从面积到乘法公式复习题

合集下载

第九章从面积到乘法公式(12课时)

第九章从面积到乘法公式(12课时)

课题:§9.1单项式乘以单项式学习目标:1.知道乘法交换律、乘法结合律、同底数幂的运算性质是进行单项式乘法的依据;2.能熟练进行单项式乘单项式计算.重点、难点:运用法则进行计算.学习过程一.【预学提纲】初步感知、激发兴趣 (1)右边的图案是怎样平移而成的? (2)你是如何计算它的面积的?发现等式:ab b a 933=⋅(3)b a 33⋅为什么可以写成()()b a ⋅⨯33?(4)如何计算b b 542⋅?请你说出每一步的计算依据.(5)单项式乘单项式法则是二.【预学练习】初步运用、生成问题请你试着计算:(1)2 a 2 b · 3ab 2 (2) 4ab 2· 5b(3)6x 3· (-2x 2y ) (4) (2xy 2)· (xy );(5) (-2 a 2 b 3)· (3a ); (6) (4×105)·(5×104)三.【新知探究】师生互动、揭示通法问题1. 计算:(1)13a 2·(6ab ); (2)(2x )3·(-3xy 2)(3)[(-a 3b 3)3]3·(-a b 2)2 (4) (-2 a 2b ) · (-a 2) · 14bc(5)[3(x -y )2] · [-2(x -y )3] · [45(x -y )]问题2. 已知3 x n -3 y 5-n 与-8 x 3m y 2n 的积 是2 x 4 y 9的同类项,求m 、n 的值.四.【解疑助学】生生互动、突出重点1. 判断正误,如果错误请写出正确答案⑴ ()523523x xx =-⋅ ⑵ 2221243a a a =⋅ ⑶ 9332483b b b =⋅⑷ y x xy x 2623=⋅- (5) 22933b a ab ab =+2. 计算:(1) (a 2c )2.6ab (c 2)3 (2) 2 x n -1 y n -2·(-x y 2)五.【变式拓展】能力提升、突破难点问题3.(1)若(2a n b ·ab m )3=8a 9b 15,求m+n 的值;(2)若52=n x ,求()()n n n x x x 633222+⋅的值.六.【回扣目标】学有所成、悟出方法1. 单项式乘单项式的运算,依据乘法的 、 及同底数幂的运算性质.2. 单项式相乘,把 、 分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.七.【当堂反馈】分层达标、收获成功班级____________ 姓名______________ 评价________________1.计算(-5a n +1b )(-2a )的结果为( )A .-10a 2n +1bB .10a n +2bC .10a n +1bD .10n +2b2.化简:322)3(x x -的结果是( )A .56x -B .53x -C .52xD .56x3. 填空:)2(33b a b a -⋅= .(-2xy 2)·( )=8x 3y 2z4. 计算:⑴abc b a 56)67(3⋅-; ⑵32)21()8(x xy -⋅-.八.【课后作业】及时巩固、查缺补漏1.计算b a ab 2253⋅的结果是( )A.228b aB.338b aC.3315b aD.2215b a2.下列计算正确的是( )A.4a 3·2a 2=8a 6B.2x 4·3x 4=6x 8C.3x 2·4x 2=12x 2D.(2ab 2)·(-3abc )=-6a 2b 33.计算)108()106(53⨯⋅⨯的结果是( )A.91048⨯B.9108.4⨯C.9108.4⨯D.151048⨯4.若5521221))((b a b a b a n n m m =+++,则n m +的值为( )A.1B.2C.3D.―3 5.化简[-2(x -y )]4.[12(y -x )]2的结果是( ) A. 12(x -y )6 B.2(x -y )6 C.(x -y )6 D.4(y -x )6 6.计算: ⎪⎭⎫ ⎝⎛-⋅23913x x =_______. 7.(2xy 2)3·(________)=-16x 4y 88.计算:()=⎪⎭⎫ ⎝⎛⋅-20092008313 .9.一个三角形的底为a 4,高为221a ,则它的面积为 . 10. -3(a -b )2·[2(a -b )3]·[23(a -b )]=________. 11.