热力学作业题答案
热力学习题与答案(原件)
材料热力学习题1、阐述焓H 、内能U 、自由能F 以及吉布斯自由能G 之间的关系,并推导麦克斯韦方程之一:T P PST V )()(∂∂-=∂∂。
答: H=U+PV F=U-TS G=H-TS U=Q+W dU=δQ+δWdS=δQ/T, δW=-PdV dU=TdS-PdVdH=dU+PdV+VdP=TdS+VdP dG=VdP-SdTdG 是全微分,因此有:TP P TP ST V ,PT G T P G ,T V P G T P T G P ST G P T P G )()()()()()(2222∂∂-=∂∂∂∂∂=∂∂∂∂∂=∂∂∂∂=∂∂∂∂∂-=∂∂∂∂=∂∂∂因此有又而2、论述: 试绘出由吉布斯自由能—成分曲线建立匀晶相图的过程示意图,并加以说明。
(假设两固相具有相同的晶体结构)。
由吉布斯自由能曲线建立匀晶相图如上所示,在高温T 1时,对于所有成分,液相的自由能都是最低;在温度T 2时,α和L 两相的自由能曲线有公切线,切点成分为x1和x2,由温度T 2线和两个切点成分在相图上可以确定一个液相线点和一个固相线点。
根据不同温度下自由能成分曲线,可以确定多个液相线点和固相线点,这些点连接起来就成为了液相线和固相线。
在低温T 3,固相α的自由能总是比液相L 的低,因此意味着此时相图上进入了固相区间。
HPV UGTSTS FPV3、论述:通过吉布斯自由能成分曲线阐述脱溶分解中由母相析出第二相的过程。
第二相析出:从过饱和固溶体α中(x0)析出另一种结构的β相(xβ),母相的浓度变为xα. 即:α→β+ α1α→β+ α1 的相变驱动力ΔGm的计算为ΔGm=Gm(D)-Gm(C),即图b中的CD段。
图b中EF是指在母相中出现较大为xβ的成分起伏时,由母相α析出第二相的驱动力。
4、根据Boltzman方程S=kLnW,计算高熵合金FeCoNiCuCrAl和FeCoNiCuCrAlTi0.1(即FeCoNiCuCrAl各为1mol,Ti为0.1mol)的摩尔组态熵。
【精品】热力学作业题答案
【关键字】精品第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程 ∴()0.5RT aPV b T V V b =--+=19.04MPa (3) 普遍化关系式323.15190.6 1.695r c T T T === 124.6 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
∴ P=19.22MPa2-4.将压力为2.03MPa 、温度为477K 条件下的2.83m 3NH 3压缩到0.142 m 3,若压缩后温度448.6K ,则其压力为若干?分别用下述方法计算:(1)Vander Waals 方程;(2)Redlich-Kwang 方程;(3)Peng-Robinson 方程;(4)普遍化关系式。
解:查附录二得NH 3的临界参数:T c =405.6K P c =11.28MPa V c =72.5 cm 3/mol ω=0.250 (1) 求取气体的摩尔体积对于状态Ⅰ:P=2.03 MPa 、T=447K 、V=2.83 m 3477405.6 1.176r c T T T === 2.0311.280.18r c P P P ===—普维法∴01.6 1.60.4220.4220.0830.0830.24261.176r BT =-=-=- 11c r c rBP PV BP P Z RT RT RT T =+==+→V=1.885×10-3m 3/mol∴n=2.83m 3/1.885×10-3m 3/mol=1501mol对于状态Ⅱ:摩尔体积V=0.142 m 3/1501mol=9.458×10-5m 3/mol T=448.6K (2) Vander Waals 方程 (3) Redlich-Kwang 方程 (4) Peng-Robinson 方程 ∵448.6405.6 1.106r c T T === ∴220.3746 1.542260.269920.3746 1.542260.250.269920.250.7433k ωω=+-=+⨯-⨯=∴()()()a T RTPV b V V b b V b =--++- (5) 普遍化关系式 ∵559.458107.2510 1.305r c V V V --==⨯⨯=<2 适用普压法,迭代进行计算,方法同1-1(3)2-7:答案: 3cm第三章3-3. 试求算1kmol 氮气在压力为10.13MPa 、温度为773K 下的内能、焓、熵、V C 、p C 和自由焓之值。
大学热学试题题库及答案
大学热学试题题库及答案一、选择题1. 热力学第一定律表明,能量守恒,即能量不能被创造或消灭,只能从一种形式转换为另一种形式。
以下哪项描述正确?A. 能量可以被创造B. 能量可以被消灭C. 能量可以在不同形式间转换D. 能量只能以一种形式存在答案:C2. 在绝热过程中,系统与外界没有热量交换。
以下哪项描述正确?A. 绝热过程中系统的温度不变B. 绝热过程中系统的压力不变C. 绝热过程中系统的温度和压力都不变D. 绝热过程中系统的温度和压力都可能变化答案:D二、填空题1. 理想气体状态方程为__________,其中P表示压强,V表示体积,n 表示摩尔数,R表示气体常数,T表示温度。
答案:PV = nRT2. 根据热力学第二定律,不可能从单一热源吸热使之完全转化为功而不产生其他效果。
该定律的表述是__________。
答案:不可能从单一热源吸热使之完全转化为功而不产生其他效果。
三、简答题1. 简述热力学第二定律的开尔文表述及其意义。
答案:热力学第二定律的开尔文表述是:不可能从单一热源吸热使之完全转化为功而不产生其他效果。
其意义在于指出了自然界中能量转换的方向性和不可逆性,即能量在转换过程中总是伴随着熵增,表明了热机效率的极限。
2. 描述热力学第三定律,并解释其对低温物理研究的意义。
答案:热力学第三定律指出,当温度趋近于绝对零度时,所有纯物质的完美晶体的熵都趋向于一个共同的值。
这一定律对低温物理研究的意义在于,它为低温下物质的熵和热力学性质的研究提供了理论基础,使得科学家能够更准确地预测和控制低温条件下物质的行为。
四、计算题1. 一个理想气体在等压过程中从状态A(P=100kPa, V=0.5m³)变化到状态B(V=1.0m³)。
已知气体常数R=8.314J/(mol·K),摩尔质量M=28g/mol,求气体在该过程中的温度变化。
答案:首先计算气体的摩尔数n,n = PV/RT =(100×10³×0.5)/(8.314×T)。
第8章热力学作业老师用含答案
班级 姓名 学号一、填空题1.一卡诺热机的低温热源温度为280K ,效率为40%,若使效率提高到50%而保持低温热源的温度不变,高温热源温度必须增加 K 。
