双曲线及其标准方程(带动画)很好报告.ppt

合集下载

双曲线及其标准方程 PPT

双曲线及其标准方程 PPT

F(±c,0) F(0,±c)
a>b>0, a2=b2+c2
F(±c,0) F(0,±c) a>0,b>0, 但a不一定大于b,
c2=a2+b2
讨论:
1)当2a 等于|F1F2|时,动点M的轨迹是 以点F1、F2为端点,方向指向F1F2外侧的两条射线.
2)当2a大于|F1F2|时,动点M的轨迹 不存在
16 9
16 9
(1).(-5,0)(5,0); (2).(0,-5)(0,5)
2、已知双曲线的焦点为F1(-5,0), F2(5,0)双曲线上 一点到焦点的距离差的绝对值等于6,则
(1) a=___3____ , c =___5____ , b =___4____
(2) 双曲线的标准方程为______________
设 c2-a2=b2 得 b2x2 a2 y2 a2b2
双即曲:a线x22 上 by每22 一 1点(a到 0两,b焦 点0) 距双离曲之线差的的标绝准对方值程为2a.
哪个系数是正的,它对应的字母
(x或y)就是焦点所在轴.
如ax22 果 by焦22 点 1在(a y轴0,上b ,0)则双曲 线表的示焦标点准在方x轴程上为的:双曲线
y
M (x ,y) F2(0,c)
y2 a2
x2 b2
1(a
0,b
0)
O
x
F1
(0,-c)
其表焦示点焦坐点在标y为轴(上0,的-c双),曲(0线,c) 其中:c2 a2 + b2 .
问题:对于一个具体的双曲线方程,怎么判
断它的焦点在哪条轴上呢?
课堂巩固
1、写出以下双曲线的焦点坐标
(1)x2 y2 1, (2) x2 y2 1

3-2-1双曲线及其标准方程 课件(共67张PPT)

3-2-1双曲线及其标准方程 课件(共67张PPT)
【解析】 距离的差要加绝对值,否则只为双曲线的一支.若 F1,F2 表示双曲线的左、右焦点,且点 P 满足|PF1|-|PF2|=2a,则点 P 在右支上;若点 P 满足|PF2|-|PF1|=2a,则点 P 在左支上.
互动 2 在双曲线的定义中,必须要求“常数小于|F1F2|”, 那么“常数等于|F1F2|”“常数大于|F1F2|”或“常数为 0”时,动 点的轨迹是什么?
【解析】 (1)若“常数等于|F1F2|”时,此时动点的轨迹是以 F1,F2 为端点的两条射线 F1A,F2B(包括端点),如图所示.
(2)若“常数大于|F1F2|”,此时动点轨迹不存在. (3)若“常数为 0”,此时动点轨迹为线段 F1F2 的垂直平分线.
互动 3 已知点 P(x,y)的坐标满足下列条件,试判断下列各 条件下点 P 的轨迹是什么图形?
2.关于双曲线应注意的几个问题 (1)双曲线的标准方程与选择的坐标系有关,当且仅当双曲线 的中心在原点,焦点在坐标轴上时,双曲线的方程才具有标准形 式.
(2)如图,设 M(x,y)为双曲线上任意一点,若 M 点在双曲线 的右支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a(0<2a<|F1F2|);若 M 在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,因 此得|MF1|-|MF2|=±2a,这与椭圆不同.
(3)列式:由|MF1|-|MF2|=±2a, 可得 (x+c)2+y2- (x-c)2+y2=±2a.①
(4)化简:移项,平方后可得 (c2-a2)x2-a2y2=a2(c2-a2). 令 c2-a2=b2,得双曲线的标准方程为xa22-yb22=1(a>0,b>0).② (5)从上述过程可以看到,双曲线上任意一点的坐标都满足方 程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c, 0),(c,0)的距离之差的绝对值为 2a,即以方程②的解为坐标的 点都在双曲线上.这样,就把方程②叫作双曲线的标准方程.