计算:①(-5ab 2x )·(-310a 2bx 3y ) ②(-2×103)3×(-4×108)212.计算:0.125(a 2+b 2)3(a -b )2·16(-a 2-b 2)3(b -a )3.13.已知3x m -3y 5-n 与-8x 3y 2的积是2x 4y 9的同类项,求m 、n 的值.14.先化简,再求值:―10(―a 3b 2c )2·a 51·(bc )3―(2abc )3·(―a 2b 2c )2,其中a =―5,b =0.2,c =2.15.一住户的结构示意图如图所示(单位:米),这家主人打算把卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果某种地砖的价格是a 元/平方米,那么购买所需地砖至少需要多少元?姓名 日期 等第课题:§9.2单项式乘以多项式学习目标:1、会进行单项式乘多项式的运算.2、经历探索单项式乘多项式法则的过程,发展有条理的思考及语言表达能力.重点、难点:单项式乘多项式法则学习过程一、【预学提纲】初步感知、激发兴趣1. 计算下图的面积,并把你的算法与同学交流.a 如果把图中看成一个大长方形,它的长为b +c +d ,宽为a ,那么它的面 积为 如果把上图看成是由3 个小长方形组成的,那么它的面积为由此得到:2. 用乘法分配律计算:a (b +c +d )=3. 单项式乘多项式法则:二、【预学练习】初步运用、生成问题计算:(1) a (2a -3) (2) a 2 (1-3a )(3) 3x (x 2-2x -1) (4) -2x 2y (3x 2-2x -3)(5) -4x (2x 2+3x -1) (6) -2 a ·(a 2+3 a -2)三、【新知探究】师生互动、揭示通法问题1.计算:①()()23232--⋅-a a a ②()()xy xy xy y x m n 22312-⋅+-+问题2. 先化简,再求值:()22225212ab b a a b ab a -⋅-⎪⎭⎫⎝⎛+⋅-, 其中2,1==b a问题3.解方程:2(25)(2)6x x x x x --+=-四、【解疑助学】生生互动、突出重点问题4. 如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.五.【变式拓展】能力提升、突破难点思考:阅读:已知x 2y =3,求2xy (x 5y 2-3x 3y -4x )的值.分析:考虑到x 、y 的可能值较多,不能逐一代入求解,故考虑整体思想,将x 2y =3整体代入.解:2xy (x 5y 2-3x 3y -4x )=2x 6y 3-6x 4y 2-8x 2y=2(x 2y )3-6(x 2y )2-8x 2y=2×33-6×32-8×3=-24你能用上述方法解决以下问题吗?试一试!已知ab =3,求(2a 3b 2-3a 2b +4a )·(-2b )的值.六.【回扣目标】学有所成、悟出方法1. 单项式与多项式相乘法则的依据是乘法 .2. 单项式与多项式相乘,就是根据乘法 ,用单项式乘多项式的每一项,再把所得的积 .课题:§9.2单项式乘以多项式d c b a七.【当堂反馈】分层达标、收获成功班级____________ 姓名______________ 评价________________1. 单项式乘以多项式依据的运算律是( )A.加法结合律B.加法交换律C.乘法结合律D.乘法分配律2. 计算(―xy )3·(7xy 2―9x 2y )正确的是( )A.―7x 2y 5+9x 3y 4B.7x 2y 5―9x 3y 4C.―7x 4y 5+9x 5y 4D.7x 4y 5+9x 5y 43.化简x -12(x -1)的结果是( ) A .12x +12 B .12x -12 C .32x -1 D .12x +1 4. 计算:(a ―b ―c )·m =___________.5.计算: -5a 3·(-a 2+2a -1)=_____________.6. 化简:)1()1(x x x x --+的结果是________.7.计算: ①(12x 2y -2xy +y 2)·(-4xy ) ② 6mn 2(2-13 mn 4)+(-12 mn 3)2八.【课后作业】及时巩固、查缺补漏1.下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +32.下列各题计算正确的是( )A.