人教版九年级数学一元二次方程复习导学案(无答案)
数学人教版九年级上册一元二次方程复习导学案
一元二次方程复习的导学案福清滨江中学林华明(一)引例:复习提问:我们学了一元二次方程的哪些解法?(课前小测)请用指定的方法解下列方程:(1)2X2-4=0(直接开平方法)(2)(x+2)(x+3)=6(因式分解法)(3)2x2-4x=6(配方法)(4)x2+7x=1(公式法)(二)给下列方程选择简便的方法(1)4(1+x)2=9 (2)x2+4x+2=0(3)3x2+2x-1=0 (4)(2x+1)2=-3(2x+1)(5)(2x-1)2+3(2x-1)+2=0(三)拓展延伸1、阅读材料,解答问题:材料:为解方程(x2-1)2-5(x2-1) +4=0,我们可以视(x2-1)为一个整体,然后设x2-1=y,原方程可化为y2-5y+4=0①,解得y1=1,y2=4.当y1=1时, x2-1=1即x2=2,x=当y2=4时, x2-1=4即x2=5,x=原方程的解为:x1=1, x2=-1, x3=, x4=,解答问题:(1)填空:在由方程得到①的过程中利用法,达到了降次的目的,体现数学思想。
(2)解方程x4-x2-6=02、配方法应用举例:已知代数式x2-6x+10(1)试说明无论x取何实数时,代数式的值都大于0;(2)求代数式的最小值。
(四)能力提升:1、关于X的方程(m-1)x2+(m+1)x+3m-1=0,当m= 时,是一元一次方程;当m= 时,是一元二次方程;2、当x= 时,代数式x2-8x+12的值是-4.3、方程(2x-1)(x+1)=1化成一般形式是,其中二次项系数是,一次项系数是.4、两个连续自然数的积为132,则这两个数是 .(五)课后训练1. 如果在-1是方程x2+mx-1=0的一个根,那么m的值为()A.-2 B.-3 C.1 D.22. 已知x1,x2是方程x2-x-3=0的两根,那么x12+x22的值是()A.1 B.5 C.7 D、3. 已知△ABC的两边AB、AC的长是关于 x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长是5。
一元二次方程全章导学案(不分版本,通用)
一元二次方程全章导学案(不分版本,通用)初三数学备课组备课时间:上课时间:课型:任课班级:主备人:导学案:一元二次方程研究目标:1.理解方程是数学模型,能够将实际问题转化为一元二次方程;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项。
研究重点:由实际问题列出一元二次方程和一元二次方程的概念。
研究过程:活动一:知识链接(5分钟)1.下列方程中是一元二次方程的是:1) 2x+3x=9,(2) (x+1)(x-1)=0,(3) 2y^2=0,(4) 2x+3/x-1=0。
5) 3m=2,(6) 2x^2+3y-5=0.2.把方程(2y-1)(2y+1)=1 化为一般形式为:ax^2+bx+c=0;其二次项系数是a,一次项系数是b,常数项是c。
3.若(m-3)x^n-2+3nx+3=0 是关于x的一元二次方程,则m=?n=?4.下面哪些数是方程x^2-x-6=0 的根?-4,-3,-2,-1,1,2,3,4.活动二:自主交流探究新知(25分钟)1.自学教材P17-19,回答以下问题:1) 一元二次方程的定义:只含有一个求知数(一元),并且求知数的最高次数是2(二次)的方程,叫做一元二次方程。
2) 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax^2+bx+c=0,其中a≠0,这种形式叫做一元二次方程的一般形式。
其中a是二次项系数,b是一次项系数,c是常数项。
注意:方程ax^2+bx+c=0 只有当a≠0 时才叫一元二次方程,如果a=0,b≠0 时就是一元一次方程了。
所以在一般形式中,必须包含a≠0这个条件。
活动五:拓展延伸(独立完成3分钟,班级展示2分钟)2.二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号。
1.当a不等于0时,关于x的方程a(x^2+x)=3x^2-(x+1)是一元二次方程。
2.一元二次方程的解是方程中使等号左右两边值相等的未知数的值。
人教版九年级数学上册(RJ)第21章 一元二次方程 导学案 一元二次方程的根与系数的关系
第二十一章一元二次方程21.2 解一元二次方程*21.2.4 一元二次方程的根与系数的关系学习目标:1.探索一元二次方程的根与系数的关系.2.不解方程利用一元二次方程的根与系数的关系解决问题. 重点:探索一元二次方程的根与系数的关系.难点:不解方程利用一元二次方程的根与系数的关系解决问题.一、知识链接1.一元二次方程的求根公式是什么?2.如何用判别式b2-4ac来判断一元二次方程根的情况?算一算解下列方程并完成填空:(1)x2+3x-4=0; (2)x2-5x+6=0; (3)2x2+3x+1=0.想一想方程的两根x1,x2与系数a,b,c有什么关系?二、要点探究探究点1:探索一元二次方程的根与系数的关系猜一猜(1)一元二次方程 (x-x1)(x-x2) = 0 (x1,x2为已知数) 的两根是什么?若将此方程化为x2 + px + q = 0 的形式,你能看出 x1,x2与 p,q 之间的关系吗?(2)通过上表猜想,如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么,你可以发现什么结论?证一证:x1 + x2= x1·x2=归纳总结:一元二次方程的根与系数的关系如果ax2+bx+c=0(a≠0)的两个根为x 1、x2,那么12bx xa ,12cx xa.(前提条件是b2-4ac≥0).(1) x2–6x–15 = 0; (2) 3x2+7x-9 = 0; (3) 5x–1 = 4x2.归纳:在求两根之和、两根之积时,先把方程化为一般式,判别Δ≥0,如是则代入 a、b、c的值即可.例2 已知关于x的方程5x2+kx-6=0的一个根是2,求它的另一个根及k 的值.变式题已知关于的值.例3 不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.练一练设x1,x2为方程x2-4x+1=0的两个根,则:(1) 12x x , (2)12xx ,(3) 2212x x , (4)212()x x .归纳:求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.常见的求值式子如下: 12111.x x +=22122.x x += 12213.=x xx x + 124.(1)(1)x x ++= 125.||=x x -例4 设x 1,x 2是方程 x 2-2(k -1)x + k 2 =0的两个实数根,且2212x x 4,求k 的值.方法总结:根据一元二次方程两实数根满足的条件,求待定字母的值时,务必要注意方程有两实数根的条件,即所求的字母代入方程中,方程应该满足Δ≥0 .2b x a,1c x a.2221212()2x x x x x 2221212)()4x x x x x122121x x x x x......1.如果-1是方程2x 2- = .2.已知一元二次方程x 2+px+q=0的两根分别为-2和1,则p = , q = .3.已知关于 的值.4.已知x 1,x 2是方程2x 2+2kx+k -1=0的两个根,且(x 1+1)(x 2+1)=4.(1)求k的值; (2)求(x1-x2)2的值.5.设x1,x2是方程3x2+4x-3 = 0的两个根.利用根系数之间的关系,求下列各式的值:(1) (x 1 + 1)(x2 + 1); (2)2112.x xx x拓展提升6. 当k为何值时,方程2x2-kx+1=0的两根之差为1.7.已知关于-2=0(1)若方程有实数根,求实数m的取值范围;(2)若方程两根x1,x2满足|x1-的值.242bb ac xa.时,方程有两个相1232课堂探究二、要点探究探究点1:探索一元二次方程的根与系数的关系 猜一猜=b a ,x 1x 2证一证:(注:b221242b b ac x x a +-+=2b b a -+-= 22ba-=.b a =- 1222b b x x a a•-+-⋅=()()22244b b ac a ---=244ac a=.ca =例1 解:(1) a=1 , b= – 6 , c= – 15. Δ = b 2– 4ac =( – 6 )2 – 4 × 1 ×(– 15) = 96 > 0. ∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 = –( – 6 ) =6,x 1 x 2 = – 15 .(2)a = 3 , b =7, c = –9. Δ= b 2 - 4ac = 72 –4×3×(-9) =157 > 0,∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 =73, x 1 x 2 =933.(3)方程可化为4x 2–5x +1 =0,a =4,b = – 5,c = 1.Δ = b 2- 4ac =(– 5)2 – 4×4×1=9>0.∴方程有两个实数根.设方程的两个实数根是x 1, x 2,那么x 1 + x 2 =5544,x 1 x 2 =1.4=6.5=3.5+ x 2=2+ 35=.5k 得k=答:方程的另一个根是3,5k=- 解:设方程的两个根分别是+ x 2=1+ x =5 .121231,.22x x x 222121122)2,x xx x x ∴22221212123113()22.224xxx x x x 121212131 3.22x x x x x练一练 (1)4 (2)1 (3)14 (4)12例4 解:由方程有两个实数根,得22221212()2x x x x x = 4(k 222x 4,得 2k +4 =4,解得k 1=0,k 2=4 . 当堂检测1. ;-3.2. 1 ; -2.1161.3c x a 116.3x 12121,.2k x k x x 1()1 4.2kk 解得k = -7;4.-则222121212)()474(4)65.x x x x x12124, 1.3b c x x x aa)+1=441()1.33122221121221212()234.9x x x x x x x x x x x x 12121,.22kx x x 22121212()()4 1.x x x x x x 22141,3,2 3.222k k k7.解:(1)方程有实数根,所以Δ=b 2-4ac=(-2m)2-4·m·(m-2=4m 2-4m 2+8m=8m ≥0.∵m≠0,∴m 的取值范围为m >0. 121222,.m x x x m22121212()()4 1.x x x x x x 22241.m m解得m=8.经检验,解.。
九年级数学上册 22.2《降次-解一元二次方程(第3课时)》学案(无答案) 新人教版
《22.2 降次——解一元二次方程》学习目标:掌握一元二次方程求根公式的推导,会运用公式法解一元二次方程.一、自主学习(一)温故知新用配方法解下列方程:(1)x2+2x-35=0 (2)6x2-7x+1=0(二)探索新知任何一元二次方程都可以写成一般形式ax2+bx+c=0(a≠0),能否用配方法求出它的解呢?(3)(4)三、达标巩固解下列方程:(1)x2-5x-6=0 (2)7x2+2x-1=0 (3)3x2-5x+2=0 (4)2x2-x-=0四、学后记五、课时训练基础过关1.用公式法解方程4x2-12x=3,得到().A.x= B.x= C.x= D.x=2.方程x2+4x+6=0的根是().A.x1=,x2= B.x1=6,x2=C.x1=2,x2= D.x1=x2=-3.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.4.当x=______时,代数式x2-8x+12的值是-4.5.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.能力提升6.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是().A.4 B.-2 C.4或-2 D.-4或27.用公式法解关于x的方程:x2-2ax-b2+a2=0.8.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,试推导x1+x2=-,x1·x2=.聚焦中考9.方程x2+4x=2的正根为()A.2- B.2+ C.-2- D.-2+10.先化简,再求值:,其中a是方程x2+3x+1=0的根.11.解方程:。
