白球,则有800次摸到红球,∴白球与红球的数量之比为1:4,∵白球有10个,∴红球有4×10=40(个).故答案为:40.13.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)=67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.14.如图,为了测量一棵树CD的高度,测量者在B处立了一根高为2.5m的标杆,观测者从E处可以看到杆顶A,树顶C在同一条直线上,若测得BD=7m,FB=3m,EF=1.6m,则树高为 4.6 m.【分析】作EH⊥CD于H,交AB于G,如图,易得EG=BF=3m,GH=BD=7m,GB=HD=EF=1.6m,则AG=0.9,再证明△EAG∽△EHC,利用相似比计算出CH=3,然后利用CD =CH+DH进行计算.【解答】解:作EH⊥CD于H,交AB于G,如图,则EG=BF=3m,GH=BD=7m,GB=HD=EF=1.6m,所以AG=AB﹣GB=2.5﹣1.6=0.9(m),∵AG∥CH,∴△EAG∽△EHC,∴=,即=,解得:CH=3,∴CD=CH+DH=4.6(m).故答案为:4.6.15.如图,将一张长方形纸板的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若长方形纸板边长分别为40cm和30cm,且折成的长方体盒子表面积是950cm2,此时长方体盒子的体积为1500 cm3.【分析】设剪掉的小正方形的边长为xcm,根据题意列出方程,求出方程的解得到x的值,求出所求即可.【解答】解:设剪掉的小正方形的边长为xcm,根据题意,得:2x2+20x×2=30×40﹣950,x2+20x﹣125=0,解这个方程得:x1=5,x2=﹣25(不合题意,应舍去),当x=5时,长方体盒子的体积为:x(30﹣2x)(20﹣x)=5×(30﹣2×5)×(20﹣5)=1500(cm2),答:此时长方体盒子的体积1500cm3故答案为:1500.16.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n O∁n B n的对角线交点的坐标为(﹣,).【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得B n的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴B n(﹣2×,1×),∵矩形A n O∁n B n的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).三.解答题(共9小题)17.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段a和∠α.求作:菱形ABCD,使菱形ABCD的边长为a,其中一个内角等于∠α.【分析】①作∠MAB=∠α.②在∠MAN的两边截取AD=AB=a,③分别以D、B为圆心a为半径画弧,两弧交于点C.菱形ABCD即为所求.【解答】解:如图菱形ABCD即为所求.18.用指定方法解方程:(1)2x2+4x﹣3=0(配方法解)(2)5x2﹣8x=﹣2(公式法解)【分析】(1)根据配方法即可求出答案;(2)根据公式法即可求出答案;【解答】解:(1)∵2x2+4x﹣3=0,∴x2+2x=,∴(x+1)2=,∴x+1=,∴x=﹣1±(2)∵5x2﹣8x=﹣2,∴a=5,b=﹣8,c=2,∴△=64﹣4×5×2=24,∴x==;19.第一盒中有2个白球、1个红球,第二盒中有1个白球、2个红球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个红球的概率.请通过列表格或画树状图,说明理由.【分析】列表得出所有等可能的情况数,找出取出的2个球中有1个白球、1个红球的情况数,即可求出所求的概率.【解答】解:列表如下:所有等可能的情况有9种,其中取出的2个球中有1个白球、1个红球的情况有5种,所以P(取出的2个球中有1个白球、1个红球)=.20.如图梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.【分析】(1)先证明四边形BCDE为平行四边形,从而得到ED∥BC,于是得到∠EDB=∠FBM,又因为∠DME=∠BMF,从而可证明△EDM∽△FBM;(2)由F为BC的中点,得到BC=2FB,又由(1)得到的四边形BCDE为平行四边形,可得对边BC=ED,等量代换可得DE=2FB,由(1)得到的三角形EDM与三角形FMB相似,可得相似比为2:1,即得到DM:MB=2:1,设出DM=2k与MB=k,根据BD的长列出关于k的方程,求出方程的解即可得到k的值,从而得到BM的长.