双曲线及其标准方程(共19张PPT)

双曲线及其标准方程(共19张PPT)

||MF1|-|MF2||=2a
x2 y2 a2 b2 1(a 0,b 0)
y2 a2
x2 b2
1(a
0,b
0)
F(±c,0) F(0,±c)
F(±c,0) F(0,±c)
a>b>0,a2=b2+c2
a>0,b>0,但a不一 定大于b,c2=a2+b2
y
P
F1 O F2 x
双曲线的更多秘密, 等着我们一起探索!
绘制距离之差为定值 的点的运动轨迹
设︱FF2︱=2a
-6-
运动过程中,平面上动点M到两定点距离的差为常数
特点观察
-7-
绘制距离之差为定值的 点的运动轨迹过程中
①如图(A), |MF1|-|MF2|=|F2F|=2a
②如图(B),
|MF2||MF1|=|F1F|=2a
由①②综合可得:
| |MF1|-|MF2| | = 2a
焦点在X轴上的双曲线标准方程
c2=a2+b2
-12-
焦点位置改变,标准方程如何变化?
y
M
F1 O F2 x
y M
F2 x
O
F1
x2 a2
F2(c,0)
c2=a2+b2
(a 0,b 0)
y2 x2 a2 b2 1
F1(0,-c),F2(0,c)
-13-
根据标准方程判断焦点位置
2.3 双曲线及其标准方程
生活中的双曲线
发电厂冷却塔外形线
-2-
巴西利亚大教堂
花瓶轮廓线
反比例函数图像
-3-
数学中的双曲线
F1 o F2
双曲线及其标准方程

双曲线及其标准方程ppt课件

双曲线及其标准方程ppt课件
拉动拉链(M),思考拉链头(M)运动的轨迹是什么图形?
双曲线的定义
①如图(A), |MF1|-|MF2|=2a
②如图(B),|MF2|-|MF1|=2a
由①②可得: | |MF1|-|MF2| | = 2a (差的绝对值)上面 两条
曲线合起来叫做双曲线,每一条叫做双曲线的一支.
双曲线的定义
(2)定义
北师大版选择性必修一
2.2.1 双曲线的标准方程
复习
复习 平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点
的集合(或轨迹)叫做椭圆.
问题1 如果平面内到两个定点F1,F2的距离之差也是一个常数,这
样的点的轨迹是什么图形呢?
双曲线的定义
模型试验:取一条拉链,如图,把它固定在板上的F1、F2两点,

tan
2
中2可以直接使用此公式求双曲线焦点三角形的面积.
双曲线的焦点三角形
例3
2
F1,F2是双曲线
4

2
9
= 1的两个焦点,点P在双曲线右支
上,∠F1PF2=90°.求△F1PF2的面积.
双曲线的轨迹方程
例4 在△ABC中,已知||=4 2,且三个内角A,B,C满足2sin A+
sin C=2sin B.建立适当的坐标系,求顶点C的轨迹方程.
点的轨迹是什么?
2、若常数2a=0,轨迹是什么?
双曲线的定义
3、若常数2a=|F1F2|轨迹是什么?
4、若常数2a>|F1F2|轨迹是什么?
双曲线的标准方程
双曲线标准方程的推导
(1)建立直角坐标系.
y
(2)设点的坐标
M
(3)根据定义推导出双曲线的标准方程

双曲线及其标准方程ppt课件

双曲线及其标准方程ppt课件

F1 O F2
3.限式 |MF1| - |MF2|=±2a
4.代换 即 (x c)2 y2 (x c)2 y2 2a
5.化简
6
代数式化简得:
y
M (c2 a2) x2 a2 y2 a2 (c2 a2)
F1 O F2
可令:c2-a2=b2
x
代入上式得:b2x2-a2y2=a2b2
不存在
(4)已知A(-5,0),B(5,0),M点到A,B两点的距离之差 的绝对值为0,则M点的轨迹是什么?
线段AB的垂5直平分线
(三)合作探究,构建方程
双曲线标准方程推导
1.建系
以F1,F2所在的直线为x轴,线段F1F2的中 y 点为原点建立直角坐标系
M
2.设点
x
设M(x , y),则F1(-c,0),F. 2(c,0)
15
16
2
(二)注重细节,理解概念
双曲线定义:
平面内与两个定点F1,F2的距离的差的绝对 值等于非零常数(小于︱F1F2︱)的点的轨迹
叫做双曲线.
M
① 两个定点F1、F2——双曲线的焦点;
② |F1F2|=2c ——焦距.
F1 o F2
3
(二)注重细节,理解概念
思考:为什么要求 0<2a<2c? 演示
当2a=2c时,动点的轨迹是什么? 以点F1、F2为端点,方向指向F1F2外侧的两条射 线. 当2a>2c时,动点的轨迹是什么? 不存在 当2a=0时,动点的轨迹是什么? 线段F1F2的垂直平分线
x2 b2
(1 a
0, b
0)
问题:如何判断双曲线的焦点在哪个轴上呢?
(二次项系数为正,焦点在相应的轴8上)

