Matlab 多元线性回归

合集下载

第15讲 MATLAB 多元线性回归分析

第15讲  MATLAB 多元线性回归分析
假设,说明至少有一个回归系数 i 0 ,从而说明
变量 Y 线性依赖于某个变量 X i ;若检验的结果是 接受 H 0 ,则说明所有变量 X 1 , X 2 ,..., X p 对变量的线性 关系是不重要的。
本章目录
16
回 归 分析
2 线性回归
—多元线性回归
2.3 回归方程的假设检验—模型的检验
x i (1, xi1 ,...,xip )

本章目录
22
i 1,2,...,n
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择
自变量的选择
本章目录
23
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择

选择自变量的准则 选择自变量进入回归模型的方法

(SAS实例)
本章目录
24
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择
选择 自变 量的 准则
选择 自变 量进 入回 归模 型的 方法
1. 引言
因变量
y 自变量为 x , x ,, x
1 2
p
满足线性关系
p
y x x e
0 1 1 p
(I)
对 x1 , x2 ,, x p y 进行 n 次观测, 所得的 n 组数据为
xi1 , xi 2 ,, xip, (i 1,2,, n)
它们均满足(I)式
25
本章目录
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择
选择 自变 量的 准则
选择 自变 量进 入回 归模 型的 方法

第八讲MATLAB中多元线性回归

第八讲MATLAB中多元线性回归
2.线性回归 2.线性回归
b=regress(y,X) [b,bint,r,rint,s]=regress(y,X,alpha) 输入: 因变量 列向量), 因变量(列向量 与自变量组成的矩阵, 输入 y~因变量 列向量 X~1与自变量组成的矩阵, 与自变量组成的矩阵 Alpha~显著性水平α(缺省时设定为 缺省时设定为0.05) 显著性水平 ) 输出:b=( β 0 , β1 , ( ), ),bint: b的置信区间, 输出 的置信区间, r:残差 列向量 ,rint: r的置信区间 残差(列向量 残差 列向量), 的 s: 3个统计量:决定系数 2,F值, F(1,n-2)分布大于 个统计量: 个统计量 决定系数R 值 F值的概率 ,p<α时回归模型有效 值的概率p, 回归模型有效 值的概率 rcoplot(r,rint) 残差及其置信区间作图 残差及其置信区间作图 及其
回归 模型
序 号 1 2 3 … 10 血 压 144 215 138 … 154
血压与年龄、体重指数、 例3: 血压与年龄、体重指数、吸烟习惯
年 龄 39 47 45 … 56 体重 指数 24.2 31.1 22.6 … 19.3 吸烟 习惯 0 1 0 … 0 序 号 21 22 23 … 30 血 压 136 142 120 … 175 年 龄 36 50 39 … 69 体重 指数 25.0 26.2 23.5 … 27.4 吸烟 习惯 0 1 0 … 1
β0 β1 β2 β3
R2= 0.8462 F= 44.0087 p<0.0001 s2 =53.6604
这时置信区间不包含零点, 统计量增大 统计量增大, 这时置信区间不包含零点,F统计量增大,可决系 数从0.6855增大到 增大到0.8462 ,我们得到回归模型为: 我们得到回归模型为: 数从 增大到

多元回归分析matlab

多元回归分析matlab

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y , X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ...1............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型:命令为:[b, bint,r,rint,stats]=regress(Y ,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差.③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y ,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 180.9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.073+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点.(4)预测及作图.z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')二、多项式回归 (一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA ;alpha 缺省时为0.5.例 1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; T=[ones(14,1) t' (t.^2)'];[b,bint,r,rint,stats]=regress(s',T); b,stats得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图: Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model’, alpha )说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++= 110purequadratic(纯二次):∑=++++=nj j jj m m x x x y 12110ββββinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 100 7580 70 50 65 90100 110 60 收入 1000 600 1200 500 300 400 13001100 1300 300解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791. 在画面左下方的下拉式菜单中选”all”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中. 在Matlab 工作区中输入命令:beta, rmse 得结果:beta =110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)'];[b,bint,r,rint,stats]=regress(y,X); b,stats结果为: b =110.5313 0.1464 -26.5709 -0.0001 1.8475 stats =0.9702 40.6656 0.0005三、非线性回归1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值. (2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model’, x ,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下:function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76]; beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY ,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY ,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)说明:x 表示自变量数据,m n ⨯阶矩阵;y 表示因变量数据,1⨯n 阶矩阵;inmodel 表示矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha 表示显著性水平(缺省时为0.5).2、运行stepwise 命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History. 在Stepwise Plot 窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table 窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F 值、与F 对应的概率P.例1. 水泥凝固时放出的热量y 与水泥中4种化学成分x1、x2、x3、 x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.序号x1 7 1 11 11 7 11 3 1 2 21 1 11 10 x2 26 29 56 31 52 55 71 31 54 47 40 66 68 x3 6 15 8 8 6 9 17 22 18 4 23 9 8 x4 60 52 20 47 33 22 6 44 22 26 34 12 12 y 78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4 解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 58. X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.5872 X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1.06043 X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 58.3587 format short gX11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)])legend('一次线性回归','二次线性回归')xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.311 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.0531 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25199.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-0101.8488 1.8488 1.6394e-0096.22 6.227.2643e-01012.22 12.22 2.6077e-01019.72 19.72 -2.0489e-0101.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-010由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3+ 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388.1*X1*X4 +120.25*X2*X2+ 199.25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.4。