【解答】(1)证明:∵AB=2CD,点E是AB的中点,∴DC=EB.又∵AB∥CD,∴四边形BCDE为平行四边形.∴ED∥BC.∴∠EDB=∠FBM.又∵∠DME=∠BMF,∴△EDM∽△FBM.(2)解:由F为BC的中点,得到BC=2FB,又四边形DCBE为平行四边形,得到DE=BC,则DE=2FB,即FB:DE=1:2,∴△FMB与△EMD的相似比为1:2,即DM:MB=2:1,又BD=9,设DM=2k,MB=k,所以BD=BM+MD=k+2k=9,解得k=3,则BM=3.21.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.【分析】(1)根据判别式的意义得到△=(﹣6)2﹣4(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.【解答】解:(1)根据题意得△=(﹣6)2﹣4(2m+1)≥0,解得m≤4;(2)根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤4,所以m的范围为3≤m≤4.22.如图,四边形ABCD是正方形,点E是边AB上一点,延长AD至F使DF=BE,连接CF.(1)求证:∠BCE=∠DCF;(2)过点E作EG∥CF,过点F作FG∥CE,问四边形CEGF是什么特殊的四边形,并证明.【分析】(1)由正方形的性质得到∠B=∠ADC=∠BCD=90°,BC=CD,根据全等三角形的判定和性质即可得到结论;(2)根据已知条件得到四边形CEGF是平行四边形,根据全等三角形的性质得到CE=CF,证得四边形CEGF是菱形,求得∠ECF=∠BCD=90°,于是得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠B=∠ADC=∠BCD=90°,BC=CD,∴∠B=∠CDF=90°,在△BCE与△DCF中,∴△BCE≌△DCF(SAS),∴∠BCE=∠DCF;(2)解:四边形CEGF是正方形,理由:∵EG∥CF,FG∥CE,∴四边形CEGF是平行四边形,∵△BCE≌△DCF,∴CE=CF,∴四边形CEGF是菱形,∵∠BCE=∠DCF,∴∠ECF=∠BCD=90°,∴四边形CEGF是正方形.23.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出50kg,销售单价每涨2元,月销售量就减少20kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克56元时,计算销售量和月销售利润;(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?【分析】(1)根据“销售单价每涨2元,月销售量就减少20千克”,可知:月销售量=500﹣(销售单价﹣50)×.由此可得出售价为55元/千克时的月销售量,然后根据利润=每千克的利润×销售的数量来求出月销售利润;(2)销售成本不超过10000元,即进货不超过10000÷40=250kg.根据利润表达式求出当利润是8000时的售价,从而计算销售量,与进货量比较得结论.【解答】解:(1)当销售单价定为每千克56时,月销售量为:500﹣(56﹣50)×10=44(千克),所以月销售利润为:(56﹣40)×4407040;(2)由于水产品不超过10000÷40=250kg,定价为x元,则(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=80,x2=60.当x1=80时,进货500﹣10(80﹣50)=200kg<250kg,符合题意,当x2=60时,进货500﹣10(60﹣50)=400kg>250kg,舍去.答:商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为80元.24.【阅读资料】同学们,我们学过用配方法解一元二次方程,也可用配方法求代数式的最值.(1)求4x2+16x+19的最小值.解:4x2+16x+19=4x2+16x+16+3=4(x+2)2+3因(x+2)2大于等于0,所以4x2+16x+19大于等于3,即4x2+16x+19的最小值是3.此时,x=﹣2(2)求﹣m2﹣m+2的最大值解:﹣m2﹣m+2=﹣(m2+m)+2=﹣因大于等于0,所以﹣小于等于0,所以﹣+小于等于,即﹣m2﹣m+2的最大值是,此时,m=﹣.