解:121T T -=ηΘ 4.028*******=-=-=∴T T T η 5.0280111122='-='-=∴T T T η 解得 K T T T 3.9311=-'=∆2.10 mol 的单原子分子理想气体,在压缩过程中外力作功209 J ,气体温度升高1 K ,则气体内能 的增量△E 为 J 。
气体吸收的热量Q 为 J 。
解:3.一台冰箱工作时,其冷冻室中的温度为 -10℃,室温为15℃。
若按理想卡诺致冷循环计算, 则此致冷机每消耗103J 的功。
可以从冷冻室中吸出 ×104J 的热量 。
解:2122T T T W Q e -==Θ 可得 J W T T T Q 4321221005.110)27310()27315(27310⨯=⨯+--++-=⨯-=4.一理想气体经历一次卡诺循环对外作功1000 J ,卡诺循环的高温热源温度T 1 = 500 K ,低温热源的温度T 2 = 300 K ,则在一次循环过程中,在高温热源处吸热Q 1 = 2500 J ;在低温热源处放热Q 2 = 1500 J 。
解:4.050030011112121=-=-=-==T T Q Q Q W ηΘ 可得J W Q 25004.010004.01===; J Q Q 150025006.06.012=⨯== 5.1摩尔的单原子理想气体,在等体过程中温度从27℃加热到77℃,则吸收的热量为 J 。
解:6.一定量的空气吸收了×103J 的热量,并保持在×105Pa 下膨胀,体积从×10-2m 3增加到J T R T T C M m E V 65.124131.823102310)(12m ,=⨯⨯⨯=∆⨯⨯=-=∆JW E Q 35.8420965.124-=-=+∆=J T R T T C M m Q V V 25.623)300350(31.8231231)(12m ,=-⨯⨯⨯=∆⨯⨯=-=×10-2m 3,则空气对外界做的功为 500 J ;空气的内能改变了 ×103J 。
高中热力学试题及答案
高中热力学试题及答案一、选择题1. 热力学第一定律的数学表达式是:A. ΔU = Q + WB. ΔH = Q - WC. ΔS = Q/TD. ΔG = Q - TΔS答案:A2. 根据熵增原理,孤立系统的熵总是:A. 增加B. 减少C. 保持不变D. 无法确定答案:A3. 以下哪个过程是可逆过程?A. 摩擦生热B. 气体自由膨胀C. 气体在活塞下缓慢压缩D. 气体在活塞下快速压缩答案:C二、填空题4. 热力学第二定律的开尔文表述是:不可能从单一热源吸热使之完全转化为功而不引起其他变化。
__________________________。
5. 理想气体的内能只与温度有关,与体积和压强无关。
对于一定质量的理想气体,其内能变化ΔU等于__________。
答案:nCvΔT三、简答题6. 简述热力学第二定律的克劳修斯表述。
答案:热力学第二定律的克劳修斯表述是:不可能实现一个循环过程,其唯一结果就是将热量从低温物体传递到高温物体。
7. 解释什么是熵,以及熵增原理的意义。
答案:熵是热力学中描述系统无序度的物理量,通常用符号S表示。
熵增原理表明,在孤立系统中,自发过程总是向着熵增加的方向发展,这反映了自然界趋向于无序的普遍趋势。
四、计算题8. 一个理想气体在等压过程中,温度从T1升高到T2,求该过程中气体的熵变ΔS。
答案:首先,根据等压过程的性质,体积V与温度T的关系为V/T = 常数。
对于理想气体,熵变ΔS可以通过以下公式计算:ΔS = nCln(T2/T1) + Rln(V2/V1)由于V/T = 常数,所以V2/V1 = T2/T1,代入公式得:ΔS = nCln(T2/T1)9. 一个质量为m,温度为T的物体,通过热传导的方式与环境达到热平衡,求物体的最终温度。
答案:当物体与环境达到热平衡时,物体的温度将等于环境的温度。
因此,物体的最终温度就是环境的温度。
结束语:本试题涵盖了高中热力学的基本概念和计算方法,旨在帮助学生理解和掌握热力学的基本原理及其应用。
热力学习题及答案2010.11.
2-13. 某反应器容积为31.213m ,内装有温度为0227C 的乙醇45.40kg 。
现请你试用以下三种方法求取该反应器的压力,并与实验值(2.75MPa )比较误差。
(1)用理想气体方程;;(2)用RK 方程;(3)用普遍化状态方程。
解:(1)用理想气体方程M P a V n R T P 38.310213.115.50010314.8987.063=⨯⨯⨯⨯== 误差:%9.22 (2)用R-K 方程乙醇:K T C 2.516=, MPa P C 38.6=765.2625.22108039.21038.62.51610314.842748.042748.0⨯=⨯⨯⨯⨯==CCP T R a 0583.01038.62.51610314.808664.008664.063=⨯⨯⨯⨯==C C P RT b 3229.1987.0213.1m V ==()()MPab V V T a b V RT P 76.2109247.7105519.30583.0229.1229.115.500108039.20583.0229.115.50010314.85625.0735.0=⨯-⨯=⨯+⨯--⨯⨯=+--=误差:%36.0(3)用三参数普遍化关联 (2<r V 用维里方程关联,MPa P 7766.2=)635.0=ω, 43.038.675.2===C r P P P , 97.02.51615.500==r T 查图2-12~2-13:82.00=Z , 055.01-=Z7845.0055.0645.082.010=⨯-=+=Z Z Z ω MPa V ZRT P 65.210229.115.50010314.87845.063=⨯⨯⨯⨯== 误差:%64.32-21 一个0.5 m 3压力容器,其极限压力为2.75 MPa ,若许用压力为极限压力的一半,试用普遍化第二维里系数法计算该容器在130℃时,最多能装入多少丙烷?已知:丙烷T c =369.85K ,P c =4.249MPa ,ω=0.152。
第一章 热力学第一、二定律试题及答案
第一章热力学第一定律一、选择题1.下述说法中,哪一种正确()(A)热容C不是状态函数;(B)热容C与途径无关;(C)恒压热容C p不是状态函数;(D)恒容热容C V不是状态函数.2.对于内能是体系状态的单值函数概念,错误理解是( )(A)体系处于一定的状态,具有一定的内能;(B)对应于某一状态,内能只能有一数值不能有两个以上的数值;(C)状态发生变化,内能也一定跟着变化;(D) 对应于一个内能值,可以有多个状态。