高中数学双曲线及其标准方程PPT课件(公开课)

高中数学双曲线及其标准方程PPT课件(公开课)

y
M
F1 o F2 x
y
M F2
F1
c2 a2 b2a 0,b 0
y2 x2 x a2 b2 1
F(0, ± c)
练习:写出以下双曲线的焦点坐标(请注意焦点的位置)
1. x2 y2 1 16 9
2. y2 x2 1 16 9
F(±5,0) F(0,±5)
12
例1 已知双曲线的焦点为F1(-5,0),F2(5,0),双曲线上 一点P到F1、F2的距离的差的绝对值等于6,求双 曲线的标准方程.
1. 建系. 以F1,F2所在的直线为X
2.设点.设P(x , y),双曲线的焦
距为2c(c>0),F1(-c,0),F2(c,0) F1
常数=2a
3.列式.|PF1 - PF2|= 2a
o F2 x
即 | (x+c)2 + y2 - (x-c)2 + y2 | = 2a
且点O与线段AB的中点重合
设爆炸点P的坐标为(x,y),
y
P
则 PA PB 340 2 680 即 2a=680,a=340 Q AB 800
Ao Bx
2c 800,c 400, b2 c2 a2 44400
Q 800 PA PB 680 0 , x 因此炮弹爆炸点的轨迹方程为
4.化简.
7
(x c)2 y2 (x c)2 y2 2a
( (x c)2 y2 )2 ( (x c)2 y2 2a)2
cx a2 a (x c)2 y2
F1
(c2 a2)x2 a2y2 a2(c2 a2)
令c2-a2=b2
x2 a2
y2 b2
1
y
M

【精品】PPT课件 双曲线及标准方程共24页

【精品】PPT课件  双曲线及标准方程共24页
பைடு நூலகம்
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
【精品】PPT课件 双曲线及标准方程
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。

选择必修 第三章 3.2.1 双曲线及其标准方程 课件(共23张PPT)

选择必修 第三章   3.2.1  双曲线及其标准方程  课件(共23张PPT)
0),焦点F1,F2的坐标分别为(-c , 0) ,(c , 0).
又设||MF1|-|MF2||= 2a( a为大于0的常数, a<c).
由双曲线的定义,双曲线就是下列点的集合:
P={M|||MF1|-|MF2||=2a,0<a<|F1F2|}.
y
M
F1
O
F2 x
知新探究
y
设 M(x, y) 是双曲线上任意一点,双曲线的焦距为 2c( c >
拓展2:根据两个不同的观测点测得同一炮弹爆炸声的时间差,可以确定爆炸点在某
条曲线上,但不能确定爆炸点的准确位置. 而现实生活中为了安全,我们最关心的是
炮弹爆炸点的准确位置,怎样才能确定爆炸点的准确位置呢?
利用两个不同的观测点A, B测得同一点P发出信号的时间差, 可以确定点P所在
双曲线方程. 如果再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时
因为|PA|-|PB|=340×2=680>0,
所以点P的轨迹是双曲线的右支,因此x>340.
所以,炮弹爆炸点的轨迹方程为
2
115600
2

=1(x>340).
44400
P
A o
B x
知新探究
拓展1:若在A,B两地同时听到炮弹爆炸声,则炮弹爆炸点的轨迹是什么?
提示: 爆炸点的轨迹是线段AB的垂直平分线.
思考:
1.与两定点的距离的差的绝对值等于常数(当2a=|F1F2|时)的轨迹是什么?
在直线F1F2上且 以F1、F2为端点向外的两条射线.
2.与两定点的距离的差的绝对值等于常数(当2a>|F1F2| )时的轨迹是什么?
不存在
3.当||MF1|-|MF2||=2a=0时的轨迹是什么?

