湖北省武昌实验中学2020-2021学年第一学期高一10月月考数学试卷
2020-2021学年第一学期10月份第一次月考试卷答案
2020-2021学年第一学期10月份第一次月考试卷高一数学试卷参考答案2020.10考试范围:人教A 版必修第一册第一、二章考试时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D 解析:由(6)(1)0x x -+<,得16x -<<,从而有{}16B x x =-<<,所以{}14A B x x ⋂=-<<,故选:D .2.B 解析:集合{}0,1,2,3,4,5A =,{{}2B x y x x ===≥,所以{}U 2B x x =<ð.图中阴影部分表示的集合为(){}U 0,1A B ⋂=ð.故选:B 3.A 解析:因为甲是乙的充要条件,所以乙⇔甲;又因为丙是乙的充分条件,但不是乙的必要条件,所以丙⇒乙,但乙⇒丙.综上,丙⇒甲,但甲⇒丙,即丙是甲的充分条件,但不是甲的必要条件.故选A .4.A 解析:因为全称命题的否定是特称命题,所以命题“[]1,3x ∀∈-,2320x x -+≤”的否定为“[]01,3x ∃∈-,200320x x -+>”.故选A .5.B 解析:对于A ,若22ac bc >,则0c ≠,2222ac bc c c >,即a b >,故正确;对于B ,根据不等式的性质,若0a b <<,不妨取2,1a b =-=-,则22a b >,故题中结论错误;对于C ,若0a b >>,则a b ab ab>,即11a b <,故正确;对于D ,若0a b <<,0c d >>,则0a b ->->,故ac bd ->-,ac bd <,故正确.故选B .6.B 解析:0a > ,0b >,且21a b +=,120b a ∴=->,解得102a <<.∴12122(1)1212122(1)(2321111a a a a a a a a b a a a a a a a a ---+=+=+-=+-+-=++-+----11+=+ ,当且仅当1a =,3b =-时取等号.∴12aa a b++有最小值1+.故选:B .7.C 解析:解:不等式210x mx -+<的解集为空集,所以0∆≤,即240m -≤,解得22m -≤≤.故选:C .8.B 解析:依题意2() 4.914.717h t t t =-++234.928.0252t ⎛⎫=--+ ⎪⎝⎭,故当32t =时,()max 28.02528m h t =≈.故选B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.ABD 解析:由于M N ⊆,即M 是N 的子集,故M N M ⋂=,M N N ⋃=,从而M M N ⊆⋂(),()M N N ⋃⊆.故选ABD .10.AC 解析:对于选项A ,由327x =-得293x x =-⇒=,但是3x =适合29x =,推出32727x =≠-,故A 正确;对于选项B ,在ABC ∆中,222AB AC BC ABC +=⇒∆为直角三角形,但ABC ∆为直角三角形222AB AC BC ⇒+=或222AB BC AC +=或2221BC AC AB +=,故B 错误;对于选项C ,由220,a b a b +≠⇒不全为0,反之,由a ,b 不全为2200a b ⇒+≠,故D 正确;对于选项D ,结论“四边形是菱形”推不出条件“四边形是正方形”,因此必要条件不成立.故选:AC .11.AB 解析:对A ,2211224a b ab +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当12a b ==时取等号.故A 正确.对B ,22a b a b a b =+++++=≤,当且仅当12a b ==时取等号.故B 正确.对C ,()1111224b a a b a b a b a b ⎛⎫+=++=++≥+⎝= ⎪⎭.当且仅当12a b ==时取等号.所以11a b+有最小值4.故C 错误.对D ,()222121a b a ab b +=⇒++=≤2a +()222a b b ++,即2212a b +≥,故22a b +有最小值12.故D 错误.故选:AB 12.ABD 解析:由23344x x b -+≤得23121640x x b -+-≤,又1b <,所以()4810b ∆=-<,从而不等式23344a x x b ≤-+≤的解集为∅,故A 正确.当1a =时,不等式23344a x x ≤-+就是2440x x -+≥,解集为R ,当4b =时,不等式23344x x b -+≤就是240x x -≤,解集为{}04x x ≤≤,故B 正确.由23344a x x b ≤-+≤的解集为{}x a x b ≤≤,知min a y ≤,即1a ≤,因此当x a =,x b =时函数值都是b .由当x b=时函数值是b ,得23344b b b -+=,解得43b =或4b =.当43b =时,由2343443a a b -+==,解得43a =或83a =,不满足1a ≤,不符合题意,故C 错误.当4b =时,由233444a ab -+==,解得0a =或4a =,0a =满足1a ≤,所以0a =,此时404b a -=-=,故D 正确.故选:A B D三、填空题:本题共4小题,每小题5分,共20分.13.4解析:由题得满足关系式{}{}2,31,2,3,4A ⊆⊆的集合A 有:{2,3},{1,2,3},{2,3,4},{1,2,3,4}.所以集合A 的个数为4.故答案为414.充分非必要解析:令命题:2p x y +≠-,命题:q x ,y 不都为1-;:2p x y ⌝+=-,:q x ⌝,y 都是1-,则当x ,y 都是1-时,满足2x y +=-,反之当1x =,3y =-时,满足2x y +=-,但x ,y 都是1-不成立,即q ⌝是p ⌝充分非必要条件,则根据逆否命题的等价性知p 是q 的充分非必要条件,故答案为:充分非必要.15.16解析:0a >,1b >且210a b b +=⇒->且()11a b +-=∴()()91919111010616111b a a b a b a b a b -⎛⎫+=++-=++≥+=⎡⎤ ⎪⎣⎦---⎝⎭当且仅当()911b a a a -=-取等,又2a b +=,即34a =,54b =时取等号,故所求最小值16.故答案为:1616.0解析:由根与系数的关系可知()11{0,01m m m b b m m a++=∴==+=四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.解:(1)若1A ∈,则210,1m m -+=∴=1a ∉ ,∴实数m 的取值范围为:{}1m m ∈≠R ……………4分(2)选①:若A =∅,则关于x 的方程2210mx x -+=没有实数解,所以0m ≠,且440m ∆=-<,所以1m >……………10分选②:若A 恰有两个子集,则A 为单元素集,所以关于x 的方程2210mx x -+=恰有一个实数解,讨论:①当0m =时,12x =,满足题意;②当0m ≠时,Δ440m =-=,所以1m =.综上所述,m 的集合为{}0,1……………10分选③:若1,22A ⎛⎫⋂≠∅ ⎪⎝⎭,则关于x 的方程221mx x =-在区间1,22⎛⎫ ⎪⎝⎭内有解,等价于当1,22x ⎛⎫∈ ⎪⎝⎭时,求2221111m x x x ⎛⎫=-=-- ⎪⎝⎭的值域,所以](0,1m ∈……………10分18.解:(1)122x x +>-等价于()()12220x x x ⎧+->⎨-≠⎩,解得25x <<:25p x ∴<<,由p ⌝为真知:2x ≤或5x ≥……………6分(2)q ⌝是p ⌝的充分不必要条件,则q 是p 的必要不充分条件.故2:50q x ax -+>对于任意25x <<恒成立,故5a x x<+,由基本不等式可知5x x+≥x =a <……12分19.解:(1)因为0x >,0y >,所以x y +≥,由2x y xy +=,得2xy ≥1≥,1xy ≥,当且仅当1x y ==时,等号成立……………6分(2)由2x y xy +=得112x y+=.2111223222x x x y y y x x x x y x x ⎛⎫+=++=++≥+≥ ⎪⎝⎭.当且仅当2x y x=,且0x <时,两个等号同时成立.即当且仅当12x =-且14y =,2y x x +的最小值是32……………12分20.(1)由题意可知,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为()21200800004006002y x x x =-+≤≤,所以,每吨二氧化碳的平均处理成本为1800002002y x x x =+-,由基本不等式可得200200y x ≥=(元),当且仅当1800002x x=时,即当400x =时,等号成立,因此,该单位每月处理量为400吨时,才能使每吨的平均处理成本最低……………6分(2)()()222111100200800003008000030035000222f x x x x x x x ⎛⎫=--+=-+-=--- ⎪⎝⎭400600x ≤≤ ,函数()f x 在区间[]400,600上单调递减,当400x =时,函数()f x 取得最大值,即()()max 40040000f x f ==-.所以,该单位每月不能获利,国家至少需要补贴40000元才能使该单位不亏损……12分21.解:(1)()()2210⎡⎤-+-=---≤⎣⎦x x a a x a x a ,当1a a <-(12a <)时,不等式解集为{|1}x a x a ≤≤-;当1a a >-(12a >)时,不等式解集为{|1}x a x a -≤≤;当1a a =-(12a =)时,不等式解集为1{|}2x x =.所以,当1 2a <时,不等式解集为{|1}A x a x a =≤≤-;当1 2a =时,不等式解集为12A ⎧⎫=⎨⎬⎩⎭;当1 2a >时,不等式解集为{|1}A x a x a =-≤≤……………8分(2)由上(1),1 2a >时,() {|1}1,1A x a x a =-≤≤⊆-,所以111a a ->-⎧⎨<⎩,得1a <,所以,实数a 的取值范围112a <<……………12分22.解:(1)函数24y x mx =++的图象开口向上,对称轴为2m x =-,在区间[]1,2上的最大值,分两种情况:①322m -<(3m >-)时,根据图象知,当2x =时,函数取得最大值82max y m =+;②322m -≥(3m ≤-)时,当1x =时,函数取得最大值5max y m =+.所以,当3m >-时,82max y m =+;当3m ≤-时,5max y m =+……………7分(2)[] 1,20x y ∈<,恒成立,只需在区间[]1,2上的最大值0max y <即可,所以(1)0(2)0f f <⎧⎨<⎩,得45m m <-⎧⎨<-⎩,所以实数m 的取值范围是5m <-……………12分。
湖北省武昌实验中学高一年级10月月考英语试卷
湖北省武昌实验中学高一年级10月月考英语试卷第二部分阅读理解(共20小题;每小题2分,满分40分)第一节(共15小题,每小题2分,满分30 分)AMy boss’s daughter was studying in the Philippines. He asked me if my husband and I could take care of her. He thought his daughter would be able to improve her English communication skills in this way.After days of thinking, we agreed. He then brought her here and left after 3 days. I thought that my boss’s daughter was well-mannered, but that was wrong.After a month of staying in the Philippines, she started to show her true colors. When my husband asked her what she wanted for breakfast, she answered him in a rude way. From then on, we experienced fights at home. There was a time when we didn’t talk to her for a week as a punishment of not being good to us. What I hated most was that she didn’t care about other people’s feelings. She ate ahead of us when we were still working and didn’t leave anything for us. So we had to separate her food from ours to avoid such a problem.The worst thing about her was that she shouted at us. I was wondering if she did this to her parents. We told this to her parents, but unfortunately I didn’t think that solved the problem. This situation lasted for almost 8 months. Our patience (耐心) was tested during that time.We tried to teach her everything we could to make her a better person, but I guess 8 months may not be enough. We even tried to understand her and adjust (调整) for her, but it didn’t work . I just hope that she learned something from us and from other Filipinos.21. This passage is mainly about the writer’s experience of .A trying to please her boss B. changing a girl’s bad behaviorC improving her communication skills D. dealing with a teenage girl staying in her house22. Why did the boss want his daughter to stay with the writer?A. Because he was too busy to take care of his daughter.B. Because he wanted his daughter to take a holiday there.C. Because he wanted his daughter to improve her English in this way.D. Because he wanted the writer to teach his daughter good manners.23. The underlined word “that ” in Paragraph 4 refers to .A. being patient with herB. her parents punishing herC. asking her parents about herD. telling her parents about her behaviorBWithout proper planning, tourism can cause problems.For example, too many tourists can crowd public places that are also enjoyed by the inhabitants(居民) of a country. If tourists create too much traffic, the inhabitants become annoyed and unhappy. They begin to dislike tourists and to treat them impolitely. They forget how much tourism can help the country’s economy. It is important to think about the people of a destination(目的地) country and how tourism affects them. Tourism should help a country, keep the customs and beauty that attract tourists.Tourism should also advance the wealth and happiness of local inhabitants.Too much tourism can be a problem. If tourism grows too quickly, people must leave other jobs to work in the tourism industry. This means that other parts of the country’s economy can suffer.On the other hand, if there is not enough tourism,people can lose jobs. Businesses can also lose money. It costs a great deal of money to build large hotels, airports,air terminals, first-class roads, and other support facilities(设施)needed by tourist attractions. For example, a major international class tourism hotel can cost as much as 50 thousand dollars per room to build. If this room is not used most of the time, the owners of the hotel lose money.Building a hotel is just a beginning.There must be many support facilities as well,including roads to get to the hotel, electricity, sewers to handle waste, and water. All of these support facilities cost money. If they are not used because there are not enough tourists, jobs and money are lost.24. Which of the following has most probably been discussed in the part that goes before this passage?A. It is very important to develop tourism.B. Building roads and hotels is necessary.C. Support facilities are highly important.D. Planning is very important to tourism.25. Too much tourism can cause all these problems EXCEPT ________.A. a bad effect on other industriesB. a change o f tourists’ customsC. over-crowdedness of places of interestD. pressure on traffic26. Not enough tourism can lead to ________.A. an increase of unemployment (失业)B. a decrease (减退) in tourist attractions.C. the higher cost of support facilitiesD. a rise in price and a fall in pay.27. The underlined word “handle” in the last paragraph most probably means _________.A. get inB. pick upC. carry awayD. set downCI will never forget what my old headmaster taught me. Normally when you are only 15 years of age you do not remember most of the things that are taught by your teachers. But this particular story is one such lesson that I will never forget. Every time I went away from class, I get reminded of this story.It was a normal Monday morning, and he was making a speech to the students on important things in life and about devoting