3.某高压容器中盛有可能的气体是O2,Ar,CO2, NH3中的一种,在298K时由5dm3绝热可逆膨胀到6dm3,温度降低21K,则容器中的气体()(A) O2 (B)Ar (C)CO2(D) NH34.戊烷的标准摩尔燃烧焓为-3520kJ·mol-1,CO2(g)和H2O(l)标准摩尔生成焓分别为-395 kJ·mol—1和—286 kJ·mol-1,则戊烷的标准摩尔生成焓为()(A)2839 kJ·mol—1(B)—2839 kJ·mol-1(C) 171 kJ·mol-1(D)-171 kJ·mol—15.已知反应的标准摩尔反应焓为,下列说法中不正确的是( )。
(A)。
是H2O(g)的标准摩尔生成焓(B)。
是H2O(g)的标准摩尔燃烧焓(C). 是负值(D)。
与反应的数值相等6.在指定的条件下与物质数量无关的一组物理量是()(A) T ,P, n (B)U m, C p,C V(C)ΔH,ΔU,Δξ(D) V m,ΔH f,m(B), ΔH c,m(B)7.实际气体的节流膨胀过程中,下列那一组的描述是正确的( )(A)Q=0 ΔH=0 ΔP< 0 ΔT≠0 (B)Q=0 ΔH〈0 ΔP> 0 ΔT>0(C) Q〉0 ΔH=0 ΔP< 0 ΔT〈0 (D) Q<0 ΔH=0 ΔP〈0 ΔT≠08.已知反应H2(g)+ 1/2O2(g)→H2O(l)的热效应为ΔH,下面说法中不正确的是()(A)ΔH是H2O(l)的生成热(B)ΔH是H2(g)的燃烧热(C) ΔH与反应的ΔU的数量不等(D)ΔH与ΔHθ数值相等9.为判断某气体能否液化,需考察在该条件下的()(A) μJ-T> 0 (B) μJ-T〈0 (C)μJ-T = 0 (D)不必考虑μJ—T的数值10.某气体的状态方程为PV=RT+bP(b>0),1mol该气体经等温等压压缩后其内能变化为( )(A)ΔU〉0 (B)ΔU <0 (C) ΔU =0 (D)该过程本身不能实现11.均相纯物质在相同温度下C V > C P的情况是( )(A)(∂P/∂T)V<0 (B)(∂V/∂T)P〈0(C)(∂P/∂V)T〈0 (D) 不可能出现C V〉C P12.理想气体从相同始态分别经绝热可逆膨胀和绝热不可逆膨胀到达相同的压力,则其终态的温度,体积和体系的焓变必定是()(A) T可逆〉T不可逆,V可逆> V不可逆, ΔH可逆〉ΔH不可逆(B) T可逆〈T不可逆, V可逆< V不可逆, ΔH可逆〈ΔH不可逆(C) T可逆〈T不可逆,V可逆> V不可逆, ΔH可逆<ΔH不可逆(D) T可逆〈T不可逆,V可逆〈V不可逆, ΔH可逆〉ΔH不可逆13.1mol、373K、1atm下的水经下列两个不同过程达到373K、1atm下的水汽:(1)等温可逆蒸发,(2)真空蒸发。
热力学基础试题及答案
热力学基础试题及答案一、选择题(每题2分,共20分)1. 热力学第一定律指出能量守恒,下列哪项描述是正确的?A. 能量可以被创造或消灭B. 能量可以从一个物体转移到另一个物体C. 能量可以在封闭系统中增加或减少D. 能量总是从高温物体流向低温物体答案:B2. 熵是热力学中描述系统无序度的物理量,下列哪项描述是正确的?A. 熵是一个状态函数B. 熵是一个过程函数C. 熵只与系统的温度有关D. 熵只与系统的压力有关答案:A3. 理想气体状态方程为PV=nRT,其中P代表压力,V代表体积,n代表摩尔数,R代表气体常数,T代表温度。
下列哪项描述是错误的?A. 理想气体状态方程适用于所有气体B. 在恒定温度下,气体的体积与压力成反比C. 在恒定压力下,气体的体积与温度成正比D. 在恒定体积下,气体的压力与温度成正比答案:A4. 热力学第二定律指出热量不能自发地从低温物体传递到高温物体,下列哪项描述是正确的?A. 热量总是从高温物体流向低温物体B. 热量可以在没有外界影响的情况下从低温物体流向高温物体C. 热量可以在外界做功的情况下从低温物体流向高温物体D. 热量可以在没有外界做功的情况下从低温物体流向高温物体答案:C5. 卡诺循环是理想化的热机循环,其效率只与热源和冷源的温度有关。
下列哪项描述是错误的?A. 卡诺循环的效率与工作介质无关B. 卡诺循环的效率与热源和冷源的温度差有关C. 卡诺循环的效率与热源和冷源的温度成正比D. 卡诺循环的效率在所有循环中是最高的答案:C6. 根据热力学第三定律,下列哪项描述是正确的?A. 绝对零度是可以达到的B. 绝对零度是不可能达到的C. 绝对零度下所有物质的熵为零D. 绝对零度下所有物质的熵为负值答案:B7. 热力学中的吉布斯自由能(G)是用来描述在恒温恒压条件下系统自发进行变化的能力。
下列哪项描述是错误的?A. 吉布斯自由能的变化(ΔG)是负值时,反应自发进行B. 吉布斯自由能的变化(ΔG)是正值时,反应非自发进行C. 吉布斯自由能的变化(ΔG)是零时,系统处于平衡状态D. 吉布斯自由能的变化(ΔG)与系统的温度和压力无关答案:D8. 相变是指物质在不同相态之间的转变,下列哪项描述是错误的?A. 相变过程中物质的化学性质不变B. 相变过程中物质的物理性质会发生变化C. 相变过程中物质的熵值不变D. 相变过程中物质的体积可能会发生变化答案:C9. 热力学中的临界点是指物质的气液两相在该点的物理性质完全相同。
高中热力学试题及答案
高中热力学试题及答案一、选择题(每题3分,共30分)1. 热力学第一定律的数学表达式是:A. ΔU = Q - WB. ΔH = Q + WC. ΔG = Q - WD. ΔS = Q/T答案:A2. 在绝热过程中,系统与外界没有热交换,以下说法正确的是:A. 系统内能增加B. 系统内能减少C. 系统内能不变D. 无法确定系统内能变化答案:D3. 根据热力学第二定律,以下说法正确的是:A. 热量可以从低温物体自发地传递到高温物体B. 热量不能自发地从低温物体传递到高温物体C. 所有自然过程都是可逆的D. 所有自然过程都是不可逆的答案:B4. 熵是热力学中描述系统无序程度的物理量,以下说法正确的是:A. 熵总是增加的B. 熵总是减少的C. 熵可以增加也可以减少D. 熵在孤立系统中总是增加的答案:D5. 理想气体状态方程是:A. PV = nRTB. PV = nTC. PV = mRTD. PV = RT答案:A6. 根据热力学第三定律,绝对零度是:A. 温度的极限B. 熵的极限C. 能量的极限D. 压力的极限答案:B7. 卡诺循环效率的数学表达式是:A. 1 - Tc/ThB. 1 - Tc/TaC. 1 - Tc/TbD. 1 - Ta/Th答案:A8. 以下哪种过程是不可逆的:A. 理想气体的等温膨胀B. 理想气体的绝热膨胀C. 理想气体的等压膨胀D. 理想气体的等熵膨胀答案:B9. 热力学温标的单位是:A. 摄氏度B. 开尔文C. 华氏度D. 兰氏度答案:B10. 以下哪种物质在标准状态下不是理想气体:A. 氦气B. 氢气C. 氧气D. 水蒸气答案:D二、填空题(每题2分,共20分)1. 热力学第一定律表明能量______,即能量守恒。
答案:守恒2. 热力学第二定律指出,不可能从单一热源取热使之完全转换为功而不产生其他影响。
答案:不可能3. 熵变ΔS等于系统吸收的热量Q除以绝对温度T,即ΔS = ______。
热力学课外习题(含答案)
