高中数学解题方法大全

合集下载

高中数学21种解题方法,

高中数学21种解题方法,

高中数学21种解题方法,今天特地为大家整理了一份数学解题方法,这里面的21种方法涵盖了高中数学的大部分题型,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦!1.解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2.因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3.配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:4.换元法解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元5.待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写6.复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型: (-----)(----)=0 两种情况为或型②配成平方型: (----)2+(----)2=0 两种情况为且型7.数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8.化简二次根式基本思路是:把√m化成完全平方式。

即:9.观察法10.代数式求值方法有:(1)直接代入法 (2)化简代入法 (3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11.解含参方程方程中除过未知数以外,含有的其他字母叫参数,这种方程叫含参方程。

高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。

高中数学52个秒杀技巧

高中数学52个秒杀技巧

高中数学52个秒杀技巧,是从大量的数学题目和考试中总结出的快速解题方法,这些技巧可以帮助学生在考试中节省时间,提高解题效率。

以下是一些常用的秒杀技巧:
1. 因式分解法:对于多项式,通过分解成几个一次或二次因式的乘积形式,使其变得更简单。

2. 配方法:将一个多项式通过配方转化为另一个多项式,常常用于解决平方项问题。

3. 代数变换法:通过代数运算,将复杂的问题转化为简单的问题,例如通过移项、合并同类项等。

4. 数形结合法:利用几何图形直观地解决代数问题,或者利用代数方法解决几何问题。

5. 特殊值法:在解决方程或不等式问题时,可以先假设一些特殊值,看看是否能得到有用的信息。

6. 排除法:在做选择题时,可以通过排除明显错误的选项,来找到正确答案。

7. 整体法:将多个变量或者多个方程作为一个整体来处理,简化问题。

8. 方程组解法:对于多个方程组成的方程组,可以利用代入法、消元法等方法求解。

9. 函数性质法:利用函数的性质,如单调性、奇偶性、周期性等,来解决函数问题。

10. 微积分法:在高中数学中,微积分主要用来解决变化率问题,
如求函数的导数和积分。

以上只是部分秒杀技巧,实际上还有很多其他的技巧,如不等式的性质、概率的计算方法、排列组合等。

这些技巧需要学生在平时的学习中不断积累和练习,才能在考试中熟练运用。

高中数学21种解题方法与技巧全汇总

高中数学21种解题方法与技巧全汇总

01解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

02因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法03配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:04换元法解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元05待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写06复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型07数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组08化简二次根式基本思路是:把√m化成完全平方式。