【探索发现】如图①,是一张直角三角形纸片,∠B=90°,AB=8,BC=6,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.下面给出了未写完的证明,请你阅读下面的证明并写出余下的证明部分,并求出矩形的最大面积与原三角形面积的比值.解:在AC上任取点E,作ED⊥BC,EF⊥AB,得到矩形BDEF.设EF=x易证△AEF∽△ACB,则,,,…请你写出剩余部分【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),该矩形的面积为720 .(直接写出答案)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=70cm,BC=108cm,CD=76cm,且∠B=∠C=60°,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,该矩形的面积为1458cm2.(直接写出答案)【分析】【探索发现】利用配方法解决问题即可.【拓展应用】利用相似三角形构建二次三项式,再利用配方法解决问题即可.【灵活应用】如图③,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,转化为图②中模型解决问题即可.【实际应用】如图④,延长BA、CD交于点E,过点E作EH⊥BC于点H,转化为图②中模型解决问题即可.【解答】解:【探索发现】=﹣(x﹣3)2+12,∵﹣(x﹣3)2≤0,∴=﹣(x﹣3)2+12=﹣(x﹣3)2+12≤12,∴矩形BDEF的面积的最大值为12.【拓展应用】设PN=b,∵PN∥BC,∴△APN∽△ABC,∴=,∵BC=a,BC边上的高AD=h,∴=,PQ=,∴S=b•PQ==﹣b2+bh=﹣(x﹣)2+≥∴S的最大值为:;则矩形PQMN面积的最大值为;故答案为:.【灵活应用】如图③,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG•BF=×(40+20)×(32+16)=720,故答案为720.【实际应用】如图④,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵∠B=∠C=60°,∴EB=EC,∵EH⊥BC,∴BH=HC,∵=tan60°=设CH=BH=x,Z则EH=x,∵BC=BH+CH=108=2x,x=54,∴BH=CH=54,EH=54,∴EBEC=2BH=108,∵AB=70,∴AE=38,∴BE的中点Q在线段AB上,∵CD=76,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC•EH=×108×54=1458cm2,故答案为1458cm2.25.如图,在矩形ABCD中,AB=4,BC=3,BD为对角线.点P从点B出发,沿线段BA向点A运动,点Q从点D出发,沿线段DB向点B运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到A时,两点都停止.设运动时间为t秒.(1)是否存在某一时刻t,使得PQ∥AD?若存在,求出t的值;若不存在,说明理由.(2)设四边形BPQC的面积为S,求S与t之间的函数关系式.(3)是否存在某一时刻t,使得S四边形BPQC:S矩形ABCD=9:20?若存在,求出t的值;若不存在,则说明理由.(4)是否存在某一时刻t,使得PQ⊥CQ?若存在,求出t的值;若不存在,则说明理由.【分析】(1)利用平行线的性质构建方程即可解决问题.(2)如图1中,作OE⊥AB于E,OF⊥BC于F.利用平行线的性质构建方程求出QE,QF 即可解决问题.(3)根据S四边形BPQC:S矩形ABCD=9:20,构建方程解决问题即可.(4)如图1中,作OE⊥AB于E,OF⊥BC于F.当PQ⊥QC时,△QEP∽△QFC,则=,由此构建方程即可解决问题.【解答】解:(1)∵四边形ABCD是矩形,∴∠A=90°,∵AB=4,AD=BC=3,∴BD===5,由题意BP=t,DQ=t,∵PQ∥AD,∴=,∴=,∴t=,∴满足条件的t的值为.(2)作OE⊥AB于E,OF⊥BC于F.∵QE∥AD,∴=,∴=,∴QE=(5﹣t),∵QF∥CD,∴=,∴=,∴QF=(5﹣t),∴S=S△PBQ+S△BCQ=•PB•QE+•BC•QF=•t•(5﹣t)+×3×(5﹣t)=﹣t2+t+6.(3)由题意:(﹣t2+t+6):12=9:20,整理得:t2﹣t﹣2=0,解得t=2或﹣1(舍弃),∴满足条件的t的值为2.(4)如图1中,作OE⊥AB于E,OF⊥BC于F.当PQ⊥QC时,△QEP∽△QFC,则=,∴=,解得t=,∴满足条件的t的值为.。