判断题:√1.自然界发生的过程一定是不可逆过程。
×2.不可逆过程一定是自发过程。
(做了非体积功发生的过程不是自发过程)×3.熵增加的过程一定是自发过程。
(如自由膨胀过程)×4.绝热可逆过程的∆S = 0,绝热不可逆膨胀过程的∆S > 0,绝热不可逆压缩过程的∆S < 0。
×5.为了计算绝热不可逆过程的熵变,可以在始末态之间设计一条绝热可逆途径来计算。
(设计一条可逆非绝热可逆过程来计算熵变)×6.由于系统经循环过程后回到始态,∆S = 0,所以一定是一个可逆循环过程。
(环境可能提供负熵流)×7.平衡态熵最大。
(在隔离体系中是对的)×8.在任意一可逆过程中∆S = 0,不可逆过程中∆S > 0。
9.理想气体经等温膨胀后,由于∆U = 0,所以吸的热全部转化为功,这与热力学第二定律矛盾吗?(不矛盾,因为在热全部转化为功的同时,引起了气体的状态的变化)×10.当系统向环境传热时(Q < 0),系统的熵一定减少。
(熵变是可以过程的热温熵)√11.一切物质蒸发时,摩尔熵都增大。
(混乱度增大)×12.吉布斯函数减小的过程一定是自发过程。
(条件:等温等压,非体积功等于0)×13.在等温、等压下,吉布斯函数变化大于零的化学变化都不能进行。
(当有非体积功如电功时可以发生)×14.系统由V 1膨胀到V 2,其中经过可逆途径时做的功最多。
(等温条件下如对的)×15.因Q p =ΔH ,Q v =ΔU ,所以Q p 和Q v 都是状态函数。
(热是过程量,不是状态函数)×16.水溶液的蒸气压一定小于同温度下纯水的饱和蒸汽压。
(非挥发性溶质的稀溶液)×17.在等温等压不做非体积功的条件下,反应Δr G m <0时,若值越小,自发进行反应的趋势就越强,反应进行得越快。
傅秦生工程热力学作业题解答
1-3 解:根据压力单位换算关系,有2H O Hg 2009.8067Pa 800133.322Pa p p =⨯=⨯所以有(735133.3222009.8067800133.322)Pa 206610.6Pa 206.6kPap =⨯+⨯+⨯==1-4 解:根据微压计的原理,烟道中的压力应等于环境压力和水柱压力之差,所以4sin 2000.89.80.5784Pa=7.8410MPa V p L g ρα-==⨯⨯⨯=⨯0.10.0007840.0992MPa b V p p p =-=-=1-5 解:,,, - = 45k P a g C b g A b g B p p p p p p p p p =+=+=左左右右 ,,,11045155kPa g A g B g C p p p ∴=+=+=2-3 解:(1)根据热一律,有 3573570u q w ∆=-=-= (2)由于完成了一个循环过程,有 120u u u ∆=∆+∆=而 120 0u u ∆=∴∆=(3) 2220590k J u q w ∆=∴=- 2-4 解:(1)a c b a d b a c b a c b a d b a d b U U Q W Q W ----------==∆=∆∴-=-904010 60kJ a d b a d b Q Q ====-=-=(2)50k J (23) 73k Jb a a cb b a b aU U Q Q -----∆=-∆=-=--∴=-(3)50k J5055k Ja db b a b a U U U U U --∆=-=∴=+=5545010kJ 60kJ 50kJd b d b d b a d d b a d Q U W Q Q Q ------=∆+=-+=+==2-5 解:(1)由于流体不可压缩,所以不做功。
(2)由于不做功及绝热,所以0U ∆=。
33()1(30.5)10 2.510kJ H U pV V p ∆=∆+∆=∆=⨯-⨯=⨯3-1 解:(1)2027310.771000273C η+=-=+(2) 92412000.77924kJ 15.4kW 60C W Q P η==⨯=== (3) 211200924276kJ Q Q W =-=-= 3-2 解:(1)建立如图的模型,有,,1 1L A H A B H B H T T W Q W Q T T ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭根据题意,有 ,,L A H B Q Q = 而 ,,,,=11L A A L A H A H AH HQ T TQ Q Q T T η-=-∴= 所以 ,,11L L B H B H AH T T T W Q Q T T T ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭由A B W W =,得,,1=1L H A H AHH T T T Q Q T T T ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭()()11900300600K 22H L T T T =+=+= (2)根据 A B ηη=,有11 519.6K L H T TT T T-=-∴=== 3-5 解:循环A 为卡诺循环,其效率为1LA HT T η=-对于循环B ,有 (),,12L B L B H B H L B Q T S Q T T S =∆=+∆,所以 (),, 211112L B L B LB H BH LH L B Q T S T Q T T T T S η∆=-=-=-++∆故11221L H LA H H H L L L H L LB H HH L H LT T T T T T T T T T T T T T T T T T ηη--+====++--++3-6 解:(1) i s o1500800= 1.92J /K 02000300H L H L Q Q S T T -∆+=+=> 所以该循环可行,且不可逆进行。
高中热力学试题及答案大全
高中热力学试题及答案大全一、选择题1. 热力学第一定律的数学表达式是:A. ΔU = Q - WB. ΔH = Q + WC. ΔS = Q/TD. ΔG = ΔH - TΔS答案:A2. 以下哪个过程是不可逆过程?A. 理想气体的等温膨胀B. 理想气体的绝热膨胀C. 理想气体的等压膨胀D. 理想气体的等熵膨胀答案:B3. 熵增加原理表明,在孤立系统中,自发过程的熵:A. 保持不变B. 减少C. 增加D. 先减少后增加答案:C二、填空题1. 热力学第二定律表明,不可能从单一热源_______而产生其他影响。
答案:吸热2. 在热力学中,一个系统与外界交换能量的两种基本方式是_______和_______。
答案:做功;热传递三、简答题1. 简述热力学第二定律的克劳修斯表述和开尔文-普朗克表述。
答案:热力学第二定律的克劳修斯表述是:不可能实现一个循环过程,其唯一结果就是从一个热源吸热并将这热量完全转化为功。
开尔文-普朗克表述是:不可能从单一热源吸热使之完全转化为功而不产生其他影响。