新人教版九年级数学上册21 一元二次方程复习1导学案
新人教版九年级数学上册21 一元二次方程复习1导学案学习目标:能灵活选择解题方法正确熟练地解一元二次方程.重点:解一元二次方程.难点:解含有一个参数的一元二次方程.一、相关知识链接:一元二次方程的一般形式是:02=++c bx ax (a 、b 、c 是已知数,特别强调....0≠a ), 其中a 、b 、c 分别叫做二次项系数、一次项系数和常数项.练习1: 把一元二次方程3)4()3(2+-=-x x x x 化为一般形式为 , 其中二次项系数是 ,一次项系数是 ,常数项是 .练习2: (1)已知关于x 的方程()0122=-+-ax x a 为一元二次方程,则a 的取值范围是 .(2)关于x 的一元二次方程043)2(22=+-+-m x x m 有一个解是0,则=m .二、一元二次方程的解法:(1)解一元二次方程的基本思想是通过降次将其转化为一元一次方程.(2)常用的解法有直接开平方法、因式分解法、配方法、公式法.其中配方法和公式法适用于解任何一元二次方程.配方法的步骤:一元二次方程)0(02≠=++a c bx ax 的求根公式是 .其中△=ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式;① 当 042>-ac b 时,方程 的实数根;② 当 042=-ac b 时,方程 实数根; ③ 当 042<-ac b 时,方程 实数根;④ 当 时,方程有两个实数根。
(3)想一想:怎样选择合适的方法解一元二次方程?问题解决:练习1:1.方程0)5)(2(=+-x x 的解为 . 2.方程())1(31-=-x x x 的解为 .3.+-x x 42 =2______)(-x .4.若关于x 的一元二次方程()0022≠=++a bx ax 的一个根为1-,则=-b a . 5.已知一元二次方程042=++k x x 有两个不相等的实数根,则k 的取值范围为 .6.方程12-=k x 有两个实数根,则k 的取值范围是 .练习2: 请你选择适当的方法解下列方程.......: (1)02)1(2=--x . (2)0232=+x x . (3)0262=+-x x .练习3:1.经过配方,方程0762=+-x x 可以变形为 ( )A .16)3(2=-xB .2)3(2=+xC .29)6(2=-xD .2)3(2=-x 2. 不解方程,判别方程03532=+-x x 的根的情况是 ( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根3.已知m是方程42=-x x 的解,则代数式m m 2232+-的值是 ( )A .-3B .-5C .1D .-1【课堂探究】问题1:解下列方程:(1)83752+=++x x x (2)1422+=x x问题2:已知:关于x 的一元二次方程022=+-n mx x .(1)当2=m 时,方程有两个实数根,求n 的取值范围;(2)若n (0≠n )是这个方程的一个实数根,且7=+m n ,求n 的值.问题3:已知关于x 的一元二次方程01)(2)1(222=+++-+b x b a x a .(1)当2=b 时,方程有一个实数根为2,求a 的取值范围;(2)若此方程有实数根,当13-<<-a 时,求b 的取值范围.【课堂检测】1.一元二次方程x x 2332-=的一次项系数和常数项分别是 ( )A .2和-3B .3 和-2C .-3和2D .3和22.方程02=+x x 的根是 ( )A .1-=xB .01=x ,12-=xC .01=x ,1=xD .x x -=1,x x --=2 3.若关于x 的一元二次方程01)1(22=-+--k x x k 的一个根为0,则k 等于 ( )A .1-=k 或1=kB .1=kC .1-=kD .1=k4.下列一元二次方程中,有两个相等的实数根的是 ( )A .12+=x xB .0122=-+x xC .022=+x xD .02222=+-x x5.方程k x -=32有两个实数根,则k 的取值范围是 . 6.解下列方程:(1)142+=x x . (2)2275x x =+7.已知关于x 的一元二次方程)(2)2(2m x x m m x -=-+的两个实数根分别为1x ,2x .(1)若方程有一个根是2,求m 的值;(2)若012>>x x ,且1242x x y -=,求y 的取值范围.。
人教版九年级数学上册第二十一章《一元二次方程全章复习》学习任务单(公开课导学案)及作业设计
人教版九年级数学上册第二十一章《一元二次方程全章复习》学习任务单及作业设计【学习目标】对本章内容进行梳理总结并建立知识体系,综合应用本章知识解决问题. 【课前学习任务】复习《一元二次方程》一章相关知识点.【课上学习任务】学习任务一:例 1:已知关于 x 的方程是一元二次方程,则m 的值为 .学习任务二:例 2:关于 x 的一元二次方程.(1)若方程有两个不相等的实数根,求 m 的取值范围;(2)若方程的一个实数根为-1,求 m 的值及方程的另一个实数根.学习任务三:例 3:关于 x 的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一个根小于 1,求 k 的取值范围.学习任务四:例 4:随着经济建设的发展,某省正加速布局以 5G 等为代表的战略性新兴产业. 据统计,2019年全省5G基站的数量约3.6万座. 若计划到2020年底,全省5G基站的数量是2019年的5/3倍;到2022 底,全省5G基站的数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底至2022年底,全省5G基站数量的年平均增长率.【作业设计】请同学们在作业本上完成下面三道课后作业:1.若关于x的一元二次方程 (m-1)x2+x+m2-1=0 有一根为0,则m= .2. 已知关于x的一元二次方程 x2-6x+2k-1=0 有两个相等的实数根,求k的值及方程的根.3. 用一条长40cm 的绳子怎样围成一个面积为75cm2的矩形?能围成一个面积为101cm2的矩形吗?如能,说明围法;如不能,说明理由.【参考答案】1. m=-1;2. k=5;x1=x2=3;3. 能围成一个面积为75cm2的矩形,长15cm,宽5cm.不能围成一个面积为101cm2的矩形,因为方程 x2-20x+101=0 无实根.。
一元二次方程(导学案)九年级数学上册系列(人教版)
21.1 一元二次方程学案1.通过一元一次方程的概念,能探索归纳一元二次方程的概念,提高学生类比、归纳、总结的能力;2。
掌握一元二次方程的一般形式,正确识别一般形式中的二次项及其系数、一次项及其系数、常数项。
★知识点1:一元二次方程的概念只含有一个未知数,未知数最高次数是2,等号两边都是整式,这类方程应该叫一元二次方程。
★知识点2:一元二次方程一般式ax2+bx+c=0 (a≠0)______未知数,未知数最高次数是__,等号两边都是______,这类方程应该叫一元二次方程。
2. 一元二次方程一般式________________(_____≠0),其中二次项系数为_____,一次项系数为_____,常数项为_____。
一元一次方程的概念:只含有_______未知数(元),未知数最高次数是_____,等号两边都是________,这样的方程叫一元一次方程。
一元一次方程的一般形式:___________________________________。
1.下列方程中,是一元一次方程的是( )A.x2−4x=3 B.3x−1=x2C.x+2y=1 D.xy−3=52.如果方程ax|a+1|+3=0是关于x的一元一次方程,则a的值为_____新知探究【问题1】正方形桌面的面积是 9 m2,求它的边长?【问题2】有一块矩形铁皮,长100㎝,宽50㎝,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600 c m2(蓝色部分),那么铁皮各角应切去多大的正方形?【问题3】如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m。
如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?【问题4】要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?追问1:观察上述所列方程有什么共同点?追问2:结合一元一次方程的概念,你发现了什么?追问3:为什么a≠0。
新人教版九年级数学上册《一元二次方程》教案导学案(全章)
第 21 章一元二次方程教材内容1.本单元教学的主要内容.一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.2.本单元在教材中的地位与作用.一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程.应该说,一元二次方程是本书的重点内容.教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法( 1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.? 根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法, ? 导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解 ax 2+bx+c=0( a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件: b2-4ac>0 , b2-4ac=0 , b2-4ac<0 .(5)通过复习八年级上册《整式》的第 5 节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.( 6)提出问题、分析问题,建立一元二次方程的数学模型,? 并用该模型解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.教学重点1.一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.教学关键1.分析实际问题如何建立一元二次方程的数学模型.2.用配方法解一元二次方程的步骤.3.解一元二次方程公式法的推导.课时划分本单元教学时间约需18 课时,具体分配如下:21 .1一元二次方程 2 课时21. 2 降次──解一元二次方程9 课时21.3实际问题与一元二次方程 3 课时教学活动、习题课、小结4课时第 1 课时一元二次方程(1)1、使学生了解一元二次方程的意义。
九年级上册数学《一元二次方程》全章复习导学案
九年级上册数学《一元二次方程》全章复习导学案一、本章知识结构框图二、本章知识点概括1、相关概念(1)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
例:下列方程是一元二次方程的是()A.x2+=1B.ax2+bx+c=0(a,b,c均为常数)C.(2x﹣1)(3x+2)=5D.(2x+1)2=4x2﹣3练习:下列方程中哪些是一元二次方程?(1)(2)4x2﹣3y﹣1=0(3)ax2+bx+c=0(4)x(x+1)﹣2=0(5)(6)(m﹣2)2=1(7),是一元二次方程的有:.(填番号)(2)一元二次方程的一般形式:ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
例:一元二次方程x2﹣4x=5的一般形式是什么?二次项是什么?二次项系数是什么?一次项是什么?一次项系数是什么?常数项是什么?(3)一元二次方程的根:一元二次方程的解也叫一元二次方程的根。
用“夹逼”法估算出一元二次方程的根的取值范围.例:关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为()A.2或4B.0或4C.﹣2或0D.﹣2或2练习:1、下列方程是一元二次方程的是()A.x2+=1B.ax2+bx+c=0(a,b,c均为常数)C.(2x﹣1)(3x+2)=5 D.(2x+1)2=4x2﹣32、若m是方程x2﹣2x﹣1=0的解,则代数式2m2﹣4m+2021的值为.3.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=3,x2=﹣1,那么方程a(x+m﹣2)2+b=0的解.4、若x=1是方程(m+3)x2﹣mx+m2﹣12=0的根,则m的值为()A.3B.﹣3C.±3D.22、降次——解一元二次方程(1)配方法:通过配成完全平方形式来解一元二次方程的方法,叫配方法.配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.其步骤是:①方程化为一般形式;②移项,使方程左边为二次项和一次项,右边为常数项;③化二次项系数为1;④配方,方程两边都加上一次项系数一半的平方,使方程左边是完全平方式,从而原方程化为(mx+n)2=p的形式;⑤如果p≥0就可以用开平方降次来求出方程的解了,如果p<0,则原方程无实数根。