第八讲MATLAB中多元线性回归

第八讲MATLAB中多元线性回归

y与x1的散点图 与 线性回归模型
y与x2的散点图 与
y = β 0 + β1 x1 + β 2 x2 + β 3 x3 + ε
由数据估计, 回归系数β0, β1, β2, β3 由数据估计 ε是随机误差
n=30;m=3; y=[144 215 138 145 162 142 170 124 158 154 162 150 140 110 128 130 135 114 116 124 136 142 120 120 160 158 144 130 125 175]; x1=[39 47 45 47 65 46 67 42 67 56 64 56 59 34 42 48 45 18 20 19 36 50 39 21 44 53 63 29 25 69]; x2=[24.2 31.1 22.6 24.0 25.9 25.1 29.5 19.7 27.2 19.3 28.0 25.8 27.3 20.1 21.7 22.2 27.4 18.8 22.6 21.5 25.0 26.2 23.5 20.3 27.1 28.6 28.3 22.0 25.3 27.4]; x3=[0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 ... 0 0 1 0 0 1 1 0 1 0 1];
β0 β1 β2 β3
回归系数估计值 回归系数置信区间 回归系数估计值 回归系数置信区间 45.3636 [3.5537 87.1736]
剔除异常点 (第2点和第 第 点和第 10点)后 点后
β0 β1 β2 β3
R2= 0.8462
回归系数估计值 回归系数置信区间 回归系数估计值 回归系数置信区间 58.5101 [29.9064 87.1138] 0.4303 [0.1273 0.7332] 2.3449 [0.8509 3.8389] 10.3065 [3.3878 17.2253] F= 44.0087 p<0.0001 s2 =53.6604

matlab 多元与非线性回归即拟合问题regress、nlinfit

matlab 多元与非线性回归即拟合问题regress、nlinfit

回归(拟合)自己的总结(20100728)1:学三条命令:polyfit(x,y,n)---拟合成一元幂函数(一元多次) regress(y,x)----可以多元,nlinfit(x,y,’fun ’,beta0) (可用于任何类型的函数,任意多元函数,应用范围最主,最万能的)2:同一个问题,可能这三条命令都可以使用,但结果肯定是不同的,因为拟合的近似结果,没有唯一的标准的答案。

相当于咨询多个专家。

3:回归的操作步骤:(1) 根据图形(实际点),选配一条恰当的函数形式(类型)---需要数学理论与基础和经验。

(并写出该函数表达式的一般形式,含待定系数)(2) 选用某条回归命令求出所有的待定系数所以可以说,回归就是求待定系数的过程(需确定函数的形式)配曲线的一般方法是: (一)先对两个变量x 和y 作n 次试验观察得n i y x ii,...,2,1),,( 画出散点图,散点图(二)根据散点图确定须配曲线的类型. 通常选择的六类曲线如下:(1)双曲线xba y +=1 (2)幂函数曲线y=a bx , 其中x>0,a>0(3)指数曲线y=a bx e 其中参数a>0.(4)倒指数曲线y=a xb e/其中a>0,(5)对数曲线y=a+blogx,x>0(6)S 型曲线x be a y -+=1(三)然后由n 对试验数据确定每一类曲线的未知参数a 和b.一、一元多次拟合polyfit(x,y,n)一元回归polyfit多元回归regress---nlinfit(非线性)二、多元回归分析(其实可以是非线性,它通用性极高)对于多元线性回归模型:e x x y p p ++++=βββ 110设变量12,,,px x x y 的n 组观测值为12(,,,)1,2,,i i ip i x x x y i n= .记 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=np n n p p x x x x x x x x x x 212222111211111,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y y 21,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=p ββββ 10 的估计值为排列方式与线性代数中的线性方程组相同()拟合成多元函数---regress 使用格式:左边用b=或[b, bint, r, rint, stats]= 右边用regress(y, x) 或regress(y, x, alpha)---命令中是先y 后x,---须构造好矩阵x(x 中的每列与目标函数的一项对应) ---并且x 要在最前面额外添加全1列/对应于常数项 ---y 必须是列向量---结果是从常数项开始---与polyfit 的不同。

多元回归分析报告matlab

多元回归分析报告matlab

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y, X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ...1............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型:命令为:[b, bint,r,rint,stats]=regress(Y,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差.③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立.⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 180.9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.073+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点.(4)预测及作图.z=b(1)+b(2)*xplot(x,Y,'k+',x,z,'r')二、多项式回归(一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA ;alpha 缺省时为0.5.例1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];[p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];T=[ones(14,1) t' (t.^2)'];[b,bint,r,rint,stats]=regress(s',T); b,stats得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图:Y=polyconf(p,t,S)plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model ’, alpha)说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++= 110purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 10075 80 70 50 65 90 100 110 60收入 1000 600 1200500 300 400 1300 1100 1300 300 价格 5 7 6 6 8 7 5 4 3 9解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y ”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方的下拉式菜单中选”all ”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta, rmse 得结果:beta =110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)'];[b,bint,r,rint,stats]=regress(y,X); b,stats结果为: b =110.5313 0.1464 -26.5709 -0.00011.8475 stats =0.9702 40.6656 0.0005三、非线性回归 1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model ’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值.(2)非线性回归命令:nlintool(x,y,’model ’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model ’, x,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下:function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)说明:x 表示自变量数据,m n ⨯阶矩阵;y 表示因变量数据,1⨯n 阶矩阵;inmodel 表示矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha 表示显著性水平(缺省时为0.5).2、运行stepwise 命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,StepwiseHistory.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P.例1. 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、 x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 58. X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.5872 X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1.06043 X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 58.3587format short gY=y'X11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)])legend('一次线性回归','二次线性回归')xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.31X11 =1 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.0531 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25199.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-0101.8488 1.8488 1.6394e-0096.22 6.227.2643e-01012.22 12.22 2.6077e-01019.72 19.72 -2.0489e-0101.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-010由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3+ 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388.1*X1*X4 +120.25*X2*X2+ 199.25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.4。