(ab ―1)(―4ab 2)=―4a 2b 3―4ab 2 B .(3x 2+xy ―y 2)·3x 2=9x 4+3x 3y ―y2 C .(―3a )(a 2―2a +1)=―3a 3+6a 2 D .(―2x )(3x 2―4x ―2)=―6x 3+8x 2+4x3.若a 3(3a n -2a m +4a k )与3a 6-2a 9+4a 4的值永远相等,则m 、n 、k 分别为( )A.6、3、1B.3、6、1C.2、1、3D.2、3、14.要使x (x +a )+3x -2b =x 2+5x +4成立,则a ,b 的值分别为( )A.a =-2,b =-2B.a =2,b =2;C.a =2,b =-2D.a =-2,b =25.如图,表示这个图形面积的代数式是( )A.ab +bcB.c (b -d )+d (a -c )C.ad +cb -cdD.ad -cd6.计算:31(2)(1)4a a -⋅- = . 7.计算: (-2ax 2)2-4ax 3·(ax -1)=___________.8.已知a +2b =0,则式子a 3+2ab (a +b )+4b 3的值是___________.9.若3k(2k-5)+2k(1-3k)=52,则k=________.10.规定一种运算:b a ab b a -+=*,其中a 、b 为实数,则b a b b a *-+*)(等于 .11.计算:(1)(3a n +2b -2a n b n -1+3b n )·5a n b n +3(n 为正整数,n >1) (2)-4x 2·(12xy -y 2)-3x ·(xy 2-2x 2y )12.求方程2x (x -1)=12+x (2x -5)的解.13.先化简,再求值:22(3)(2)1x x x x x -+-+,其中2x =-.14.若5623)(32+-=-+-x x b x a x x 成立,请求出a 、b 的值.15.如图,求下列图形的体积.姓名 日期 等第课题:§9.3多项式乘以多项式学习目标:1.探索多项式乘法的法则过程,理解多项式乘法的法则,并会进行多项式乘法的运算;2.进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力.重点、难点:多项式乘法的运算学习过程一、【预学提纲】初步感知、激发兴趣1. 已知m·(c+d)=mc+md,如果将m换成(a+b),你能计算(a+b) ·(c+d)吗?2.问题:为了扩大绿地面积,要把街心花园的一块长a米,宽c米的长方形绿地增长b 米,加宽d米,你能用几种方案求出扩大后的绿地面积?3.多项式乘以多项式法则: .二、【预学练习】初步运用、生成问题计算:(1)(x+2)(x+3) (2) (y+5) (y-6)(3) (a-4) (a-1) (4) (m-8) (m+12)(5)(3 x+1)( x-2) (6)(2 x-5 y)(3 x-y)三、【新知探究】师生互动、揭示通法问题1.计算:(1)n(n+1)( n +2) (2)(x + 4)2-(8 x-16)(3)(x-2)(x2+4) (4)(x-y) (x2+xy+y2)问题2.计算:(x+2)(x+3)=;(y+4)(y+6)=.(x-2)(x+3)=;(y+4)(y-6)=.(x-2)(x-3)=;(y-4)(y-6)=.(1)观察上面的计算结果中的一次项系数和常数项,你有什么发现?一次项系数=常数项=(2)观察右图,填空(x +m )(x +n )=( )2+( )x +( )(3)直接写出结果(m +2)(m +7)= ; (m +5)(m -1)= ;(x -5)(x -1) = .(x -2y )(x +4y )= ;(ab +7)(ab -3) = .四、【解疑助学】生生互动、突出重点问题3.计算:(1) (3a -2)(a -1) +(a + 1)(a +2); (2) (3x +2)(3x -2)(9x 2 +4)问题4. 已知梯形的上底为a ,下底为2 a + b ,高为a -2 b ,求梯形的面积五.【变式拓展】能力提升、突破难点问题5.若6x 2-19x +15=(ax +b )(cx +d ),求ac +bd 的值.问题6. 若(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项,求a 和b .六.【回扣目标】学有所成、悟出方法1. 多项式与多项式相乘法则的依据是乘法 .2. 