九年级数学上册21一元二次方程复习导学案(新版)新人教版
第21章一元二次方程一、知识梳理1.一元二次方程的概念只含有个未知数(一元),并且未知数的最高次数是的方程,叫做一元二次方程.[注意] 一元二次方程判定的条件是:(1)必须是整式方程;(2)二次项系数不为零;(3)未知数的最高次数是2,且只含有一个未知数.2.一元二次方程的解法一元二次方程有四种解法:法、法、法和法.其基本思想是.[注意] 公式法其实质是配方法,只不过省去了配方的过程,但用公式时应注意:(1)将一元二次方程化为一般形式,即先确定a、b、c的值;(2)牢记使用公式的前提是b2-4ac≥0.3.一元二次方程根的判别式Δ=b2-4ac(1)Δ>0⇔ax2+bx+c=0(a≠0)有的实数根;(2)Δ=0⇔ax2+bx+c=0(a≠0)有的实数根;(3)Δ<0⇔ax2+bx+c=0(a≠0) 实数根.[注意] (1)根的判别式是在一元二次方程的一般形式下得出的,因此使用根的判别式之前,必须把一元二次方程化成一般形式;(2)如果说一元二次方程有实根,应该包括有两个相等的实数根与两个不相等的实数根两种情况,此时b2-4ac≥0,不能丢掉等号;(3)在利用根的判别式确定方程中字母系数的取值范围时,如果二次项系数含有字母,要加上二次项系数不为零这个限制条件.4.一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=,x1·x2=.[注意] 它成立的条件:①二次项系数不能为0;②方程根的判别式大于或等于0.5.一元二次方程的主要应用类型:几何面积、增长率、商品销售等。
二、题型、技巧归纳考点一:一元二次方程及根的有关概念【主题训练1】若(a-3)2a7x- +4x+5=0是关于x的一元二次方程,则a的值为( )A.3B.-3C.±3D.无法确定【解答】归纳:考点二:一元二次方程的解法【训练2】解方程x2-2x-1=0.【解答】归纳:考点三:根的判别式及根与系数的关系【训练3】若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断【解答】归纳:考点四:一元二次方程的应用【训练4】某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏型.如图所示,甲、乙两点分别从直径的两端点A,B以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程l(cm)与时间t(s)满足关系:l= t2+ t(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.(1)甲运动4s后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?【解答】归纳:考点五几何图形型应用题【训练5】如图所示,在长为10 cm,宽为8 cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.例5图【解答】归纳:【典例精讲】例题:某百货大楼服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?解:三、随堂检测1.下列方程中,一定是一元二次方程的是( )A.ax2+bx+c=0B. 12x2=0C.3x2+2y-12=0 D.x2+ 4x-5=02.若关于x的一元二次方程ax2+bx+5 =0(a≠0)的解是x=1,则2013-a-b的值是( )A.2 018B.2 008C.2 014D.2 0123.一元二次方程2x2-3x-2=0的二次项系数是,一次项系数是,常数项是.4.已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是( )A.有两个不相等的实数根,B.有两个相等的实数根,C.没有实数根,D.有两个实数根5、若将方程x2+6x=7化为(x+m)2=16,则m= .6.解方程:(x-3)2-9=0.7.下列一元二次方程有两个相等实数根的是( )A.x2+3=0B.x2+2x=0C.(x+1)2=0D.(x+3)(x-1)=08. 8.已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0,下列说法正确的是( )A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解9.已知一元二次方程x2-6x+c=0有一个根为2,则另一根为( )A.2B.3C.4D.810. 10.若x1,x2是一元二次方程x2-2x-3=0的两个根,则x1x2的值是( )A.-2B.-3C.2D.311. 11.关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1,x2,且有x1-x1x2+x2=1-a,则a的值是( )A.1B.-1C.1或-1D.212.从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48m2,则原来这块木板的面积是( )A.100 m2B.64 m2C.121 m2D.144 m213.我国政府为解决老百姓看病难问题,决定下调药品的价格.某种药经过两次降价,由每盒60元调至48.6元,则每次降价的百分率为().14.为响应“美丽广西清洁乡村”的号召,某校开展“美丽广西清洁校园”的活动,该校经过精心设计,计算出需要绿化的面积为498m2,绿化150m2后,为了更快地完成该项绿化工作,将每天的工作量提高为原来的1.2倍.结果一共用20天完成了该项绿化工作.(1)该项绿化工作原计划每天完成多少m2?(2)在绿化工作中有一块面积为170m2的矩形场地,矩形的长比宽的2倍少3m,请问这块矩形场地的长和宽各是多少米?答案:1.选B.A中的二次项系数缺少不等于0的条件,C中含有两个未知数,D中的方程不是整式方程.2. 【解析】选A.∵x=1是一元二次方程ax2+bx+5=0的一个根, ∴a·12+b·1+5=0,∴a+b=-5,∴2013-a-b=2013-(a+b)=2013-(-5)=2018.3. 答案:2 -3 -24. 选C.∵(x-1)2=b中b<0,∴没有实数根.5. 答案: 36. 【解析】移项得:(x-3)2=9,两边开平方得x-3=±3,所以x=3±3,解得:x1=6,x2=0.7. 【解析】选C.8. 【解析】选B.一元二次方程①的判别式的值为Δ= b2-4ac=4-12=-8<0,所以方程无实数根;一元二次方程②的判别式的值为Δ=b2-4ac=4+12=16>0,所以方程有两个不相等的实数根.9. 【解析】选C.由题意,把2代入原方程得:22-6×2+c=0,解得c=8,把c=8代入方程得x 2-6x+8=0,解得x 1=2,x 2=4.10. 【解析】选B. 11. 【解析】选B.12. 【解析】选B.设正方形原边长是x,根据题意可得:(x-2)x=48,解得x 1=8,x 2=-6(不合题意,舍去),所以原边长是8,面积是64m 2.13. 【解析】∵设每次降价的百分率为x,则根据题意,得60(1-x)2=48.6,解得x 1=1.9(不合题意,舍去),x 2=0.1=10%.答案:10%14.【解析】(1)设该项绿化工作原计划每天完成xm 2,则提高工作 量后每天完成1.2xm 2,根据题意,得150498150x1.2x-=20,解得x=22.经检验,x=22是原方程的根.答:该项绿化工作原计划每天完成22m 2. (2)设矩形宽为ym,则长为(2y-3)m, 根据题意,得y(2y-3)=170,解得y=10或y=-8.5(不合题意,舍去). 2y-3=17.答:这块矩形场地的长为17m,宽为10m.。
新人教版九年级数学上册2.1一元二次方程导学案
新人教版九年级数学上册2.1一元二次方程导学案【知识扫描】1、一元二次方程是刻画现实世界一种重要而有效的数学模型。
2、_________________________________________的方程叫做一元二次方程;关于x 的一元二次方程的一般形式为________________________________, 其中二次项系数为________,一次项系数________,常数项为_______。
【基础训练】1、下列方程中,其中是一元二次方程的有______________(填序号) ①052132=++x x ;②2)2()43)(3(+=-+x x x ;③0322=+-x x x ;④452=y ;⑤02=++c bx ax ;⑥032)1(22=-++kx x k2、若043)2(2=+--mx x m 是一元二次方程,则m 的取值范围是_________3、将一元二次方程x x 3722-=化为一般形式为__________________,二次项为________,一次项系数为________,常数项为________。
4、若方程1)1(2=+-x m x m 是关于x 的一元二次方程,则m 的取值范围是( )A 、 1≠mB 、 0≥mC 、 10≠≥m m 且D 、 m 为任意实数5、把下列方程化为一般形式,并指出它的二次项系数、一次项系数和常数项。
(1)x x 322-= (2)4(1)(2)2x x x x +--=(3))4)(3(22+-=-x x x x (4)2(23)(23)(3)y y y =-6、根据题意,列出关于x 的方程并将其化为一般形式。
(1)两个连续奇数的积是143,求这两个数(2)某商场1月份的利润是25000元,3月份的利润是36000元,这两个月的利润平均月增长的百分率是多少?(3)一根长为4米的竹竿如图放置恰好到达井口边缘,已知井深比井口宽多3米,求井深x(4) 有x支球队参加排球联赛,每队都与其余各队比赛2场,联赛的总场次可以用公式表示:N=x(x-1) ,如果联赛的总场次是132次,问共有多少支球队参加联赛?(5) 如图,小明的爷爷要用总长15米的篱笆,一面靠墙,围成两间共18平方米的猪舍,求猪舍垂直于墙的一边的长度x。
人教版九年级数学上册第21章一元二次方程复习导学案
一元二次方程复习学案【复习目标】1. 熟练掌握一元二次方程的概念。
2. 熟练并灵活运用配方法、公式法和因式分解法解一元二次方程。
3. 能用根的判别式解决问题,培养学生的应用意识和分析问题、解决问题的能力。
【教学方法】师生互动,教师以点拨为主,学生以练习为主,在练习中学生可以集体讨论也可以分组讨论。
【教学过程】一、1:以下哪些是一元二次方程?(1)x 2 +7y-36=0 (2)-3x-54=0 (3)3x 2+5x-2=0(4)x 2 = (x+1)(x-1) (5)x 2 + (x+7) 2=112 (6)21109000x x --= 问题1:你认为一元二次方程需要满足哪几个条件一元二次方程⎪⎩⎪⎨⎧(设计意图:通过这一组题,回顾什么是一元一次方程)2、写出下列方程的二次项系数,一次项系数和常数项()()132)2()2(6)1(131222≠--=+--=+-k k x kx kx x x x x 的方程关于)((设计意图:使学生明确项的系数包含前面的符号)3:选用适当的方法解下列方程(1)()212=-x (2)()0114=+-x x(2)()3-12522=++x x (4) x 2+5x-6=0问题2:你认为解方程时优先考虑哪种方法?哪些方法是万能的?问题3:在解方程的过程中,用到了哪些数学方法或思想?(设计意图:通过本题,使学生回顾复习一元一次方程的几种解法,并通过几种解法的比较得出:解一元二次方程时,一先考虑直接开平方法,然后是因式分解法,最后考虑配方法和公式法。
)4、k 为何值时,关于x 的方程0962=+-x kx :(1)有两个不等的实数根?(2)有两个相等的实数根?(3)无实数根?(设计意图:使学生回忆Δ与根的情况之间的关系,注意利用一元二次方程根的判别式求未知系数的值或取值范围,不能忽略二次项系数不为0这一条件)*5:已知关于x 的方程0a 2=-+x x 的一个根为2,则另一个根是________。
新人教版九(上)一元二次方程全章导学案(精编)