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题例子;x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数!function [beta_hat,Y_hat,stats]=regress(X,Y,alpha)% 多元线性回归(Y=Xβ+ε)MATLAB代码%?% 参数说明% X:自变量矩阵,列为自变量,行为观测值% Y:应变量矩阵,同X% alpha:置信度,[0 1]之间的任意数据% beta_hat:回归系数% Y_beata:回归目标值,使用Y-Y_hat来观测回归效果% stats:结构体,具有如下字段% =[fV,fH],F检验相关参数,检验线性回归方程是否显着% fV:F分布值,越大越好,线性回归方程越显着% fH:0或1,0不显着;1显着(好)% =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系% tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着% tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用% =[T,U,Q,R],回归中使用的重要参数% T:总离差平方和,且满足T=Q+U% U:回归离差平方和% Q:残差平方和% R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明% 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10;% x2=rand(10,1)*10;% Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据% X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了% [beta_hat,Y_hat,stats]=mulregress(X,Y,%% 注意事项% 有可能会出现这样的情况,总的线性回归方程式显着的=1),% 但是所有的回归系数却对Y的线性作用却不显着=0),产生这种现象的原意是% 回归变量之间具有较强的线性相关,但这种线性相关不能采用刚才使用的模型描述,% 所以需要重新选择模型%C=inv(X'*X);Y_mean=mean(Y);% 最小二乘回归分析beta_hat=C*X'*Y; % 回归系数βY_hat=X*beta_hat; % 回归预测% 离差和参数计算Q=(Y-Y_hat)'*(Y-Y_hat); % 残差平方和U=(Y_hat-Y_mean)'*(Y_hat-Y_mean); % 回归离差平方和T=(Y-Y_mean)'*(Y-Y_mean); % 总离差平方和,且满足T=Q+UR=sqrt(U/T); % 复相关系数,表征回归离差占总离差的百分比,越大越好[n,p]=size(X); % p变量个数,n样本个数% 回归显着性检验fV=(U/(p-1))/(Q/(n-p)); % 服从F分布,F的值越大越好fH=fV>finv(alpha,p-1,n-p); % H=1,线性回归方程显着(好);H=0,回归不显着% 回归系数的显着性检验chi2=sqrt(diag(C)*Q/(n-p)); % 服从χ2(n-p)分布tV=beta_hat./chi2; % 服从T分布,绝对值越大线性关系显着tInv=tinv+alpha/2,n-p);tH=abs(tV)>tInv; % H(i)=1,表示Xi对Y显着的线性作用;H(i)=0,Xi对Y的线性作用不明显% 回归系数区间估计tW=[-chi2,chi2]*tInv; % 接受H0,也就是说如果在beta_hat(i)对应区间中,那么Xi与Y线性作用不明显stats=struct('fTest',[fH,fV],'tTest',[tH,tV,tW],'TUQR',[T,U,Q,R]);。

(完整版)Matlab线性回归(拟合)

(完整版)Matlab线性回归(拟合)

Matlab 线性回归(拟合)对于多元线性回归模型:e x x y p p ++++=βββΛ110设变量12,,,p x x x y L 的n 组观测值为12(,,,)1,2,,i i ip i x x x y i n =L L .记 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=np n n p p x x x x x x x x x x ΛΛΛΛΛΛΛΛ212222*********,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n y y y y M 21,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=p ββββM 10 的估计值为 y x x x b ')'(ˆ1-==β(11.2) 在Matlab 中,用regress 函数进行多元线性回归分析,应用方法如下:语法:b = regress(y, x)[b, bint, r, rint, stats] = regress(y, x)[b, bint, r, rint, stats] = regress(y, x, alpha)b = regress(y, x),得到的1+p 维列向量b 即为(11.2)式给出的回归系数β的估计值.[b, bint, r, rint, stats]=regress(y, x) 给出回归系数β的估计值b ,β的95%置信区间((1)2p +⨯向量)bint ,残差r 以及每个残差的95%置信区间(2⨯n 向量)rint ;向量stats 给出回归的R 2统计量和F 以及临界概率p 的值.如果i β的置信区间(bint 的第1i +行)不包含0,则在显著水平为α时拒绝0i β=的假设,认为变量i x 是显著的.[b, bint, r, rint, stats]=regress(y, x, alpha) 给出了bint 和rint 的100(1-alpha)%的置信区间.三次样条插值函数的MATLAB 程序matlab 的splinex = 0:10; y = sin(x); %插值点xx = 0:.25:10; %绘图点yy = spline(x,y,xx);plot(x,y,'o',xx,yy)非线性拟合非线性拟合可以用以下命令(同样适用于线形回归分析):1.beta = nlinfit(X,y,fun,beta0)X给定的自变量数据,Y给定的因变量数据,fun要拟合的函数模型(句柄函数或者内联函数形式),beta0函数模型中系数估计初值,beta返回拟合后的系数2.x = lsqcurvefit(fun,x0,xdata,ydata)fun要拟合的目标函数,x0目标函数中的系数估计初值,xdata自变量数据,ydata 函数值数据X拟合返回的系数(拟合结果)nlinfit格式:[beta,r,J]=nlinfit(x,y,’model’, beta0)Beta 估计出的回归系数r 残差J Jacobian矩阵x,y 输入数据x、y分别为n*m矩阵和n维列向量,对一元非线性回归,x为n维列向量。