ourselves to what is important to us. This is how the story went:An old man lived in a certain part of London, and he would wake up every morning and go to the subway. He would get the train right to Central London, and then sit at the street corner and beg. He would do this every single day of his life. He sat at the same street corner and begged for almost 20 years. His house was dirty, and a stench(恶臭)came out of the house and it smelled horrible. The neighbors could not stand the smell any more, so they asked the police officers to clear the place. The officers knocked down the door and cleaned the house. There were small bags of money all over the house that he had collected over the years.The police counted the money, and they soon realized that the old man was a millionaire. They waited outside his house to tell the good news to him. When he arrived home that evening, he was met by one of the officers who told him that there was no need for him to beg any more as he was a rich man now, a millionaire. He said nothing at all; he went into his house and locked the door. The next morning he woke up as usual, went to the subway, got into the train, and sat at the street corner and continued to beg. Obviously, this old man had no great plans, dreams or anything important for his life. We learn nothing from this story except staying insisting on the things we enjoy doing.28. The headmaster told the story to the students to _______.A. make the students relaxed in the lessonB. remind the students to think deeplyC. show how poor the old man wasD. encourage the students to become rich29. After hearing what the officer said, the old man _________.A. believed the officer was playing a joke on him.B. didn't know many people respected him a lot.C. was very angry to find his house broken into.D. was not so excited as the officer had expected.30. What did the author learn from the story?A . One should devote himself to his dream. B. The old man was foolish not to stop begging.C. What the headmaster taught was very important.D. People must have a plan before taking action.31. Which word can best describe the author's attitude towards the old man?A. Pity.B. Disappointment.C. Respect.D. Anger.DYou can find language pollution whenever you open a newspaper or turn on your TV set, listen to a popular song at all kinds of advertisements. Language pollution exists almost everywhere and can be seen in the following places:1. Chinese characters are written in the complex(复杂的)form.Although simplified(简单的) Chinese characters were accepted for use many years ago, it seems that more and more people like Chinese characters written in the complex form.2. Many goods are produced in China but carry foreign names, which sound strange and have no meaning at all.3. Words and ex pressions being used have a bad meaning. “Ba”(霸), which means bully(巨大的)in Chinese, is one example. Now there are a lot of goods, restaurants, even factories or firms, with “Ba” in their names.4. There are too many incorrect grammatical expressions. Some films have strange names and incorrect grammatical structures(结构). “Ai ni mei shang liang”, which means “I love you without consulting”, is grammatically incorrect and this kind of expression is now becoming popular.Some language experts point out that language pollution must be done away with, which is an idea shared by many others and myself.32. The writer of the passage suggests that______.A. something be done to make our language pureB. the Chinese language not have the word “Ba”C. everything have a good name and a good meaningD. everybody try their best to stop language pollution33. What the writer wants to say is that_______.A. great difference exists between the Chinese characters written in the complex form and simplified formB. language used by our newspapers, TV programs, pop songs and advertisements are getting pollutedC. many people agree with the experts on language pollution in ChinaD. some film writers haven’t studied Chinese grammar34. The underlined expressio n “done away with” in the last paragraph means______.A. conqueredB. destroyedC. cleanedD. swapped35. Which of the following is the best title of the passage?A. More Attention to Grammar.B. Experts’ Good Advice.C. Films with Strange Names.D. Pollution of our Language. 第二节(共5 小题,每小题2 分,满分10 分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
湖北省武汉市第三中学2020-2021学年高一上学期10月月考数学试题
湖北省武汉市第三中学2020-2021学年高一上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合{}0,1,2A =,则集合{}|,B x y x A y A =-∈∈中元素的个数是( )A .1B .3C .5D .92.已知命题:p “x R ∀∈,22240x mx m -+-=”,则p ⌝为( )A .0x R ∃∈,2200240x mx m -+-≠B .0x R ∃∈,2200240x mx m -+-=,C .不存在x ∈R ,22240x mx m -+-=D .x R ∀∈,22240x mx m -+-≠ 3.当b a <时,不等式1x a x b ->-的解是( ) A .{}x x b < B .{}x x b > C .R D .以上均不对 4.下列四个函数中,在()0,∞+上为增函数的是( )A .()3f x x =-B .()23f x x x =-C .()11f x x =-+D .()f x x =-5.如图所示,液体从一个圆锥形漏斗漏入一个圆柱形桶中,开始时漏斗中盛满液体,经过3秒漏完,圆柱形桶中液面上升速度是一个常量,则漏斗中液面下降的高度H 与下降时间t 之间的函数关系的图象只可能是( )A .B .C .D .6.设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件7.已知函数241y x x =-+的定义域为[]1,t ,在该定义域内函数的最大值与最小值之和为-5,则实数t 的取值范围是( )A .(1,3]B .[2,3]C .(1,2]D .(2,3)8.定义[]x 表示不超过x 的最大整数,如[]1.81=,[]1.42-=-,[]33-=-,函数[]y x =的图象如图所示,则方程[]212x x =的解为( )A或B .1或2C .1或2-D .0二、多选题 9.对于实数,,a b c ,下列说法正确的是( )A .若0a b >>,则11a b <B .若a b >,则22ac bc ≥C .若0a b >>,则2ab a <D .若c a b >>,则a b c a c b>-- 10.下列四个函数值域为R 的函数为( )A .211y x =+B .3y x =-C .2210y x x =+- D .()()010x x y x x ⎧-≤⎪=⎨->⎪⎩11.设P 是一个数集,且至少含有两个数,若对任意a ,b ∈P ,都有a +b ,a -b ,ab ,ab∈P (b ≠0),则称P 是一个数域,例如有理数集Q 是数域,下列命题中正确的是( ) A .数域必含有0,1两个数 B .整数集是数域C .若有理数集Q ⊆M ,则数集M 一定是数域D .数域中有无限多个元素12.已知0a >,0b >,给出下列四个不等式,其中一定成立的不等式为( )A.a b ++≥B .()114a b a b ⎛⎫++≥ ⎪⎝⎭C.2≥+ab a bD22a b ≥+三、填空题 13.已知集合22{2,(1),33}A a a a =+++,且1A ∈,则实数a 的值为________.14.已知集合A ={x |1<x <3},B ={x |-1<x <m +2},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是______.15.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足1(21)()3f x f -<的x 的取值范围是______________. 16.已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.四、解答题17.已知集合{}02A x x =≤≤,{}21,B x a x a a R =+≤≤-∈(1)当1a =-时,求()R A B ⋃;(2)若A B =∅,求a 的取值范围. 18.已知不等式()21460a x x --+>的解集为{}31x x -<<.(1)解不等式()2220x a x a +-->; (2)b 为何值时,230ax bx ++≥的解集为R ?19.已知函数222(+1)1x x f x x ++=+. (1)求函数()f x 的解析式;(2)根据函数单调性的定义证明()f x 在(0,1)上单调递减.20.已知函数()f x =(1)若()f x 的定义域为R ,求实数a 的取值范围;(2)若()f x 的值域为[)0,+∞,求实数a 的取值范围.21.某厂家拟在2004年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(()0m ≥满足31x k m =-+)(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2004年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2004年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2004年的促销费用投入多少万元时,厂家的利润最大?22. 设a 为实数,函数()21f x x x a =--+,x ∈R . (I)当a=0时,求f(x)在区间[0,2]上的最大值和最小值;(Ⅱ)求函数f(x)的最小值.参考答案1.C【解析】∵A={0,1,2},B={x ﹣y|x ∈A ,y ∈A},∴当x=0,y 分别取0,1,2时,x ﹣y 的值分别为0,﹣1,﹣2;当x=1,y 分别取0,1,2时,x ﹣y 的值分别为1,0,﹣1;当x=2,y 分别取0,1,2时,x ﹣y 的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是5个.故选C .2.A【解析】【分析】全称量词改成存在量词,等于改成不等于即可得到.【详解】因为:p “x R ∀∈,22240x mx m -+-=”,所以p ⌝:22000",240"x R x mx m ∃∈-+-≠.故选A.【点睛】本题考查了含一个量词的命题的否定,属于基础题.3.A【解析】【分析】 不等式可化为0b a x b->-,根据b a <可得x b <,即得解. 【详解】 1x a x b ->-,10x a x b -->-∴,即0b a x b->-, b a <,即0b a -<,0x b ∴-<,即x b <,故不等式的解集为{}x x b <.故选:A.【点睛】本题考查不等式的求解,属于基础题.4.C【解析】【分析】A. 利用一次函数的性质判断;B. 利用二次函数的性质判断;C. 利用反比例函数的性质判断;D. 由(),0,0x x f x x x x -≥⎧=-=⎨<⎩,利用一次函数的性质判断; 【详解】A. 由一次函数的性质知:()3f x x =-在()0,∞+上为减函数,故错误;B. 由二次函数的性质知:()2239324f x x x x ⎛⎫=-=-- ⎪⎝⎭在30,2⎛⎫ ⎪⎝⎭递减,在 3,2⎛⎫+∞ ⎪⎝⎭上递增,故错误;C. 由反比例函数的性质知:()11f x x =-+在(),1-∞- 上递增,在()1,-+∞递增,则在()0,∞+上为增函数,故正确;D. 由(),0,0x x f x x x x -≥⎧=-=⎨<⎩知:函数在()0,∞+上为减函数,故错误; 故选:C【点睛】本题主要考查一次函数,二次函数和反比例函数的单调性,属于基础题.5.B【解析】【分析】利用特殊值法,圆柱液面上升速度是常量,表示圆锥漏斗中液体单位时间内落下的体积相同,当时间取1.5分钟时,液面下降高度与漏斗高度的12比较. 【详解】解:由于所给的圆锥形漏斗上口大于下口,当时间取12t时,漏斗中液面下落的高度不会达到漏斗高度的12,对比四个选项的图象可得结果.故选:B.【点睛】本题考查的是函数的图象和分段函数的综合类问题.在解答的过程当中充分体现了分段函数的知识、分类讨论的思想以及函数图象的知识.属于基础题.6.C【解析】【分析】根据不等式的基本性质,结合充分条件和必要条件的定义进行判断,即可得到结论.【详解】由a>b,①当a>b≥0时,不等式a|a|>b|b|等价为a•a>b•b,此时成立.②当0>a>b时,不等式a|a|>b|b|等价为﹣a•a>﹣b•b,即a2<b2,此时成立.③当a≥0>b时,不等式a|a|>b|b|等价为a•a>﹣b•b,即a2>﹣b2,此时成立,即充分性成立;由a|a|>b|b|,①当a>0,b>0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)>0,因为a+b>0,所以a﹣b>0,即a>b.②当a>0,b<0时,a>b.③当a<0,b<0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)<0,因为a+b<0,所以a﹣b>0,即a>b.即必要性成立,综上可得“a>b”是“a|a|>b|b|”的充要条件,故选:C.【点睛】本题主要考查了充要条件的判定,以及不等式的基本性质的综合应用,意在考查推理与运算能力,属于中档试题.7.B【解析】∵ 函数241y x x =-+∴函数241y x x =-+是开口向上,对称轴为2x =的抛物线∵函数241y x x =-+的定义域为[]1,t∴当1x =时,2y =-,当2x =时,3y =-∵函数在定义域内函数的最大值与最小值之和为-5∴当2y =-时,1x =或3x =∴23t ≤≤故选B8.D【解析】【分析】分12x ≤<、01x ≤<、0x <和2x ≥时依次求解即可.【详解】当12x ≤<时,2112x =,解得x = 当01x ≤<时,2102x =,解得0x =; 当0x <时,[]0x <,所以方程无解; 当2x ≥时,[]x x <,2210222x x x x --=>,即2[]2x x >,所以方程[]212x x =无解.所以方程[]212x x =的解为0故选:D.【点睛】本题主要考查了方程的求解,理解[]x 的定义是解题的关键,难度一般.9.ABC【解析】【分析】根据不等式的基本性质对各项依次进行判断,即可选出正确答案.【详解】A.在0a b >>三边同时除以ab 得110b a>>,故A 正确; B.由a b >及2c ≥0得22ac bc ≥,故B 正确;C.由0a b >>知a b >且0a >,则2a ab >,故C 正确;D.若1,2,3c a b =-=-=-,则2a c a =--,32b c b =--, 322-<-,故D 错误. 故选:ABC.【点睛】本题考查了不等关系与不等式、不等式的性质,属于基础题.10.BD【解析】【分析】分别求出各个函数的值域,即可判断.【详解】对于A ,211x +≥,21011x ∴<≤+,故211y x =+的值域为(]0,1,故A 错误; 对于B ,3y x =-的值域为R ,故B 错误;对于C ,()2221011111y x x x =+-=+-≥-,则2210y x x =+-的值域为[)11,-+∞,故C 错误;对于D ,当0x ≤时,0y x =-≥,当0x >时,10y x=-<,故该函数的值域为R ,故D 正确.故选:BD.【点睛】本题考查函数值域的求解,属于基础题.11.AD【解析】【分析】根据数域的定义逐项进行分析即可.【详解】当a b =时,0a b -=、1a P b =∈,故可知A 正确; 当1a =,2b =,12Z ∉不满足条件,故可知B 不正确; 当{}M Q i =⋃,则1i M +∉所以它也不是一个数域,故可知C 不正确;根据数据的性质易得数域有无限多个元素,必为无限集,故可知D 正确.故选:AD .【点睛】本题主要考查集合的新定义问题,解题时一定要抓住题目中对定义的理解,属于中档题. 12.ABD【解析】【分析】选项A,利用基本不等式得a b +≥,再利用基本不等式得≥次等号成立的条件必须相同;选项B ,把()11a b a b ⎛⎫++ ⎪⎝⎭展开,利用基本不等式即可证明;选项C ,由基本不等式可判断;选项D ,作差法证明()()22220a b ab a b +-+≥即得. 