学校___________ 班级___________ 姓名___________ 学号___________…………☉…不…☉…要…☉…在…☉…密…☉…封…☉…线…☉…内…☉…作…☉…答…………… 1.1一元二次方程的概念(学案 )一,情景导入: 问题(1)要设计一座高2m 的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,求雕像的下部应设计为高多少米?分析:设下部高度BC 为xm 则上部AC 为__________m.根据上部与下部的关系_________________。
列方程为:_________________化简得_________________。
问题2:有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600cm ²,那么铁皮各角应切去多大的正方形?思考:设切去的正方形的边长为x cm,则盒底的长为__________cm,宽为__________cm.根据方盒的底面积为3600cm 2.由此,可以列方程_________________,化简得___________________.问题3:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?思考:(1)全场共比赛___________场;(2) 若设应邀请x 个队参赛,则每个队要与其他____________个队各赛一场,全场共比赛_______场.由此,我们可以列方程_________________,(3) 化简得___________________.二、观察发现二.揭示概念观察并思考:x 2+2x -4=0; x 2-75x +350=0; x 2-x =56.(1).这三个方程都不是一元一次方程.整理后含有几个未知数?它的最高次数是几?它们有什么共同特点?(2).对照一元一次方程,写出一元二次方程的定义:__________________.(3)揭示:经过去分母、去括号、移项、合并同类项能化为02=++c bx ax (其中a 、b 、c 为常数,且0≠a )的整式方程,02=++c bx ax (其中a 、b 、c 为常数,且0≠a )被称为一元二次方程的___________。
初中数学人教版九年级上册:第21章《一元二次方程》全章导学案
初中数学人教版九年级上册实用资料第二十一章 一元二次方程 21.1 一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题. 2.掌握一元二次方程的一般形式ax 2+bx +c =0(a ≠0)及有关概念. 3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索. 难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟) 问题1:如图,有一块矩形铁皮,长100 cm ,宽50 cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm 2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm ,则盒底的长为__(100-2x)cm __,宽为__(50-2x)cm __.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__4×7=28__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛1场,所以全部比赛共x (x -1)2__场.列方程__x (x -1)2=28__,化简整理,得__x 2-x -56=0__.② 探究:(1)方程①②中未知数的个数各是多少?__1个__. (2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式: ax 2+bx +c =0(a ≠0).这种形式叫做一元二次方程的一般形式.其中__ax 2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a ≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟) 1.判断下列方程,哪些是一元二次方程?(1)x 3-2x 2+5=0; (2)x 2=1; (3)5x 2-2x -14=x 2-2x +35;(4)2(x +1)2=3(x +1);(5)x 2-2x =x 2+1; (6)ax 2+bx +c =0. 解:(2)(3)(4). 点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程. 2.将方程3x(x -1)=5(x +2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x 2-3x =5x +10.移项,合并同类项,得3x 2-8x -10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,无论m 取何值,该方程都是一元二次方程.证明:m 2-8m +17=(m -4)2+1, ∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0.∴无论m 取何值,该方程都是一元二次方程. 点拨精讲:要证明无论m 取何值,该方程都是一元二次方程,只要证明m 2-8m +17≠0即可.2.下面哪些数是方程2x 2+10x +12=0的根? -4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 1.判断下列方程是否为一元二次方程.(1)1-x 2=0; (2)2(x 2-1)=3y ; (3)2x 2-3x -1=0; (4)1x 2-2x=0;(5)(x +3)2=(x -3)2; (6)9x 2=5-4x. 解:(1)是;(2)不是;(3)是; (4)不是;(5)不是;(6)是.2.若x =2是方程ax 2+4x -5=0的一个根,求a 的值. 解:∵x =2是方程ax 2+4x -5=0的一个根,∴4a +8-5=0, 解得a =-34.3.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个长方形的长比宽多2,面积是100,求长方形的长x.解:(1)4x 2=25,4x 2-25=0;(2)x(x -2)=100,x 2-2x -100=0.学生总结本堂课的收获与困惑.(2分钟)1.一元二次方程的概念以及怎样利用概念判断一元二次方程. 2.一元二次方程的一般形式ax 2+bx +c =0(a ≠0),特别强调a ≠0. 3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)21.2 解一元二次方程 21.2.1 配方法(1)1. 使学生会用直接开平方法解一元二次方程.2. 渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(x +m)2=n(n ≥0)的方程;领会降次——转化的数学思想. 难点:通过根据平方根的意义解形如x 2=n(n ≥0)的方程,知识迁移到根据平方根的意义解形如(x +m)2=n(n ≥0)的方程.一、自学指导.(10分钟)问题1:一桶某种油漆可刷的面积为1500 dm 2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为x dm ,则一个正方体的表面积为__6x 2__dm 2,根据一桶油漆可刷的面积列出方程:__10×6x 2=1500__, 由此可得__x 2=25__,根据平方根的意义,得x =__±5__, 即x 1=__5__,x 2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm . 探究:对照问题1解方程的过程,你认为应该怎样解方程(2x -1)2=5及方程x 2+6x +9=4?方程(2x -1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2x -1=±5__,即将方程变为__2x -1=5和__2x -1=-5__两个一元一次方程,从而得到方程(2x -1)2=5的两个解为x 1=__1+52,x 2=__1-52__.在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程x 2+6x +9=4的左边是完全平方式,这个方程可以化成(x +__3__)2=4,进行降次,得到 __x +3=±2__ ,方程的根为x 1= __-1__,x 2=__-5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x 2=p(p ≥0)或(mx +n)2=p(p ≥0)的形式,那么可得x =±p 或mx +n =±p. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)解下列方程:(1)2y 2=8; (2)2(x -8)2=50; (3)(2x -1)2+4=0; (4)4x 2-4x +1=0.解:(1)2y 2=8, (2)2(x -8)2=50, y 2=4, (x -8)2=25, y =±2, x -8=±5,∴y 1=2,y 2=-2; x -8=5或x -8=-5, ∴x 1=13,x 2=3;(3)(2x -1)2+4=0, (4)4x 2-4x +1=0, (2x -1)2=-4<0, (2x -1)2=0, ∴原方程无解; 2x -1=0, ∴x 1=x 2=12.点拨精讲:观察以上各个方程能否化成x 2=p(p ≥0)或(mx +n)2=p(p ≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用直接开平方法解下列方程: (1)(3x +1)2=7; (2)y 2+2y +1=24; (3)9n 2-24n +16=11.解:(1)-1±73;(2)-1±26;(3)4±113.点拨精讲:运用开平方法解形如(mx +n)2=p(p ≥0)的方程时,最容易出错的是漏掉负根.2.已知关于x 的方程x 2+(a 2+1)x -3=0的一个根是1,求a 的值.解:±1.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 用直接开平方法解下列方程:(1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)(x +5)2=25; (7)x 2+2x +1=4.解:(1)x 1=1+2,x 2=1-2; (2)x 1=2+5,x 2=2-5; (3)x 1=-1,x 2=13;(4)x 1=16,x 2=-16;(5)x 1=92,x 2=-92;(6)x 1=0,x 2=-10;(7)x 1=1,x 2=-3.学生总结本堂课的收获与困惑.(2分钟)1.用直接开平方法解一元二次方程. 2.理解“降次”思想.3.理解x 2=p(p ≥0)或(mx +n)2=p(p ≥0)中,为什么p ≥0?学习至此,请使用本课时对应训练部分.(10分钟)21.2.1 配方法(2)1.会用配方法解数字系数的一元二次方程.2.掌握配方法和推导过程,能使用配方法解一元二次方程.重点:掌握配方法解一元二次方程.难点:把一元二次方程转化为形如(x -a)2=b 的过程.(2分钟)1.填空:(1)x 2-8x +__16__=(x -__4__)2; (2)9x 2+12x +__4__=(3x +__2__)2; (3)x 2+px +__(p 2)2__=(x +__p2__)2.2.若4x 2-mx +9是一个完全平方式,那么m 的值是__±12__.一、自学指导.(10分钟)问题1:要使一块矩形场地的长比宽多6 m ,并且面积为16 m 2,场地的长和宽分别是多少米?设场地的宽为x m ,则长为__(x +6)__m ,根据矩形面积为16 m 2,得到方程__x(x +6)=16__,整理得到__x 2+6x -16=0__.探究:怎样解方程x 2+6x -16=0?对比这个方程与前面讨论过的方程x 2+6x +9=4,可以发现方程x 2+6x +9=4的左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程;而方程x 2+6x -16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?