Matlab多变量回归分析教程

Matlab多变量回归分析教程

本次教程的主要内容包含:一、多元线性回归2#多元线性回归:regress二、多项式回归3#一元多项式:polyfit或者polytool多元二项式:rstool或者rsmdemo三、非线性回归4#非线性回归:nlinfit四、逐步回归5#逐步回归:stepwise一.多元线性回归多元线性回归:确定回归系数的点估计值K b=regress(Y, X )③无的表达式x=2、[b t bint,r,rint,stats]=regress(Y t X,alpha) 求回归系数的点估计和区间估计、并检验回归术®bint表示回归系数的区间估计.②r表示残差③tint表示置信区间④stats表示用于检验回归模型的统计量.有三个数值:相关系数J、F值、与F对应的概率p说明:相关系数*越接近1,说明回归方程越显著;时拒绝HO, F越大,说明回归方程越显著;与F对应的概率p<a时拒绝HO©alpha表示显著性水平(缺省时为0. 05)3、rcoplot(r,rint) 画出残差及.其置信区间具体参见下面的实例演示4、实例演示,函数使用说明(1)输入数据1.>>x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]1:2.»X=[ones(16,1) x]:3.»Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]';复制代码(2)回归分析及检验1.>> [b, bi nt,r,rint,stats]=regress(Y,X)2.2. b =4.3.-16.07304.0.71947.8.5.bint =10.6.-33.7071 1.56127.0.6047 0.834013.14.8.r =16.17. 1.20561& -3.233119.-0.952420. 1.328221.0.889522. 1. 170223. -0. 987924. 0. 292725. 0. 573426. 1.854027. 0. 13472& -1.584729. -0. 304030. -0. 023431. -0. 462132. 0. 099233.34.35. rint =36.37. -1.2407 3. 652038. -5. 0622 -1.404039. -3・ 5894 1.684540. -1.2895 3. 945941. -1.8519 3. 630942. -1.5552 3. 895543. -3. 7713 1.795544. -2. 5473 3. 132845. -2.2471 3. 393946. -0. 7540 4.462147. -2. 6814 2. 95084& -4.2188 1. 049449. -3. 0710 2. 463050. -2.7661 2.719351. -3. 1133 2. 189252. -2. 4640 2. 662453.54.55.stats =56.57. 0. 9282 180.9531 0. 0000 1.7437复制代码运行结果解读如下参数回归结果为 ,对应的置信区间分别为[-33. 7017,1.5612]和[0. 6047,0. 834]J二0.9282(越接近于1,回归效果越显著),2180.9531, p=0. 0000,由p<0. 051可知回归模型y=-16. 073+0. 7194x 成立(3)残差分析作残差图1. rcoplot(r,rint)Residual Caw 。

多元回归分析报告matlab

多元回归分析报告matlab

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y, X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X (1)............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型: 命令为:[b, bint,r,rint,stats]=regress(Y,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差. ③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05)3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 .9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点. (4)预测及作图.z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')二、多项式回归 (一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y (1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA ;alpha 缺省时为0.5.例1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2ˆct bt a s++=)解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];T=[ones(14,1) t' (t.^2)']; [b,bint,r,rint,stats]=regress(s',T);b,stats 得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图: Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model ’, alpha)说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++=Λ110purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββΛinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββΛquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββΛ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 100 75 80 70 50 65 90 100 110 60 收入10006001200500300400130011001300300价格5766875439解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y ”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方的下拉式菜单中选”all ”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta, rmse 得结果:beta = 110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse = 4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)']; [b,bint,r,rint,stats]=regress(y,X); b,stats 结果为: b =110.5313 0.1464 -26.5709 -0.0001 1.8475 stats =0.9702 40.6656 0.0005三、非线性回归 1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model ’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值. (2)非线性回归命令:nlintool(x,y,’model ’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model ’, x,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下: function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J);plot(x,y,'k+',x,YY,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)n⨯阶矩阵;y表示因变量数据,1⨯n阶矩阵;inmodel表示矩说明:x表示自变量数据,m阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha表示显著性水平(缺省时为0.5).2、运行stepwise命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P.例1. 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]'; x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 5 X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.27.06063];X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1 1.1239];X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 57.76687];format short gY=y'X11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)]) legend('一次线性回归','二次线性回归') xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.31X11 =1 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.1 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767 B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-1.8488 1.8488 1.6394e-0096.22 6.227.2643e-12.22 12.22 2.6077e-19.72 19.72 -2.0489e-1.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3 + 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388 120.25*X2*X2+ .25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.41*X4*X4。

基于Matlab的数据多元回归分析的研究

基于Matlab的数据多元回归分析的研究

基于Matlab的数据多元回归分析的研究摘要多元线性回归是利用MATLAB软件研究一个变量与多个变量的定量关系,MATLAB(矩阵实验室,是MATrix LABoratory的缩写)是一套高性能的数值运算和可视化软件,它集矩阵运算、数值分析、信号处理和图形显示于一体,构成了一个界面友好、使用方便的用户环境,是实现数据分析与处理的有效工具,其中MATLAB统计工具箱更为人们提供了一个强有力的数据统计分析工具。

利用MATLAB统计工具箱来进行数据的多元回归分析使得分析的样本容量扩大,增加了统计推断的正确性,也促进了包含大量计算的多元统计分析的发展和运用。

本课题研究了在MATLAB软件平台上实现数据的多元统计分析,具体包括一元线性回归分析,非线性回归分析,多元线性回归分析,通过对基础数据分析函数polyfit(一元回归);regress(多元回归);及nlinfit(非线性回归)的学习。

根据已得的实验结果以及以往的经验来建立统计模型,并研究变量之间的相关关系,建立起变量之间关系的近似表达式,并由此对相应的变量进行预测和控制。

根据所收集的数据,通过本文的研究方法进行一一分析,掌握它们的相关关系,可以找出数据中我们最需要的信息,从而进一步对总体的特性进行进一步的判断,把握规律,并将研究结果广泛运用于各种实际应用的预测和判断之中。