双曲线的标准方程动态演示ppt课件

双曲线的标准方程动态演示ppt课件
思考:
方程 x2 y2 1 表示焦点在y轴双曲线时, 2m m1
则m的取值范围____m_______2__.
设M(x , y),则F1(-c,0),F2(c,0)
y
M
F1 O F2 x
3.列式 |MF1| - |MF2|=±2a
即 (x c)2 y2 (x c)2 y2 2a
4.化简
(x c)2 y2 (x c)2 y2 2a
2
2
(x c)2 y 2 2a (x c)2 y 2
x2 a2
y2 b2
1(a
b
0)
y2 a2
x2 b2
1(a
b
0)
x2 y2 1(a 0,b 0) a2 b2Βιβλιοθήκη y2 a2x2 b2
1(a
0,b
0)
F(±c,0) F(0,±c)
F(±c,0) F(0,±c)
a>b>0,a2=b2+c2
a>0,b>0,但a不一 定大于b,c2=a2+b2
∵焦点为 F1(5, 0), F2(5, 0)
∴可设所求方程为:
x2 a2
y2 b2
1
(a>0,b>0).
∵2a=6,2c=10,∴a=3,c=5.
所以点 P 的轨迹方程为 x2 y2 1 . 9 16
变式训练 1:已知两定点 F1(5, 0) , F2(5, 0) ,动点 P 满足 PF1 PF2 10 ,求动点 P 的轨迹方程. 解: ∵ F1F2 10 , PF1 PF2 10 ∴ 点 P 的轨迹是两条射线, 轨迹方程为 y 0( x ≥ 5或x ≤ 5) . 变式训练 2:已知两定点 F1(5, 0) , F2(5, 0) ,动点 P 满足 PF1 PF2 6 ,求动点 P 的轨迹方程.

双曲线定义(带动画)ppt课件

双曲线定义(带动画)ppt课件

②焦点为(0,-6),(0,6),经过点(2,-5)
1 y2
x2
20 16
1 2.已知方程 x2
y2
2m m1
表示焦点在y轴的
双曲线,则实数m的取值范围是___m__<__-_2______
变式: 上述方程表示双曲线,则m的取值范围是 ___m_<__-__2_或__m__>__-__1_
曲线,圆 。
解:由各种方程的标准方程知,
当m 0, n 0, m n 时方程表示的曲线是椭圆
当m n 0 时方程表示的曲线是圆 当m n 0 时方程表示的曲线是双曲线
15
随堂练习
1.求适合下列条件的双曲线的标准方程
1 ①a=4,xb2=3,y焦2 点在x轴上; 16 9
( (x c)2 y2 )2 ( (x c)2 y2 2a)2
cx a2 a (x c)2 y2
F1
(c2 a2 )x2 a2y2 a2(c2 a2)
令c2-a2=b2
x2 a2
y2 b2
1
y
M
o
9
双曲线的标准方程
y
M
y M
F
1
OF
2

0, b

0)
y2 a2

x2 b2
1(a

0, b
0)
焦点
a.b.c的关 系
F(±c,0) F(0,±c)
a>b>0,a2=b2+c2
F(±c,0) F(0,±c)
a>0,b>0,但a不一 定大于b,c2=a2+b2
13
课堂巩固
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
......
1
北京摩天大楼
巴西利亚大教堂
法拉利主题公园 ......
花瓶 2
探索研究
1.回顾椭圆的定义?
平面内与两个定点F1、F2的 距离的和等于常数(大于 |F1F2|)的点轨迹叫做椭圆。
Y
O
F1 c, 0
Mx, y
F2 c, 0 X
思考:如果把椭圆定义中的“距离之和”改为“距 离之差”,那么动点的轨迹会是怎样的曲线?
上面 两条合起来叫做双曲线
根据实验及椭圆定义,你能给双曲线下定义吗?
......
6
2、双曲线定义
平面内与两个定点F1,F2的距离的差的绝对值 等于常数(小于︱F1F2︱)的点的轨迹叫做双曲线.
① 两个定点F1、F2——双曲线的焦点;
② |F1F2|=2c ——焦距.
M
符号表示:
||MF1| - |MF2||=常数(小于|F1F2|) F1 o F2