多项式与多项式相乘,先用一个多项式的 乘另一个多项式的 ,再把所得的积相加.课题:§9.3多项式乘以多项式七.【当堂反馈】分层达标、收获成功班级____________ 姓名______________ 评价________________1. )12)(12(+-+x x 的计算结果是( )A.142+xB. 241x -C. 241x +D. 142--x2. 下列各式中,计算结果是x 2+7x -18的是( )A .(x -1)(x +18)B .(x +2)(x +9)C .(x -3)(x +6)D .(x -2)(x +9) 3. 一个长方体的长、宽、高分别是3x -4、2x -1和x ,则它的体积是( )A .6x 3-5x 2+4xB .6x 3-11x 2+4xC .6x 3-4x 2D .6x 3-4x 2+x +4 4. 计算:(x +7)(x -3)=__________.5.三个连续奇数,中间的一个是x ,则这三个奇数的积是_________.6. 若a —b =2,3a +2b =3,则3a (a —b )+2b (a —b )= .7.化简:)8(21)2)(2(b a b b a b a ---+.8.已知2514x x -=,求()()()212111x x x ---++的值八.【课后作业】及时巩固、查缺补漏1.下列各式中,计算错误的是( )A. (x +1)(x +2)=x 2+3x +2B.(x -2)(x +3)=x 2+x -6C. (x +4)(x -2)=x 2+2x -8D.(x +y -1)(x +y -2)=(x +y )2-3(x +y )-2 2.当31=a 时,代数式)3)(1()3)(4(-----a a a a 的值是( ) A.334B.6-C.0D.8 3.设M =(x -3)(x -7),N =(x -2)(x -8),则M 与N 的关系为( ) A .M <N B .M >N C .M =N D .不能确定4.已知(x +3)(x -2)=x 2+ax +b ,则a 、b 的值分别是( )A .a =-1,b =-6B .a =1,b =-6C .a =-1,b =6D .a =1,b =6 5. )12()12)(12)(12(242+⋅⋅⋅+++n的值是( )A. 12-nB. 122-nC. 142-nD. 1222-n二、填空题(每题5分,共25分) 6.计算: (a +b )(a -2b )= .7.当31x y ==、时,代数式2()()x y x y y +-+的值是 .8.四个连续自然数,中间的两个数的积比前后两个数的积大_________.9.若(x 2+mx +8)(x 2-3x +n )的展开式中不含x 3和x 2项,则mn 的值是 .10.将一个长为x ,宽为y 的长方形的长减少1,宽增加1,则面积增加________. 三、解答题(每题10分,共50分) 11.化简:(x +y )(x -y )-2(4 x -y 2+12x 2).12.如图,长方形的长为)(b a +,宽为)(b a -,圆的半径为a 21,求阴影部分的面积.13.解下列方程:(x +1)(x -1)+2x (x +2)=3(x 2+1)14.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,. 15.新知识一般有两类:第一类是不依赖于其他知识的新知识,如“数”、“字母表示数”这样的初始性的知识;第二类是在某些就只是的基础上进行联系、拓广等方式产生的知识,大多数知识是这样的知识.(1)多项式乘以多项式的法则,是第几类知识?(2)在多项式乘以多项式之前,你已拥有的有关知识是哪些?(写出三条即可)(3)请你用已拥有的有关知识,通过数和形两个方面说明多项式乘以多项式的法则时如何获得的?(用(a +b )(c +d )来说明)姓名 日期 等第课题:§9.4乘法公式(1)学习目标:1.会推导完全平方公式,并能正确运用公式进行简单计算.2.通过图形面积的计算,感受乘法公式的直观解释,了解公式的几何背景.3.在探索公式的过程中,发展学生的符号感和推理能力.重点、难点:能够熟练掌握完全平方公式, 正确运用公式进行计算. 学习过程一、【预学提纲】初步感知、激发兴趣1.如何表示课本P64图9-5中正方形的面积?2.你能用多项式乘法运算法则推导公式 (a +b )2 = a 2+2 ab +b 2吗?3.