关键词:polyfit,regress,置信区间,最小二乘估计目录绪论....................................................................................................... - 3 -1.1研究的背景............................................................................................ - 3 -1.2研究的主要内容................................. - 4 -1.3应解决的关键问题.............................................................................. - 4 -2 MATLAB数据分析.......................................................................... - 4 -2.1 MATLAB重点基础预备....................................................................... - 4 -2.1.1 MATLAB界面掌握 ............................................................................... - 4 -2.1.2矩阵及其运算 ....................................................................................... - 5 -2.2数据分析 ...................................... - 6 -2.2.1样本数据的基本统计量.................................................................. - 6 -3 一元回归分析 ............................................................................... - 7 -3.1一元回归模型 ....................................................................................... - 7 -3.1.1一元线性回归 ....................................................................................... - 7 -3.1.2一元多项式回归.................................................................................. - 8 -3.2一元非线性回归................................................................................... - 9 -3.2.1非线性曲线选择.................................................................................. - 9 -3.2.2非线性回归命令的调用格式 ....................................................... - 9 -3.3一元回归建模实例............................................................................ - 11 -4 多元线性回归模型..................................................................... - 13 -4.1多元线性回归初级分析................................................................... - 13 -4.1.1多元回归基本概念........................................................................... - 13 -4.1.2建立多元线性回归建模的基本步骤 ..................................... - 14 -4.2 MATLAB的回归分析命令 ................................................................ - 15 -4.2.1 多元回归建模命令 ......................................................................... - 15 -4.2.2 多元回归辅助图形命令............................................................... - 15 -4.3 一元回归建模实例........................................................................... - 16 -5 GUI界面的设计.......................................................................... - 23 -5.1 GUI界面的介绍................................................................................. - 23 -5.2 GUI的设计流程 .............................................................................. - 23 -5.2 实例的GUI设计............................................................................... - 25 -结论................................................................................................. - 28 -参考文献 ............................................................................................. - 28 -附录................................................................................................ - 29 -绪论1.1研究的背景MATLAB是一套集高性能的数值计算和可视化整理、计算、绘制图表等于一身的数学工具。

Matlab中的回归分析技术实践

Matlab中的回归分析技术实践

Matlab中的回归分析技术实践引言回归分析是统计学中常用的一种分析方法,用于研究因变量和一个或多个自变量之间的关系。

Matlab是一种强大的数值计算软件,具有丰富的统计分析工具和函数。

通过Matlab中的回归分析技术,我们可以深入理解数据背后的规律,并预测未来的趋势。

本文将介绍Matlab中常用的回归分析方法和技巧,并通过实例演示其实践应用。

一、简单线性回归分析简单线性回归是回归分析的最基本形式,用于研究一个自变量和一个因变量之间的线性关系。

在Matlab中,可以使用`fitlm`函数进行简单线性回归分析。

以下是一个示例代码:```Matlabx = [1, 2, 3, 4, 5]';y = [2, 4, 6, 8, 10]';lm = fitlm(x, y);```这段代码中,我们定义了两个向量x和y作为自变量和因变量的观测值。

使用`fitlm`函数可以得到一个线性回归模型lm。

通过这个模型,我们可以获取回归系数、拟合优度、显著性检验等信息。

二、多元线性回归分析多元线性回归分析允许我们研究多个自变量与一个因变量的关系。

在Matlab中,可以使用`fitlm`函数进行多元线性回归分析。

以下是一个示例代码:```Matlabx1 = [1, 2, 3, 4, 5]';x2 = [0, 1, 0, 1, 0]';y = [2, 4, 6, 8, 10]';X = [ones(size(x1)), x1, x2];lm = fitlm(X, y);```这段代码中,我们定义了两个自变量x1和x2,以及一个因变量y的观测值。

通过将常数项和自变量组合成一个设计矩阵X,使用`fitlm`函数可以得到一个多元线性回归模型lm。

通过这个模型,我们可以获取回归系数、拟合优度、显著性检验等信息。

三、非线性回归分析在实际问题中,很多情况下变量之间的关系并不是线性的。

非线性回归分析可以更准确地建模非线性关系。

MATLAB中多元线性回归

MATLAB中多元线性回归

0 1 2 3
R2= 0.8462 F= 44.0087 p<0.0001 s2 =53.6604
这时置信区间不包含零点,F统计量增大,可决系 数从0.6855增大到0.8462 ,我们得到回归模型为:
ˆ 58 . 5101 0 . 4303 x 1 2 . 3449 x 2 10 . 3065 x 3 y
y与x1的散点图 线性回归模型
y与x2的散点图
y 0 1 x1 2 x 2 3 x 3
回归系数0, 1, 2, 3 由数据估计, 是随机误差
n=30;m=3; y=[144 215 138 145 162 142 170 124 158 154 162 150 140 110 128 130 135 114 116 124 136 142 120 120 160 158 144 130 125 175]; x1=[39 47 45 47 65 46 67 42 67 56 64 56 59 34 42 48 45 18 20 19 36 50 39 21 44 53 63 29 25 69]; x2=[24.2 31.1 22.6 24.0 25.9 25.1 29.5 19.7 27.2 19.3 28.0 25.8 27.3 20.1 21.7 22.2 27.4 18.8 22.6 21.5 25.0 26.2 23.5 20.3 27.1 28.6 28.3 22.0 25.3 27.4]; x3=[0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 1];
n n
DW


t2
( e t e t 1 ) /
2

Matlab中的回归分析与多元统计分析

Matlab中的回归分析与多元统计分析

Matlab中的回归分析与多元统计分析Matlab是一种功能强大的数值计算和科学编程软件,广泛应用于各个领域中数据处理和分析的任务。

在统计学中,回归分析和多元统计分析是常见的方法,它们能够帮助我们揭示数据之间的隐藏关系和趋势。

本文将探讨在Matlab环境下如何进行回归分析和多元统计分析。

一、回归分析回归分析是一种用于研究变量之间关系的统计方法。

它可以分析自变量(或称预测变量)与因变量之间的相关性,并通过建立数学模型来预测未知的观测值。

在Matlab中,我们可以使用regress函数进行简单回归分析。

假设我们有两个变量X和Y,我们想要探索它们之间是否存在线性关系。

首先,我们需要导入数据,并绘制散点图以观察数据分布的趋势:```matlabdata = [X, Y]; % 导入数据scatter(X, Y); % 绘制散点图```接下来,我们可以使用regress函数进行回归分析:```matlabmdl = regress(Y, [ones(size(X)), X]); % 进行简单线性回归```regress函数将返回一个线性模型对象mdl,我们可以使用该对象提取回归系数、残差等信息:```matlabcoef = mdl(1:end-1); % 提取回归系数residuals = mdl(end); % 提取残差```此外,我们还可以使用mdl对象进行预测:```matlaby_pred = [ones(size(X)), X] * coef; % 根据模型预测Y的值```二、多元统计分析多元统计分析是指研究多个变量之间关系的统计方法。