【详解】对A,0,0,a b a b >>∴+≥≥=a b =⎧⎪⎨=⎪⎩,即2a b ==时,等号成立,故A 正确; 对B ,()110,0,224b a a b a b a b a b ⎛⎫>>∴++=++≥+= ⎪⎝⎭,当且仅当b a a b =,即a b =时等号成立,故B 正确;对C ,0,0a b >>,2ab a b ∴≤=+a b =时等号成立,故C 错误;对D ,0,0a b >>,()()()()()()2222233220a b ab a b a b a b a b a ab b ∴+-+=--=-++≥,()()2222a bab a b ∴+≥+,()()2222ab a bab+∴≥+,22a b ≥+,故D 正确.故选:ABD. 【点睛】本题考查基本不等式和作差法比较大小,属于中档题. 13.1-或0 【解析】 【分析】根据题意,考虑到各种可能性,分别解方程,并注意检验集合元素的互异性,即可得到答案. 【详解】若()211,a +=则0a =或2,a =-当0a =时,{}2,1,3A =,符合元素的互异性; 当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去 若2a 3a 31,++=则1a =-或2,a =-当1a =-时,{}2,0,1A =,符合元素的互异性; 当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去; 故答案为:1-或0. 【点睛】本题考查元素与集合的关系,集合元素的互异性是关键点,属基础题. 14.m 1≥ 【解析】 【分析】由x ∈B 成立的一个充分不必要的条件是x ∈A ,A 是B 的一个真子集求解. 【详解】∵x B ∈成立的一个充分不必要条件是x A ∈,∴A B ,∴23m +≥,∴m 1≥. 故答案为:m 1≥. 【点睛】本题主要通过简易逻辑来考查集合间的关系,考查充分不必要条件的应用,属于基础题. 15.12[,)23【解析】由已知可得21012{123213x x x -≥⇒≤<⇒-< 正确答案为12[,)23.16.1,28⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果. 【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤, 整理可得:21122a x x ≥-+, 由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭, 结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥; ②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+, 由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知: 当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.点睛:对于恒成立问题,常用到以下两个结论:(1)a ≥f (x )恒成立⇔a ≥f (x )max ;(2)a ≤f (x )恒成立⇔a ≤f (x )min .有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. 17.(1){0x x <或}2x >;(2)12a >-. 【解析】 【分析】(1)代入1a =-,求出集合B ,先求出AB ,即可求出()RA B ⋃;(2)分B =∅,B ≠∅讨论求解a 的取值范围. 【详解】(1)1a =-时,{}12B x x =≤≤,{}02A B x x ∴⋃=≤≤, (){0RA B x x ∴⋃=<或}2x >;(2)当B =∅时,则21a a +>-,得12a >-; 当B ≠∅时,则2110a a a +≤-⎧⎨-<⎩或2122a aa +≤-⎧⎨+>⎩,无解,综上,12a >-. 【点睛】本题考查集合的基本运算,考查根据集合的交集求参数范围,属于基础题. 18.(1){|1x x <-或3}2x >;(2)66b -≤≤. 【解析】 【分析】(1)由已知条件结合韦达定理可求出a 的值,进而求出一元二次不等式求其解集; (2)由(1)得2330x bx ++≥的解集为R ,所以判别式小于等于零,可求出b 的范围. 【详解】(1)由题意知10a -<且-3和1是方程2(1)460a xx 的两根,∴10421631a a a⎧⎪-<⎪⎪=-⎨-⎪⎪=-⎪-⎩ 解得3a =. ∴不等式22(2)0xa x a ,即为2230x x -->,解得1x <-或32x >. ∴所求不等式的解集为{|1x x <-或3}2x >; (2)230ax bx ++≥,即为2330x bx ++≥, 若此不等式的解集为R ,则24330b ∆=-⨯⨯≤, 解得66b -≤≤. 【点睛】本题考查了一元二次不等式的解法和由一元二次不等的解集求参数,考查了一元二次不等式恒成立问题,考查了计算能力,属于中档题. 19.(1)1()f x x x=+;(2)证明见解析. 【解析】 【分析】(1)可得出2(1)1(1)1x f x x +++=+,从而得出211()x f x x x x+==+;(2)根据单调性的定义,设任意的1x ,2(0,1)x ∈,并且12x x <,然后作差,通分,提取公因式,从而得出12121212()(1)()()x x x x f x f x x x ---=,然后说明12()()f x f x >即可.【详解】 (1)2222(1)1(1)11x x x f x x x +++++==++,∴211()x f x x x x+==+; (2)证明:1x ∀,2(0,1)x ∈,且12x x <,则: 1212121212121212()(1)111()()()()(1)x x x x f x f x x x x x x x x x x x ---=+-+=--=, 1x ,2(0,1)x ∈,1201x x ∴<<,1210x x -<,又由12x x <,得120x x -<,于是121212()(1)0x x x x x x -->, 即12())0(f x f x ->,12()()f x f x ∴>,∴函数1()f x x x=+在(0,1)上单调递减. 【点睛】考查换元法求函数解析式的方法,已知[()]f g x 求()f x 的方法,以及减函数的定义,根据减函数的定义证明一个函数为减函数的方法. 20.(1)5,111⎡⎤-⎢⎥⎣⎦;(2)51,11⎡⎤--⎢⎥⎣⎦.【解析】 【分析】(1)由题可知()()2213160a xa x -+-+≥恒成立,讨论210a -=和210a -≠两种情况求解;(2)先讨论210a -=时的情况,再讨论210a -≠时,可得()()22210914610a a a ⎧->⎪⎨∆=--⨯-≥⎪⎩,解出即可. 【详解】(1)若()f x 的定义域为R ,则()()2213160a xa x -+-+≥恒成立,当210a -=时,1a =±,①若1a =,则60≥恒成立,符合题意,②若1a =-,则660x +≥,解得1x ≥-,不符合题意,当210a -≠时,则()()22210914610a a a ⎧->⎪⎨∆=--⨯-≤⎪⎩,解得5111a -≤<, 综上,5111a -≤≤; (2)当210a -=时,1a =±,①若1a =,则()f x =,不符合题意, ②若1a =-,则()0f x =≥,符合题意,当210a -≠时,则()()22210914610a a a ⎧->⎪⎨∆=--⨯-≥⎪⎩,解得5111a -<≤-, 综上,5111a -≤≤-.【点睛】本题考查根据函数的定义域和值域求参数范围,属于中档题. 21.(1)16[(1)]29(0)1y m m m =-+++≥+;(2)21万元. 【解析】 【分析】(1)由0m =时,1x =,解得2k =,得到每件产品的销售价格为8161.5xx+⨯元,进而列出函数的解析式;(2)由0m ≥时,结合基本不等式,求得16(1)81m m ++≥+,即可求解. 【详解】(1)由题意,当0m =时,1x =(万件),可得13k =-,解得2k =, 所以231x m =-+,每件产品的销售价格为8161.5x x+⨯元, ∴2004年的利润()8161.581648x y x x m x m x +⎡⎤=⋅⨯-++=+-⎢⎥⎣⎦21648(3)[(1)]29,(0)11m m m m m =+--=-+++≥++. (2)因为0m ≥时,16(1)81m m ++≥=+,所以82921y ≤-+=,当且仅当1611m m =++时,即3m =(万元)时,max 21y =(万元). 【点睛】本题主要考查了函数的实际应用问题,其中解答中正确理解题意,列出函数关系式,结合基本不等式求解是解答的关键,着重考查分析问题和解答问题的能力. 22.(I )见解析;(II )当0a <时,()f x 的最小值为34a +;当0a ≥时,()f x 的最小值为34a - 【解析】 【分析】 【详解】试题分析:(Ⅰ)根据0a =时,x 在[0]2, 上,去绝对值,根据二次函数的单调性即可求解在区间[0]2,上的最大值和最小值; (Ⅱ)利用零点分段去绝对值,根据对称轴分情况讨论即可求函数f x ()的最小值试题解析:(I )当0a =,[]0,2x ∈时,函数()21f x x x =-+,因为()f x 的图象抛物线开口向上,对称轴为12x =, 所以,当12x =时,()f x 值最小,最小值为34; 当2x =时,()f x 值最大,最大值为3.(II )①当x a ≤时,函数()2213124f x x x a x a ⎛⎫=+-+=+-+ ⎪⎝⎭.若12a ≤-,则()f x 在(],a -∞上单调递减,在(],a -∞上的最小值为()21f a a =+; 若12a >-,则函数()f x 在(],a -∞上的最小值为1324f a ⎛⎫-=- ⎪⎝⎭; ②当x a >时,()2213124f x x x a x a ⎛⎫=-++=-++ ⎪⎝⎭. 若12a <,则()f x 在[),a +∞上的最小值为1324f a ⎛⎫=+ ⎪⎝⎭;若12a ≥,则()f x 在[),a +∞上单调递增,()()21f x f a a >=+. 所以,当12a ≤-时,22311042a a a ⎛⎫⎛⎫+-+=-≥ ⎪ ⎪⎝⎭⎝⎭,()f x 的最小值为34a +. 当12a ≥时,22311042a a a ⎛⎫⎛⎫+--=+≥ ⎪ ⎪⎝⎭⎝⎭,()f x 的最小值为34a -.当1122a -<<时,()f x 的最小值为34a +与34a -中小者.所以,当102a -<<时,()f x 的最小值为34a +;当102a ≤<时,()f x 的最小值为34a -.综上,当0a <时,()f x 的最小值为34a +;当0a ≥时,()f x 的最小值为34a -【点睛】本题主要考查函数最值的求解,利用零点分段思想以及一元二次函数的性质是解决本题的关键.。
高三试卷数学-湖北省武昌实验中学2024届高三上学期12月月考数学试卷及参考答案
湖北省武昌实验中学高三年级12月月考数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U =R ,,,则()A.B.C.D. 2.已知复数与在复平面内对应的点关于实轴对称,则=()4.用一个平行于圆锥底面的平面去截圆锥,截得的圆台上底面半径为1,下底面半径为2,且该圆台侧面积为,则原圆锥的母线长为()A .BC .D .5.已知双曲线C :,直线l 与C 相交于A,B 两点,若线段AB 的中点为,则直线l 的斜率为()A .B .1C D .26.ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 上靠近点B 的三等分点,连接DE 并延长到点F ,使得,则的值为()A. B. C. D.7.设函数的定义域为,为奇函数,为偶函数,当时,{}1A y y x ==≥{}ln(2)B x y x ==-[2,)+∞[1,)+∞[1,2)[1,2]1z 42z i =-11z i-242221(0)y x b b-=>(1,2)N 1-2DE EF = AF BC ⋅23-112-11223()f x R ()21f x +()2f x +[]1,2x ∈.若,则的值是()A. B. C. 2D. 12二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知事件A ,B 满足,,则()A .若,则B .若A 与B 互斥,则C .若,则A 与B 相互独立D .若A 与B 相互独立,则10.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱BC ,C 1D 1的中点,则下列说法正确的是()A .M ,N ,A 1,B 四点共面B .C .过点A 1,B ,N 的平面被正方体所截得的截面是等腰梯形D .过MN 作正方体外接球的截面,所得截面面积的最小值为11.设等比数列的公比为,其前项和为,前项积为,且满足条件,,,则下列选项正确的是()A. B. C. 是数列中的最大项D. 12.已知函数与的定义域均为,分别为的导函数,,,若为奇函数,则下列等式一定成立的是( )()2=⋅+x f x a b ()()036f f +=()2log 96f 12-2-()0.3P A =()0.6P B =A B ⊆()0.18P AB =()0.9P A B +=()0.1P A B =()0.12P AB =11A M AB ⊥52π{}n a q n n S n n T 11a >202320241a a >()()20232024110a a --<1q >202320241S S +>2023T {}n T 40471T >()f x ()g x R ()(),f x g x ''()(),f x g x ()()5f x g x '+=()()225f x g x '--+=()g xA .B .C .D .三、填空题:本题共4小题,每小题5分,共20分.13.展开式中的常数项为.14.在平面直角坐标系中,圆关于直线对称的圆为,则的方程为__________.15.已知曲线y =lnx 与y =ax 2(a >0)有公共切线,则实数a 的取值范围为_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知向量,(),函数.(1)当时,求函数的单调递增区间;(2)若是函数的任意两个相异零点,且的最小值为,求函数在上的值域.18.如图,四棱锥中,是等边三角形,,.(1)证明:;(2)若,,求点到平面的距离.()25f -=()()4g x g x +=()()8g x g x -'='()()8f x f x +'='6xOy 221:2C x y +=l 222:2430C x y x y ++-+=l sin ,sin 22x x a ωω⎛⎫=- ⎪⎝⎭ cos ,sin 22x x b ωω⎛⎫= ⎪⎝⎭0ω>()2f x a b =⋅2ω=()f x 12,x x ()f x 12x x -π2()f x π0,2⎛⎫⎪⎝⎭P ABCD -ABD △PA PB PD ==BC CD =BD PC ⊥BD =CD AP =A PCD DPCA19.已知数列中,,设为前n 项和,.(1)求的通项公式;(2)若,求数列的前n 项和.20.为了切实加强学校体育工作,促进学生积极参加体育锻炼,养成良好的锻炼习惯,某高中学校计划优化课程,增加学生体育锻炼时间,提高体质健康水平,某体质监测中心抽取了该校10名学生进行体质测试,得到如下表格:序号12345678910成绩(分)38414451545658647480记这10名学生体质测试成绩的平均分与方差分别为.经计算,,.(1)求;(2)规定体质测试成绩低于50分为不合格,从这10名学生中任取3名,记体质测试成绩 不合格的人数为,求的分布列;(3)经统计,高中生体测试成绩近似服从正态分布,用的值分别作为的近似值,若监测中心计划从全市抽查100名高中生进行体质测试,记这100名高中生的体质测试成绩恰好落在区间的人数为,求的数学期望.附:若ξ~,则,,.21.已知函数)0()ln()(>-=m x mx x f .(1)若0)(≤x f 恒成立,求的取值范围;(2)若)(x f 有两个不同的零点21,x x 且122x x >,求实数m 的取值范围.{}n a 21a =n S {}n a 2n n S na ={}n a ()()1sin1cos 1cos 1n n n b a a +=++{}n b n T i i x 2,x s 1021()1690i i x x =-=∑102133050i i x ==∑x X X 2(,)N μσ2,x s 2,μσ[30,82]Y Y ()E Y 2(,)N ξμσ ()0.6827P μσξμσ-+≈≤≤(22)0.9545P μσξμσ-+≈≤≤(33)0.9973P μσξμσ-+≈≤≤m22.已知是椭圆上关于原点对称的两点,且,是椭圆上异于的一点,直线和的斜率满足.(1)求椭圆的标准方程;(2)点是椭圆长轴上的不同于左右顶点的任意一点,过点Q 作斜率不为0的直线l ,l 与椭圆的两个交点分别为P 、N ,若的值为定值,则称此时的点为“稳定点”,问:是否存在这样的稳定点?若有,试求出所有“稳定点”;若没有,请说明理由.,A B C O ()A M C ,AB MA MB 13MA MB k k ⋅=-C Q C 11PQ QN +Q高三年级12月月考数学参考答案一.单选题 1-8. ADCDB BBD 二.多选题 9. BD 10. BCD 11. BC 12.ACD三.填空题13. 【答案】-160 14.【答案】 15.【答案】 16. 【答案】3.四.解答题17.(1)由已知.---------3分当时,,令,解得:,∴函数的单调递增区间为;---------5分(2)由(1)知,令,得,所以,.当最小时,不妨取,,即,,则.因为,则,故.---------8分因为,所以,,所以函数在上的值域为---------10分2450x y -+=1[,)2e+∞()()22sincossin sin 1cos 222xxx f x x xωωωωω⎛⎫=⋅-=-- ⎪⎝⎭sin cos 114πx x x ωωω⎛⎫=+-=+- ⎪⎝⎭2ω=()π214f x x ⎛⎫=+- ⎪⎝⎭()πππ2π22π242k x k k -≤+≤+∈Z ()3ππππ88k x k k Z -≤≤+∈()f x ()3πππ,π88k k k Z ⎡⎤-+∈⎢⎥⎣⎦()π14f x x ω⎛⎫=+- ⎪⎝⎭()0f x =πsin 4x ω⎛⎫+= ⎪⎝⎭1πsin 4x ω⎛⎫+= ⎪⎝⎭2πsin 4x ω⎛⎫+= ⎪⎝⎭12x x -1ππ44x ω+=2π3π44x ω+=10x =2π2x ω=12π2x x ω-=12minπ2x x -=ππ22ω=1ω=π0,2x ⎛⎫∈ ⎪⎝⎭ππ3π,444x ⎛⎫+∈ ⎪⎝⎭()(π114f x x ⎛⎫⎤=+-∈- ⎪⎦⎝⎭()f x π0,2⎛⎫⎪⎝⎭(1⎤-⎦18.【解析】(1)如图,连接,交于点,连接, 由,,,可得,所以,又,所以,所以,即为中点,在等腰中,可得,在等腰中,,又,所以平面,又平面,所以.(2)方法一:(对角线交点建系法)由(1)可得,,又,所以,,由于为正三棱锥,点在底面的垂足一定在上,设垂足为,根据正三棱锥的性质可得,如图,以,所在直线为轴,轴建立空间直角坐标系.可得,,,,,(或)又,(或,)设平面的法向量,可得⇒⎪⎩⎪⎨⎧=⋅=⋅00DC n PC n,不妨令,所以345||||=⋅=nAC n d ,故点到平面方法二:(等体积转化法)设点到平面的距离为,可得,由(1)可得,,又,AC BD O PO AD AB=CD BC =AC AC =ABC ACD△△≌BAC DAC ∠=∠AO AO =AOB AOD △△≌BO OD =O BD PBD △BD OP ⊥BCD △BD OC ⊥OP OC O = BD ⊥POC PC ⊂POC BD PC ⊥AC BD ⊥CD =12OD BD ==2CO ==3AO ==P ABD -P ABD AO M 223AM AO ==PM ==OA OB x y (3,0,0)A (2,0,0)C -(0,D P (3,0,PC =- (DC =- DP =(5,0,0)AC =- (3,AD =- (AP =- PCD (,,)x y z =n 3002020x z x x ⎧--=+=⎪⇒⎨-+==⎪⎪⎩⎩x =3)=-n A PCD A PCD h P ACD A PCD V V --=AC BD ⊥CD =12OD BD ==所以,,由于为正三棱锥,点在底面的垂足一定在上,设垂足为,根据正三棱锥的性质可得,,作中点,连接,由于,所以,,所以,所以,所以 于是,代入可得所以点到平面19.(1)数列中,,为前n 项和,当时,,,当时,①,②,由②-①得:,,即,当时,,---------3分递推可得:,… ,,,由累乘法可得:,,又因为,所以,即,经检验,当时,符合上式,所以;---------6分(2)由(1)可知,,所以:2CO ==3AO ==P ABD -P ABD AO M 223AM AO ==PM ==1115()3322P ACD ACD V S PM AC OD PM -=⨯⨯=⨯⨯⨯⨯=△PC N DN PD CD =DN PC ⊥PC ==PN =2DN ==12PDC S PC DN =⨯⨯=△1532A PDC PDC V S h -=⨯⨯=△h =A PCD {}n a 21a =n S {}n a 1n =111122S a a a =⇒=10a ∴=2n ≥2n nS na =()1121n n S n a ++=+()11221n n n n S S n a na ++--+=()()1121n n n n S S n a na ++-=+-()11n n na n a +=-2n ≥11n n a na n +=-112n n a n a n --=-4332a a =3221a a =1341321321221n n n n a a a a n n a a a a n n +--⋅⋅=⨯⨯⨯⨯-- 12n a n a +=21a =1n a n +=1n a n =-1n =10a =1n a n =-1n a n =-1n a n+=,---9分所以nb ++ ;所以数列的前n 项和.---------12分20.【解析】(1).(2)因为体质测试不合格的学生有3名,所以的可能取值为0,1,2,3.因为,,,.所以的分布列为(3)因为,,所以,.因为9545.0)22()8230(≈+≤≤-=≤≤σμσμx P x P , 所以学生的体质测试成绩恰好落在区间得概率约为,因为100名学生的体质测试成绩恰好落在区间的人数为Y ~,所以.