即:09观察法10代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

高中数学21种解题方法及例题

高中数学21种解题方法及例题

高中数学21种解题方法及例题高中数学是一门很重要的学科,也是很多学生觉得困难的学科之一。

在解题的过程中,学生通常需要掌握一些解题方法和技巧。

下面我将介绍高中数学中常用的21种解题方法,并给出相应的例题。

1.立体几何解题方法:首先根据题目要求,画出几何图形;然后根据图形的特点,运用相应的几何定理和计算公式,推导出求解所需的等式或关系式;最后代入数据进行计算。

例题:已知正方体的体积是64立方厘米,求正方体的边长。

2.二次函数解题方法:首先确定二次函数的类型,如抛物线开口方向等;然后根据题目要求,列出方程或不等式;最后解方程或不等式,求解出未知数。

例题:已知二次函数y=ax²+bx+c的图像经过点(-1, 2)和(2, 5),且在x=1处取得最小值2,求a、b、c的值。

3.反证法解题方法:假设所要证明的结论不成立,推导出与已知条件矛盾的结论,从而证明假设不成立,即所要证明的结论成立。

例题:证明根号2是无理数。

4.分析法解题方法:根据题目所给的条件,逐步分析问题,提取并利用条件之间的关系,推导出所要求的结论。

例题:在等腰梯形ABCD中,AB∥CD,AC和BD交于点O,设∠ACD=m,求∠BOD的度数。

5.数字特征解题法:根据题目要求,进行分析,找出问题中的数字特征,并利用特征进行计算或推导。

例题:设a,b,c均为正数,且满足等式a+b+c=1,求最大值3a²+6b+9c²。

6.整体与部分解题方法:把题目所给的整体看成若干个部分,通过对部分的分析和计算,得到整体的结论。

例题:某数的20%是30,求这个数。

7.函数与方程解题方法:根据题目要求,根据函数或方程的性质和变化规律,列出方程或不等式,最后求解未知数。

例题:已知函数f(x)=ax²+bx+c与y轴交于点A,与曲线y=x²交于点B和C,且B(1, 1),求方程f(x)=0的两个根的和的倒数。

8.逐次逼近法解题方法:通过逐步逼近,不断缩小求解范围,最终得到所要求解的值。

高中数学149个解题方法

高中数学149个解题方法

高中数学149个解题方法【引言】高中数学是学生学业生涯中至关重要的一环,它不仅为后续学习打下基础,也对培养逻辑思维和解决问题的能力具有重要意义。

在高中数学学习中,掌握解题方法是提高成绩的关键。

本文将介绍149个高中数学解题方法,帮助同学们更好地应对各类数学题目。

【高中数学解题方法分类】【代数解题方法】代数是高中数学的重要组成部分,包括数式、方程、不等式、函数等。

以下是一些常见的代数解题方法:1.消元法2.代入法3.因式分解法4.配方法5.韦达定理【几何解题方法】几何涉及平面几何、立体几何等方面的知识。

以下是一些常见的几何解题方法:1.几何直观法2.相似三角形法3.面积法5.角平分线定理【三角函数解题方法】三角函数是数学中的一个重要分支,以下是一些常见的三角函数解题方法:1.和差化积法2.倍角公式法3.半角公式法4.三角函数图像法5.三角恒等式法【概率与统计解题方法】概率与统计在高中数学中占有重要地位,以下是一些常见的概率与统计解题方法:1.概率计算法2.条件概率法3.独立事件法4.频数与频率法5.统计图表法【数学归纳法解题方法】数学归纳法是一种常用的证明方法,以下是一些数学归纳法解题方法:1.第一数学归纳法2.第二数学归纳法4.数学归纳法证明不等式5.数学归纳法证明恒等式【每种解题方法的详细阐述与实例】在本部分,我们将详细阐述每种解题方法,并通过实例进行说明。

例如,对于代数中的消元法,我们可以通过以下实例进行解释:消元法解一元二次方程组:ax + bx + c = 0ay + by + c = 0【结论与建议】掌握149个高中数学解题方法对提高学习成绩具有重要意义。