解:移项,得x 2+6x =16,两边都加上__9__即__(62)2__,使左边配成x 2+bx +(b2)2的形式,得__x 2__+6__x__+9=16+__9__,左边写成平方形式,得__(x +3)2=25__,开平方,得__x +3=±5__, (降次)即 __x +3=5__或__x +3=-5__,解一次方程,得x 1=__2__,x 2=__-8__.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.问题2:解下列方程:(1)3x 2-1=5; (2)4(x -1)2-9=0; (3)4x 2+16x +16=9.解:(1)x =±2;(2)x 1=-12,x 2=52;(3)x 1=-72,x 2=-12.归纳:利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式ax 2+bx +c =0;(2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟) 1.填空:(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x +__1__)2.2.解下列方程:(1)x 2+6x +5=0; (2)2x 2+6x +2=0; (3)(1+x)2+2(1+x)-4=0.解:(1)移项,得x 2+6x =-5,配方得x 2+6x +32=-5+32,(x +3)2=4, 由此可得x +3=±2,即x 1=-1,x 2=-5. (2)移项,得2x 2+6x =-2,二次项系数化为1,得x 2+3x =-1, 配方得x 2+3x +(32)2=(x +32)2=54,由此可得x +32=±52,即x 1=52-32,x 2=-52-32. (3)去括号,整理得x 2+4x -1=0, 移项得x 2+4x =1, 配方得(x +2)2=5,x +2=±5,即x 1=5-2,x 2=-5-2.点拨精讲:解这些方程可以用配方法来完成,即配一个含有x 的完全平方式.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,在Rt △ABC 中,∠C =90°,AC =8 m ,CB =6 m ,点P ,Q 同时由A ,B 两点出发分别沿AC ,BC 方向向点C 匀速移动,它们的速度都是1 m /s ,几秒后△PCQ 的面积为Rt △ABC 面积的一半?解:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半.根据题意可列方程: 12(8-x)(6-x)=12×12×8×6, 即x 2-14x +24=0, (x -7)2=25, x -7=±5,∴x 1=12,x 2=2,x 1=12,x 2=2都是原方程的根,但x 1=12不合题意,舍去.答:2秒后△PCQ 的面积为Rt △ABC 面积的一半. 点拨精讲:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半,△PCQ 也是直角三角形.根据已知条件列出等式.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.用配方法解下列关于x 的方程:(1)2x 2-4x -8=0; (2)x 2-4x +2=0; (3)x 2-12x -1=0 ; (4)2x 2+2=5.解:(1)x 1=1+5,x 2=1-5; (2)x 1=2+2,x 2=2-2; (3)x 1=14+174,x 2=14-174;(4)x 1=62,x 2=-62. 2.如果x 2-4x +y 2+6y +z +2+13=0,求(xy)z 的值.解:由已知方程得x 2-4x +4+y 2+6y +9+z +2=0,即(x -2)2+(y +3)2+z +2=0,∴x =2,y =-3,z =-2.∴(xy)z =[2×(-3)]-2=136.学生总结本堂课的收获与困惑.(2分钟)1.用配方法解一元二次方程的步骤. 2.用配方法解一元二次方程的注意事项.学习至此,请使用本课时对应训练部分.(10分钟)21.2.2 公式法1. 理解一元二次方程求根公式的推导过程,了解公式法的概念.2. 会熟练应用公式法解一元二次方程.重点:求根公式的推导和公式法的应用. 难点:一元二次方程求根公式的推导.(2分钟)用配方法解方程:(1)x 2+3x +2=0; (2)2x 2-3x +5=0. 解:(1)x 1=-2,x 2=-1; (2)无解.一、自学指导.(8分钟)问题:如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac 2a,x 2=-b -b 2-4ac2a.分析:因为前面具体数字已做得很多,现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a就得到方程的根,当b 2-4ac <0时,方程没有实数根.(2)x =-b±b 2-4ac 2a叫做一元二次方程ax 2+bx +c =0(a ≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.(5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b 2-4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 用公式法解下列方程,根据方程根的情况你有什么结论?(1)2x 2-3x =0; (2)3x 2-23x +1=0; (3)4x 2+x +1=0.解:(1)x 1=0,x 2=32;有两个不相等的实数根;(2)x 1=x 2=33;有两个相等的实数根; (3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.方程x 2-4x +4=0的根的情况是( B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根 D .没有实数根2.当m 为何值时,方程(m +1)x 2-(2m -3)x +m +1=0, (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?解:(1)m <14; (2)m =14; (3)m >14.3. 已知x 2+2x =m -1没有实数根,求证:x 2+mx =1-2m 必有两个不相等的实数根.证明:∵x 2+2x -m +1=0没有实数根, ∴4-4(1-m)<0,∴m <0.对于方程x 2+mx =1-2m ,即x 2+mx +2m -1=0, Δ=m 2-8m +4,∵m <0,∴Δ>0,∴x 2+mx =1-2m 必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.利用判别式判定下列方程的根的情况: (1)2x 2-3x -32=0; (2)16x 2-24x +9=0;(3)x 2-42x +9=0 ; (4)3x 2+10x =2x 2+8x. 解:(1)有两个不相等的实数根; (2)有两个相等的实数根; (3)无实数根;(4)有两个不相等的实数根. 2.用公式法解下列方程:(1)x 2+x -12=0 ; (2)x 2-2x -14=0;(3)x 2+4x +8=2x +11; (4)x(x -4)=2-8x ; (5)x 2+2x =0 ; (6)x 2+25x +10=0. 解:(1)x 1=3,x 2=-4; (2)x 1=2+32,x 2=2-32; (3)x 1=1,x 2=-3;(4)x 1=-2+6,x 2=-2-6;(5)x 1=0,x 2=-2; (6)无实数根.点拨精讲:(1)一元二次方程ax 2+bx +c =0(a ≠0)的根是由一元二次方程的系数a ,b ,c 确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b 2-4ac ≥0的前提下,把a ,b ,c 的值代入x =-b±b 2-4ac 2a(b 2-4ac ≥0)中,可求得方程的两个根;(3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟)1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定.a ,b ,c 的值,再算.出b 2-4ac 的值、最后代.入求根公式求解. 3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟)21.2.3 因式分解法1. 会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2. 能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想.(2分钟)将下列各题因式分解:(1)am +bm +cm =(__a +b +c__)m ; (2)a 2-b 2=__(a +b)(a -b)__; (3)a 2±2ab +b 2=__(a±b)2__.一、自学指导.(8分钟)问题:根据物理学规律,如果把一个物体从地面以10 m /s 的速度竖直上抛,那么经过x s 物体离地的高度(单位:m )为10x -4.9x 2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s )设物体经过x s 落回地面,这时它离地面的高度为0,即10x -4.9x 2=0, ① 思考:除配方法或公式法以外,能否找到更简单的方法解方程①? 分析:方程①的右边为0,左边可以因式分解得: x(10-4.9x)=0,于是得x =0或10-4.9x =0, ② ∴x 1=__0__,x 2≈2.04.上述解中,x 2≈2.04表示物体约在2.04 s 时落回地面,而x 1=0表示物体被上抛离开地面的时刻,即0 s 时物体被抛出,此刻物体的高度是0 m .点拨精讲: (1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.(2)如果a·b =0,那么a =0或b =0,这是因式分解法的根据.如:如果(x +1)(x -1)=0,那么__x +1=0或__x -1=0__,即__x =-1__或__x =1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.说出下列方程的根:(1)x(x -8)=0; (2)(3x +1)(2x -5)=0. 解:(1)x 1=0,x 2=8; (2)x 1=-13,x 2=52.2.用因式分解法解下列方程: (1)x 2-4x =0; (2)4x 2-49=0;(3)5x 2-20x +20=0.解:(1)x 1=0,x 2=4; (2)x 1=72,x 2=-72;(3)x 1=x 2=2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用因式分解法解下列方程:(1)5x 2-4x =0; (2)3x(2x +1)=4x +2; (3)(x +5)2=3x +15. 解:(1)x 1=0,x 2=45;(2)x 1=23,x 2=-12;(3)x 1=-5,x 2=-2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.2.用因式分解法解下列方程:(1)4x 2-144=0;(2)(2x -1)2=(3-x)2; (3)5x 2-2x -14=x 2-2x +34;(4)3x 2-12x =-12.解:(1)x 1=6,x 2=-6; (2)x 1=43,x 2=-2;(3)x 1=12,x 2=-12;(4)x 1=x 2=2.点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.用因式分解法解下列方程: (1)x 2+x =0; (2)x 2-23x =0; (3)3x 2-6x =-3; (4)4x 2-121=0; (5)(x -4)2=(5-2x)2. 解:(1)x 1=0,x 2=-1; (2)x 1=0,x 2=23; (3)x 1=x 2=1;(4)x 1=112,x 2=-112;(5)x 1=3,x 2=1.点拨精讲:因式分解法解一元二次方程的一般步骤:(1)将方程右边化为__0__;(2)将方程左边分解成两个一次式的__乘积__;(3)令每个因式分别为__0__,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解.2.