【详解】(1)()f x 的定义域为{}0x x >. 令()0f x ≤,得e xm x≤,令()(0)xe g x x x=>,则2e (1)()xx g x x -'=,()()1sin1cos 1cos 1n n n b a a +=++()sin1cos cos 1n n =+()()sin 1cos cos 1n n n n +-⎡⎤⎣⎦=+()()()sin 1cos cos 1sin cos cos 1n n n n n n +-+=+()()()()sin 1cos cos 1sin cos cos 1cos cos 1n n n nn n n n ++=-++()tan 1tan n n =+-123n T b b b =+++L ()()()()tan 2tan1tan 3tan 2tan tan 1tan 1tan n n n n =-+-++--++-⎡⎤⎡⎤⎣⎦⎣⎦()tan 1tan1n =+-{}n b ()tan 1tan1n T n =+-1(38414451545658647480)5610x =⨯+++++++++=X 373107(0)24C P X C ===217331021(1)40C C P X C ===12733107(2)40C C P X C ===333101(3)120C P X C ===X 56x =222222222221(181512520281824)16910s =⨯+++++++++=56μ=13σ=[3082],0.9545[3082],(1000.9545)Y B ,1000.954595.45E Y =⨯=()X 0123P72421407401120令()0g x '=,可得1x =,当(0,1)x ∈时,()0g x '<;当(1,)x ∈+∞时,()0g x '>.所以()g x 在区间(0,1)上单调递减,在区间(1,)+∞上单调递增.所以min ()(1)e g x g ==, 所以(0,e]m ∈.(2)()()1122ln ,ln mx x mx x ==,两式相减,得2211ln x x x x ⎛⎫=- ⎪⎝⎭.令212x t x =>,则1ln (1)t t x =-, 故12ln ln ,11t t t x x t t ==--,记ln (),21t h t t t =>-, 则211ln ()(1)t t h t t '--=-,构造函数()()11ln 2H t t t t =--≥,()'22111t H t t t t-=-=,所以()H t 在[)2,+∞上()()'0,H t H t <递减,由于()11121ln 2ln 20222H =--=-<-=,所以当2t >时,()0H t <, 所以211ln ()0(1)t t h t t '--=<-,所以函数()h t 在区间(2,)+∞上单调递减,故1()(2)ln 2x h t h =<=,即10ln 21x <<<,而e ()xm g x x==,()g x 在区间(0,1)上单调递减,故()12(ln 2)ln 2m g x g =>=,即2,ln 2m ⎛⎫∈+∞ ⎪⎝⎭.22.解:(1)设(),M x y,易知)1B-,由13MA MB k k ⋅=-13=-,化简得22162x y +=,故椭圆的标准方程为22162x y +=. ……4′C(2) 点Q 是椭圆长轴上的不同于左右顶点的任意一点,设0(,0)Q x ,则00x ≠.设直线PN 的方程为01122,(,),(,)x my x P x y N x y =+,由022612x my x x y =+⎧⎪⎨+=⎪⎩,得22200(3)260m y mx y x +++-=,01212202226,,033mx y y y m x y m --∴+==∆>++恒成立. ……6′11PQ QN ∴+===== ……10′要使其值为定值,则20612x -=,故当204x =,即02x =±综上,存在这样的稳定点(2,0)Q ±,即椭圆的焦点为稳定点. ……12′C。
高中数学多元函数最值问题(十二大题型)
多元函数最值问题目录题型一:消元法题型二:判别式法题型三:基本不等式法题型四:辅助角公式法题型五:柯西不等式法题型六:权方和不等式法题型七:拉格朗日乘数法题型八:三角换元法题型九:构造齐次式题型十:数形结合法题型十一:向量法题型十二:琴生不等式法方法技巧总结解决多元函数的最值问题不仅涉及到函数、导数、均值不等式等知识,还涉及到消元法、三角代换法、齐次式等解题技能.必考题型归纳题型一消元法1(2023·全国·高三专题练习)已知正实数x,y满足ln x=ye x+ln y,则y-e-x的最大值为.2(2023·广东梅州·高三五华县水寨中学校考阶段练习)已知实数m,n满足:m⋅e m=(n-1)ln(n-1)=t(t >0),则ln tm(n-1)的最大值为.3(2023·天津和平·高三天津一中校考阶段练习)对任给实数x>y>0,不等式x2-2y2≤cx(y-x)恒成立,则实数c的最大值为.题型二判别式法1(2023·重庆渝中·高一重庆巴蜀中学校考期中)若x,y∈R,4x2+y2+xy=1,则当x=时,x+y取得最大值,该最大值为.2(2023·全国·高三竞赛)在△ABC中,2cos A+3cos B=6cos C,则cos C的最大值为.3(2023·高一课时练习)设非零实数a,b满足a2+b2=4,若函数y=ax+bx2+1存在最大值M和最小值m,则M-m=.1(2023·江苏·高三专题练习)若正实数x,y满足(2xy-1)2=(5y+2)(y-2),则x+12y的最大值为.2(2023·全国·高三专题练习)设a,b∈R,λ>0,若a2+λb2=4,且a+b的最大值是5,则λ=.题型三基本不等式法1设x、y、z是不全是0的实数.则三元函数f x,y,z=xy+yzx2+y2+z2的最大值是.2(2023·天津和平·高三耀华中学校考阶段练习)若实数x,y满足2x2+xy-y2=1,则x-2y5x2-2xy+2y2的最大值为.3(2023·全国·高三专题练习)已知正数a,b,c,则ab+bc2a2+b2+c2的最大值为.1(2023·江苏苏州·高三统考开学考试)设角α、β均为锐角,则sinα+sinβ+cosα+β的范围是.2y=cos(α+β)+cosα-cosβ-1的取值范围是.题型五柯西不等式法1(2023·广西钦州·高二统考期末)已知实数a i,b i∈R,(i=1,2⋯,n),且满足a21+a22+⋯+a2n=1,b21+b22 +⋯+b2n=1,则a1b1+a2b2+⋯+a n b n最大值为()A.1B.2C.n2D.2n2(2023·陕西渭南·高二校考阶段练习)已知x,y,z是正实数,且x+y+z=5,则x2+2y2+z2的最小值为.3(2023·江苏淮安·高二校联考期中)已知x2+y2+z2=1,a+3b+6c=16,则x-a22+y-b2+z-c 的最小值为.1(2023·全国·高三竞赛)已知x、y、z∈R+,且s=x+2+y+5+z+10,t=x+1+y+1+ z+1,则s2-t2的最小值为.A.35B.410C.36D.452(2023·全国·高三竞赛)设a、b、c、d为实数,且a2+b2+c2-d2+4=0.则3a+2b+c-4d 的最大值等于.A.2B.0C.-2D.-221(2023·甘肃·高三校联考)已知x>0,y>0,且12x+y+1y+1=1,则x+2y的最小值为 .2已知实数x,y满足x>y>0且x+y=1,则2x+3y+1x-y的最小值是3已知a>1,b>1,则a2b-1+b2a-1的最小值是.1已知x,y>0,1x+22y=1,则x2+y2的最小值是.题型七拉格朗日乘数法1x>0,y>0,xy+x+y=17,求x+2y+3的最小值.2设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是.题型八三角换元法1(2023·山西晋中·高三祁县中学校考阶段练习)已知函数f(x)=-3x3-3x+3-x-3x+3,若f(3a2)+f(b2 -1)=6,则a1+b2的最大值是2(2023·浙江温州·高一校联考竞赛)2x2+xy+y2=1,则x2+xy+2y2的最小值为.题型九构造齐次式1(2023·江苏·高一专题练习)已知x>0,y>0,则2xyx2+8y2+xyx2+2y2的最大值是.2(2023·河南·高三信阳高中校联考阶段练习)已知实数a,b>0,若a+2b=1,则3ab+1ab的最小值为()A.12B.23C.63D.83(2023·天津南开·高三统考期中)已知正实数a,b,c满足a2-2ab+9b2-c=0,则abc的最大值为.题型十数形结合法1(2023·全国·高三专题练习)函数f x =x2+ax+b(a,b∈R)在区间[0,c](c>0)上的最大值为M,则当M取最小值2时,a+b+c=2(2023·江苏扬州·高三阶段练习)已知函数f x =x ln x,x>02x+4e,x≤0,若x1≠x2且f x1 =f x2 ,则x1-x2的最大值为()A.2e-1e B.2e+1 C.5e D.52e3(2023·全国·高三专题练习)已知函数f x =x ln x,x>0x+1,x≤0,若x1≠x2且f x1 =f x2 ,则x1-x2的最大值为()A.22B.2C.2D.11(2023·江苏·高三专题练习)已知函数f x =x,0≤x≤1,ln2x,1<x≤2,若存在实数x1,x2满足0≤x1<x2≤2,且f x1=f x2,则x2-x1的最大值为()A.e2B.e2-1 C.1-ln2 D.2-ln4向量法1(2023·江苏南通·高一海安高级中学校考阶段练习)17世纪法国数学家费马在给朋友的一封信中曾提出一个关于三角形的有趣问题:在三角形所在平面内,求一点,使它到三角形每个顶点的距离之和最小,现已证明:在△ABC 中,若三个内角均小于120°,则当点P 满足∠APB =∠APC =∠BPC =120°时,点P 到三角形三个顶点的距离之和最小,点P 被人们称为费马点.根据以上知识,已知a为平面内任意一个向量,b 和c 是平面内两个互相垂直的向量,且|b |=2,|c |=3,则|a -b |+|a +b |+|a -c |的最小值是.2(2023·浙江嘉兴·高一统考期末)已知平面向量a ,b ,c 满足a =1,b =2,|a |2=a ⋅b ,c ⋅c -b2=0,则|c -a |2+|c -b|2的最小值为.3(2023·湖北武汉·高一湖北省武昌实验中学校联考期末)已知向量a ,b 满足a +b ⋅b =0,a+4b =4,则a +b+b 的最大值为.琴生不等式法1(2023·福建龙岩·高三校考阶段练习)若函数f x 的导函数f x 存在导数,记f x 的导数为f x .如果对∀x ∈a ,b ,都有f x <0,则f x 有如下性质:f x 1+x 2+⋅⋅⋅+x nn ≥f (x 1)+f (x 2)+⋅⋅⋅+f (x n )n .其中n ∈N *,x 1,x 2,⋯,x n ∈a ,b .若f x =sin x ,则在锐角△ABC 中,根据上述性质推断:sin A +sin B +sin C 的最大值为.2(2023·全国·高三竞赛)半径为R 的圆的内接三角形的面积的最大值是.3(2023·北京·高三强基计划)已知正实数a ,b 满足a +b =1,求a +1a b +1b的最小值.多元函数最值问题目录题型一:消元法题型二:判别式法题型三:基本不等式法题型四:辅助角公式法题型五:柯西不等式法题型六:权方和不等式法题型七:拉格朗日乘数法题型八:三角换元法题型九:构造齐次式题型十:数形结合法题型十一:向量法题型十二:琴生不等式法方法技巧总结解决多元函数的最值问题不仅涉及到函数、导数、均值不等式等知识,还涉及到消元法、三角代换法、齐次式等解题技能.必考题型归纳题型一消元法1(2023·全国·高三专题练习)已知正实数x ,y 满足ln x =ye x +ln y ,则y -e -x 的最大值为.【答案】1e2/e -2【解析】由ln x =ye x +ln y 得ln x y =ye x ,所以x y ln x y =xe x ,则xe x=ln x y ⋅e ln xy ,因为x >0,e x>0,eln xy>0,所以lnxy>0,令f (x )=xe x x >0 ,则f (x )=e x (x +1)>0,所以f x 在0,+∞ 上单调递增,所以由xe x=ln x y ⋅e ln xy ,即f x =f ln x y,得x =ln x y ,所以y =x e x ,所以y -e -x =x e x -1e x =x -1e x,令g (x )=x -1e xx >0 ,则g (x )=2-xe x,令g (x )>0,得0<x <2;令g (x )<0,得x >2,所以g (x )在0,2 上单调递增,在2,+∞ 上单调递减,所以g (x )max =g (2)=1e 2,即y -e -x 的最大值为1e2.故答案为:1e2.2(2023·广东梅州·高三五华县水寨中学校考阶段练习)已知实数m ,n 满足:m ⋅e m =(n -1)ln (n -1)=t (t >0),则ln tm (n -1)的最大值为.【答案】1e【解析】由已知得,m >0,n -1>0,ln n -1 >0,令f x =xe x (x >0),则f x =x +1 e x >0,∴f x 在0,+∞ 上单调递增,又因为m ⋅e m =(n -1)ln (n -1),所以f m =f ln n -1 ,∴m =ln n -1 ,∴m n -1 =(n -1)⋅ln n -1 =t ,∴ln t m n -1=ln t t ,令g t =ln tt(t >0),所以g t =1-ln tt 2,则当t ∈(0,e )时,g (t )>0,g (t )单调递增;当t ∈(e ,+∞)时,g (t )<0,g (t )单调递减;所以g (t )max =g (e )=1e.故答案为:1e.3(2023·天津和平·高三天津一中校考阶段练习)对任给实数x >y >0,不等式x 2-2y 2≤cx (y -x )恒成立,则实数c 的最大值为.【答案】22-4【解析】因为对任给实数x >y >0,不等式x 2-2y 2≤cx (y -x )恒成立,所以c ≤x 2-2y 2xy -x 2=xy2-2x y-x y 2,令x y =t >1,则c ≤t 2-2t -t 2=f (t ),f(t )=t 2-4t +2t -t 2 2=(t -2+2)(t -2-2)t -t 22,当t >2+2时,f (t )>0,函数f (t )单调递增;当1<t <2+2时,f (t )<0,函数f (t )单调递减,所以当t =2+2时,f (t )取得最小值,f (2+2)=22-4,所以实数c 的最大值为22-4故答案为:22-4题型二判别式法1(2023·重庆渝中·高一重庆巴蜀中学校考期中)若x ,y ∈R ,4x 2+y 2+xy =1,则当x =时,x +y 取得最大值,该最大值为.【答案】 1530/1301541515/41515【解析】令x +y =t ,则y =t -x ,则4x 2+y 2+xy =4x 2+t -x 2+x t -x =4x 2-tx +t 2=1,即4x 2-tx +t 2-1=0,由Δ=t 2-16t 2-1 ≥0,解得:-41515≤t ≤41515,故x +y ≤41515,故x +y =415154x 2+y 2+xy =1,解得:x =1530,y =71530,所以当且仅当x =1530,y =71530时,等号成立,故答案为:1530,415152(2023·全国·高三竞赛)在△ABC 中,2cos A +3cos B =6cos C ,则cos C 的最大值为.【答案】14-16【解析】令cos A =x ,cos B =y ,cos C =z ,则2x +3y =6z ,即y =2z -23x .因为cos 2A +cos 2B +cos 2C +2cos A cos B cos C =1,所以x 2+2z -23x 2+z 2=1-2x 2z -23x z ,整理得139-43z x 2+4z 2-83z x +5z 2-1=0,Δ=4z 2-83z 2-45z 2-1 139-4z3≥0,化简得(z +1)(z -1)4z 2+4z 3-139≥0,于是4z 2+4z 3-139≤0,得z ≤14-16,所以cos C 的最大值为14-16.故答案为:14-16.3(2023·高一课时练习)设非零实数a ,b 满足a 2+b 2=4,若函数y =ax +bx 2+1存在最大值M 和最小值m ,则M -m =.【答案】2【解析】化简得到yx 2-ax +y -b =0,根据Δ≥0和a 2+b 2=4得到b -22≤y ≤b +22,解得答案.y =ax +bx 2+1,则yx 2-ax +y -b =0,则Δ=a 2-4y y -b ≥0,即4y 2-4yb -a 2≤0,a 2+b 2=4,故4y 2-4yb +b 2-4≤0,2y -b +2 2y -b -2 ≤0,即b -22≤y ≤b +22,即m =b -22,M =b +22,M -m =2.故答案为:2.1(2023·江苏·高三专题练习)若正实数x ,y 满足(2xy -1)2=(5y +2)(y -2),则x +12y的最大值为.【答案】322-1【解析】令x +12y =t ,(t >0),则(2xy -1)2=(2yt -2)2=(5y +2)(y -2),即(4t 2-5)y 2+(8-8t )y +8=0,因此Δ=(8-8t )2-32(4t 2-5)≥0⇒2t 2+4t -7≤0,解得:0<t ≤-1+322,当t =-1+322时,y =4t -44t 2-5=62-817-122>0,x =35-242122-16>0,因此x +12y 的最大值为322-1故答案为:322-12(2023·全国·高三专题练习)设a ,b ∈R ,λ>0,若a 2+λb 2=4,且a +b 的最大值是5,则λ=.【答案】4【解析】令a +b =d ,由a +b =da 2+λb 2=4消去a 得:(d -b )2+λb 2=4,即(λ+1)b 2-2db +d 2-4=0,而b ∈R ,λ>0,则Δ=(2d )2-4(λ+1)(d 2-4)≥0,d 2≤4(λ+1)λ,-2λ+1λ≤d ≤2λ+1λ,依题意2λ+1λ=5,解得λ=4.故答案为:4题型三基本不等式法1设x 、y 、z 是不全是0的实数.则三元函数f x ,y ,z =xy +yzx 2+y 2+z 2的最大值是.【答案】22【解析】引入正参数λ、μ.因为λ2x 2+y 2≥2λxy ,μ2y 2+z 2≥2μyz ,所以,xy ≤λ2x 2+12λy 2,yz ≤μ2y 2+12μz 2.两式相加得xy +yz ≤λ2x 2+12λ+μ2 y 2+12μz 2.令λ2=12λ+μ2=12μ,得λ=2,μ=12故xy +yz ≤22x 2+y 2+z 2.因此,f x ,y ,z =xy +yz x 2+y 2+z2的最大值为22.2(2023·天津和平·高三耀华中学校考阶段练习)若实数x ,y 满足2x 2+xy -y 2=1,则x -2y5x 2-2xy +2y 2的最大值为.【答案】24【解析】由2x 2+xy -y 2=1,得(2x -y )(x +y )=1,设2x-y=t,x+y=1t,其中t≠0.则x=13t+13t,y=23t-13t,从而x-2y=t-1t,5x2-2xy+2y2=t2+1t2,记u=t-1t,则x-2y5x2-2xy+2y2=uu2+2,不妨设u>0,则1u+2u≤12u×2u=24,当且仅当u=2u,即u=2时取等号,即最大值为24.故答案为:2 4.3(2023·全国·高三专题练习)已知正数a,b,c,则ab+bc2a2+b2+c2的最大值为.【答案】6 4【解析】∵ab+bc2a2+b2+c2=ab+bc2a2+13b2+23b2+c2≤ab+bc223ab+223bc=1223=64(当且仅当2a=3 3b,63b=c时取等号),∴ab+bc 2a2+b2+c2的最大值为64.故答案为:6 4.题型四辅助角公式法1(2023·江苏苏州·高三统考开学考试)设角α、β均为锐角,则sinα+sinβ+cosα+β的范围是.【答案】1,3 2【解析】因为角α、β均为锐角,所以sinα,cosα,sinβ,cosβ的范围均为0,1,所以sinα+β=sinαcosβ+cosαsinβ<sinα+sinβ,所以sinα+sinβ+cosα+β>sinα+β+cosα+β=2sinα+β+π4因为0<α<π2,0<β<π2,π4<α+β+π4<3π4,所以2sinα+β+π4>2×22=1,sinα+sinβ+cosα+β=sinα+sinβ+cosαcosβ-sinαsinβ=1-sinβsinα+cosαcosβ+sinβ≤1-sinβ2+cos2β+sinβ=21-sinβ+sinβ,当且仅当1-sinβcosα=sinαcosβ时取等,令1-sinβ=t,t∈0,1,sinβ=1-t2,所以=21-sinβ+sinβ=2t+1-t2=-t-2 22+32≤32.则sinα+sinβ+cosα+β的范围是:1,3 2.故答案为:1,3 22y=cos(α+β)+cosα-cosβ-1的取值范围是.【答案】-4,1 2【解析】y=cosαcosβ-sinαsinβ+cosα-cosβ-1=(cosβ+1)cosα-(sinβ)sinα-(cosβ+1)=(cosβ+1)2+sin2βsin(α+φ)-(cosβ+1)=2+2cosβsin(α+φ)-(cosβ+1)因为sin(α+φ)∈[-1,1],所以-2+2cosβ-(cosβ+1)≤y≤2+2cosβ-(cosβ+1),令t=1+cosβ,则t∈[0,2],则-2t-t2≤y≤2t-t2,所以y≥-2t-t2=-t+2 22+12≥-4,(当且仅当t=2即cosβ=1时取等);且y≤2t-t2=-t-2 22+12≤12,(当且仅当t=22即cosβ=-12时取等).故y的取值范围为-4,1 2.题型五柯西不等式法1(2023·广西钦州·高二统考期末)已知实数a i,b i∈R,(i=1,2⋯,n),且满足a21+a22+⋯+a2n=1,b21+b22 +⋯+b2n=1,则a1b1+a2b2+⋯+a n b n最大值为()A.1B.2C.n2D.2n【答案】A【解析】根据柯西不等式,a21+a22+⋯+a2nb21+b22+⋯+b2n≥a1b1+a2b2+⋯+a n b n2,故a1b1+a2b2+⋯+a nb n≤1,又当a1=b1=a2=b2=...=a n=b n=1n时等号成立,故a1b1+a2b2+⋯+a n b n最大值为1故选:A2(2023·陕西渭南·高二校考阶段练习)已知x,y,z是正实数,且x+y+z=5,则x2+2y2+z2的最小值为.