同学们要在学习中不断总结经验,熟练掌握各种解题方法,并学会灵活运用。

同时,多做练习题和模拟试题,提高解题速度和准确性。

在学习过程中,遇到难题时要勇于挑战,培养自己的解决问题的能力。

高中数学解题方法

高中数学解题方法

高中数学解题方法
1. 利用平行四边形的性质解题
对于已知的平行四边形,我们可以利用其特点来解决相关问题。

例如,已知平行四边形的两条边相等,我们可以利用这一性质来求解未知边长。

2. 利用相似三角形的性质解题
在一些几何题中,我们可以利用相似三角形的性质来求解未知变量。

根据相似三角形的特点,可以建立等式,从而解出未知量。

3. 利用勾股定理解题
勾股定理是解决直角三角形问题的基本定理。

通过应用勾股定理,我们可以求解三角形的边长、角度等问题。

4. 利用二次方程解题
在代数问题中,一些问题可以通过建立二次方程来求解。

根据二次方程的求解方法,我们可以得到问题的答案。

5. 利用排列组合解题
排列组合是数学中用于解决计数问题的方法。

通过应用排列组合的原理,我们可以求解一些排列、组合的问题。

6. 利用函数的图像解题
在函数问题中,我们可以通过求解函数的零点、极值点等来解题。

利用函数的图像,我们可以获取一些与函数相关的信息。

7. 利用数列的性质解题
对于数列相关的问题,我们可以利用数列的递推关系、通项公式等性质来求解。

通过找到数列的规律,我们可以得到问题的答案。

8. 利用平面向量解题
平面向量是几何中常用的工具之一。

通过运用平面向量的性质,我们可以解决一些与向量相关的问题。

高中数学19种答题方法及6种解题思想

高中数学19种答题方法及6种解题思想

高中数学19种答题方法及6种解题思想一.十九种数学解题方法1.函数函数题目,先直接思考后建立三者的联系。

首先考虑定义域,其次使用“三合一定理”。

2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。

如所过的定点,二次函数的对称轴或是……;4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

高中数学21种解题方法及例题

高中数学21种解题方法及例题

高中数学21种解题方法及例题在高中数学学习中,解题方法的灵活运用是学生们提高解题能力的关键。

掌握不同的解题思路和方法,能够使学生更加深入地理解数学知识,提高问题解决的效率。

本文将介绍21种高中数学解题方法,并通过例题进行详细说明,以帮助学生更好地应用这些方法。

【一、代数运算类解题方法】1. 一元一次方程求解法例题:已知方程2x + 3 = 7,求解x的值。

2. 一次函数的图像法例题:给定函数y = 3x + 2,绘制出其图像,并解析求解函数的相关特征。

3. 因式分解法例题:将方程x² - 4x + 4 = 0进行因式分解,并求解方程。

【二、几何推理类解题方法】4. 同位角性质运用法例题:已知两条平行线被一条截线所交,求解各个角的度数。

5. 对称性运用法例题:已知某几何图形具有对称性,利用对称性进行证明或求解问题。

6. 三角函数运用法例题:利用正弦定理求解三角形的未知边长或角度。

【三、数列与数数法】7. 等差数列求和法例题:已知等差数列的首项为2,公差为3,求解前10项的和。

8. 递推数列求通项法例题:已知数列的前两项为1和2,公差为3,求解数列的通项公式。

9. 迭代运算法例题:已知数列递推式为an+1 = 2an - 1, a1 = 1,求解前10项的数值。

【四、概率统计类解题方法】10. 样本空间与事件法例题:已知一枚骰子,求解投掷两次,求得的点数和为9的概率。

11. 求解总数法例题:已知有5个红球和3个蓝球,从中随机抽取2个球,求解两球不同色的概率。

12. 排列组合法例题:有8个人参加篮球比赛,其中3人为前锋,4人为后卫,求解一种排列和组合的方式。

【五、解析几何类解题方法】13. 直线与圆的位置关系法例题:已知直线方程为y = 2x + 1,圆的标准方程为(x-2)² + (y-3)² = 4,求解两者的位置关系。

14. 曲线与切线法例题:已知曲线方程为y = x²,求曲线上某一点的切线斜率。

高中数学52种解题方法

高中数学52种解题方法

(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q ²mS(n)可以迅速求q知识要点4.函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空1.适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

2.函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m 不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

3.关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称5.数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差52种快速做题方法知识考点1.适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