把小圆形场地的半径增加5 m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m . 则可列方程2πx 2=π(x +5)2.解得x 1=5+52,x 2=5-52(舍去). 答:小圆形场地的半径为(5+52) m .学生总结本堂课的收获与困惑.(2分钟)1.用因式分解法解方程的根据由ab =0得 a =0或b =0,即“二次降为一次”. 2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4 一元二次方程的根与系数的关系1. 理解并掌握根与系数的关系:x 1+x 2=-b a ,x 1x 2=ca .2. 会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用.难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟) 方程 x 1 x 2 x 1+x 2 x 1x 2 x 2-5x +6=0 2 3 5 6 x 2+3x -10=02-5-3-10问题:你发现什么规律? ①用语言叙述你发现的规律;答:两根之和为一次项系数的相反数;两根之积为常数项. ②x 2+px +q =0的两根x 1,x 2用式子表示你发现的规律. 答:x 1+x 2=-p ,x 1x 2=q. 自学2:完成下表: 方程 x 1 x 2 x 1+x 2 x 1x 2 2x 2-3x -2=02-1232-13x 2-4x +1=013143 13问题:上面发现的结论在这里成立吗?(不成立) 请完善规律:①用语言叙述发现的规律; 答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②ax 2+bx +c =0的两根x 1,x 2用式子表示你发现的规律.答:x 1+x 2=-b a ,x 1x 2=ca.自学3:利用求根公式推导根与系数的关系.(韦达定理) ax 2+bx +c =0的两根x 1=__-b +b 2-4ac 2a __,x 2=__-b -b 2-4ac 2a__.x 1+x 2=-b a ,x 1x 2=ca.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积. (1)x 2-3x -1=0 ; (2)2x 2+3x -5=0; (3)13x 2-2x =0. 解:(1)x 1+x 2=3,x 1x 2=-1; (2)x 1+x 2=-32,x 1x 2=-52;(3)x 1+x 2=6,x 1x 2=0.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.不解方程,求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)3x 2+7x -9=0; (3)5x -1=4x 2.解:(1)x 1+x 2=6,x 1x 2=-15; (2)x 1+x 2=-73,x 1x 2=-3;(3)x 1+x 2=54,x 1x 2=14.点拨精讲:先将方程化为一般形式,找对a ,b ,c.2.已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 解:另一根为32,k =3.点拨精讲:本题有两种解法,一种是根据根的定义,将x =-3代入方程先求k ,再求另一个根;一种是利用根与系数的关系解答.3.已知α,β是方程x 2-3x -5=0的两根,不解方程,求下列代数式的值.(1)1α+1β; (2)α2+β2; (3)α-β.解:(1)-35;(2)19;(3)29或-29.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.不解方程,求下列方程的两根和与两根积:(1)x 2-3x =15; (2)5x 2-1=4x 2; (3)x 2-3x +2=10; (4)4x 2-144=0. 解:(1)x 1+x 2=3,x 1x 2=-15; (2)x 1+x 2=0,x 1x 2=-1; (3)x 1+x 2=3,x 1x 2=-8; (4)x 1+x 2=0,x 1x 2=-36.2.两根均为负数的一元二次方程是( C ) A .7x 2-12x +5=0 B .6x 2-13x -5=0 C .4x 2+21x +5=0 D .x 2+15x -8=0 点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟)不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值. 1.先化成一般形式,再确定a ,b ,c.2.当且仅当b 2-4ac ≥0时,才能应用根与系数的关系.3.要注意比的符号:x 1+x 2=-b a (比前面有负号),x 1x 2=ca(比前面没有负号).学习至此,请使用本课时对应训练部分.(10分钟)21.3 实际问题与一元二次方程(1)1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理. 3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题. 难点:找出实际问题中的等量关系.一、自学指导.(12分钟)问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x 个人,那么患流感的这一个人在第一轮中传染了__x__人,第一轮后共有__(x +1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__x__人,第二轮后共有__(x +1)(x +1)__人患了流感.则列方程:__(x+1)2=121__,解得__x=10或x=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__x__,则十位数字为__(6-x)__,则原两位数为__10(6-x)+x,新两位数为__10x+(6-x)__.依题意可列方程:[10(6-x)+x][10x+(6-x)]=1008__,解得x1=__2__,x2=__4__,∴原来的两位数为24或42.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为()A.x(x+1)=2550B.x(x-1)=2550C.2x(x+1)=2550D.x(x-1)=2550×2分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(x-1)张相片,全班共送出x(x-1)张相片,可列方程为x(x-1)=2550. 故选B.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出x个小分支,则有1+x+x2=91,即x2+x-90=0,解得x1=9,x2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别.2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则列方程为:__x2+(x+4)2=10(x+4)+x-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.两个正数的差是2,它们的平方和是52,则这两个数是(C)A.2和4B.6和8C.4和6D.8和102.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题.2. 对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(2)1. 会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.一、自学指导.(10分钟)自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为x,则11月份的营业额为__5000(1+x)__元,12月份的营业额为__5000(1+x)(1+x)__元,即__5000(1+x)2__元.由此就可列方程:__5000(1+x)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为x,则一月(或一年)后产量为a(1+x);二月(或二年)后产量为a(1+x)2;n月(或n年)后产量为a(1+x)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+x)n.解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其他依此类推.解:设这种存款方式的年利率为x,则1000+2000x·80%+(1000+2000x·80%)x·80%=1320,整理,得1280x2+800x+1600x=320,即8x2+15x-2=0,解得x1=-2(不符,舍去),x2=0.125=12.5%.答:所求的年利率是12.5%.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)青山村种的水稻2011年平均每公顷产7200 kg,2013年平均每公顷产8460 kg,求水稻每公顷产量的年平均增长率.解:设年平均增长率为x,则有7200(1+x)2=8460,解得x1=0.08,x2=-2.08(舍).即年平均增长率为8%.答:水稻每公顷产量的年平均增长率为8%.点拨精讲:传播或传染以及增长率问题的方程适合用直接开平方法来解.学生总结本堂课的收获与困惑.(3分钟)1. 列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义.2. 若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(3)1. 能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.并能根据具体问题的实际意义,检验结果是否合理.2. 列一元二次方程解有关特殊图形问题的应用题.重点:根据面积与面积之间的等量关系建立一元二次方程的数学模型并运用它解决实际。
最新人教版初中九年级数学上册《一元二次方程》导学案
第二十一章一元二次方程21.1一元二次方程——一元二次方程的相关概念一、新课导入1.导入课题:情景:要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比等于下部与全部(全身)的高度比,则雕像的下部应设计多少米高?问题1:列方程解应用题的一般步骤是什么?(导出审题的关键是寻找等量关系)问题2:你能画出示意图表示这个问题吗?(用线段AB表示雕像的高度,雕像上部的高度表示为AC,下部的高度表示为BC,在黑板上画出示意图,把这个问题转化为数学问题)问题3:能反映问题的等量关系的是哪一句话?(根据题意导出关系式BC2=2AC)问题4:设雕像下部高BC=x m,请说出你所列的方程,并化简.这个方程是一元一次方程吗?它有什么特点?这个方程就是本节课我们将要学习的一元二次方程.(板书课题)2.学习目标:(1)会设未知数,列一元二次方程.(2)了解一元二次方程及其根的概念.(3)能熟练地把一元二次方程化成一般形式,并准确地指出各项系数.3.学习重、难点:重点:一元二次方程的一般形式及相关概念.难点:寻找等量关系.二、分层学习1.自学指导:(1)自学内容:教材第1页到第2页的问题1、问题2.(2)自学时间:5分钟.(3)自学方法:先寻找问题中的等量关系,再根据等量关系列出方程.(4)自学参考提纲:①问题1中,要制作一个无盖的方盒,四角都要剪去一个相同的正方形,我们设正方形边长为x cm,则盒底的宽为(50-2x) cm,盒底的长为(100-2x) cm,根据矩形的面积公式及方盒的底面积3600 cm2可列方程为(100-2x)(50-2x)=3600,你能把它整理为课本上的方程②吗?试说明具体经过哪几步变形得到.先去括号5000-100x-200x+4x2=3600移项合并同类项4x2-300x+1400=0系数化为1(两边同除以4) x2-75x+350=0②问题2中,本次排球比赛的总比赛场数为28场.设邀请x支队参赛,则每支队与其余(x-1) 支队都要赛一场.整个比赛中总比赛场数是多少?你是怎样算出来的?本题的等量关系是什么?你列出的方程是x(x-1)=28.你能把它整理为课本上的方程③吗?