与简单回归分析不同,多元统计分析考虑了多个自变量对因变量的影响。

在Matlab中,我们可以使用fitlm函数进行多元线性回归分析。

假设我们有三个自变量X1、X2和X3,一个因变量Y,我们想要研究它们之间的关系。

首先,我们同样需要导入数据,并绘制散点图以观察数据分布:```matlabdata = [X1, X2, X3, Y]; % 导入数据scatter3(X1, X2, X3, Y); % 绘制散点图```接下来,我们可以使用fitlm函数进行多元线性回归分析:```matlabmdl = fitlm([X1, X2, X3], Y); % 进行多元线性回归```fitlm函数将返回一个线性模型对象mdl,我们可以使用该对象提取回归系数、残差等信息:```matlabcoef = mdl.Coefficients.Estimate; % 提取回归系数residuals = mdl.Residuals.Raw; % 提取残差```同样,我们可以使用mdl对象进行预测:```matlaby_pred = predict(mdl, [X1, X2, X3]); % 根据模型预测Y的值```除了多元线性回归,Matlab还提供了其他多元统计分析的方法,如主成分分析(PCA)和因子分析。

MATLAB 回归分析regress,nlinfit,stepwise函数

MATLAB 回归分析regress,nlinfit,stepwise函数

MATLAB 回归分析regress,nlinfit,stepwise函数matlab回归分析regress,nlinfit,stepwise函数回归分析1.多元线性重回在matlab统计工具箱中使用命令regress()实现多元线性回归,调用格式为b=regress(y,x)或[b,bint,r,rint,statsl=regess(y,x,alpha)其中因变量数据向量y和自变量数据矩阵x按以下排列方式输入对一元线性重回,挑k=1即可。

alpha为显著性水平(缺省时预设为0.05),输入向量b,bint为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats就是用作检验重回模型的统计数据量,存有三个数值,第一个就是r2,其中r就是相关系数,第二个就是f统计数据量值,第三个就是与统计数据量f对应的概率p,当p拒绝h0,回归模型成立。

图画出来残差及其置信区间,用命令rcoplot(r,rint)实例1:已知某湖八年来湖水中cod浓度实测值(y)与影响因素湖区工业产值(x1)、总人口数(x2)、捕鱼量(x3)、降水量(x4)资料,建立污染物y的水质分析模型。

(1)输出数据x1=[1.376,1.375,1.387,1.401,1.412,1.428,1.445,1.477]x2=[0.450,0.475,0.485,0.50 0,0.535,0.545,0.550,0.575]x3=[2.170,2.554,2.676,2.713,2.823,3.088,3.122,3.262]x4=[0.8922,1.1610,0.5346,0.9589,1.0239,1.0499,1.1065,1.1387]y=[5.19,5.30,5.60,5.82,6.00,6.06,6.45,6.95](2)留存数据(以数据文件.mat形式留存,易于以后调用)savedatax1x2x3x4yloaddata(抽出数据)(3)继续执行重回命令x=[ones(8,1),];[b,bint,r,rint,stats]=regress得结果:b=(-16.5283,15.7206,2.0327,-0.2106,-0.1991)’stats=(0.9908,80.9530,0.0022)即为=-16.5283+15.7206xl+2.0327x2-0.2106x3+0.1991x4r2=0.9908,f=80.9530,p=0.00222.非线性重回非线性回归可由命令nlinfit来实现,调用格式为[beta,r,j]=nlinfit(x,y,'model’,beta0)其中,输人数据x,y分别为n×m矩阵和n维列向量,对一元非线性回归,x为n维列向量model是事先用m-文件定义的非线性函数,beta0是回归系数的初值,beta是估计出的回归系数,r是残差,j是jacobian矩阵,它们是估计预测误差需要的数据。

MATLAB中多元线性回归的例子

MATLAB中多元线性回归的例子

s2=sum(r.^2)/(n-m-1);
b,bint,s,s2
rcoplot(r,rint)
模型 求解
xueya01.m
回归系数 回归系数估计值 回归系数置信区间
0
45.3636
[3.5537 87.1736]
1
0.3604
[-0.0758 0.7965 ]
2
3.0906
[1.0530 5.1281]
下面我们对模型进行检验: (1)残差的正态检验: 由jbtest检验,h=0表明残差服从正态分布,进而由t检验可知h=0,p=1,故残差服从 均值为零的正态分布; (2)残差的异方差检验: 我们将28个数据从小到大排列,去掉中间的6个数据,得到F统计量的观测值为:f =1.9092,
由F(7,7)=3.79,可知:f =1.9092<3.79,故不存在异方差.
这时置信区间不包含零点,F统计量增大,可决系数从0.6855增大到0.8462 , 我们得到回归模型为:
yˆ 58.5101 0.4303 x1 2.3449 x2 10.3065 x3
通常,进行多元线性回归的步骤如下:
(1)做自变量与因变量的散点图,根据散点图的形状决定是否可以进行线性回归;
67 56 64 56 59 34 42 48
45 18 20 19 36 50 39 21
44 53 63 29 25 69];
x2=[24.2 31.1 22.6 24.0 25.9 25.1 29.5 19.7 27.2 19.3 28.0
25.8 27.3 20.1 21.7 22.2 27.4 18.8 22.6 21.5 25.0 26.2 23.5
(3)残差的自相关性检验: 计算得到:dw = 1.4330,查表后得到:dl=0.97 , du=1.41, 由于 1.41=du<dw=1.433<4-du=2.59 ,残差不存在自相关性.