高中数学这52种快速解题方法

高中数学这52种快速解题方法

高中数学这52种快速解题方法高中数学是学生学习中的一门重要课程,在高中数学学习过程中,有许多方法可以帮助我们快速解题。

本文将介绍52种高中数学的快速解题方法,希望对学生们在数学学习时有所帮助。

一、方程的快速解题方法:1.牛顿-莱布尼茨公式:对于高次方程,可以使用牛顿-莱布尼茨公式快速求导以及求解,以便解决方程。

2.易得关系:在解二元一次方程时,可以通过观察系数之间的关系,直接得到方程的解。

3.倍数法:有时,我们可以通过将方程两边同乘一个常数,以便简化方程求解的过程。

4.等比数列求和公式:在解等差数列求和问题时,我们可以使用等比数列求和公式,快速求解。

5.同底数幂等于同指数的求解法:当两个数的底数相等,指数相等时,我们可以将两个底数合并在一起,然后得到一个新的指数,进行计算。

二、几何图形的快速解题方法:1.同余三角形的性质:在几何图形中,应用同余三角形的性质,可以简化计算过程,快速解题。

2.双曲线的对称性:对于双曲线,我们可以利用其对称性质,快速求解问题。

3.相似三角形的定理:应用相似三角形的定理,可以快速解决三角形相似问题。

4.平行四边形的性质:利用平行四边形的性质,可以快速求解平行四边形的各种问题。

5.三角恒等式:在解三角形相关问题时,利用三角恒等式可以快速求解。

三、概率问题的快速解题方法:1.排列组合公式:在解决排列组合问题时,可以利用排列组合公式,快速计算结果。

2.互斥事件的概率:如果两个事件是互斥的,即它们不可能同时发生,我们可以直接将它们的概率相加来计算合并事件的概率。

3.独立事件的概率:对于独立事件,即它们的发生不受其他事件的影响,我们可以将它们的概率相乘来计算复合事件的概率。

4.条件概率:在解条件概率问题时,可以根据已知条件,利用条件概率公式,快速计算结果。

5.事件的补集:对于事件的补集,我们可以通过计算事件的补集的概率,再用1减去它的概率,来计算事件的概率。

四、数列的快速解题方法:1.利用等差数列的前n项和公式:在解等差数列问题时,我们可以利用等差数列的前n项和公式,快速求解。

高中数学答题技巧有哪些_解题方法

高中数学答题技巧有哪些_解题方法

高中数学答题技巧有哪些_解题方法高中数学答题技巧有哪些1、配方法:把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。

3、换元法:所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数。

5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系。

高中数学答题方法填空题填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。

不过填空题和选择题也有质的区别。

首先,表现为填空题没有备选项。

因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些。

选择题解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。

尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。

常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

解答题解答题与填空题比较,同属提供型的试题,但也有本质的区别。

首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明。

填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括和准确。

其次,试题内涵,解答题比起填空题要丰富得多。

高中数学52种快速破题方法

高中数学52种快速破题方法

高中数学52种快速破题方法在高中数学学习中,有时我们会遇到一些难题需要快速破解。

这篇文章将介绍52种快速破题方法,帮助你提高数学解题的效率和准确性。

1. 简化分式:利用分子分母的公因式进行约分,简化计算过程。

2. 因式分解:将多项式进行因式分解,以简化复杂的运算。

3. 公式代入:当遇到已知条件和需要求解的变量可以通过一个已知公式联系时,直接代入计算。

4. 利用图形:如果问题涉及到几何形状,将其绘制成图形有助于解题。

5. 引入辅助线:在几何题中,通过引入辅助线能够推导出更多关系,简化解题过程。

6. 使用二次函数图像:对于最值问题,可以利用二次函数图像的开口方向来确定最值的位置。

7. 数列求和:对于数列的求和问题,可以利用数列求和公式或巧妙的变形来简化计算。

8. 分类讨论法:对于某些问题,可以将不同情况进行分类讨论来解决。

9. 倒推法:从已知结果倒推出有关条件,以确定解题的方法和步骤。

10. 利用对称性:在一些几何问题中,利用对称性可以简化证明或者找出另一方面的答案。

11. 分情况讨论:对于某些复杂问题,将其分解成几个简单情况分别讨论,最后合并结果。

12. 利用相似三角形:在几何问题中,利用相似三角形的性质可以快速求解各种长度和角度。

13. 数字根法:对于整数运算,可以利用数字根法来判断整除性质和进行简单计算。

14. 观察法:对于一些规律性问题,可以通过观察规律和找出特殊性质来解决。

15. 合并同类项:在多项式计算中,将具有相同变量幂次的项进行合并,简化运算过程。

16. 借位法:在计算过程中,若存在进位或借位,可以通过借位法进行加减运算。

17. 利用轴对称性:通过利用轴对称性,可以简化一些图形问题的证明或计算。

18. 利用余角关系:对于三角函数中的角度关系,可以利用余角关系进行简化运算。

19. 勾股定理:在解决直角三角形问题中,可以利用勾股定理确定未知边长。

20. 合理估算:对于某些题目,可以通过合理估算来获得近似的结果,以缩小解题范围。

高中数学解题技巧归纳总结大全

高中数学解题技巧归纳总结大全

高中数学解题技巧归纳总结大全1高中数学解题技巧特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

2高一数学解题技巧学会画图画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。

有些题目,只要分析图一画出来,其中的关系就变得一目了然。

尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。

因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。

先易后难,逐步增加习题的难度人们认识事物的过程都是从简单到复杂。

简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。

我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。

随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

限时答题,先提速后纠正错误很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。

所以,提高解题速度就要先解决“拖延症”。

比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。

这个过程对提高书写速度和思考效率都有较好的作用。

你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。

高中数学九大解题技巧

高中数学九大解题技巧

高中数学九大解题技巧高中数学九大解题技巧解题是深化知识、发展智力、提高能力的重要手段。

下面小编给你分享高中数学九大解题技巧,欢迎阅读。

高中数学九大解题技巧1、配法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。

配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 高中数学解题基本方法一、 配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。