试说明具体经过哪几步变形得到.去括号x2-12x=28系数化为1(两边同乘以2) x2-x=562.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察了解学生是否会寻找等量关系,是否会化简方程.②差异指导:简要说明问题2中单循环比赛与双循环比赛的区别,对不会寻找等量关系的学生给予辅导,说明化简方程的基本要求.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)总结寻找等量关系的策略,简要指出哪些公式经常被我们作为寻找等量关系的依据.(2)练习:根据下列问题列方程①一个圆的面积是2πm2,求半径.πr2=2π②一个直角三角形的两条直角边相差3cm,面积为9cm2,求较长的直角边的长.1x(x-3)=92③4个完全相同的正方形面积之和是25,求正方形的边长x. 4x2=25④一个长方形的长比宽多2,面积是100,求长方形的长x. x(x-2)=100⑤把长为1的木条分成两段,使较短一段的长与全长的积等于较长一段的长的平方,求较短一段的长x.x=(1-x)21.自学指导:(1)自学内容:教材第3页的内容.(2)自学时间:5分钟.(3)自学方法:观察方程①②③,从方程所含的未知数的个数及其次数等方面找出它们共同的特点.(4)自学参考提纲:①结合一元一次方程的定义,请对一元二次方程进行定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.②一元二次方程的一般形式是a x2+b x+c=0(a≠0),为什么要规定a≠0?因为a=0时,未知数的最高次数小于2.③同桌之间相互说说方程①②③的二次项,二次项系数,一次项,一次项系数,常数项各是什么.方程①x2+2x-4=0 二次项:x2二次项系数:1 一次项:2x 一次项系数:2常数项:-4方程②x2-75x+350=0 二次项:x2二次项系数:1 一次项:-75x 一次项系数:-75 常数项:350方程③x2-x=56 二次项:x2二次项系数:1 一次项:-x 一次项系数:-1常数项:-56④举例说明什么是一元二次方程的根.⑤自学例题,说说把一元二次方程化为一般形式,要经过哪些变形?去括号,移项,合并同类项.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生在回答一元二次方程各项及各项系数时,是否注意了符号.②差异指导:提醒学生一元二次方程的每一项(系数)都应包括它前面的符号.(2)生助生:生生互动交流、订正错误.4.强化:(1)交流总结:确定一元二次方程各项的系数时,若方程不是一般形式,要先经过去括号、移项、合并同类项等步骤把它化成一般形式,通常习惯把二次项系数化为正数,且各项系数均为整数且互质,在指出各项系数时,一定要带上各项前面的符号.(2)练习:①将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:5x2-1=4x;4x2=81;解:原式化为5x2-4x-1=0解:原式化为4x2-81=0二次项系数:5一次项系数:-4常数项:-1二次项系数:4一次项系数:0常数项:-814x(x+2)=25;(3x-2)(x+1)=8x-3.解:原式化为4x2+8x-25=0解:原式化为3x2-7x+1=0二次项系数:4一次项系数:8常数项:-25二次项系数:3一次项系数:-7常数项:1②若方程(m-1)x2+x=1是关于x的一元二次方程,则m的取值范围是m≥0且m≠1.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有什么困惑?2.教师对学生的评价:(1)表现性评价:点评学生参与学习的情况,回答问题,小组互动情况以及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)注重知识的前后联系,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.(2)教师创设情境,给出实例,学生积极主动探究,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.(3)增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.(4)对于一元二次方程的根的概念形成过程,要让学生大胆猜测,经过思考、讨论、分析的过程,让学生在交流中体会成功.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)一元二次方程3x2=5x的二次项系数和一次项系数分别是(C)A. 3,5B. 3,0C. 3,-5D. 5,02.(10分)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3, 4.解:-4,33.(20分)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.(1)3x2+1=6x;(2)4x2=81-5x;解:原式化为3x2-6x+1=0 解:原式化为4x2+5x-81=0二次项系数:3 二次项系数:4一次项系数:-6 一次项系数:5常数项:1 常数项:-81(3)x(x+5)=5x-10; (4)(3x-2)(x+1)=x(2x-1).解:原式化为x2+10=0 解:原式化为x2+2x-2=0二次项系数:1 二次项系数:1一次项系数:0 一次项系数:2常数项:10 常数项:-24.(30分)根据下列问题列方程,并将其化成一元二次方程的一般形式.(1)一个长方形的长比宽多1cm,面积是132cm2,长方形的长和宽各是多少?解:设长方形的长为x cm,则宽为(x-1)cm,根据题意,得x(x-1)=132,整理,得x2-x-132=0.(2)有一根1m长的铁丝,怎样用它围一个面积为0.06m2的平方的长方形?解:设长方形的长为x m,则宽为(0.5-x)m.根据题意,得x(0.5-x)=0.06,整理,得50x2-25x+3=0.(3)参加一次聚会的每两人都握了一次手,所有人共握手10次.有多少人参加这次聚会?解:设有x人参加了这次聚会,根据题意,得x(x-1)=10整理,得x2-x-20=0二、综合应用(20分)5.(20分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,则x满足的方程是(B)A. x2+130x-1400=0B. x2+65x-350=0C. x2-130x-1400=0D. x2-65x-350=0三、拓展延伸(10分)6.(10分)如果2是方程x2-c=0的一个根,求常数c及方程的另一个根.解:将2代入原方程中,得22-c=0,得c=4.将c=4代入原方程,得x2-4=0.解得x=±2.即方程的另一个根为-2.后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
九年级数学一元二次方程复习课导学案
一元二次方程复习导学案一、预习局部〔一〕一元二次方程的根本概念1.定义:只含有_______个未知数,并且未知数的最高次数是 ______ 的_______ 方程,叫做一元二次方程.2.一般形式:__________________________________3.项数和系数:二次项:__________ 二次项系数:_______一次项:__________一次项系数:_______常数项:__________4考前须知:(1)含有一个未知数; (2)未知数的最高次数为2; (3)二次项系数不为0; (4)整式方程.5.一元二次方程的根:使方程左右两边______的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的_____.〔二〕、解一元二次方程的方法1.一元二次方程的解法:(1)._______法 (2). _______法 (3). _______法 (4). _______法2.解一元二次方程的根本思路:将二次方程转化为一次方程,即______。
二、自主学习考点一一元二次方程的定义1 1.以下所给方程中,是一元二次方程的有〔〕x x2-4x-1=0xx3-5x+2=02.假设方程是(m+2) x|m|+3mx+1=0关于x的一元二次方程,则m的值是 .考点二一元二次方程的根的应用1假设关于x的一元二次方程〔m-1)x2+x+m2-1=0有一个根为0,则m= .2. 一元二次方程x2+px-2=0的一个根为2,则p的值为 .三、合作探究考点三一元二次方程的解法例1用对应的方法解以下方程4(2x-1)2=9〔直接开平方法〕 2x2-9x+5=0 〔公式法〕x2+3x-10=0 (因式分解法) x2-8x+6=0〔配方法〕四、稳固提升1用配方法解方程x2-2x-5=0时,原方程应变为〔〕A. (x-1)2=6B.(x+2)2=9C. (x+1)2=6D.(x-2)2=92 (易错题〕三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的根,则该三角形的周长为〔〕A.13 B. 15 C.18 D.13或183 .用适当的方法解方程:x2-4x-1=0 x2-9=0 a2-7a+6=0五课堂小结本节课你有哪些收获?。
人教版九年级数学上册《一元二次方程》导学案:一元二次方程的根与系数的关系
人教版九年级数学上册《一元二次方程》导学案 21.2.4 一元二次方程的根与系数的关系【学习目标】1.掌握一元二次方程两根的和、两根的积与系数的关系;2.能根据根与系数的关系式和已知一个根的条件下,求出方程的另一根,以及方程中的未知系数;3.会利用根与系数的关系求关于两根代数式的值.2.如果方程ax 2+bx +c =0(a ≠0)有两个实数根21,x x ,那么21x x +=____,21x x ⋅=____.3.方程0252=+-x x 有两个实数根21,x x ,则21x x +=____,21x x ⋅=____.4.已知α,β是一元二次方程0252=--x x 的两个实数根,则α2+αβ+β2的值为 ( )A. -1B. 9C. 23D. 27 【典型例题】知识点 一元二次方程的根与系数的关系1.已知x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,下列结论一定正确的是( ) A .x 1+x 2>0 B .x 1+x 2<0 C .x 1•x 2>0 D. x 1•x 2<02.设21,x x 是方程0352=-+x x 的两个根,则2221x x +的值是 ( ) A.19 B.25 C.31 D.303.设21,x x 是方程020242=--x x 的两个根,则=+-221312024x x x . 4..已知方程x 2-12x+m=0的一个根是另一个根的2倍,则m=_________。
5.关于x 的方程0832=-+mx x 有一个根是-4,求另一个根及m 的值.【巩固训练】1.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为( ) A.7- B.3- C.7 D.32.如果关于x 的方程2x 2-5x +m =0的两个实数根互为倒数,那么m 的值为( ) A.12B.-12C.2D.-23.已知a,b 是关于x 的一元二次方程01nx x 2=-+的两实数根,则式子baa b +的值是( )A.2n 2+B.2n 2+-C.2n 2-D.2n 2-- 4.以3和—2为根的一元二次方程是( )A.06x x 2=-+B.06x x 2=++C.06x x 2=--D.06x x 2=+-5.已知方程012=-+x x 的两根分别为21x ,x ,则)12)(12x 222121-+-+x x x (的值为( )A. -1B.—2C. 1D. 26.如果n m ,是两个不相等的实数,且满足32=-m m ,32=-n n ,那么代数式=++-2024222m mn n .7.已知关于x 的方程 (1)当m= 时,此方程的两根互为相反数 (2)当m= 时,此方程的两根互为倒数 8.不解方程,求下列方程的两根x 1、x 2的和与积.⑴ 01562=--x x ⑵09732=-+x x ⑶ 2415x x =-【拓展延伸】9.若n m ,是方程0720152=++x x 的两个根,求()()820166201422++++n n m m 的值.012)1(2=-++-m x m x。
九年级数学上册 9 一元二次方程复习导学案(无答案)(新版)新人教版
一元二次方程
教学反思
1 、要主动学习、虚心请教,不得偷懒. 老老实实做"徒弟〞,认认真真学经验,扎扎实实搞教研.