【答案】10【解析】由柯西不等式可得x2+2y2+z212+122+12≥(x+y+z)2,所以52x2+2y2+z2≥25,即x2+2y2+z2≥10,当且仅当x1=2y12=z1即x=2y=z也即x=2,y=1,z=2时取得等号,故答案为:103(2023·江苏淮安·高二校联考期中)已知x2+y2+z2=1,a+3b+6c=16,则x-a2+y-b2+z-c2的最小值为.【答案】9【解析】∵a +3b +6c =16≤12+32+6 2a 2+b 2+c 2=4a 2+b 2+c 2∴a 2+b 2+c 2≥4,当且仅当a 1=b 3=c6时等号成立,即a =1,b =3,c =6,∵x -a 2+y -b 2+z -c 2=1-2xa +by +cz +a 2+b 2+c 2≥1-2x 2+y 2+z 2a 2+b 2+c 2+a 2+b 2+c 2=1-2a 2+b 2+c 2+a 2+b 2+c 2=a 2+b 2+c 2-1 2≥9,当且仅当a x =b y =c z 时等号成立,可取x =14,y =34,z =64故答案为:91(2023·全国·高三竞赛)已知x 、y 、z ∈R +,且s =x +2+y +5+z +10,t =x +1+y +1+z +1,则s 2-t 2的最小值为.A.35 B.410C.36D.45【答案】C【解析】由s +t =x +2+x +1 +y +5+y +1 +z +10+z +1 ,s -t =1x +1+x +2+4y +1+y +5+9z +1+z +10.知s 2-t 2=s +t s -t ≥1+2+3 2=36.当x +1+x +2=12y +1+y +5 =13z +1+z +10 时,取得最小值36.故答案为C2(2023·全国·高三竞赛)设a 、b 、c 、d 为实数,且a 2+b 2+c 2-d 2+4=0.则3a +2b +c -4d 的最大值等于.A.2B.0C.-2D.-22【答案】D【解析】由题意得a 2+b 2+c 2+22=d 2,所以42d 2=a 2+b 2+c 2+22 32+22+12+2 2 ≥3a +2b +c +22 2(利用柯西不等式).从而,4d ≥3a +2b +c +22 ≥3a +2b +c +2 2.故3a +2b +c -4d ≤-2 2.当且仅当a =32,b =22,c =2,d =±42时,等号成立.题型六权方和不等式法1(2023·甘肃·高三校联考)已知x >0,y >0,且12x +y +1y +1=1,则x +2y 的最小值为.【答案】3+12【解析】设x +2y =λ1(2x +y )+λ2(y +1)+t ,可解得λ1=12,λ2=32,t =-32,从而x +2y =12(2x +y )+32(y +1)-32=12(2x +y )+32(y +1) 12x +y +1y +1-32≥3+12,当且仅当x =12+33,y =33时取等号.故答案为:3+12.2已知实数x ,y 满足x >y >0且x +y =1,则2x +3y +1x -y的最小值是【答案】3+222【解析】2x +3y +1x -y ≥2+1 22x +2y =3+222.当2x +3y =1x -y 时,x =2-12,y =32-2取等号.3已知a >1,b >1,则a 2b -1+b 2a -1的最小值是.【答案】8【解析】a +b -2=t >0,a 2b -1+b 2a -1≥a +b 2a +b -2=t +2 2t =t +4t +4≥8.当a +b -2=2a b -1=ba -1时,即a =2,b =2,两个等号同时成立.1已知x ,y >0,1x +22y=1,则x 2+y 2的最小值是.【答案】33【解析】1=1x +22y=132x 212+232y 212≥1+232x 2+y 212=33x 2+y2.即当1x 2=2y 21x +22y=1时,即x =3,y =32,有x 2+y 2的最小值为33.题型七拉格朗日乘数法1x >0,y >0,xy +x +y =17,求x +2y +3的最小值.【解析】令F (x ,y ,λ)=x +2y +3-λ(xy +x +y -17)F x ′=1-λy -λ=0,F y ′=2-λx -λ=0,F λ′=-(xy +x +y )+17=0,联立解得x =5,y =2,λ=13,故x +2y +3最小为12.2设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是.【答案】2105【解析】令L =2x +y +λ(4x 2+y 2+xy -1),由L x =2+8λx -3λy =0L y =1+2λy -3λx =0L λ=4x 2+y 2+xy -1=0,解得x =±1010y =±105,所以2x +y 的最大值是2⋅1010+105=2105.三角换元法1(2023·山西晋中·高三祁县中学校考阶段练习)已知函数f (x )=-3x 3-3x +3-x -3x +3,若f (3a 2)+f (b 2-1)=6,则a 1+b 2的最大值是【答案】33【解析】设g (x )=f (x )-3,所以g (x )= -3x 3-3x +3-x -3x ,所以g (-x )=-3(-x )3+3x +3x -3-x ,∴g (-x )+g (x )=0,所以g (-x )=-g (x ),所以函数g (x )是奇函数,由题得g (x )=-9x 2-3-3-x ln3-3x ln3<0,所以函数g (x )是减函数,因为f 3a 2 +f b 2-1 =6,所以f 3a 2 -3+f b 2-1 -3=0,所以g 3a 2 +g b 2-1 =0,所以g 3a 2 =g (1-b 2),所以3a 2=1-b 2,∴3a 2+b 2=1,设a =33cos θ,b =sin θ,不妨设cos θ>0,所以a 1+b 2=33cos θ1+sin 2θ=33(1+sin 2θ)cos 2θ=33(1+sin 2θ)(1-sin 2θ)=331-sin 4θ≤33,所以a 1+b 2的最大值为33.故答案为332(2023·浙江温州·高一校联考竞赛)2x 2+xy +y 2=1,则x 2+xy +2y 2的最小值为.【答案】-42+97【解析】根据条件等式可设x =2cos θ7,y =sin θ-cos θ7,代入所求式子,利用二倍角公式和辅助角公式化简,根据三角函数的性质可求出最值.∵2x 2+xy +y 2=1,则7x 24+x 24+xy +y 2=1,即7x 2 2+x 2+y 2=1,设7x 2=cos θ,x 2+y =sin θ,则x =2cos θ7,y =sin θ-cos θ7,∴x 2+xy +2y 2=2cos θ7 2+2cos θ7⋅sin θ-cos θ7 +2sin θ-cos θ72=4cos 2θ7-2sin θcos θ7+2sin 2θ=471+cos2θ2 -sin2θ7+1-cos2θ=-17sin2θ-57cos2θ+97=427sin 2θ+φ +97,其中φ是辅助角,且tan φ=357,当sin 2θ+φ =-1时,原式取得最小值为-42+97.故答案为:-42+97.题型九构造齐次式1(2023·江苏·高一专题练习)已知x >0,y >0,则2xy x 2+8y 2+xyx 2+2y 2的最大值是.【答案】23【解析】由题意,2xy x 2+8y 2+xy x 2+2y 2=3x 3y +12xy 3x 4+10x 2y 2+16y 4=3x y+4yxx y2+16yx 2+10=3x y+4yxx y+4y x2+2=3x y+4yxx y+4y x+2x y+4y x,设t =x y +4y x ,则t =x y +4y x ≥2x y ⋅4y x =4,当且仅当x y =4y x,即x =2y 取等号,又由y =t +2t 在[4,+∞)上单调递增,所以y =t +2t 的最小值为92,即t +2t ≥92,所以3x y+4yxxy +4y x+2x y+4y x≤3t +2t=23,所以2xy x 2+4y 2+xy x 2+2y 2的最大值是23.故答案为:23.2(2023·河南·高三信阳高中校联考阶段练习)已知实数a ,b >0,若a +2b =1,则3a b +1ab的最小值为()A.12 B.23C.63D.8【答案】A 【解析】由3a b +1ab,a +2b =1,a ,b >0,所以3a b +1ab =3ab +a +2b 2ab=3a b +a 2+4ab +4b 2ab =3a b +a b+4+4b a =4a b+4b a +4≥24a b ⋅4b a +4=8+4=12,当且仅当4a b=4b a ⇒a =b =13时,取等号,所以3a b +1ab 的最小值为:12,故选:A .3(2023·天津南开·高三统考期中)已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则abc的最大值为.【答案】14/0.25【解析】由a 2-2ab +9b 2-c =0,得c =a 2-2ab +9b 2,∵正实数a ,b ,c∴则ab c =ab a 2-2ab +9b 2=1a b+9b a -2则a b+9b a ≥2a b ⋅9b a =6,当且仅当a b=9ba ,且a ,b >0,即a =3b 时,等号成立a b+9b a -2≥4>0则1a b +9b a -2≤14所以,ab c 的最大值为14.故答案为:14.题型十数形结合法1(2023·全国·高三专题练习)函数f x =x 2+ax +b (a ,b ∈R )在区间[0,c ](c >0)上的最大值为M ,则当M 取最小值2时,a +b +c =【答案】2【解析】解法一:因为函数y =x 2+ax +b 是二次函数,所以f x =x 2+ax +b (a ,b ∈R )在区间[0,c ](c >0)上的最大值是在[0,c ]的端点取到或者在x =-a2处取得.若在x =0取得,则b =±2;若在x =-a 2取得,则b -a 24=2;若在x =c 取得,则c 2+ac +b =2;进一步,若b =2,则顶点处的函数值不为2,应为0,符合题意;若b =-2,则顶点处的函数值的绝对值大于2,不合题意;由此推断b =a 24,即有b =2,a +c =0,于是有a +b +c =2.解法二:设g x =x 2,h x =-ax -b ,则f x =g x -h x .首先作出g x =x 2在x ∈0,c 时的图象,显然经过(0,0)和c ,c 2 的直线为h 1x =cx ,该曲线在[0,c ]上单调递增;其次在g x =x 2图象上找出一条和h 1x =cx 平行的切线,不妨设切点为x 0,x 20 ,于是求导得到数量关系2x 0=c .结合点斜式知该切线方程为h 2x =cx -c 24.因此M min =120--c 24 =2,即得c =4.此时h x =cx -c 28,即h x =4x -2,那么a =-4,b =2.从而有a +b +c =2.2(2023·江苏扬州·高三阶段练习)已知函数f x =x ln x ,x >02x +4e ,x ≤0,若x 1≠x 2且f x 1 =f x 2 ,则x 1-x 2的最大值为()A.2e -1eB.2e +1C.5eD.52e 【答案】D【解析】当x >0时,f x =x ln x ,求导f x =ln x +1,令f x =0,得x =1e当x ∈0,1e 时,f x <0,f x 单调递减;当x ∈1e,+∞ 时,f x >0,f x 单调递增;作分段函数图象如下所示:设点A 的横坐标为x 1,过点A 作y 轴的垂线交函数y =f x 于另一点B ,设点B 的横坐标为x 2,并过点B作直线y =2x +4e 的平行线l ,设点A 到直线l 的距离为d ,x 1-x 2 =52d ,由图形可知,当直线l 与曲线y =x ln x 相切时,d 取最大值,令f x =ln x +1=2,得x =e ,切点坐标为e ,e ,此时,d =2e -e +4e5=5e ,∴x 1-x 2 max =52×5e =52e ,故选:D3(2023·全国·高三专题练习)已知函数f x =x ln x ,x >0x +1,x ≤0 ,若x 1≠x 2且f x 1 =f x 2 ,则x 1-x 2 的最大值为()A.22B.2C.2D.1【答案】B【解析】设点A 的横坐标为x 1,过点A 作y 轴的垂线交函数y =f x 于另一点B ,设点B 的横坐标为x 2,并过点B 作直线y =x +1的平行线l ,设点A 到直线l 的距离为d ,计算出直线l 的倾斜角为π4,可得出x 1-x 2 =2d ,于是当直线l 与曲线y =x ln x 相切时,d 取最大值,从而x 1-x 2 取到最大值.当x >0时,f x =x ln x ,求导f x =ln x +1,令f x =0,得x =1e当x ∈0,1e 时,f x <0,f x 单调递减;当x ∈1e ,+∞ 时,f x >0,f x 单调递增;如下图所示:设点A 的横坐标为x 1,过点A 作y 轴的垂线交函数y =f x 于另一点B ,设点B 的横坐标为x 2,并过点B 作直线y =x +1的平行线l ,设点A 到直线l 的距离为d ,x 1-x 2 =2d ,由图形可知,当直线l 与曲线y =x ln x 相切时,d 取最大值,令f x =ln x +1=1,得x =1,切点坐标为1,0 ,此时,d =1-0+12=2,∴x 1-x 2 max =2×2=2,故选:B .1(2023·江苏·高三专题练习)已知函数f x =x ,0≤x ≤1,ln 2x ,1<x ≤2, 若存在实数x 1,x 2满足0≤x 1<x 2≤2,且f x 1 =f x 2 ,则x 2-x 1的最大值为()A.e 2B.e 2-1 C.1-ln2 D.2-ln4【答案】B 【解析】f x =x ,0≤x ≤1,ln 2x ,1<x ≤2的图象如下存在实数x 1,x 2满足0≤x 1<x 2≤2,且f x 1 =f x 2 ,即x 1=ln 2x 2∴x 2∈1,e 2,则x 2-x 1=x 2-ln 2x 2 令g x =x -ln 2x ,x ∈1,e 2,则gx =x -1x∴g x 在1,e 2 上单调递增,故g x max =g e 2 =e2-1故选:B 向量法1(2023·江苏南通·高一海安高级中学校考阶段练习)17世纪法国数学家费马在给朋友的一封信中曾提出一个关于三角形的有趣问题:在三角形所在平面内,求一点,使它到三角形每个顶点的距离之和最小,现已证明:在△ABC 中,若三个内角均小于120°,则当点P 满足∠APB =∠APC =∠BPC =120°时,点P 到三角形三个顶点的距离之和最小,点P 被人们称为费马点.根据以上知识,已知a为平面内任意一个向量,b 和c 是平面内两个互相垂直的向量,且|b |=2,|c |=3,则|a -b |+|a +b |+|a -c |的最小值是.【答案】3+23【解析】以b 为x 轴,c 为y 轴,建立直角坐标系如下图,设a=x ,y ,则b =2,0 ,c =0,3 ,a -c =x 2+y -3 2,a -b =x -2 2+y 2,a +b =x +2 2+y 2,∴a -c +a -b +a +b即为平面内一点x ,y 到0,3 ,2,0 ,-2,0 三点的距离之和,由费马点知:当点P x ,y 与三顶点A 0,3 ,B -2,0 ,C 2,0 构成的三角形ABC 为费马点时a -c+a -b +a +b最小,将三角形ABC 放在坐标系中如下图:现在先证明△ABC 的三个内角均小于120°:AB =BC =22+32=13,BC =4,cos ∠BAC =AB2+AC 2-BC 22AB ∙AC=1113>0,cos ∠ABC =cos ∠ACB =AB2+BC 2-AC 22AB ∙BC=113>0,∴△ABC 为锐角三角形,满足产生费马点的条件,又因为△ABC 是等腰三角形,点P 必定在底边BC 的对称轴上,即y 轴上,∠BPC =120°,∴∠PCB =30°,PO =OC ∙tan ∠PCB =2×33=233,即P 0,233 ,现在验证∠BPA =120°:BP =22+233 2=43,AP =3-233,cos ∠BPA =BP 2+AP 2-AB 22BP ∙AP =-12,∴∠BPA =120°,同理可证得∠CPA =120°,即此时点P 0,233 是费马点,到三个顶点A ,B ,C 的距离之和为BP +CP +AP =2×43+3-233=3+23,即a -c +a -b +a +b 的最小值为3+23;故答案为:3+23.2(2023·浙江嘉兴·高一统考期末)已知平面向量a ,b ,c 满足a =1,b =2,|a |2=a ⋅b ,c ⋅c -b 2=0,则|c -a |2+|c -b |2的最小值为.【答案】72-3【解析】令OA =a ,OB =b ,OC =c ,OB 中点为D ,OD 中点为F ,E 为AB 的中点,由|a |=1,|b |=2,|a |2=a ⋅b ,得1=1×2×cos <a ,b >,则cos <a ,b >=12,<a ,b >=60°即∠AOB =60°,所以AB =OA 2+OB 2-2OA ⋅OB cos ∠AOB =22+12-2×2×1×12=3,所以AO 2+AB 2=OB 2,即∠OAB =90°,∠ABO =30°,所以EF =BF 2+BE 2-2BF ⋅BE cos ∠ABO =32 2+32 2-2×32×32×32=32,因为c ⋅c -b 2=0,所以OC ⋅OC -12OB =0,即OC ⋅OC -OD =0,所以OC ⋅DC =0,所以点C 的轨迹为以OD 为直径的圆,∵2(|c -a |2+|c -b |2)=2(|CA |2+|CB |2)=4|CE |2+|AB |2=4|CE |2+3 2=4|CE |2+3≥4EF -122+3=7-23,当且仅当C 、E 、F 共线且C 在线段EF 之间时取等号.∴|c -a |2+|c -b |2的最小值为72-3.故答案为:72-3.3(2023·湖北武汉·高一湖北省武昌实验中学校联考期末)已知向量a ,b 满足a +b ⋅b =0,a +4b =4,则a +b +b 的最大值为.【答案】4103/4310【解析】取平行四边形OACB ,连接OC设OA =a ,OB =b ,则OC =a +b ,因为向量a ,b 满足a +b ⋅b =0,所以a +b ⊥b ,即OC ⊥OB ,设OB =m ,OC =n ,m ,n >0,如图以O 为原点,OB ,OC 所在直线为x ,y 轴建立平面直角坐标系,则O 0,0 ,B m ,0 ,C 0,n ,A -m ,n 所以a =OA =-m ,n ,b =OB =m ,0 ,则a +4b =-m ,n +4m ,0 =3m ,n =9m 2+n 2=4,故9m 2+n 2=16,所以a +b +b =0,n +m ,0 =n +m因为9m 2+n 2=16,又sin 2θ+cos 2θ=1,可设3m =4sin θ,n =4cos θ,θ∈0,π2 即m =43sin θ,n =4cos θ,所以m +n =43sin θ+4cos θ=43 2+42sin θ+φ =4103sin θ+φ ,其中tan φ=443=3,φ∈0,π2 ,所以θ+φ∈0,π ,所以sin θ+φ ∈0,1 ,故m +n 的最大值为4103,即a +b +b 的最大值为4103.故选:4103.题型十二琴生不等式法1(2023·福建龙岩·高三校考阶段练习)若函数f x 的导函数f x 存在导数,记f x 的导数为f x .如果对∀x ∈a ,b ,都有f x <0,则f x 有如下性质:f x 1+x 2+⋅⋅⋅+x n n ≥f (x 1)+f (x 2)+⋅⋅⋅+f (x n )n.其中n ∈N *,x 1,x 2,⋯,x n ∈a ,b .若f x =sin x ,则在锐角△ABC 中,根据上述性质推断:sin A +sin B +sin C 的最大值为.【答案】332/323.【解析】f x =sin x ,则f (x )=cos x ,f (x )=-sin x .在锐角△ABC 中,A ,B ,C ∈0,π2,则f (x )=-sin x <0∴ sin A +sin B +sin C 3≤sin A +B +C 3 =sin π3=32,∴ sin A +sin B +sin C 的最大值为332.故答案为:332.2(2023·全国·高三竞赛)半径为R 的圆的内接三角形的面积的最大值是.【答案】334R 2【解析】设⊙O 的内接三角形为△ABC .显然当△ABC 是锐角或直角三角形时,面积可以取最大值(因为若△ABC 是钝角三角形,可将钝角(不妨设为A )所对边以圆心为对称中心作中心对称成为B C ).因此,S △AB C >S △ABC .下面设∠AOB =2α,∠BOC =2β,∠COA =2γ,α+β+γ=π.则S △ABC =12R 2sin2α+sin2β+sin2γ .由讨论知可设0<α、β、γ<π2,而y =sin x 在0,π 上是上凸函数.则由琴生不等式知sin2α+sin2β+sin2γ3≤sin 2α+β+γ 3=32.所以,S △ABC ≤12R 2×3×32=334R 2.当且仅当△ABC 是正三角形时,上式等号成立.故答案为334R 23(2023·北京·高三强基计划)已知正实数a ,b 满足a +b =1,求a +1a b +1b的最小值.【解析】设f (x )=ln x +1x ,0<x <1,则f (x )=x 2-1x 3+x,从而f (x )=-x 4+4x 2+1x 3+x2>0,故f (x )在(0,1)下凸,因此f (a )+f (b )2≥f a +b 2,即a +1a b +1b ≥254,当且仅当a =b =12时等号成立.所以a +1a b +1b的最小值为华254.。
湖北省武昌实验中学2022-2023学年高二上学期10月月考数学试题
湖北省武昌实验中学2022-2023学年高二上学期10月月
考数学试题
学校:___________姓名:___________班级:___________考号:___________
二、多选题
9.已知点(1,1)
P与直线:10
l x y
-+=,下列说法正确的是()A.过点P且截距相等的直线与直线l一定垂直
B.过点P且与坐标轴围成三角形的面积为2的直线有4条
(1)若圆C与y轴相切,求圆C的方程;
(2)当4
a=时,圆C与x轴相交于两点,
M N(点M在点N的左侧).问:是否存在圆
Ð=Ð?
222
:
+=,使得过点M的任一条直线与该圆的交点,A B,都有ANM BNM
O x y r
若存在,求出圆方程,若不存在,请说明理由.