何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。

有时也将其称为“凑配法”。

最常见的配方是进行恒等变形,使数学式子出现完全平方。

它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。

配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如:a 2 +b 2=(a +b)2 -2ab =(a -b)2 +2ab ;a 2 +ab +b 2 =(a +b)2 -ab =(a -b)2 +3ab ;a 2 +b 2 +c 2 +ab +bc +ca =21[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sin αcos α=(sin α+cos α) ;x + =(x + ) -2=(x - ) +2 ;…… 等等。

Ⅰ、再现性题组:1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。

2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。

A. <k<1B. k< 或k>1C. k ∈RD. k = 或k =13. 已知sin α+cos α=1,则sin α+cos α的值为______。

A. 1B. -1C. 1或-1D. 04. 函数y =log (-2x +5x +3)的单调递增区间是_____。

A. (-∞, ]B. [ ,+∞)C. (- , ]D. [ ,3)5. 已知方程x +(a-2)x+a-1=0的两根x 、x ,则点P(x ,x )在圆x +y =4上,则实数a =_____。

【简解】 1小题:利用等比数列性质a a =a ,将已知等式左边后配方(a +a ) 易求。

答案是:5。

2小题:配方成圆的标准方程形式(x -a) +(y -b) =r ,解r >0即可,选B 。

3小题:已知等式经配方成(sin α+cos α) -2sin αcos α=1,求出sin αcos α,然后求出所求式的平方值,再开方求解。

选C 。

4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。

选D 。

5小题:答案3- 。

Ⅱ、示范性题组:例1. 已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。

A. 2B.C. 5D. 6【分析】 先转换为数学表达式:设长方体长宽高分别为x,y,z ,则 ,而欲求对角线长 ,将其配凑成两已知式的组合形式可得。

【解】设长方体长宽高分别为x,y,z ,由已知“长方体的全面积为11,其12条棱的长度之和为24”而得:。

长方体所求对角线长为:===5所以选B。

【注】本题解答关键是在于将两个已知和一个未知转换为三个数学表示式,观察和分析三个数学式,容易发现使用配方法将三个数学式进行联系,即联系了已知和未知,从而求解。

这也是我们使用配方法的一种解题模式。

例2. 设方程x +kx+2=0的两实根为p、q,若( ) +( ) ≤7成立,求实数k的取值范围。

【解】方程x +kx+2=0的两实根为p、q,由韦达定理得:p+q=-k,pq=2 ,( ) +( ) ====≤7,解得k≤-或k≥。

又∵p、q为方程x +kx+2=0的两实根,∴△=k -8≥0即k≥2 或k≤-2综合起来,k的取值范围是:-≤k≤-或者≤k≤。

【注】关于实系数一元二次方程问题,总是先考虑根的判别式“Δ”;已知方程有两根时,可以恰当运用韦达定理。

本题由韦达定理得到p+q、pq后,观察已知不等式,从其结构特征联想到先通分后配方,表示成p+q与pq的组合式。

假如本题不对“△”讨论,结果将出错,即使有些题目可能结果相同,去掉对“△”的讨论,但解答是不严密、不完整的,这一点我们要尤为注意和重视。

例3. 设非零复数a、b满足a +ab+b =0,求( ) +( ) 。

【分析】对已知式可以联想:变形为( ) +( )+1=0,则=ω(ω为1的立方虚根);或配方为(a+b) =ab 。

则代入所求式即得。

【解】由a +ab+b =0变形得:( ) +( )+1=0 ,设ω=,则ω+ω+1=0,可知ω为1的立方虚根,所以:=,ω==1。

又由a +ab+b =0变形得:(a+b) =ab ,所以 ( ) +( ) =( ) +( ) =( ) +( ) =ω+=2 。

【注】本题通过配方,简化了所求的表达式;巧用1的立方虚根,活用ω的性质,计算表达式中的高次幂。

一系列的变换过程,有较大的灵活性,要求我们善于联想和展开。

【另解】由a +ab+b =0变形得:( ) +( )+1=0 ,解出=后,化成三角形式,代入所求表达式的变形式( ) +( ) 后,完成后面的运算。

此方法用于只是未联想到ω时进行解题。