2. 什么是熵?熵在热力学中的意义是什么?答案:熵是热力学中描述系统无序程度的物理量,通常用符号S表示。
熵在热力学中的意义是衡量系统状态的无序程度,是热力学第二定律的数学表达形式之一,反映了能量分散的程度。
四、计算题1. 一个理想气体在等压过程中从体积V1 = 1m³膨胀到V2 = 2m³,气体的摩尔质量为M = 0.029kg/mol,气体常数R = 8.314J/(mol·K),初始温度T1 = 300K。
求气体的最终温度T2。
答案:首先计算气体的摩尔数n = (M/V1)。
然后利用等压过程中温度与体积的关系T1V1/n = T2V2/n,解得T2 = (T1V1/V2) = (300K *1m³ / 2m³) = 150K。
结束语:通过本试题及答案的练习,同学们可以加深对热力学基本概念、原理和计算方法的理解。
热力学习题答案
热力学基础一、选择题1、 在下列各种说法中,哪些是正确的? [ B ](1) 准静态过程就是无摩擦力作用的过程.(2) 准静态过程一定是可逆过程.(3) 准静态过程是无限多个连续变化的平衡态的连接.(4) 准静态过程在p -V 图上可用一连续曲线表示.A 、(1)、(2).B 、(3)、(4).C 、(2)、(3)、(4).D 、(1)、(2)、(3)、(4). [ D ]2、 根据热力学第二定律可知,下面说法正确的是A 、功可全部转换为热,但热不能全部转换为功。
B 、热可从高温物体传到低温物体,但不能从低温物体传到高温物体。
C 、不可逆过程就是不能向相反方向进行的过程。
D 、一切自发过程都是不可逆的。
3、 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体.若把隔板抽出,气体将进行自由膨胀,达到平衡后 [ A ](A) 温度不变,熵增加. (B) 温度升高,熵增加.(C) 温度降低,熵增加. (D) 温度不变,熵不变.二、填空题4、 在p V 图上(1) 系统的某一平衡态用____一点_________来表示; (2) 系统的某一准静态过程用______一曲线__________来表示;(3) 系统的某一平衡循环过程用_____封闭曲线_____________来表示;5、 如图所示为一理想气体几种状态变化过程的P-V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中:温度升高的是BM,CM____过程,气体吸热的是____CM_____过程。
温度降低的是____AM _____过程,气体放热的是___AM,BM______过程。
6、 理想气体经历绝热自由膨胀过程,达到平衡后,它的温度不变 ;它的熵 增加 。
(填“增加” 、“不变”或“减少”)。
7、一定量的某种气体在等压变化过程中对外作功200J ,若此气体为单原子分子气体,则过程中需吸热___500J__,若此气体分子为双原子分子气体,则需吸热700J 。
工程热力学课后作业答案
p734-1 1kg 空气在可逆多变过程中吸热40kJ ,其容积增大为1102v v =,压力减少为8/12p p =,设比热为定值,求过程中内能旳变化、膨胀功、轴功以及焓和熵旳变化。
解:热力系是1kg 空气过程特性:多变过程)10/1ln()8/1ln()2/1ln()1/2ln(==v v p p n =0.9由于T c q n ∆=内能变化为R c v 25==717.5)/(K kg J •v p c R c 5727===1004.5)/(K kg J •=n c ==--v v c n kn c 51=3587.5)/(K kg J •n v v c qc T c u /=∆=∆=8×103J膨胀功:u q w ∆-==32 ×103J轴功:==nw w s 28.8 ×103J焓变:u k T c h p ∆=∆=∆=1.4×8=11.2 ×103J熵变:12ln 12lnp p c v v c s v p +=∆=0.82×103)/(K kg J •4-2 有1kg 空气、初始状态为MPa p 5.01=,1501=t ℃,进行下列过程:(1)可逆绝热膨胀到MPa p 1.02=;(2)不可逆绝热膨胀到MPa p 1.02=,K T 3002=;(3)可逆等温膨胀到MPa p 1.02=;(4)可逆多变膨胀到MPa p 1.02=,多变指数2=n ;试求上述各过程中旳膨胀功及熵旳变化,并将各过程旳相对位置画在同一张v p -图和s T -图上解:热力系1kg 空气(1) 膨胀功:])12(1[111k k p p k RT w ---==111.9×103J熵变为0(2))21(T T c u w v -=∆-==88.3×103J12ln 12ln p p R T T c s p -=∆=116.8)/(K kg J •(3)21ln1p p RT w ==195.4×103)/(K kg J • 21ln p p R s =∆=0.462×103)/(K kg J • (4)])12(1[111n n p p n RT w ---==67.1×103J n n p p T T 1)12(12-==189.2K 12ln 12ln p p R T T c s p -=∆=-346.4)/(K kg J •4-3 具有1kmol 空气旳闭口系统,其初始容积为1m 3,终态容积为10 m 3,当时态和终态温度均100℃时,试计算该闭口系统对外所作旳功及熵旳变化。
热力学习题(答案)
一、9选择题(共21分,每题3分)1、1.1mol理想气体从p-V图上初态a分别经历如图所示的(1)或(2)过程到达末态b.已知Ta<Tb,则这两过程中气体吸收的热量Q1和Q2的关系是[ A ](A) Q1>Q2>0; (B) Q2>Q1>0;(C) Q2<Q1<0; (D) Q1<Q2<0;(E) Q1=Q2>0.2、图(a),(b),(c)各表示连接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程, 图(a)和(b)则为半径不相等的两个圆.