MATLAB 回归分析regress,nlinfit,stepwise函数

MATLAB 回归分析regress,nlinfit,stepwise函数

回归分析1.多元线性回归在Matlab统计工具箱中使用命令regress()实现多元线性回归,调用格式为b=regress(y,x)或[b,bint,r,rint,statsl = regess(y,x,alpha)其中因变量数据向量y和自变量数据矩阵x按以下排列方式输入对一元线性回归,取k=1即可。

alpha为显著性水平(缺省时设定为0.05),输出向量b,bint为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats是用于检验回归模型的统计量,有三个数值,第一个是R2,其中R是相关系数,第二个是F统计量值,第三个是与统计量F对应的概率P,当P<α时拒绝H0,回归模型成立。

画出残差及其置信区间,用命令rcoplot(r,rint)实例1:已知某湖八年来湖水中COD浓度实测值(y)与影响因素湖区工业产值(x1)、总人口数(x2)、捕鱼量(x3)、降水量(x4)资料,建立污染物y的水质分析模型。

(1)输入数据x1=[1.376, 1.375, 1.387, 1.401, 1.412, 1.428, 1.445, 1.477]x2=[0.450, 0.475, 0.485, 0.500, 0.535, 0.545, 0.550, 0.575]x3=[2.170 ,2.554, 2.676, 2.713, 2.823, 3.088, 3.122, 3.262]x4=[0.8922, 1.1610 ,0.5346, 0.9589, 1.0239, 1.0499, 1.1065, 1.1387]y=[5.19, 5.30, 5.60,5.82,6.00, 6.06,6.45,6.95](2)保存数据(以数据文件.mat形式保存,便于以后调用)save data x1 x2 x3 x4 yload data (取出数据)(3)执行回归命令x =[ones(8,1),];[b,bint,r,rint,stats] = regress得结果:b = (-16.5283,15.7206,2.0327,-0.2106,-0.1991)’stats = (0.9908,80.9530,0.0022)即= -16.5283 + 15.7206xl + 2.0327x2 - 0.2106x3 + 0.1991x4R2 = 0.9908,F = 80.9530,P = 0.00222.非线性回归非线性回归可由命令nlinfit来实现,调用格式为[beta,r,j] = nlinfit(x,y,'model’,beta0)其中,输人数据x,y分别为n×m矩阵和n维列向量,对一元非线性回归,x 为n维列向量model是事先用m-文件定义的非线性函数,beta0是回归系数的初值,beta是估计出的回归系数,r是残差,j是Jacobian矩阵,它们是估计预测误差需要的数据。

matlab线性回归

matlab线性回归

matlab线性回归⼀、多元线性回归多元线性回归:1、b=regress(Y, X )确定回归系数的点估计值2、[b, bint,r,rint,stats]=regress(Y,X,alpha)求回归系数的点估计和区间估计、并检验回归模型①bint表⽰回归系数的区间估计.②r表⽰残差③rint表⽰置信区间④stats表⽰⽤于检验回归模型的统计量,有三个数值:相关系数r2、F值、与F对应的概率p 说明:相关系数r2越接近1,说明回归⽅程越显著;时拒绝H0,F越⼤,说明回归⽅程越显著;与F对应的概率p<α时拒绝H0⑤alpha表⽰显著性⽔平(缺省时为0.05)3、rcoplot(r,rint)画出残差及其置信区间具体参见下⾯的实例演⽰4、实例演⽰,函数使⽤说明(1)输⼊数据12>>x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';3>>X=[ones(16,1) x];4>>Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]';复制代码(2)回归分析及检验56>> [b,bint,r,rint,stats]=regress(Y,X)78 b =910-16.0730110.7194121314bint =1516-33.7071 1.5612 170.6047 0.8340 181920r =2122 1.205623-3.233124-0.952425 1.3282260.889527 1.170228-0.9879290.2927300.573431 1.8540320.134733-1.584734-0.304035-0.023436-0.4621370.0992383940rint =4142-1.2407 3.6520 43-5.0622 -1.4040 44-3.5894 1.6845 45-1.2895 3.9459 46-1.8519 3.6309 47-1.5552 3.8955 48-3.7713 1.7955 49-2.5473 3.1328 50-2.2471 3.393951-0.7540 4.462152-2.6814 2.950853-4.2188 1.049454-3.0710 2.463055-2.7661 2.719356-3.1133 2.189257-2.4640 2.6624585960stats =61620.9282 180.9531 0.0000 1.7437复制代码运⾏结果解读如下参数回归结果为对应的置信区间分别为[-33.7017,1.5612]和[0.6047,0.834]r2=0.9282(越接近于1,回归效果越显著),F=180.9531,p=0.0000,由p<0.05, 可知回归模型y=-16.073+0.7194x成⽴(3)残差分析作残差图6364rcoplot(r,rint)复制代码从残差图可以看出,除第⼆个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型y=-16.073+0.7194x能较好的符合原始数据,⽽第⼆个数据可视为异常点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在 Matlab 图示所示:
/输出结果如图所示:/
因 此 我 们 可 得 bˆ0 = −16.0730, , bˆ1 = 0.7194.
bˆ0 的置信区间 ( − 33.7071, 1.5612) ,
bˆ1 的置信区间 (0.6047, 0.834). r2 = 0.9282, F = 180.9531, p = 0.0000.
多元线性回归模型的一般形式为:
Yi =β0 +β1X1i +β2X2i + +βk Xki +μi , i=1,2, ,n
(1)
其中 k 为解释变量的数目, β j ( j = 1,2, ,k) 称为回归系数(regression coefficient)。上
式也被称为总体回归函数的随机表达式。它的非随机表达式为:
Matlab 多元线性回归
1、 多元线性回归
在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象 常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一 个自变量进行预测或估计更有效,更符合实际。
在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受 家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种 因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模 型。(multivariable linear regression model )
在 Matlab 图示所示:
/输出结果如图所示:/
bˆ0 = 62.4054, bˆ0 的置信区间 ( − 99.1786, 223.9893) , bˆ1 = 1.5511, bˆ1 的置信区间 (−0.1663, 3.2685) , 因此我们可得 bˆ2 = 0.5102, , bˆ2 的置信区间 (−1.1589, 2.1792) , bˆ3 = 0.1019, bˆ3 的置信区间 (−1.6385, 1.8423) , bˆ4 = −1441. bˆ4 的置信区间 (−1.7791, 1.4910). r2 = 0.9824, F = 111.4792, p = 0.0000. p < 0.05,回归模型 y = −62.4054 +1.5511x1 + 0.5102x2 +0.1019x3 -0.1441x4成立.
序号
8
9
10
11
12
13
x1
1
2
21
1
11
10
x2
31
54
47
4066ຫໍສະໝຸດ 68x322
18
4
23
9
8
x4
44
22
26
34
12
12
y
72.5 93.1 115.9 83.8 113.3 109.4
分析:
x1=[7,1,11,11,7,11,3,1,2,21,1,11,10]; x2=[26,29,56,31,52,55,71,31,54,47,40,66,68]; x3=[6,15,8,8,6,9,17,22,18,4,23,9,8]; x4 =[60,52,20,47,33,22,6,44,22,26,34,12,12]; y=[78.5,74.3,104.3,87.6,95.9,109.2,102.7,72.5,93.1,115.9,83.8,113.3,109.4]; 由式(9)可得 X=[eT, x1T, x2T, x3T, x4T](eT 为单位列向量) Y= yT
Yi =β0 +β1X1i +β2X2i + +βk Xki , i=1,2, ,n
(2)
β j 也被称为偏回归系数(partial regression coefficient)。
2、 多元线性回归计算模型
Y=β0 +β1x1+β2 x2 + +βk xk +ε , ε ∼ N (0,δ 2 )
(3)
159
160
162
164
腿长
96
98
97
96
98
99
100
102
试研究这些数据之间的关系。
分析: x=[143,145,146,147,149,150,153,154,155,156,157,158,159,160,162,164] 由式(9)可得 X=[eT, xT](eT 为单位列向量) y=[88,85,88,91,92,93,93,95,96,98,97,96,98,99,100,102] Y= yT
达到最小。