假如本题没有想到以上一系列变换过程时,还可由a +ab+b =0解出:a= b,直接代入所求表达式,进行分式化简后,化成复数的三角形式,利用棣莫佛定理完成最后的计算。

Ⅲ、巩固性题组:1. 函数y=(x-a) +(x-b) (a、b为常数)的最小值为_____。

A. 8B.C.D.最小值不存在2. α、β是方程x -2ax+a+6=0的两实根,则(α-1) +(β-1) 的最小值是_____。

A. -B. 8C. 18D.不存在3. 已知x、y∈R ,且满足x+3y-1=0,则函数t=2 +8 有_____。

A.最大值2B.最大值C.最小值2 B.最小值4. 椭圆x -2ax+3y +a -6=0的一个焦点在直线x+y+4=0上,则a=_____。

A. 2B. -6C. -2或-6D. 2或65. 化简:2 +的结果是_____。

A. 2sin4B. 2sin4-4cos4C. -2sin4D. 4cos4-2sin46. 设F 和F 为双曲线-y =1的两个焦点,点P在双曲线上且满足∠F PF =90°,则△F PF 的面积是_________。

7. 若x>-1,则f(x)=x +2x+的最小值为___________。

8. 已知〈β<α〈π,cos(α-β)=,sin(α+β)=-,求sin2α的值。

(92年高考题)9. 设二次函数f(x)=Ax +Bx+C,给定m、n(m<n),且满足A [(m+n) + m n ]+2A[B(m+n)-Cmn]+B +C =0 。

①解不等式f(x)>0;②是否存在一个实数t,使当t∈(m+t,n-t)时,f(x)<0 ?若不存在,说出理由;若存在,指出t的取值范围。

10. 设s>1,t>1,m∈R,x=log t+log s,y=log t+log s+m(log t+log s),①将y表示为x的函数y=f(x),并求出f(x)的定义域;②若关于x的方程f(x)=0有且仅有一个实根,求m的取值范围。

二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。

换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。

通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。

或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

换元的方法有:局部换元、三角换元、均值换元等。

局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。

例如解不等式:4 +2 -2≥0,先变形为设2 =t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。

三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。

如求函数y=+的值域时,易发现x∈[0,1],设x=sin α,α∈[0, ],问题变成了熟悉的求三角函数值域。

为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。

如变量x、y适合条件x +y =r (r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。

均值换元,如遇到x+y=S形式时,设x=+t,y=-t等等。

我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。

如上几例中的t>0和α∈[0, ]。

Ⅰ、再现性题组:1.y=sinx?cosx+sinx+cosx的最大值是_________。

2.设f(x +1)=log (4-x ) (a>1),则f(x)的值域是_______________。

3.已知数列{a }中,a =-1,a ?a =a -a ,则数列通项a =___________。

4.设实数x、y满足x +2xy-1=0,则x+y的取值范围是___________。

5.方程=3的解是_______________。

6.不等式log (2 -1) ?log (2 -2)〈2的解集是_______________。

【简解】1小题:设sinx+cosx=t∈[- , ],则y=+t-,对称轴t=-1,当t=,y =+;2小题:设x +1=t (t≥1),则f(t)=log [-(t-1) +4],所以值域为(-∞,log 4];3小题:已知变形为-=-1,设b =,则b =-1,b =-1+(n-1)(-1)=-n,所以a =-;4小题:设x+y=k,则x -2kx+1=0, △=4k -4≥0,所以k≥1或k≤-1;5小题:设3 =y,则3y +2y-1=0,解得y=,所以x=-1;6小题:设log (2 -1)=y,则y(y+1)<2,解得-2<y<1,所以x∈(log ,log 3)。

相关文档
最新文档