那么:[ C ](A) 图(a)总净功为负,图(b)总净功为正,图(c)总净功为零;(B) 图(a)总净功为负,图(b)总净功为负,图(c)总净功为正;(C) 图(a)总净功为负,图(b)总净功为负,图(c)总净功为零;(D) 图(a)总净功为正,图(b)总净功为正,图(c)总净功为负.3、如果卡诺热机的循环曲线所包围的面积从图中的abcda增大为ab’c’da,那么循环abcda与ab’c’da所做的净功和热机效率变化情况是:(A)净功增大,效率提高; [ D ](B)净功增大,效率降低;(C) 净功和效率都不变;(D) 净功增大,效率不变.4、一定量的理想气体分别由图中初态a经①过程ab和由初态a’经②过程初态a’cb到达相同的终态b, 如图所示,则两个过程中气体从外界吸收的热量Q1,Q2的关系为[ B ](A) Q1<0,Q1>Q2 ; (B) Q1>0, Q1>Q2 ;(C) Q1<0,Q1<Q2 ; (D) Q1>0, Q1<Q2 .5、根据热力学第二定律可知: [ D ](A) 功可以全部转换为热,但热不能全部转换为功;(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;(C) 不可逆过程就是不能向相反方向进行的过程;(D) 一切自发过程都是不可逆的.6、对于理想气体来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外做的功三者均为负值? [ D ](A) 等容降压过程; (B) 等温膨胀过程; (C) 绝热膨胀过程; (D) 等压压缩过程.7、在下列各种说法中,哪些是正确的? [ B ](1) 热平衡过程就是无摩擦的、平衡力作用的过程.(2) 热平衡过程一定是可逆过程.(3) 热平衡过程是无限多个连续变化的平衡态的连接.(4) 热平衡过程在p-V 图上可用一连续曲线表示. (A) (1),(2); (B) (3),(4); (C) (2),(3),(4); (D) (1),(2),(3),(4).8、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比A/Q 等于: [ D ] (A) 1/3; (B) 1/4; (C) 2/5; (D) 2/7.9、在温度分别为 327℃和27℃的高温热源和低温热源之间工作的热机,理论上的最大效率为 [ B ] (A) 25% (B) 50% (C) 75% (D) 91.74%10、一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),则气体在 [ B ](A) (1)过程中吸热,(2) 过程中放热. (B) (1)过程中放热,(2) 过程中吸热. (C) 两种过程中都吸热. (D) 两种过程中都放热.二、填空题pV1、有1mol刚性双原子分子理想气体,在等压膨胀过程中对外做功A,则其温度变化ΔT=___ A/R ___;从外界吸收的热量Q p=__7A/2 ___.2、一个作可逆卡诺循环的热机,其效率为η,它的逆过程的致冷机致冷系数w = T2/(T1-T2),则η与w的关系为_____11Wη=-_____.3.一热机由温度为727℃的高温热源吸热,向温度为527℃的低温热源放热.若热机在最大效率下工作,且每一循环吸热2000J,则此热机每一循环做功__400________J. 4.热力学第二定律的克劳修斯叙述是_热量不能自动地从低温物体传向高温物体开尔文叙述是_不可能把从单一热源吸收的热量在循环过程中全部转变为有用的功,而不引起任何其他物体为生变化_________________________.5、下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程.(1)pdV=(m/M)RdT表示___等压_________过程;(2)Vdp=(m/M)RdT表示_____等体_________过程;(3)pdV+Vdp=0表示_______等温_______过程.6、如图,温度为T0,2T0,3T0三条等温线与两条绝热线围成三个卡诺循环:(1)abcda;(2)dcefd;(3)abefa,则其效率分别为:η1=___33.3%___;η2=___50% ___;η3=____ 66.7%___.7. 理想气体在如图所示a-b-c 过程中,系统的内能增量E =___0__8.已知一定量的理想气体经历p -T 图上所示的循环过程,图中过程1-2中,气体___吸热__(填吸热或放热)。
第八章 热力学作业(答案)
第八章 热力学基础一、选择题[ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A)是A →B. (B)是A →C. (C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。
【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ∆+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =;AB 等压过程:AB AB E A Q ∆+=,且0>∆AB E[ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是(A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+∆得 0E ∆=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =.[ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ∆,熵增量为S ∆,则应有 (A) 0......0=∆<∆S E (B) 0......0>∆<∆S E . (C) 0......0=∆=∆S E . (D) 0......0>∆=∆S E【提示】由上题分析知:0=∆E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。
[ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小.(D) 等压过程中最大,等温过程中最小. 【提示】如图。
热力学 习题答案
热力学习题答案 Final approval draft on November 22, 2020第9章热力学基础一. 基本要求1. 理解平衡态、准静态过程的概念。
2. 掌握内能、功和热量的概念。
3. 掌握热力学第一定律,能熟练地分析、计算理想气体在各等值过程中及绝热过程中的功、热量和内能的改变量。
4. 掌握循环及卡诺循环的概念,能熟练地计算循环及卡诺循环的效率。
5. 了解可逆过程与不可逆过程的概念。
6. 解热力学第二定律的两种表述,了解两种表述的等价性。
7. 理解熵的概念,了解热力学第二定律的统计意义及无序性。
二. 内容提要1. 内能功热量内能从热力学观点来看,内能是系统的态函数,它由系统的态参量单值决定。
对于理想气体,其内能E仅为温度T的函数,即当温度变化ΔT时,内能的变化功 热学中的功与力学中的功在概念上没有差别,但热学中的作功过程必有系统边界的移动。
在热学中,功是过程量,在过程初、末状态相同的情况下,过程不同,系统作的功A 也不相同。
系统膨胀作功的一般算式为在p —V 图上,系统对外作的功与过程曲线下方的面积等值。
热量 热量是系统在热传递过程中传递能量的量度。
热量也是过程量,其大小不仅与过程、的初、末状态有关,而且也与系统所经历的过程有关。