.A
【分析】利用直线垂直的性质、直线的点斜式以及直线与圆上的点的位置关系进行求解
【详解】过点()
2,0
-且与直线20
x y
-=
垂直的直线为:。
省实中2020_2021学年2020_2021学年高一物理10月月考试题
黑龙江省省实中2020—2021学年2020-2021学年高一物理10月月考试题一、单选题1.下列情况中,能把研究对象视为质点的是( )A .研究国产大飞机“C919”转弯时机翼的倾斜角度B .用“抖音”拍摄、研究自由体操运动员在空中翻滚的动作C .研究高铁从昆明到大理的运行时间D .研究陀螺的转动2.由于疫情原因,2020年东京奥运会将延期举行举行,关于奥运会比赛的论述,下列说法正确的是( )A .运动员铅球成绩为12.50m,指的是铅球被抛出后运动的位移B .某场球比赛打了加时赛,共需10min ,指的是时刻C .运动员跑完800m 比赛,800m 指的是路程D .百米比赛中,一名运动员发现自己在“后退”,他是以大地为参考系3.如图所示,气垫导轨上滑块经过光电门时,其上的遮光条将光遮住,电子计时器可自动记录遮光时间Δt 。
测得遮光条的宽度为x ,用x t ∆∆近似代表滑块通过光电门时的瞬时速度.为使x t ∆∆更接近瞬时速度,正确的措施是_____A.换用宽度更窄的遮光条B.提高测量遮光条宽度的精确度C.使滑块的释放点更靠近光电门D.增大气垫导轨与水平面的夹角4.如图所示为物体做直线运动的v-t图象.若将该物体的运动过程用x-t图象表示出来(其中x为物体相对出发点的位移),则图中的四幅图描述正确的是()A.B.C.D.5.变速直线运动的物体,在下面所说的物体运动情况中,不可能出现的是()A.物体在某时刻运动速度很大,而加速度为零B.物体在某时刻运动速度很小,而加速度很大C.运动的物体在某时刻速度为零,而其加速度不为零D.加速度方向与运动方向相同,当物体加速度减小时,它的速度也减小6.如图所示,一个小球以速度v1=6m/s与墙碰撞,反弹的速度v2=4m/s,碰撞的时间为0.2s。
则小球与墙碰撞过程中的加速度,下列说法正确的是()A.加速度大小为10m/s2,方向与v1相同B.加速度大小为10m/s2,方向与v1相反C.加速度大小为50m/s2,方向与v1相同D.加速度大小为50m/s2,方向与v1相反7.由中国南车制造的CIT500型高铁,在15分钟内,速度由118km/h增加到了605km/h,打破了法国高速列车574。
2020-2021学年辽宁省实验中学高三(上)月考数学试卷(10月份)(附答案详解)
2020-2021学年辽宁省实验中学高三(上)月考数学试卷(10月份)一、单选题(本大题共10小题,共50.0分)1. 集合A ={x|y =√2x −1},B ={x|x 2−5x −6<0},则∁R (A ∩B)=( )A. {x|x <2或x >3}B. {x|x ≤2或x ≥3}C. {x|x <12或x ≥6}D. {x|x ≤12或x >6}2. 下列命题正确的是( )A. 若a <b ,则ac 2<bc 2B. 若a >b ,则1a <1b C. 若a >b ,c >d ,则ac >bdD. 若1ab 2<1a 2b ,则a <b3. 已知q :∀x ∈[−2,3),x 2<9,则¬q 为( )A. ∃x ∈[−2,3),x 2<9B. ∃x ∉[−2,3),x 2<9C. ∃x ∈[−2,3),x 2≥9D. ∃x ∉[−2,3),x 2≥94. 已知函数f(x)={(13)x ,x ≥3f(x +1),x <3,则f(2+log 32)的值为( )A. −227B. 154C. 227D. −545. 函数y =f(x +1)为偶函数且满足f(x)+f(−x)=0,x ∈[0,1]时,f(x)=x 3,则f(985)=( )A. 1B. −1C. 9853D. −98536. 甲、乙、丙三位同学被调查是否去过A 、B 、C 三个城市,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为( )A. AB. BC. CD. A 和B7. 已知函数f(x)=ln(e x +1)−12x ,下列选项正确的是( )A. 奇函数,在(−1,1)上有零点B. 奇函数,在(−1,1)上无零点C. 偶函数,在(−1,1)上有零点D. 偶函数,在(−1,1)上无零点8. 如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子,原高一丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.A. 5.45B. 4.55C. 4.2D. 5.89.下列命题正确的是()A. x+1x≥2恒成立B. √a2+4+1√a2+4的最小值为2C. m,n都是正数时,(m+1m )(n+1n)最小值为4D. a>0,b>0是b3a +3ab≥2的充要条件10.函数y=lncosx(−π2<x<π2)的图象是()A. B.C. D.二、多选题(本大题共2小题,共10.0分)11.为了了解市民对各种垃圾进行分类的情况,加强垃圾分类宣传的针对性,指导市民尽快掌握垃圾分类的方法,某市垃圾处理厂连续8周对有害垃圾错误分类情况进行了调查.经整理绘制了有害垃圾错误分类重量累积统计图,图中横轴表示时间(单位:周),纵轴表示有害垃圾错误分类的累积重量(单位:吨).根据图形分析,下列结论正确的是()A. 第1周和第2周有害垃圾错误分类的重量加速增长B. 第3周和第4周有害垃圾错误分类的重量匀速增长C. 第5周和第6周有害垃圾错误分类的重量相对第3周和第4周增长了30%D. 第7周和第8周有害垃圾错误分类的重量相对第1周和第2周减少了1.8吨12.已知当x>0时,f(x)=−2x2+4x,x≤0时,y=f(x+2),以下结论正确的是()A. f(x)在区间[−6,−4]上是增函数B. f(−2)+f(−2021)=2C. 函数y=f(x)周期函数,且最小正周期为2<k<4−2√2或k=2√2−4D. 若方程f(x)=kx+1恰有3个实根,则12三、单空题(本大题共4小题,共20.0分)13.命题“∃x∈R,2x2−3ax+9<0”为假命题,则实数a的取值范围为______.14.函数f(x)=x2sinx−2,则f(2021)+f(−2021)=______ .15.有一支队伍长L米,以一定的速度匀速前进,排尾的传令兵因传达命令赶赴排头,到达排头后立即返回,且往返速度不变,如果传令兵回到排尾后,整个队伍正好前进了L米,则传令兵所走的路程为______ .16.若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一个分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={−1,0,2}的不同分拆种数是______ .四、解答题(本大题共6小题,共70.0分)+a,x>−1}.17.已知集合A={x|y=log2(4−2x)+1},B={y|y=x+1x+1(1)求集合A和集合B;(2)若“x∈∁R B”是“x∈A”的必要不充分条件,求a的取值范围.18.已知函数f(x)=2(m+1)x2+4mx+2m−1.(Ⅰ)若m=0,求f(x)在[−3,0]上的最大值和最小值;(Ⅱ)若关于x的方程f(x)在[0,1]上有一个零点,求实数m的取值范围.19.已知函数f(x)为偶函数,x≥0时,f(x)=x2+4x.(1)求f(x)解析式;(2)若f(2a)<f(1−a),求a的取值范围.20.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A公司扩大生产提供x(x∈[0,10])(万元)的专项补贴,并以每套80元的价格收购其生产的全部防)(万护服.A公司在收到政府x(万元)补贴后,防护服产量将增加到t=k⋅(6−12x+4件),其中k为工厂工人的复工率(k∈[0.5,1]).A公司生产t万件防护服还需投入成本(20+9x+50t)(万元).(1)将A公司生产防护服的利润y(万元)表示为补贴x(万元)的函数(政府补贴x万元计入公司收入);(2)在复工率为k时,政府补贴多少万元才能使A公司的防护服利润达到最大?(3)对任意的x∈[0,10](万元),当复工率k达到多少时,A公司才能不产生亏损?(精确到0.01).21.已知函数f(x)=−x|x−2a|+1(x∈R).(1)当a=1时,求函数y=f(x)的零点;),求函数y=f(x)在x∈[1,2]上的最大值.(2)当a∈(0,3222.若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)−f(x2)|≤k|x1−x2|成立,则称函数f(x)在其定义域D上是“k−利普希兹条件函数”﹒(1)举例说明函数f(x)=log2x不是“2−利普希兹条件函数”;(2)若函数f(x)=√x(1≤x≤4)是“k−利普希兹条件函数”,求常数k的最小值;(3)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)−f(x2)|>k|x1−x2|成立,则称函数f(x)在其定义域D上是“非k−利普希兹条件函数”.若函数f(x)=log2(2x−a)为[1,2]上的“非1−利普希兹条件函数”,求实数a的取值范围.答案和解析1.【答案】C【解析】解:集合A={x|y=√2x−1}={x|x≥12},B={x|x2−5x−6<0}={x|−1< x<6},所以A∩B={x|12≤x<6},则∁R(A∩B)={x|x<12或x≥6}.故选:C.先求出集合A,B,然后利用集合交集与补集的定义求解即可.本题考查了集合的运算,主要考查了集合交集与补集定义的运用,涉及了函数定义域的求解以及一元二次不等式的解法,属于基础题.2.【答案】D【解析】解:对于A,若c=0,则ac2=bc2,故A错误;对于B,若a>0>b,则1a >1b,故B错误;对于C,若a>b,c>d,取a=2,b=1,c=−1,d=−2,此时ac=bd,故C错误;对于D,若1ab2<1a2b,则a2b2>0,所以a2b2⋅1ab2<a2b2⋅1a2b,即a<b,故D正确.故选:D.由不等式的性质逐一判断即可.本题主要考查不等式的基本性质,考查逻辑推理能力,属于基础题.3.【答案】C【解析】解:命题q:∀x∈[−2,3),x2<9,则¬q:∃x∈[−2,3),x2≥9.故选:C.根据全称命题的否定是存在量词命题,写出对应的命题即可.本题考查了全称命题的否定是存在量词命题应用问题,是基础题.4.【答案】B【解析】解:∵2+log 31<2+log 32<2+log 33,即2<2+log 32<3 ∴f(2+log 32)=f(2+log 32+1)=f(3+log 32) 又3<3+log 32<4∴f(3+log 32)=(13)3+log 32=(13)3×(13)log 32=127×(3−1)log 32=127×3−log 32=127×3log 312=127×12=154∴f(2+log 32)=154故选B先确定2+log 32的范围,从而确定f(2+log 32)的值本题考查指数运算和对数运算,要求能熟练应用指数运算法则和对数运算法则.属简单题5.【答案】A【解析】解:根据题意,函数y =f(x +1)为偶函数,则f(x)的图象关于直线x =1对称,则有f(−x)=f(x +2),又由f(x)满足f(x)+f(−x)=0,即f(−x)=f(x +2), 则有f(x +2)=−f(x),综合可得:f(x +4)=−f(x +2)=f(x),f(x)是周期为4的函数, 则f(985)=f(1+4×246)=f(1)=1, 故选:A .根据题意,分析可得f(x +4)=f(x),则f(x)是周期为4的函数,据此可得f(985)=f(1),结合函数的解析式计算可得答案.本题考查函数的奇偶性的性质以及应用,涉及函数的周期性,属于基础题.6.【答案】A【解析】解:由乙说:我没去过C 城市,则乙可能去过A 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B 城市,则乙只能是去过A ,B 中的任一个, 再由丙说:我们三人去过同一城市, 则由此可判断乙去过的城市为A . 故选:A .可先由乙推出,可能去过A 城市或B 城市,再由甲推出只能是A ,B 中的一个,再由丙即可推出结论.本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.7.【答案】D【解析】解:根据题意,函数f(x)=ln(e x +1)−12x =ln(√e x+1√ex),其定义域为R ,有f(−x)=ln(√e x+1√ex)=f(x),即函数f(x)为偶函数,设t =√e x+1√ex ,在区间[0,1)上,t =√e x+1√ex>2且是增函数,而y =lnt ,在(2,+∞)上为增函数,则f(x)在区间[0,1)上为增函数,又由f(0)=ln2>0,则在区间[0,1)上,f(x)≥f(0)>0恒成立,故f(x)在区间[0,1)上没有零点,又由f(x)为偶函数,则f(x)在(−1,1)上无零点; 故选:D .根据题意,先分析函数的奇偶性,再设t =√e x+1√ex,则y =lnt ,利用复合函数的单调性判断方法可得f(x)在区间[0,1)上为减函数,求出f(1)的值,分析可得区间[0,1)上没有零点,结合函数的奇偶性分析可得答案.本题考查函数奇偶性的性质以及应用,涉及函数零点的判断,属于基础题、8.【答案】B【解析】解:如图,已知AC +AB =10(尺),BC =3(尺),AB 2−AC 2=BC 2=9,所以(AB +AC)(AB −AC)=9,解得AB −AC =0.9, 因此{AB +AC =10AB −AC =0.9,解得{AB =5.45AC =4.55,故折断后的竹干高为4.55尺,故选:B.由题意可得AC+AB=10(尺),BC=3(尺),运用勾股定理和解方程可得AB,AC,即可得到所求值.本题考查三角形的勾股定理的运用,考查方程思想和运算能力,属于基础题.9.【答案】C【解析】解:x+1x≥2恒成立,不成立,因为x可以小于0,所以A不正确;√a2+4√a2+4的最小值大于2,所以B不正确;m,n都是正数时,(m+1m )(n+1n)≥2√m⋅1m⋅2⋅√n⋅1n=4,当且仅当m=n=1,表达式取得最小值为4,所以C正确;a>0,b>0是b3a +3ab≥2的充分不必要条件,所以D不正确;故选:C.利用基本不等式,判断选项的正误即可.本题考查命题的真假的判断与应用,基本不等式的应用,是基础题.10.【答案】A【解析】【分析】本题主要考查复合函数的图象识别.属于基础题.利用函数y=lncosx(−π2<x<π2)的奇偶性可排除一些选项,利用函数值与0的关系可排除一些选项.从而得以解决.【解答】解:∵cos(−x)=cosx,∴y=lncosx(−π2<x<π2)是偶函数,可排除B、D,由cosx≤1⇒lncosx≤0排除C,故选:A.11.【答案】ABD【解析】对于A ,第1周和第2周有害垃圾错误分类的重量明显增多,是加速增长,故A 正确;对于B ,第3周和第4周有害垃圾错误分类的重量图象是线段,是匀速增长,故B 正确; 对于C ,第5周和第6周有害垃圾错误分类的重量相对第3周和第4周是减少,故C 错误;对于D ,第7周和第8周有害垃圾错误分类的重量增长0.6吨, 第1周和第2周有害垃圾错误分类的重量增长2.4吨,∴第7周和第8周有害垃圾错误分类的重量相对第1周和第2周减少了1.8吨,故D 正确. 故选:ABD .由分段函数图象,能够读出各段上y 对于x 变化状态,由此能求出结果.本题考查命题真假的判断,考查折线图等基础知识,考查运算求解能力、数据分析能力等数学核心素养,是基础题.12.【答案】BD【解析】解:x ≤0时,y =f(x +2),∴f(x)在x ≤0时的图象以2为周期进行循环,如下图所示,由图象可知,f(x)在区间[−6,−4]上先增后减,所以A 错误; f(−2)+f(−2021)=f(0)+f(1)=0+2=2,所以B 正确;当x >0时,f(x)=−2x 2+4x ,f(3)≠f(1),所以y =f(x)不是以2为周期的周期函数,所以C 错误;y =kx +1恒过(0,1),由图象可知,直线与f(x)交点只可能在x ∈(−2,0)或x ∈(0,+∞)处取到,x ∈(−2,0)时,f(x)=−2x 2−4x ,∴{−k =2x +1x +4,−2<x <0−k =2x +1x −4,x >0,即y =−k 和g(x)={2x +1x +4,−2<x <02x +1x−4,x >0交点个数为3,画出g(x)图象,如下图所示,x ∈(−2,0)时,g(x)最大值为4−2√2,g(−2)=−12,x ∈(0,2)时,g(x)最小值为2√2−4, ∴y =−k 和y =g(x)要有3个交点,满足−k =4−2√2或2√2−4<−k <−12, 解得12<k <4−2√2或k =2√2−4,所以D 正确. 故选:BD .画出图象,即可判断A ;由x >0时,f(x)=−2x 2+4x ,x ≤0时,y =f(x +2),即可判断BC ;参变分离得{−k =2x +1x +4,−2<x <0−k =2x +1x −4,x >0,即可判断D . 本题考查了函数的图象与性质,函数零点问题,D 选项较难下手,属于难题.13.【答案】[−2√2,2√2]【解析】解:原命题的否定为“∀x ∈R ,2x 2−3ax +9≥0”,且为真命题, 则开口向上的二次函数值要想大于等于0恒成立, 只需△=9a 2−4×2×9≤0,解得:−2√2≤a ≤2√2. 故答案为:[−2√2,2√2]根据题意,原命题的否定“∀x ∈R ,2x 2−3ax +9≥0”为真命题,也就是常见的“恒成立”问题,只需△≤0.存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.14.【答案】−4【解析】解:根据题意,函数f(x)=x2sinx−2,则f(−x)=−x2sinx−2,则f(x)+f(−x)=−4,则有f(2021)+f(−2021)=−4,故答案为:−4.根据题意,求出f(−x)的解析式,分析可得f(x)+f(−x)=−4,据此分析可得答案.本题考查函数值的计算,涉及函数奇偶性的性质以及应用,属于基础题.15.【答案】(√2+1)L.【解析】解:设传令兵的速度为V1,队伍的速度为V2,传令兵从队尾到队头的时间为t1,从队头到队尾的时间为t2,队伍前进用时间为t.由传令兵往返总时间与队伍运动时间相等可得如下方程:t=t1+t2,即:LV2=LV1−V2+LV1+V2整理上式得:V12−2V1V2−V22=0解得:V1=(√2+1)V2;将上式等号两边同乘总时间t,即V1t=(√2+1)v2tV1t即为传令兵走过的路程S1,V2t即为队伍前进距离S2,则有S1=(√2+1)S2=(√2+1)L.故答案为:(√2+1)L.以队伍为参照物,可求传令兵从队尾往队头的速度,从队头往队尾的速度,利用速度公式求传令兵从队尾到队头的时间t1,传令兵从队头到队尾的时间为t2,队伍前进100用的时间t,而t=t1+t2,据此列方程求出V1、V2的关系,进而求出在t时间内通讯员行走的路程.本题考查路程的计算,关键是计算向前的距离和向后的距离,难点是知道向前的时候人和队伍前进方向相同,向后的时候人和队伍前进方向相反,解决此类问题常常用到相对运动的知识.16.【答案】27【解析】解:因为集合A中有三个元素,当A1=⌀时,必须A2=A,分拆种数为1;当A1有一个元素时,分拆种数为C31⋅2=6;当A1有2个元素时,分拆种数为C32⋅22=12;当A1=A时,分拆种数为C33⋅23=8.所以总的不同分拆种数为1+6+12+8=27种.故答案为:27.由题意中的定义,分A1=⌀,A1有一个元素,A1有2个元素,A1=A四种情况,分别求出分拆种数,即可得到答案.本题考查了新定义问题,解决此类问题,关键是读懂题意,理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答即可,属于中档题.17.【答案】解:(1)集合A={x|y=log2(4−2x)+1}={x|4−2x>0}={x|x<2},B={y|y=x+1x+1+a,x>−1}={x|x+1+1x+1+a−1≥2√(x+1)⋅1x+1+a−1=a+1}={x|x≥a+1}.(2)∵集合A={x|x<2},B={x|x≥a+1}.∴∁U B={x|x<a+1},∵“x∈∁R B”是“x∈A“的必要不充分条件,∴x<2⇒x<a+1,∴a+1>2,解得a>1.