∑ ⎪⎪
⎨ ⎪
∑ ⎪⎩
∂Q ∂b0
=
n
−2
i =1
( yi
− b0
− b1xi1

∂Q ∂bj
=
n
−2
i =1
( yi
− b0
− b1xi1

j = 1, 2, , p
− bp xip ) = 0, − bp xip )xij = 0
(4)化简可得:
− bp xip )2
(4)
∑ ∑ ∑ ∑ n
多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe) 为最小的前提下,用最小二乘法或最大似然估计法求解参数。
设 (x11, x12 ,
参数:
, x1p , y1),
, (xn1, xn2 ,
, xnp , yn ) 是一个样本,用最大似然估计法估计
n
∑ 取 bˆ0 , bˆ1, , bˆp , 当 b0 = bˆ0 , b1 = bˆ1, , bp = bˆp 时,Q = ( yi − b0 − b1xi1 − i =1
⎛1
X
=
⎜⎜1 ⎜
x11 x21
x12 x22
⎜⎜⎝1 xn1 xn2
x1 p x2 p


⎟ ⎟
,Y
=
⎛ ⎜ ⎜ ⎜
y1 y2
⎞ ⎟ ⎟⎟, B
=
⎛ ⎜ ⎜
b0 b1



⎟ ⎟
.
xnp ⎟⎟⎠
⎜⎟ ⎝ yn ⎠
⎜⎜⎝ bp ⎟⎟⎠
(5)
(6) (7) (8)
(9)
(2)[b,bint,r,rint,stats]=regress(Y,X,alpha) 求回归系数的点估计和区间估计、并检
x12 x22
x1 p x2 p


⎟ ⎟
,Y
=
⎛ ⎜ ⎜ ⎜
y1 y2


⎟ ⎟
,
B
=
⎛ ⎜ ⎜ ⎜
b0 b1
⎞ ⎟ ⎟⎟ .
xn 2
xnp ⎟⎟⎠
⎜⎟ ⎝ yn ⎠
⎜⎜⎝ bp ⎟⎟⎠
X ' XB = X 'Y
⎛ ⎜
bˆ0
⎞ ⎟

=
⎜ ⎜
bˆ1
⎟ ⎟
=
(X
'
X
)−1
X
'Y
⎜⎟
⎜ ⎝
bˆp
⎟ ⎠
n
b0n + b1 xi1 + b2 xi2 +
n
+ bp
xip =
n
yi ,
⎫ ⎪
i =1
i =1
i =1
i =1

∑ ∑ ∑ ∑ n
n
n
b0 xi1 + b1 xi21 + b2 xi1xi2 +
+ bp
n
⎪ xi1xip ⎪
i =1
i =1
i =1
i =1

n
∑ = xi1 yi , i =1
/残差分析/ 在 Matlab 命令窗口输入
rcoplot(r,rint) 得到残差图如图所示:
/预测及作图/ 在 Matlab 命令窗口输入
z=b(1)+b(2)*x1+b(3)*x2+b(4)*x3+b(5)*x4; plot(X,Y, 'k+',X,z, 'r') 得到预测比较图所示:
μ(x1, x2 , , xp ) = b0 + b1x1 + + bp xp 的估计是:
yˆ = bˆ0 + bˆ1x1 + bˆ2 x2 +
公式(8)为 P 元经验线性回归方程。
+ bˆp xp
3、 Matlab 多元线性回归的实现
多元线性回归在 Matlab 中主要实现方法如下: (1)b=regress(Y, X ) 确定回归系数的点估计值 其中
Matlab 程序为: /输入如下命令:/
x1=[7,1,11,11,7,11,3,1,2,21,1,11,10]; x2=[26,29,56,31,52,55,71,31,54,47,40,66,68]; x3=[6,15,8,8,6,9,17,22,18,4,23,9,8]; x4 =[60,52,20,47,33,22,6,44,22,26,34,12,12]; y=[78.5,74.3,104.3,87.6,95.9,109.2,102.7,72.5,93.1,115.9,83.8,113.3,109.4]; X=[ones(length(y),1),x1',x2',x3',x4']; %把行向量转轶为列向量 Y=y'; %把行向量转轶为列向量 [b,bint,r,rint,stats]=regress(Y,X); b,bint,stats
相关文档
最新文档