2. 热力学第一定律 系统从外界吸收的热量,一部分用于增加内能,一部分用于对外作功,即热力学第一定律的微分式为3. 热力学第一定律的应用——几种过程的A 、Q 、ΔE 的计算公式(1)等体过程 体积不变的过程,其特征是体积V =常量;其过程方程为在等体过程中,系统不对外作功,即0=V A 。
等体过程中系统吸收的热量与系统内 能的增量相等,即(2) 等压过程 压强不变的过程,其特点是压强p =常量;过程方程为在等压过程中,系统对外做的功系统吸收的热量 )(12T T C M MQ P molP -=式中R C C V P +=为等压摩尔热容。
(3)等温过程 温度不变的过程,其特点是温度T =常量;其过程方程为pV =常量在等温过程中,系统内能无变化,即(4)绝热过程 不与外界交换热量的过程,其特点是dQ=0,其过程方程pV γ=常量在绝热过程中,系统对外做的功等于系统内能的减少,即7. 循环过程 系统从某一状态出发,经过一系列状态变化后又回到了初始状态的整个变化过程。
热力学作业答案
一、选择题 1.单原子分子组成的理想气体自平衡态A变化 到平衡态B,变化过程不知道,但A、B两点的压 强、体积和温度都已确定,则可求出 A.气体膨胀所做的功 B.气体内能变化 C.气体传递的热量 D.气体分子的质量
2.理想气体的温度越高,则 A.热量越多 B.作功越多 C.内能越大 D.不能确定
a
Tb=4Ta=4T, Tc=2T O 3 9 Eab CV T R( Tb Ta ) RT 2 2 1 3 3 Aab ( PbVb PaVa ) PaVa RT 2 2 2
c
2V V
V
4.一摩尔单原子分子理想气体作如图所示循环, 已知a点的温度为T,且,试求: (1)一次循环过程中气体吸收的热量 (2)一次循环过程中气体对外所作的净功 (3)循环效率 P b 解: Q1 Aab Eab 3 9 RT RT 6 RT a c 2 2 1 O A净 (Vc Va ) ( Pb Pc ) V 2 A 1 1 1 PaVa RT Q1 12 2 2
3.单原子分子理想气体作如图所示循环,bc为 等温过程,在bc中吸热140J,试求: (1)在一次循环过程中系统从外界吸收的热量 (2)在一次循环过程中系统向外界放出的热量 (3)循环效率
解:(1) Qab CV T i ( PbVb PaVa ) 3 2
2 2
M
2.0 1.0
P(105Pa) b
T1 n Q1
n
10.根据热力学第二定律可知: A. 功可以全转换为热,热不能全转换为功; B. 热可以从高温物体传到低温物体,但不能 从低温物体传到高温物体 C. 不可逆过程是不能向相反方向进行过程 D. 一切自发过程都是不可逆的
热力学计算题(50题)
热力学计算题(50题)本文包含了50个热力学计算题的答案,分别为:1. 在1 atm下,如果1 L液态H2O沸腾,则液态H2O的温度是多少?答案:100℃2. 在标准状况下,1摩尔理想气体的体积是多少?答案:22.4 L3. 1升液态水的密度是多少?答案:1千克/升4. 一摩尔甲烷气体在标准状况下的热力学能是多少?答案: -74.8 kJ / mol5. 1升的理想气体在标准大气压下的焓(molar enthalpy)是多少?答案: -295 kJ / mol6. 一升20℃的空气有多少质量?答案:1.2 g7. 一升空气,温度为25℃,压力为1 atm,含有多少氧气分子?答案:其中氧气分子数量为 1.2 × 10^228. 一升CO2气体的温度为298K时,压力是多少?答案: 37.96 atm9. 如果一个物体的热容为25 J/℃,它受热 80℃,所吸收的热量是多少?答案:2000 J10. 摩尔热容是15 J/mol·K的氧气气体在1 atm下被加热10 K 会发生多少变化?答案:1.5 J11. 一个物体被加热10 J,它受热前的温度是20℃,它后来的温度是多少℃?答案:受热后的温度为 73.53℃12. 对于固体氧气(O2),如果将它从25℃加热到50℃,需要消耗多少热量?答案:340 J/mol13. 一升液态水被加热 100℃,需要吸收多少热量?答案:4184 J14. 一克液态水被加热 1℃,需要吸收多少热量?答案:4.18 J15. 对于CO2气体(1 mol),在1 atm和273 K下,它的物态方程是什么?答案:pV = (1 mol)(8.21 J/mol·K)(273 K)16. 用50 J的热量加热1升冷却水可能使它的温度升高多少℃?答案:温度可能升高 10℃17. 如果把长度为10 cm、质量为20 g的铝棒从25℃加热到175℃,需要多少热量?答案:252 J18. 对于一个摩尔二氧化碳气体,如果把压力从1 atm减小到0.75 atm,需要释放多少热量?答案:-495 J19. 对于1摩尔理想气体,如果把温度从200 K增加到1000 K,并保持其体积不变,则需要吸收多少热量?答案:23.32 kJ20. 一个系统吸收 250 J 的热量,释放50 J的热量,系统的内能的变化是多少?答案:200 J21. 对于一个物体,如果它从25℃升高到50℃,则它的热动能将变为原来的几倍?答案:1.5倍22. 一瓶500 g的汽水在室温下是10℃,如果将汽水加热到37℃,需要吸收多少热量?答案:目标温度需要吸收 8725 J 的热量23. 在25℃下,一块金属的热容容值是25 J/K,其体积是1 cm^3,密度为6.5 g/cm^3,求其热导率。
物理化学 第二章 热力学第一定律 经典习题及答案
V3 = V2 =
W b = − p外 ΔV = − p3 (V3 − V1 ) = − 200 × 103 (0.10167 − 0.06197) = −7.940kJ
由热力学第一定律
Wa + Qa = Wb + Qb -5.57+25.42= − 7.940 + Qb ∴ Qb = 27.79
= − 2 × 8.314 × 300 × (1 −
2.
∂H ∂p 求证: C p − CV = − + V ∂p T ∂ T V
方法一:和课件中的证明类似
方法二:
∂H ∂U ∂H ∂( H m − pVm C p,m − CV,m = m − m = m − ∂T ∂T p ∂T V ∂T p V ∂H ∂H ∂p = m − m +Vm ∂T V ∂T p ∂T V 令H = H (T , p) ∂H ∂H dH = dT + dp ∂T p ∂p T
2.10 2 mol 某理想气体,
。由始态 100 kPa,50 dm3,先恒容加热使
压力体积增大到 150 dm3,再恒压冷却使体积缩小至 25 dm3。求整个过程的 。 解:过程图示如下 n = 2mol 理想气体 T1 = ? p1 = 100kPa V1 = 0.05m3 n = 2mol 理想气体 恒容 → T2 = ? p2 = 200kPa V2 = 0.05m3 n = 2mol 理想气体 恒压 → T3 = ? p3 = 200kPa V3 = 0.025m3
3.