∴a的取值范围是(1,+∞).【解析】(1)利用对数函数的定义域能求出集合A,利用均值定理能求出集合B.(2)推导出x<2⇒x<a+1,由此能求出a的取值范围.本题考查集合、实数的取值范围的求法,对数函数的定义域、均值定理、必要不充分条件等基础知识,考查运算求解能力,是基础题.18.【答案】解:(1)当m =0时,f(x)=2x 2−1,可知函数f(x)图象在[−3,0]上单调递减,∴f(x)min =f(0)=−1,f(x)max =f(−3)=17;(2)由f(0)=0得m =12.由f(1)=0得m =−18≠12,∴m =12或−18成立; 由f(0)f(1)<0得(2m −1)(8m +1)<0,解得:−18<m <12; 综上:满足条件的m 的取值范围是:[−18,12].【解析】(1)结合函数f(x)图象可求f(x)在[−3,0]上的最大值和最小值; (2)根据f(0)f(1)<0,再验证f(0)=0及f(1)=0,可求得m 范围. 本题考查二次函数图象性质,考查数学运算能力,属于中档题.19.【答案】解:(1)根据题意,设x <0,则−x >0,则有f(−x)=x 2−4x ,又由f(x)为偶函数,则f(x)=f(−x)=x 2−4x , 则f(x)={x 2+4x,x ≥0x 2−4x,x <0;(2)由函数f(x)为偶函数可知f(2a)<f(1−a)⇔f(|2a|)<f(|1−a|),由(1)知函数f(x)在[0,+∞)上是增函数,∴|2a|<|1−a|,得(2a)2<(1−a)2,解得:a ∈(−1,13).【解析】(1)令x >0,则−x <0,再根据函数为偶函数可求得解析式;(2)由函数f(x)为偶函数可知f(2a)<f(1−a)⇔f(|2a|)<f(|1−a|),可求得a 的取值范围.本题考查函数奇偶性的性质以及应用、函数解析式求法、考查数学运算能力及数学抽象能力,属于中档题.20.【答案】解:(1)y =x +80t −(20+9x +50t)=30t −20−8x =30k ⋅(6−12x+4)−20−8x =180k −360k x+4−8x −20,x ∈[0,10];(2)y=180k−360kx+4−8x−20=180k+12−8[(x+4)+45kx+4],因为x∈[0,10],所以4≤x+4≤14,则(x+4)+45kx+4≥6√5√k,当且仅当x+4=45kx+4,即x=3√5√k−4时取“=”,因为k∈[0.5,1],则3√102−4≤3√5√k−4≤3√5−4,即有3√5√k−4∈[0,10],所以y≤180k+12−48√5√k,即当政府补贴为3√5√k−4万元才能使A公司的防护服利润达到最大,最大为180k+ 12−48√5√k;(3)若对任意的x∈[0,10],公司都不产生亏损,则180k−360kx+4−8x−20≥0在x∈[0,10]恒成立,即180k≥(8x+20)(x+4)x+2,记m=x+2,则m∈[2,12],此时(8x+20)(x+4)x+2=(8m+4)(m+2)m=8m2+20m+8m=8m+8m+20,由于函数f(m)=8m+8m+20在[2,12]单调递增,所以当m∈[2,12]时,f max(m)=f(12)=11623,∴k≥1162 3180≈0.65即k≥0.65,即当工厂工人的复工率达到0.65时,对任意的x∈[0,10],公司都不产生亏损.【解析】(1)利用已知条件列出函数的解析式,写出定义域即可.(2)由y的解析式得到y=180k+12−8[(x+4)+45kx+4],根据x的范围得到(x+4)+45k x+4≥6√5√k,结合k的范围可得3√102−4≤3√5√k−4≤3√5−4,即可求得答案(3)若对任意的x∈[0,10],公司都不产生亏损,得到180k−360kx+4−8x−20≥0在x∈[0,10]恒成立,利用换元法,结合函数的单调性求解函数的最值即可得到结果.本题考查实际问题的处理方法,函数的单调性以及函数的解析式的求法,考查转化思想以及计算能力,是中档题.21.【答案】解:(1)当a=1时,令−x|x−2|+1=0.当x≥2时,−x(x−2)+1=0,解得:x=1+√2;当x<2时,−x(x−2)+1=0,解得:x=1.故函数零点为:1+√2和1;(2)f(x)={−x 2+2ax +1,x ≥2ax 2−2ax +!,x <2a ,其中f(0)=f(2a)=1,于是最大值在f(1),f(2),f(2a)中取.得0<2a ≤1,即0<a ≤12时,f(x)在[1,2]上单调递减.∴f(x)max =f(1)=2a ; 当a <1<2a <2,即12<a <1时,f(x)在[1,2a]上单调递增,在[2a,2]上单调递减,故f(x)max =f(2a)=1;当1≤a <2<2a ,即1≤a <2时,f(x)在[1,a]上单调递减,在[a,2]上单调递增,故f(x)max =max{f(1),f(2)},∵f(1)−f(2)2a −3<0,故f(x)max =f(2)=5−4a .综上:f(x)max={2a,0<a ≤12,1,12<a <1,5−4a,1≤a <32..【解析】(1)求函数零点转化为解方程可解决此问题; (2)根据a 讨论函数图象,根据图象特点可求函数最大值. 本题考查函数零点与最值,考查数学运算能力,属于难题.22.【答案】解:(1)f(x)=log 2x 的定义域为(0,+∞),令x 1=12,x 2=14,则f(12)−f(14)=log 212−log 214=−1−(−2)=1, 而2|x 1−x 2|=12,∴f(x 1)−f(x 2)>2|x 1−x 2|,∴函数f(x)=log 2x 不是“2−利普希兹条件函数”;(2)若函数f(x)=√x(1≤x ≤4)是“k −利普希兹条件函数”,则对于定义域[1,4]上任意两个x 1,x 2(x 1≠x 2),均有|f(x 1)−f(x 2)|≤k|x 1−x 2|成立,不妨设x 1>x 2,则k ≥√x 1−√x 2x 1−x2=√x +√x 恒成立,∵1≤x 2<x 1≤4, ∴14<√x +√x <12,∴k 的最小值为12;(3)∵|f(x 1)−f(x 2)|>k|x 1−x 2|,f(x)=log 2(2x −a)为[1,2]上的“非1−利普希兹条件函数”,∴设x 1>x 2,则|log 2(2x 1−a)−log 2(2x 2−a)|>|x 1−x 2|,∵2x1−a>0,2x2−a>0,且2x1−a2x2−a>1,∴2x1−a2x2−a >2x1−x2=2x12x2,∴2x1+x2−a⋅2x2>2x1+x2−a⋅2x1,∴a⋅2x1>a⋅2x2,∵x1>x2,∴a>0,∵2x−a>0,∴a<2x,∵x∈[1,2],∴a<2,综上,实数a的取值范围为(0,2).【解析】(1)令x1=12,x2=14,即可说明f(x)=log2x不是“2−利普希兹条件函数”;(2)依题意,k≥√x1−√x2x1−x2=√x+√x恒成立,而14<√x+√x<12,由此可得k的最小值;(3)由题意可得,a⋅2x1>a⋅2x2,结合x1>x2,可得a>0,由2x−a>0,x∈[1,2],可得a<2,综合即得答案.本题以新定义为背景,考查函数性质的运用,考查不等式的恒成立问题,考查分离变量法以及运算求解能力,属于中档题.。
湖北省武汉市部分学校2020-2021学年上学期高一10月联考数学试卷+PDF版含答案
A.(a+b)2≥4ab
B.当 a=b 时,A1,B1,C1,D1 四点重合 C.(a-b)2≤4ab
D.(a+b)2>(a-b)2
⒓下列命题正确的是( )
A. a R,x R ,使得 ax 2
C.
是
的必要不充分条件
B. 若 c>a>b>0,则 a b ca cb
D.若 a≥b>-1,则
三、填空题(本大题共 4 小题,每小题 5 分,共 20 分。请将答案填在答.题.卡.对.应.题.号.的位置上。答错位置, 书写不清,模棱两可均不得分。)
∴ y 200 x2 4x
………………3'
S= 4200x2 210 4xy 1 y2 4 80 …………6' 2
38000
4000 x 2
400000 x2
…………………8'
38000 2
4000 x 2
400000 x2
118000
………10'
当且仅当 x= 10 时,等号成立。 ………………11'
A.3 B. 4
C. 7
D.8
⒊
已知集合 C
(x, y) y x ,集合
D
( x,
y)
2x x 4
y y
1 5
,则下列正确的是(
)
A. C D B. C D
C. C D
D. D C
⒋已知 t a 4b , s a b2 4 ,则 t 和 s 的大小关系是( )
A. t s
1 4
,
4
……………………12'
⒚ (本小题 12 分)某商品每件成本价 80 元,售价 100 元时,每天售出 100 件.若售价降低 x 成(1
2021届高一上学期 第一学期10月月考(10月份月考)(word含答案版)
高一上学期第一学期10月月考第Ⅰ卷(选择题共40分)本卷共20小题,每小题2分。
在每小题列出的四个选项中,选出符合题目答案的一项。
可能用到的相对原子质量:Na 23 H 1 O 16 C 121. (2020·福建惠安中学月考)用下图表示的一些物质或概念间的从属关系不正确的是( )2.在①化合反应②分解反应③置换反应④复分解反应四种基本反应类型中,可以生成水的是( )A.只有②③B.只有①④C.只有①②④D.①②③④3.(2020·武汉期末)磁流体是电子材料的新秀,它既具有固体的磁性,又具有液体的流动性。
磁流体的分散质粒子直径在5.5~36nm之间。
下列说法正确的是( )A.所得的分散系属于悬浊液B.该分散系能产生丁达尔效应C.所得的分散系中水是分散质D.将所得分散系过滤,在滤纸上能得到分散质4.下列离子能大量共存的是( )A.使无色酚酞溶液呈红色的溶液中:Na+、K+、SO2-4、CO2-3B.无色透明的溶液中:Cu2+、K+、SO2-4、NO-3C.含有大量Ba(NO3)2的溶液中:Mg2+、NH+4、SO2-4、Cl-D.使紫色石蕊溶液呈红色的溶液中:Na+、K+、CO2-3、NO-35.下列离子方程式正确的是( )A.二氧化碳与足量澄清石灰水反应:CO2+2OH-===CO2-3+H2OB.将稀硫酸滴在铜片上:Cu+2H+===Cu2++H2↑C.碳酸氢钠溶液与稀H2SO4反应:CO2-3+2H+===H2O+CO2↑D.氯化镁溶液与氢氧化钠溶液反应:Mg2++2OH-===Mg(OH)2↓6.对四组无色透明溶液进行离子检验,四位同学各鉴定一组,他们的实验报告的结论如下,其中可能正确的是( )A.MnO-4、K+、S2-、Na+B.Mg2+、NO-3、OH-、Cl-C.K+、H+、Cl-、CO2-3D.Na+、OH-、Cl-、NO-37.按照物质的组成和性质进行分类,HNO3应属于①酸②氧化物③无氧酸④挥发性酸⑤化合物⑥混合物⑦纯净物⑧一元酸A.③④⑤⑦ B.②③④⑤ C.①④⑤⑦⑧ D.②⑤⑥⑦⑧8.下列化学反应中,不.属于氧化还原反应的是A.Cl2+H2O == HCl+HClO B.C +2H2SO4(浓)∆==CO2↑+ 2SO2↑+ 2H2OC.NH4Cl ∆== NH3↑+ HCl↑ D.2Al + Fe2O3高温==== 2Fe + Al2O39. 下列操作过程中一定有氧化还原反应发生的是10. 下列基本反应类型中,一定是氧化还原反应的是A. 复分解反应B.分解反应C.化合反应D. 置换反应11.右图为反应Fe + CuSO4 === Cu + FeSO4中电子转移的关系图,则图中的元素甲、乙分别表示A.Fe,SB.Fe,CuC.Fe,OD.Cu,S12.下列关于分散系的说法正确的是A. 稀硫酸、盐酸、空气和水等都是分散系B. 区分溶液和浊液一般用丁达尔现象C. 分散系中分散质粒子直径由大到小的顺序是:浊液、胶体、溶液D. 按稳定性由弱到强的顺序排列的是溶液、胶体、浊液(以水为分散剂时)13. 某一化学兴趣小组的同学在家中进行实验,按照图示连接好线路,发现图B中的灯泡亮了。
湖北省武昌实验中学2023届高考适应性考试数学试题
湖北省武昌实验中学2023届高考适应性考试数学试题学校:___________姓名:___________班级:___________考号:___________四、双空题16.如图,点P 是半径为2的圆O 上一点,现将如图放置的边长为2的正方形ABCD(顶点A 与P 重合)沿圆周逆时针滚动.若从点A 离开圆周的这一刻开始,正方形滚动至使点A 再次回到圆周上为止,称为正方形滚动了一轮,则当点A 第一次回到点P 的位置时,正方形滚动了________轮,此时点A 走过的路径的长度为___________.(1)在平面PAB内能否作一条直线与平面若不能,请说明理由;(2)若13PEPB=时,求直线AE与平面PBC20.2019年10月,工信部颁发了国内首个基站设备将正式接入公用电信商用网络.1(2)若0x³时,()³-恒成立,求实数a的取值范围.()31cosf x a x【分析】(1)过E作//EF AB,交棱PA于F,由AB^平面PAD可知EF^平面PAD;(2)以O为坐标原点,OA所在直线为x轴,OM所在直线为y轴,OP所在直线为z轴,建立空间直角坐标系,利用向量法求解.【详解】(1)过E作//EF AB,交棱PA于F,EF为所求作的直线,因为平面PAD^平面ABCD,且AB AD^,所以AB^平面PAD,又因为//EF AB,所以EF^平面PAD.(如证明AB^平面PAD、或寻找PB上任意一点作平行线、垂线都可)(2)取AD中点O,BC中点M,连接OM,则OM^平面PAD,以O为坐标原点,OA所在直线为x轴,OM所在直线为y轴,OP所在直线为z轴,建立空间直角坐标系.x 0.002x。
湖北湖北省武昌实验中学高一上册 物理10月月质量检测考试总结整理附答案解析
湖北湖北省武昌实验中学高一上册 物理10月月质量检测考试总结整理附答案解析一、选择题1.下列说法中正确的是A .平时我们问“现在什么时间?”里的“时间”是指时刻而不是指时间间隔B .“坐地日行八万里”是以地球为参考系C .研究短跑运动员的起跑姿势时,由于运动员是静止的,所以可以将运动员看做质点D .对直线运动的某个过程,路程一定等于位移的大小2.如图所示,一物块置于水平地面上.当用与水平方向成060角的力1F 拉物块时,物块做匀速直线运动;当改用与水平方向成030角的力2F 推物块时,物块仍做匀速直线运动.若1F 和2F 的大小相等,则物块与地面之间的动摩擦因数为A .31-B .23-C .312-D .1-323.在某次检测国产某品牌汽车的刹车性能时,通过传感器发现踩下刹车后,汽车的位移与时间的关系满足2305x t t =-,则关于该次测试,下列说法正确的是A .汽车4s 内的位移是40mB .汽车的加速度是﹣5m/s 2C .汽车的初速度是20m/sD .汽车刹车2s 后的速度是10m/s 4.如图所示,用水平力去推静止在水平地面上的大木箱, 没有推动。
关于木箱受到的推力和摩擦力,下列说法正确的是A .推力和摩擦力大小相等B .推力小于摩擦力C .推力和摩擦力方向相同D .推力大于摩擦力5.一辆汽车由静止开始做匀速直线运动,从开始运动到驶过第一个100m 距离时,速度增加了10m/s ,汽车驶过第二个100m 时,速度的增加量是A .4.1m/sB .8.2m/sC .10m/sD .20m/s6.下列说法正确的是A .竖直上抛物体到达最高点时,速度为零,物体处于平衡状态B .人站在电梯中随电梯一起运动时,当电梯减速下降时,电梯对人的支持力大于人的重力C .跳水运动员踩压跳板弯曲到最低点时,运动员对跳板的压力由跳板发生形变而产生D .惯性是由物体的速度和质量共同决定的7.一辆汽车由车站开出,沿平直公路做初速度为零的匀变速直线运动,至第10 s 末开始刹车,再经5 s 便完全停下.设刹车过程汽车也做匀变速直线运动,那么加速和减速过程车的加速度大小之比是 A .1∶2B .2∶1C .1∶4D .4∶1 8.下列情况中的运动物体,不能被看作质点的是 A .欣赏某位舞蹈演员的舞姿B .用GPS 确定远洋海轮在大海中的位置C .天文学家研究地球的公转D .计算男子400米自由泳金牌得主孙杨的平均速度9.一物体在地面以速度为 v 向上竖直上抛,不计空气阻力,经过 t 时间到最高点,上升高度为 h ,则A .物体通过前半程和后半程所用时间之比为 1:(21 )B .物体通过2h 处的速度为 2v C .物体经过 2t时的速度为2v D .物体经过前 2t 和后 2t 的位移之比为 1:310.在研究物体的运动时,力学中引入“质点”的概念,从科学方法上来说属于( ) A .极限分析物理问题的方法B .观察实验的方法C .等效替代的方法D .建立理想物理模型的方法11.关于位移和路程,下列说法中正确的是A .位移与路程都用来反映运动的路径长短B .在单向直线运动中位移就是路程C .某一运动过程中位移大小可能大于路程D .位移既有大小又有方向,路程只有大小没有方向12.如图所示,一个大人(甲)跟一个小孩(乙)站在水平地面上手拉手比力气,结果大人把小孩拉过来了.对这个过程中作用于双方的力的关系,下列说法正确的是A .大人拉小孩的力一定比小孩拉大人的力大B .只有在大人把小孩拉动的过程中,大人的力才比小孩的力大,在可能出现的短暂相持过程中,两人的拉力一样大C .大人拉小孩的力与小孩拉大人的力大是一对平衡力D .大人拉小孩的力与小孩拉大人的力大小一定相等13.在变速直线运动中,下面关于速度和加速度关系的说法,正确的是( )A .物体速度变化得越快,加速度一定越大B .速度越大的物体,运动的加速度一定越大C .物体速度的方向和加速度的方向一定相同D .物体速度为零,加速度也一定为零14.一个做匀减速直线运动的物体,先后经过a 、b 两点时的速度大小分别是4v 和v ,所用时间是t ,下列判断正确的是( )A .物体的加速度大小为5v tB .经过ab 中点时的速率是2.5vC .在2t 时刻的速率是17vD .0﹣﹣2t 时间内发生的位移比2t ﹣﹣t 时间内位移大34vt 15.一汽车从静止开始做匀加速直线运动,然后刹车做匀减速直线运动,直到停止.下列速度v 和位移x 的关系图象中,能描述该过程的是( )A .B .C .D .16.汽车以20m/s 的速度在平直公路上行驶,急刹车时的加速度大小为25m/s ,则自驾驶员急踩刹车开始, 2s 与5s 时汽车的位移之比为( )A .5:4B .4:5C .3:4D .4:317.如图所示,足球迎面撞上运动员的脸部,下列说法中错误..的是A .由于运动员的脸部形变,它对运动员脸部产生弹力B.发生撞击时,足球的形变越明显说明产生弹力越大C.由于足球的形变,它对运动员脸部产生弹力D.足球与运动员脸部之间产生弹力的前提是它们相互接触18.如图所示,质量分别为m1和m2的木块A和B之间用轻质弹簧相连,在拉力F作用下,竖直向上做匀速直线运动.某时刻突然撤去拉力F,撤去F后的瞬间A和B的加速度大小为a A和a B,则A.a A=0,a B=gB.a A=g,a B=gC.a A=0,a B=122m mgm+D.a A=g,a B=122m mgm+19.下列速度表示平均速度的是()A.子弹射出枪口时的速度是800/m sB.汽车速度计某时刻的读数是90/km hC.运动员冲过终点时的速度是10/m sD.台风中心以25 /km h的速度向沿海海岸移动20.甲、乙两人发生争执,甲打了乙的胸口一拳致使乙受伤.法院判决甲应支付乙的医药费.甲辩解说:“我打乙一拳,根据作用力与反作用力相等,乙对我也有相同大小的作用力,所以乙并没有吃亏.”那么这一事件判决的依据是A.甲打乙的力大于乙对甲的作用力,故判决甲支付乙的医药费B.甲打乙的力等于乙对甲的力,但甲的拳能承受的力大于乙的胸能承受的力,乙受伤而甲未受伤,甲主动打乙,故判决甲支付乙的医药费C.甲打乙的力大于乙对甲的力,甲的拳和乙的胸受伤害程度不相同,甲轻而乙重,故判决甲支付乙的医药费D.由于是甲用拳打乙的胸,甲对乙的力远大于乙胸对甲拳的作用力,故判断甲支持乙的医药费二、多选题21.从离地H高处自由下落小球a,同时在它正下方H处以速度v竖直上抛另一小球b,不计空气阻力,以下说法正确的()A.若v gH>b在上升过程中与a球相遇B.若v gH<b在下落过程中肯定与a球相遇C .若02gH v =,小球b 和a 不会在空中相遇 D .若0v gH =,两球在空中相遇时b 球速度为零。
2020-2021学年高一10月月考数学试题济南市邹城第一中学答案及解析
14.命题“ , ”为假命题,则实数 的取值范围为.