当|MF2|-|MF1|=2a时,点M的轨迹 双曲线的左支 ;
若2a=2c,动点MM的轨迹 以F1、F2为端点的两条射线 ;
若2a>F21c,动点MF的2 轨迹不存在
F1
.
F2
若2a=0,动点M的是轨迹__线__段__F_1_F_2_的M__垂__直__平__分__线___.
因此,在应用定义时,首先要考查 2a与2c的大小 .
y
y
图象
M
F1 o F2 x
M F2
x
F1
方程 焦点 a.b.c 的关系
x2 a2
y2 b2
1
y2 x2 a2 b2 1
F ( ±c, 0)
F(0, ± c)
c2 a2 b2 (c a, c b, a与b的大小不确定)
......
14
双曲线的标准方程与椭圆的 标准方程有何区别与联系?
......
∴可设双曲线方程为:
......
10
3.双曲线的标准方程
1.段建F系1F.2的以如中F何1点,F求2为所这原在优点的美建直的立线曲直为线角X的轴坐方,标程线? 系
2.设点.设M(x , y),双曲线的焦
距为2c(c>0),F1(-c,0),F2(c,0)
F1
3.列式.|MF1| - |MF2|= 2a
y
M
o F2 x
焦点在哪一个轴上。
......
17
1.已知下列双曲线的方程:
y2 x2 (1)
1
则a= 3
b= 4
c= 5 焦点坐标为(0,-5),(0,5)
9 16
(2)x2 3y2 3 则a= 3 b= 1 c= 2 焦点坐标为(-2,0),(2,0)
......
18
例 1 已 知 两 定 点 F1(5, 0) , F2(5, 0) , 动 点 P 满 足 PF1 PF2 6 , 求动点 P 的轨迹方程.
F(±c,0) F(0,±c)
a>b>0,a2=b2+c2
F(±c,0) F(0,±c)
a>0,b>0,但a不一 定大于b,c2=a2+b2
......
16
思考:如何由双曲线的标准方程来判断它的焦点 是在X轴上还是Y轴上?
判断:x2
16
y2 9
1与
y2 9xLeabharlann 161的焦点位置?
结论:看 x2 , y 2前的系数,哪一个为正,则
即“平面内与两个定点F1、F2的距离的差等于常数 的点的轨迹 ”是什么?
......
3
画双曲线
演示实验:用拉链画双曲线
......
4
......
5
①如图(A), |MF1|-|MF2|=2a
②如图(B),
|MF2|-|MF1|=2a 由①②可得:
| |MF1|-|MF2| | = 2a
(差的绝对值)
解:∵ F1F2 10 >6, PF1 PF2 6
∴ 由双曲线的定义可知,点 P 的轨迹是一条双曲线,
∵焦点为 F1(5, 0), F2(5, 0)
∴可设所求方程为:
x2 a2
y2 b2
1
(a>0,b>0).
∵2a=6,2c=10,∴a=3,c=5.
所以点 P 的轨迹方程为 x2 y2 1 .
15
双曲线与椭圆之间的区别与联系
椭圆
双曲线
定义 方程
|MF1|+|MF2|=2a
x2 a2
y2 b2
1(a
b
0)
y2 a2
x2 b2
1(a
b
0)
||MF1|-|MF2||=2a
x2 y2 1(a 0,b 0) a2 b2
y2 a2
x2 b2
1(a
0,b
0)
焦点
a.b.c的关 系
注意 (1)距离之差的绝对值
| |MF1| - |MF2| | = 2a
(2)常数要小于|F1F2|大......于0 0<2a<2c
7
【思考2】说明在下列条件下动点M的轨迹各是什么图形?
(F1、F2是两定点, |MF1|-|MF2| =2a, |F1F2| =2c (0<a<c)
当|MF1|-|MF2|=2a时,点M的轨迹 双曲线的右支
令c2-a2=b2
x2 a2
y2 b2
1
......
y
M
o
12
双曲线的标准方程
焦点在x轴上
y
焦点在y轴上 y
M
M
F1 O F2 x
F2 x
O
F1
x2 a2
y2 b2
1
y2 a2
x2 b2
1
(a 0,b 0)并且c2 =a2 b2
......
13
双曲线定义及标准方程
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
即 (x+c)2 + y2 - (x-c)2 + y2 = +_ 2a
4.化简.
......
11
(x c)2 y2 (x c)2 y2 2a
( (x c)2 y2 )2 ( (x c)2 y2 2a)2
cx a2 a (x c)2 y2
F1
(c2 a2)x2 a2y2 a2(c2 a2)
9 16
......
19
变式训练 1:已知两定点 F1(5, 0) , F2(5, 0) ,动点 P 满足 PF1 PF2 6 ,求动点 P 的轨迹方程.
解:∵ F1F2 10 >6, PF1 PF2 6
∴ 由双曲线的定义可知, 点 P 的轨迹是双曲线的一支 (右支),
∵焦点为 F1(5, 0), F2(5, 0)
......
8
练习巩固:
下列方程各表示什么曲线? (1) (x 3)2 y2 (x 3)2 y2 4
方程表示的曲线是双曲线
(2) (x 3)2 y2 (x 3)2 y2 5
方程表示的曲线是双曲线的右支
(3) (x 3)2 y2 (x 3)2 y2 6
方程表示的曲线是x轴上分别以F1和F2为端点, 指向x轴的负半轴和正半轴的两条射线。
相关文档
最新文档