∂U 已知:理想气体 =0 ∂V T
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程2 2.52 2.560.5268.314190.60.427480.42748 3.2224.610c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT a P V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
∴ P=19.22MPa2-4.将压力为2.03MPa 、温度为477K 条件下的2.83m 3NH 3压缩到0.142 m 3,若压缩后温度448.6K ,则其压力为若干?分别用下述方法计算:(1)Vander Waals 方程;(2)Redlich-Kwang 方程;(3)Peng-Robinson方程;(4)普遍化关系式。
解:查附录二得NH 3的临界参数:T c =405.6K P c =11.28MPa V c =72.5 cm 3/mol ω=0.250 (1) 求取气体的摩尔体积对于状态Ⅰ:P=2.03 MPa 、T=447K 、V=2.83 m 3477405.6 1.176r c T T === 2.0311.280.18r c P P P ===—普维法∴01.6 1.60.4220.4220.0830.0830.24261.176r BT =-=-=- 1 4.2 4.20.1720.1720.1390.1390.051941.176r B T =-=-= 010.24260.250.051940.2296cc BP B B RT ω=+=-+⨯=- 11c r c rBP PV BP PZ RT RT RT T =+==+→V=1.885×10-3m 3/mol∴n=2.83m 3/1.885×10-3m 3/mol=1501mol对于状态Ⅱ:摩尔体积V=0.142 m 3/1501mol=9.458×10-5m 3/mol T=448.6K (2) Vander Waals 方程222262627278.314405.60.4253646411.2810c c R T a Pa m mol P -⨯⨯===⋅⋅⨯⨯ 53168.314405.6 3.737108811.2810c c RT b m mol P --⨯===⨯⋅⨯⨯ ()()22558.314448.60.425317.659.458 3.73710 3.73710RT a P MPa V b V --⨯=-=-=--⨯⨯ (3) Redlich-Kwang 方程2 2.52 2.560.5268.314405.60.427480.427488.67911.2810c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314405.60.086640.08664 2.591011.2810c c RT b m mol P --⨯===⨯⋅⨯ ()()()0.550.5558.314448.68.67918.349.458 2.5910448.69.458109.458 2.5910RT a P MPa V b T V V b ---⨯=-=-=-+-⨯⨯⨯+⨯ (4) Peng-Robinson 方程 ∵448.6405.6 1.106r c T T T ===∴220.3746 1.542260.269920.3746 1.542260.250.269920.250.7433kωω=+-=+⨯-⨯=()()()220.50.51110.74331 1.1060.9247r T k T α⎡⎤⎡⎤=+-=+⨯-=⎣⎦⎣⎦()()()22226268.314405.60.457240.457240.92470.426211.2810c c c R T a T a T T Pa m mol P αα-⨯===⨯⨯=⋅⋅⨯ 53168.314405.60.077800.07780 2.3261011.2810c c RT b m mol P --⨯==⨯=⨯⋅⨯ ∴()()()a T RTP V b V V b b V b =--++- ()()()510108.314448.60.42629.458 2.326109.4589.458 2.32610 2.3269.458 2.32610---⨯=--⨯⨯+⨯+⨯+⨯19.00MPa =(5) 普遍化关系式 ∵559.458107.2510 1.305r c V V V --==⨯⨯=<2 适用普压法,迭代进行计算,方法同1-1(3)2-7:答案: 3cm第三章3-3. 试求算1kmol 氮气在压力为10.13MPa 、温度为773K 下的能、焓、熵、V C 、p C 和自由焓之值。
假设氮气服从理想气体定律。
已知:(1)在0.1013 MPa 时氮的p C 与温度的关系为()27.220.004187J /mol K p C T =+⋅;(2)假定在0℃及0.1013 MPa 时氮的焓为零;(3)在298K 及0.1013 MPa 时氮的熵为191.76J/(mol·K)。
答案:8272KJ/Kmol, 14703 KJ/Kmol, 181.4 J/Kmol/K 22.13 KJ/Kmol/K, 30.45 J/Kmol/K, -125507 KJ/Kmol3-8. 试估算纯苯由0.1013 MPa 、80℃的饱和液体变为1.013 MPa 、180℃的饱和蒸汽时该过程的V ∆、H ∆和S ∆。
已知纯苯在正常沸点时的汽化潜热为3.733 J/mol ;饱和液体在正常沸点下的体积为95.7 cm 3/mol ;定压摩尔热容()16.0360.2357J /mol K igpC T =+⋅;第二维里系数 2.4310/mol ⎛⎫⨯⎪⎝⎭31B=-78cm T。
解:1.查苯的物性参数:T c =562.1K 、P c =4.894MPa 、ω=0.271 2.求ΔV 由两项维里方程2.4321117810PV BP P Z RT RT RT T ⎡⎤⎛⎫==+=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2.46361.013101178100.85978.31410453453⎡⎤⨯⎛⎫=+-⨯=⎢⎥ ⎪⨯⨯⎝⎭⎢⎥⎣⎦3.计算每一过程焓变和熵变(1)饱和液体(恒T 、P 汽化)→饱和蒸汽 ΔH V =30733KJ/KmolΔS V =ΔH V /T=30733/353=87.1 KJ/Kmol·K (2)饱和蒸汽(353K 、0.1013MPa )→理想气体 ∵点(T r 、P r )落在图2-8图曲线左上方,所以,用普遍化维里系数法进行计算。
由式(3-61)、(3-62)计算 ∴()R2R1)(-H H H H H H id Tid P V +∆+∆++∆=∆()RR21)(S S S S S S id Tid P V +∆+∆+-+∆=∆21V V V -=∆mol cm P ZRT V 3216.3196013.1453314.88597.0=⨯⨯==cmV V V 3125.31007.9516.3196=-=-=∆628.01.562353===Cr T T T 0207.0894.41013.0===C r P P P 00111r c -T Rr rr r r H dB B dB B P RT dT T dT T ω⎡⎤⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦()()-0.02070.628 2.2626 1.28240.2718.1124 1.7112=⨯⨯+++⎡⎤⎣⎦=-0.080710.08078.314562.1R H =-⨯⨯-377.13KJ Kmol=011-R r r r S dB dB P R dT dT ω⎡⎤=+⎢⎥⎣⎦∴ (3)理想气体(353K 、0.1013MPa )→理想气体(453K 、1.013MPa )()212145335316.036 1.0130.23578.3140.101345316.0360.235745335319.13538.47idT idP T C P S dT Rln T P dT ln T ln KJ Kmol K∆=-⎛⎫=+- ⎪⎝⎭=+--=•⎰⎰(4)理想气体(453K 、1.013MPa )→真实气体(453K 、1.013MPa )点(T r 、P r )落在图2-8图曲线左上方,所以,用普遍化维里系数法进行计算。
由式(3-61)、(3-62)计算∴ 4.求()-0.02072.26260.2718.1124=+⨯-0.09234=1-0.092348.314R S =⨯0.7677KJ Kmol K=•()()()214533532216.0360.2350.235716.036453353453353211102.31T ididPP T H C dTT dTKJ Kmol∆==+=-+-=⎰⎰806.01.562453==r T 2070.0894.4013.1==r P R0011r c -T r rr r r H dB B dB B P RT dT T dT T ω⎡⎤⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦()-0.8060.20701.18260.51290.2712.21610.2863=⨯+++⎡⎤⎣⎦-0.3961=R 01-r r r S dB dB P R dT dT ω⎡⎤=+⎢⎥⎣⎦[]-0.20701.18260.271 2.2161=+⨯-0.3691=21850.73R H KJ Kmol =2 3.0687R S KJ Kmol K=⋅SH ∆∆,()KmolKJ H H H H H H id TidPV 7.40361)(RR21=+∆+∆+-+∆=∆()R 2R1)(S S S S S S idTid P V +∆+∆+-+∆=∆3-12. 试求算366K 、2.026MPa 下1mol 乙烷的体积、焓、熵与能。