15.设p:(4x-1)2<1,q:x2-(2a+1)x+a(a+1)≤0.若¬p是¬q 必要不充分条件,则实数a的取值范围为.
16.集合 ,集合 ,下列 , 间的关系:①A为B的真子集;②B为A的真子集;③ ,其中正确的是.(填写相应序号)
A. R, B. R, C. R, D. R,
【答案】D
【解析】
【分析】
利用全称命题的否定是特称命题分析解答.
【详解】由题得命题“ R, ”的否定是“ R, ”.
故答案为D
【点睛】本题主要考察全称命题和特称命题的否定,意在考察学生对这些基础知识的理解和掌握水平.
3.设甲是乙的充分不必要条件,乙是丙的充要条件,丙是丁的必要不充分条件,那么丁是甲的()
A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件
【答案】D
【解析】
【分析】
根据条件可得甲 乙 丙 丁,然后可分析出答案.
【详解】由甲 乙 丙 丁,可知丁推不出甲,甲推不出丁,所以丁是甲的既不充分也不必要条件
故选:D
【点睛】本题考查的是充分条件、必要条件的判断,属于基础题.
4.已知集合 ,定义 ,则集合 的所有真子集的个数为( )
9.已知全集 , 或 , ,且 ,则实数 的取值范围可以是()
A. B. C. D.
10.下列关于二次函数 的说法正确的是()
A. , B. , ,
C. , , D. ,
11.已知集合 , ,若 ,则 的取值为()
A. B. C.0D.1
12.如图所示,阴影部分表示的集合是()
A. B.
C. D.
湖北省武昌实验中学2023-2024学年高一上学期10月月考英语试题
湖北省武昌实验中学2023-2024学年高一上学期10月月考英语试题学校:___________姓名:___________班级:___________考号:___________一、阅读理解While attractions like the Shard and the London Eye offer excellent perspectives, they’re always busy and ticket prices are steep. But with a little insider knowledge, you can save your pounds and bag your skyline photos without the crowds through accessing the following viewpoints.Parliament HillLondon is mostly flat, but if you know where to look there are a few hills that provide natural (and free) high points offering city views with a side order of fresh air.One of the most central is Parliament Hill on Hampstead Heath——at 98m, one of London’s highest natural viewpoints. From here, on a clear day, you can sit on the park bench that featured in movies like Run Fatboy Run and Notes on a Scandal.Entry fee: freeThe Garden Museum TowerIf you exit left out of Westminster station, battle your way over the bridge and then turn right, past the view of Big Ben and walk along the south side of the Thames, you’ll come to a medieval (中世纪的) church.While you might be interested in British garden design, it’s the 14th-Century tower that’s the main attraction for photographers. Climb the 131 steps of the narrow spiral staircase and you’ll emerge onto one of the finest riverside viewpoints in the city——with views across to the Palace of Westminster on the right.Entry fee: Adult f16, or Tower only 4The IFS Cloud Cable CarIf you want to soar over London in a glass pod, the obvious place to go is the London Eye. But a cheaper and crowd-free alternative is to ride the IFS Cloud Cable Car.The views are impressive at any time, but the Cable Car stays open late, so you can even enjoy magnificent sunsets from the west——facing side or admire the twinkling city lights after dark.Entry fee: E6 one-waySeabird, SouthwarkLondon has no shortage of rooftop venues (场所) offering knockout cityscape views, so it can be hard to pick just one or two. But for location, angles and a great experience, it doesn’t get much better than Seabird, on the 14th floor of the Hoxton hotel in Southwark with nothing to block views on three sides.Entry fee: Buy a drink: draught beer costs ₤6.50 or small glass of wine is ₤9; a portion of olives costs₤5.1.Where can you go if you want to photograph the 14th-Century tower?A.The London Eye.B.The south side of the Thames.C.The rooftop venues.D.A place near St Paul’s Cathedral.2.In which viewpoint can you just buy a drink and enjoy free city views?A.Parliament Hill.B.The Garden Museum Tower.C.The IFS Cloud Cable Car.D.Seabird, Southwark.3.What do the 4 viewpoints have in common?A.They are free.B.They are well-known.C.They are not crowded.D.They are not cheap.In casual conversations, there is a seemingly simple question I can never answer without hesitating — “Where are you from?”I could say I am from Thailand, where I was born. Or I am from Mexico, where I spent the majority of my childhood. Or I am from the US, whose language is rooted into my life. In my mind, none of these answers are satisfying enough. After all, to be from somewhere carries expectations of understanding “your” culture and “your” home.I feel envious whenever my friends say they’re “going home” for school breaks. As a student who frequently moves, I have never seen my living space as “home”, but “shelter”, another location to stay in before I unavoidably move again.So, does this mean I do not have, and will never have, a home? I resign myself to living with this sense of sadness, until very recently.In my dorm, inside my drawer is a specially designed white bath towel that I have not used since I brought it with me from my parents’ house. One day, I took it out, but stopped after smelling the soft, sweet laundry detergent (洗衣粉), the one my parents used back in Thailand. I felt my eyes water as that random smell brought my mixed emotions to the surface: sadness and nostalgia, a strong feeling of missing home. I still avoid using that towel until now because I don’t want to replace the smell of nostalgia with my newly-bought detergent.Sadly, even with this new discovery, I will still struggle when answering where I am from, and I will always feel a sense of loss in not having a physical home to “go back to”. Yet, in random moments, when a smell catches me off guard (让我猝不及防) with the memories it brings, I like to believe that the things I feel then are things people feel when they are home. And if these moments can make me smile, even with a sense of loss, what better home can I ask for?4.Why is the author unable to see his living space as “home”?A.His living places often change.B.He is unsatisfied with the place.C.His expectations of “home” are high.D.He can’t understand the culture there. 5.Why does the author treasure that towel?A.It was made in his hometown.B.It is a present from his parents.C.Its smell awakened his memories.D.Its design wins his preference. 6.What does the author want to convey in the last paragraph?A.He no longer feels a sense of loss.B.He feels a physical home is unnecessary.C.He has got the answer to “Where are you from?”D.He has found a sense of home in some moments.7.What can be the best title of the text?A.A Man’s Home Is His Castle B.There Is No Place Like HomeC.The Smell Brings Me Home D.The Emotion Connects Me With HomeWhen the company OpenAI developed its new artificial intelligence (AI) program, ChatGPT, in late 2022, educators began to worry. ChatGPT could create text that seemed likea human wrote it. How could teachers discover whether students were using language created by an AI chatbot to cheat on a writing task?As a linguist who studies the effects of technology on how people read, write and think, I believe there are other more pressing concerns besides cheating. These include whether AI, more generally, threatens student writing skills, the value of writing as a process, and the importance of regarding writing as a tool for thinking.As part of my research on the effects of AI on human writing, I surveyed young adults in the U.S. about some issues related to those effects. One participant said that at some point if you depend on predictive text, you’re going to lose your spelling abilities. Enter “Was Rom” into a Google search and you’re given a list of choices like “Was Rome built in a day”. Type “ple” into a text message and you’re offered “please” and “plenty”. These tools complete our sentences automatically, giving us little chance to think about our spelling, and continuously asking us to follow their suggestions.Evan Selinger, a philosopher, worried that predictive texting reduces the power of writing as a form of mental activity and personal expression. “By encouraging us not to think too deeply about our words, predictive technology may change how we deal with each other,” Selinger wrote. “We give others more algorithms (算法) and less of ourselves. Automation can stop us thinking and the resulting text didn’t feel like mine anymore.”I asked ChatGPT whether it was a threat to humans’ motivation to write. The bot responded: “There will always be a demand for creative, original content that requires the unique viewpoint of a human writer.” It continued: “Writing serves many purposes beyond just the creation of content, such as self-expression, communication, and personal growth, which can continue to encourage people to write even if certain types of writing can be automated.”I was glad to find the program had seemingly admitted its limitations.8.What is the author’s main concern about ChatGPT?A.Whether it will lead to students’ cheating.B.Whether it will shape students’ writing style.C.How students will make use of it at school.D.What effects it will have on students’ writing.9.What will predictive technology do to us according to Evan Selinger?A.Give us more creative ideas.B.Make us write like a machine.C.Encourage us to think more deeply.D.Make us tend to ignore grammatical mistakes.10.What can we learn from ChatGPT’s response?A.Writing will become completely automated.B.Robots will work with humans in writing.C.Robot writing will become more creative.D.Human writing will still matter a lot.11.What can be the best title for the text?A.What impact will AI bring to writing?B.What is the future of modern literature?C.How to improve writing with AI’s help?D.How to apply AI technology toeducation?Durham, 26 years old, is one of many social-media career influencers who have risen to fame by sharing tips about work with a casual, accessible tone. Regardless of their locations, these content creators often adopt a similar style: Filming themselves talking to the camera about topics such as how to stand out in the interviews, negotiate salaries, handle performance reviews and communicate with managers.While career coaching is not a new industry, experts say social media provides a new way to deliver this information that’s particularly appealing to young workers right now. Mary Chayko, a professor at Rutgers University, says seeking advice on social media feels more convenient and efficient to young people.Even if influencers lack their own extended professional tenure (终身职位), and often don’t hold coaching certificates, experts say they have qualities that make followers trust them. Their transparency (透明性) makes them feel largely accessible and easy-going. Their casual style appeals to audiences, because it offers glimpses into who they are as people. “Not being too polished in the way that you present yourself is another indicator that you are somebody who can be trusted,” Chayko says.While social media advice can be motivating, it has its limitatıons. Videos on Instagram and TikTok tend to be fairly broad, relying on generalizations about culture and human behavior that may not apply to a person’s individual situation. Moreover, many of the decision-makers in the workforce belong to older generations, meaning that young workers ability to understand the values of these leaders will also be important. Relying solely onyounger coaches could narrow their knowledge scope (范围).Yet for young workers, following career influencers may be as much enterprisıng as it is practical. Influencers demonstrate an idealized work persona (职场人士形象), conveying a sense of control and confidence that many people long for in their professional lives. 12.Why is Emily Durham mentioned in the beginning?A.To present a fact.B.To describe a scene.C.To explain a concept.D.To introduce the topic.13.What does Mary Chayko tell us in paragraph 2?A.The young are eager for new careers.B.The young enjoy spreading information.C.The young tend to ask for advice online.D.The young are addicted to social media.14.Why can career influencers appeal to their followers?A.They possess some coaching certificates.B.They own extended professional tenure.C.They give the public polished appearance.D.They try to be seemingly worthy of trust.15.What does paragraph 4 focus on concerning social media career advice?A.Its benefits.B.Its shortcomings.C.Its features.D.Its functions.二、七选五“Beauty is only skin deep” it is said. This means that a person’s appearance is not as important as their character. Yet it is strange why people and especially women are willing toonly be one, and it is that beauty has its advantages.Attractive people are more popular generally. Beauty draws a positive response from the people around. This is obvious with children. For example, based on observation, there is a tendency for adults to treat good-looking children better. This favorable treatment continues into adulthood, as attractive people are more likely to be chosen for leadership positions and given more opportunities. 17Another important benefit that good-looking people enjoy is that they find a husband orwife more easily. 18 This initial attraction may then develop into romantic feelings and a serious relationship if the couple find that they are compatible (和睦相处的) with each other.On the other hand, beauty has a number of disadvantages as well. Firstly, a good-looking person tends to attract unwanted attention from all kinds of people. The admirer may have bad intentions and cause problems for the target. 19 It is thought that beauty and brains do not go together. Thus, attractive people may not gain respect even when they deserve it because of this prejudice against them.While every individual should take care of their outward appearance and look their best, they should not neglect (忽视) their inner beauty or character. 20 Also, they should not forget physical beauty is indeed, only skin deep and will not last.A.Life is not always easy for beautiful people.B.The skincare industry is a multi-billion dollar business.C.It turns out being conventionally beautiful has its benefits.D.It is a fact that people are first attracted to outward appearance.E.They should not place such importance on beauty that they become proud.F.Being well-treated gives attractive people more confidence and they perform better.G.Another problem faced by good-looking people is that they may not be taken seriously.三、完形填空I still remember the first day of high school. As a freshman, I was both excited andmy high school experience would end up being one of the most transformative times in my life.One of the biggest challenges I faced in high school was 23 management. I was involved in several extra-curricular 24 including the debate team and student government, and I found it difficult to 25 my schoolwork with my other commitments. However, over time, I learned how to prioritize and manage my time effectively. I discovered that by setting clear goals and creating a 26 I could accomplish everything I wanted to without making a mess of my school life.Another important lesson I learned in high school was the 27 of hard work. I had always been a good student, but in high school, I was challenged to 28 myself even further and strive for 29 in everything I did. Whether it was a difficult math problem or a challenging essay, I learned to 30 the struggle and persevere through difficult tasks. This 31 and way of work would serve me well in college and beyond.High school was also a time of 32 growth for me. I made new friends, 33 my interests, and discovered who I was as a person. I was 34 to new ideas and perspectives through my classes and extra-curricular activities, and these experiences helped shape my35 and values.21.A.sad B.lazy C.nervous D.calm 22.A.get up B.give away C.break down D.fit in 23.A.money B.time C.emotion D.food 24.A.subjects B.positions C.activities D.orders 25.A.balance B.trade C.replace D.finish 26.A.schedule B.task C.atmosphere D.relationship 27.A.problem B.value C.future D.burden 28.A.blame B.delay C.push D.research 29.A.curiosity B.drawbacks C.highlights D.excellence 30.A.reject B.embrace C.avoid D.recognize 31.A.determination B.escape C.trick D.advice 32.A.knowledge B.power C.financial D.personal 33.A.neglect B.explore C.narrow D.realize 34.A.assigned B.closed C.exposed D.put 35.A.figure B.fortune C.puzzle D.worldview四、用单词的适当形式完成短文阅读下面材料,在空白处填入适当的内容(1 个单词)或括号内单词的正确形式Luosifen is a combination of river snails and rice noodles, originating in Liuzhou, Guangxi, southern China. Since Liuzhou is a city full of Luosifen restaurants, with many near one another, you can even smell it 36 (walk) down the street! Because of the humid climate in Liuzhou, people tend to lose their appetite, but the spicy and sour taste stimulates五、建议信46.假如你是李华。
湖北省安陆第一高级中学2020-2021学年高一10月月考化学试题含答案
湖北省安陆第一高级中学2020-2021学年高一10月月考化学试题含答案安陆一中2020—2021学年度高一10月月考化学试卷可能用到的相对原子量:H:1 C:12 N:14 O:16 S:32 Cl:35。
5 Zn:65 Al:27一、单项选择题(每题只有一个正确选项,10小题,每题2分,共20分)1.当光束通过下列物质时,不会出现....丁达尔效应的是()①云、雾、烟②酒精溶液③FeCl3溶液④水⑤稀牛奶A.②③⑤B.③④⑤C.②③④D.①③④2.下列叙述中,正确的是( )A.NaNO3固体不导电,所以NaNO3不是电解质B.铜丝、石墨均能导电,所以它们都是电解质C.SO2溶于水能导电,所以SO2是电解质D.熔融的KCl能导电,所以KCl是电解质3.下列变化中,需要加入氧化剂才能实现的是A.HNO3→NO2B.CO→CO2C.CaCO3→CaO D.Cl2→HCl4.下列离子方程式书写正确的是A .硫酸铜溶液与氨水反应的离子方程式:Cu 2++2OH —=Cu(OH )2↓B .向氯化铜溶液中滴加硝酸银溶液:Ag ++Cl -=AgCl ↓C .氢氧化钡和稀硫酸反应的离子方程式:Ba 2++OH -+H ++SO 42-=BaSO 4↓+H 2OD .稀硫酸滴到铜片上:Cu+2H +=Cu 2++H 2↑5.下列反应中既属于化合反应,又属于氧化还原反应的是( )A .B .C .D .6.有些离子方程式能表示一类反应,有些离子方程式却只能表示一个反应。
下列离子方程式中,只能表示一个化学反应的是( )O H OH H .A 2=+-+↑+=++-2223CO O H H 2CO .BOH 2Zn H 2)OH (Zn .C 222+=+++↓+↓=+++-+-+242422)OH (Mg BaSO SO Ba OH 2Mg .D7.单质到盐的转化关系可表示为:下述转化关系不正确...的是( )A.Na Na2O NaOH CH3COONaB.Mg MgO MgCl2 MgSO4C.C CO2 H2CO3 CaCO3D.S SO2 H2SO3 Na2SO38.美国科学家用某有机分子和球形笼状分子C60制成了“纳米车”(如图所示),每辆“纳米车”是由一个有机分子和4个C60分子构成,直径约6到9纳米。