2 、要勤于记录,善于总结、扬长避短. 记录的过程是个学习积累的过程, 总结的过程就是一个自我提高的过程.通过总结, 要经常反思自己的优点与缺点,从而取长补短,不断进步、不断完善.
3 、要突破创新、富有个性,倾心投入. 要多听课、多思考、多改良,要正确处理好模仿与开展的关系,对指导教师的工作不能照搬照抄,要学会扬弃,在原有的根底上,根据自身条件创造性实施教育教学,逐步形成自己的教学思路、教学特色和教学风格, 弘扬工匠精神, 努力追求自身教学的高品位.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点一:一元二次方程只含有______________并且未知数的最高次数是2的整式方程,称为一元二次方程.一元二次方程的一般形式是________________()0,,≠a c b a 为常数,,其中a 称为________,b 称为_________,c 称为_______ 考点1:一元二次方程的概念 例1.关于x 的方程()133112=--+x xm m 是一元二次方程,求m 的值.1. 判断下列各式是不是关于x 的一元二次方程(是的画“√”,不是的画“×”) ()x x=-2531 ( ) ()()b a b a ab +=++22222 ( )()72152332=+-x ( ) ()15342=-x x ( ) ()15652-≤-x x ( ) ()x x 27115326=+- ( ) 2. 若0252=+-p x px是关于x 的一元二次方程,则( )A.1=pB.1≠pC.0=pD.0≠p 3.如果关于x 的方程()05232=+--a x a x是一元二次方程,那么a 的取值范围是_______.考点2:化一元二次方程为一般式方程 例2.把()()()()432122222+++++=++x x x x x化成一般式方程,并写出二次项系数、一次项系数和常数项.1.一元二次方程03852=--x x的二次项是______,一次项是_______,常数项是______.2.将()()182528=--x x 化为一般是方程,得____________________,二次项系数为_____,一次项系数为_______,常数项为_______3.一元二次方程()6322-=x x化为一般式方程后,二次项系数、一次项系数和常数项分别是( )A.2,3,-6B.2,-3,18C.2,-3,6D.2,3,6 4. 一元二次方程()()0112=+-+-c x b ax 化为一般形式后为01322=--x x ,试求c b a ,,的值.5. 若关于x 的一元二次方程()01212=-++-m x m x的常数项为0,求m 的值.考点3:一元二次方程的解满足方程的___________________的值叫做一元二次方程的解,一元二次方程的解也称为一元二次方程的根. 例3. 已知关于x 的一元二次方程0532=--bx ax有一根为2=x ,则b a 64-的值是多少?1.已知方程0742=+-m x x的一个根是1,则m 的值是_______.2.已知关于x 的一元二次方程02=+-k x x的一个根是2,则k 的值是( )A.-2B.2C.1D.-1 3.若关于x 的一元二次方程()0052≠=++a bx ax 的一个解是1=x ,则b a --2013的值是( )A.2018B.2008C.2014D.2012 4. 如果1=x 是方程032=++bx a x的一个根,求()ab b a 42+-的值.知识点二:解一元二次方程 1. 直接开方法解一元二次方程 1. 解下列一元二次方程 ()912=x()02522=-x ()081432=-x2. 配方法解一元二次方程例4. 用配方法解下列一元二次方程 ()04312=--x x()29x 2+12x+4=91. 用配方法解下列一元二次方程 ()040612=-+x x()03722=+-x x ()x x 918532=-()xx 23584-= ()012652=--x x()0610362=+-x x2. 将二次三项式342+-x x配方后得 ( )A.()522+-x B.()122--x C.()522++x D.()122-+x3. 将二次三项式3422+-x x配方后得 ( )A.()1212+-x B.()1212--x C.()3212+-x D.()3212--x4. 代数式542+-x x的最小值是( )A. -1B.1C.2D.5 5. 一元二次方程0182=--x x配方后可变形为( )A.()1742=+x B.()1542=+x C.()1742=-x D.()1542=-x6. 一元二次方程03232=-+x x的解是___________.7. 已知实数n m ,满足22=-nm ,则代数式14222-++m n m 的最小值等于( )A.-14B.-6C.8D.11 8.在实数范围内定义运算“※”,其法则为:a ※b =ab 4,例如2※6=4×2×6=48 (1)求3※7的值. (2)若x ※x +8※x +2※8=0,求x 的值.9. 试证明无论x 取何实数时,代数式7422++x x的值一定是正数.3. 公式法解一元二次方程例5. 用公式法解下列的一元二次方程 ()034412=--x x()()32182=+x x1. 用公式法解方程: ()04312=--x x()016822=+-x x ()053232=++x x()015342=--x x ()02634252=++x x ()()()x x x 21416-=++2. 在一元二次方程()()1532=--x x 中,=a ______,____=b ,____=c . 对于一元二次方程)0(02≠=++a c bx a x当042>-=∆ac b 时方程有两个不相等的实数根;当042=-=∆ac b时方程有两个相等的实数根;当042<-=∆ac b 时方程无实数根. 例6. 不解方程,判定下列方程的根的情况;()01212=-+x x()()1422-=-x x ()032732=++x x1. 下列关于x 的一元二次方程有实数根的是( ) A.012=+x B.012=++x x C.012=+-x x D.012=--x x 2.下列一元二次方程有两个相等的实数根的是( ) A.032=+xB.022=+x x C.()012=+x D.()()013=-+x x3. 若一元二次方程022=--m x x无实数根,则一次函数()11-++=m x m y 的图象不经过( )A.第四象限B.第三象限C. 第二象限D.第一象限 4. 关于x 的一元二次方程()011222=-+++-m xx m 无实数根,则m 的取值范围是_______.5. 已知关于x 的方程()()01222=-++-m x m x .(1)求证:方程恒有两个不相等的实数根.(2)设此方程的一个根是1,请求出方程的另一个根.6. 判断下列一元二次方程是否有实数根,如果有实数根,请求出来. ()047312=+-x x()0222=+-x x ()x x 231332=+7. 在等腰三角形ABC 中,三边长分别为c b a ,,,其中5=a ,若关于x 的方程()0622=-+++b x b x 有两个相等的实数根,求△ABC 的周长.4. 因式分解方解一元二次方程例7. 用因式分解法解下列一元二次方程 ()()x x x 44131-=- ()()1682224-=-x x1. 用因式分解法解下列方程()0712=-x x ()()()034232=-+-x x x ()()()x x 213223-+=()()0224=-+-x x x ()a b x ax 22225-=+2. 方程()()032=+-x x 的根是( ) A.2=x B.3=x C.3,221=-=xx D.3,221-==x x3. 一元二次方程()x x x -=-22的根是( ) A.1-=x B.2=x C.2,121==xx D.2,121=-=x x4. 已知8312222=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++y x y x,则____22=+yx .5. 若142=++y xy x,282=++x xy y ,求y x +的值.知识点三:一元二次方程根与系数的关系 若一元二次方程()002≠=++a c bx ax 有两个实数根xx 21,,则a ca b x x x x =-=+2121,例8. 已知方程0922=-+kx x的一个根是-3,求另一个根及k 的值.例9. 已知x x 21,是方程01232=-+x x 的两个实数根,求x x 2221+的值.1. 若方程01322=--x x的两根为x x 21,,则____21=+x x ,_____21=x x .2. 若方程022=++px x的一个根是2,则它的另一个根为_______,___=p .3. 已知关于x 的一元二次方程032=--x x的两个实数根分别为βα,,则()()_____33=++βα4. 设x x 21,是方程0332=-+x x 的两个实数根,则xx x x 2112+的值为( )A.5B.-5C.1D.-1 5. 不解方程,求下列方程的两根之和xx 21+与两根之积x x 21.()010512=--x x()751322+=-x x ()()x x x 3713+=-6. 若关于x 的一元二次方程0342=-+-k x x的两个实数根为xx 21,,且满足xx 213=,试求出方程的两个实数根及k 的值.7. 已知x x 21,是方程022=+-c x x 的两个实数根,且23221-=+x x . (1)求x x 21,及c 的值. (2)求x x x x 21213123++-的值.知识点四:实际问题与一元二次方程例10. 某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元 (1)求2013年至2015年该地区投入教育经费的年平均增长率.(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元?1. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?2.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为 ( ) A.()364812=-x B.()364812=+x C.()483612=-x D.()483612=+x3. 据调查,2014年5月某市的房价均价为7600元/m2,2016年同期达到8200元/m 2,假设这两年该市房价的平均增长率为x ,根据题意,所列方程为( )A.()82007600%12=+x B.()82007600%12=-xC.()8200760012=+x D.()8200760012=-x4. 由于国家出台对房屋的限购令,云南省某地的房屋价格原价为2400元/m 2,经过连续两次降价%a 后,售价变为2000元/m 2,则下列方程中正确的是( )A.()200012400%2=-a B.()240012000%2=-aC.()20002400%12=+a D.()20002400%12=-a5.某种药品原价为100元,经过连续两次降价后,价格变为64元,如果两次降价的百分率都是x ,那么____=x .例11.在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小相等的六块作试验田,要使试验田面积为570平方米,问道路应为多宽?1.如图,利用一面墙(墙EF最长可利用28米),围成一个矩形花园ABCD.与墙平行的一边BC 上要预留2米宽的入口(如图中MN所示,不用砌墙).现有砌60米长的墙的材料.(1)当矩形的长BC为多少米时,矩形花园的面积为300平方米;(2)能否围成480平方米的矩形花园,为什么?2.如图所示要建一个面积为150m2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一条墙墙长9m,另三边用竹篱笆围成,已知篱笆总长为35m.求鸡场的长与宽各为多少米?3.如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC=6cm,动点P、Q分别从点A、C 同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动.当点P运动到点B停止时,点Q也随之停止运动。