完全平方公式(1)两数和的完全平方公式:(a +b )2=a 2______+b 2 (2)两数差的完全平方公式:(a -b )2=a 2_______+b 2(3)请说出上面两个公式的特点:_________________________________________. 二、【预学练习】初步运用、生成问题 1. (a +2b )2= . 2. 2)(b a +-= .3. (______+5a )2=36b 2-_______ + _________. 4.(m +n )2-(m -n )2=_____________.5.2)(b a +与2)(b a --相等吗?2)(b a -与2)(a b -相等吗? 三、【新知探究】师生互动、揭示通法 问题1.用乘法公式计算 (1)(5+3p )2 (2) (2x -7y )2 (3) (-2a -b )2问题2.简便计算(1) 2)2199(卜(2) 1032四、【解疑助学】生生互动、突出重点 问题3. 运用完全平方公式计算:(1)()2a b c ++ (2)()234a b c +-问题4.(1)多项式9x 2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是___________(填上一个你认为正确的即可).(2)老师给出:1=+b a ,222=+b a , 你能计算出 ab 的值为( ) A 、1- B 、3 C 、23- D 、21- 五.【变式拓展】能力提升、突破难点 问题5.已知()27a b +=, ()23a b -=, 求:(1)22a b +(2)ab 的值.问题6.观察下面各式规律:()()22221122121+⨯+=⨯+ ()()22222233231+⨯+=⨯+ ()()22223344341+⨯+=⨯+……写出第n 行的式子,并证明你的结论.六.【回扣目标】学有所成、悟出方法1.完全平方公式的内容是:22()_________,()_________a b a b +=-=2.运用完全平方公式的关键是:(1)分清两数;(2)确定两数间的连接符号;(3)正确运用公式;课题:§9.4乘法公式(1)七.【当堂反馈】分层达标、收获成功班级____________ 姓名______________ 评价________________ 1.下列计算错误的是:____________________________________(填序号)①、(2x +y )2=4x 2+y 2 ②、(3b -a )2=9b 2-a 2 ③、(-3b -a )(a -3b )=a 2-9b 2④、(-x -y )2=x 2-2xy +y 2 ⑤、(x --12 )2=x 2-2x +142.在式子①2)12(--y ②)12)(12(+---y y ③)12)(12(++-y y ④2)12(-y ⑤2)12(+y 中相等的是( )A .①④B .②③C .①⑤D .②④ 3. 计算:(1)2(52)x y -- (2) 2(23)a b c -+4.如果22416a b +=,ab =4,求:2222a b a b +-(),()八.【课后作业】及时巩固、查缺补漏1. 下列变形①22a b a b -(-)=(+);②22a b a b +(-)=(-);③22b a a b -()=(-);④222b a a b ++()=.其中正确的有几个( )A .4个B .3个C .2个D .1个2. 若a +b =100,ab =48,那么22b +a 值等于( )A .5200B .1484C .5804D .9904 3. 已知a =5, 2b a +()=0,那么-2ab 等于( )A .50B .25C .-25D .-50 4. 下列各式中计算正确的是( )A .22222x y y xy -+-()=4x B .22222244a b a b b +++()=a C .22a b =-2(a-b ) D .221133924x x x +=++() 5. 已知a +b =2, 那么2212a b ab +++的值等于( ) A .6 B .5 C .3 D .26. 若2282x y xy --=-=-,,则2x y -()的值是_________ 7. 计算22a b c ++()=_____________,29.9=______8. 化简22x y +=()__________ 9.在多项式241x +中,添加一个单项式使其成为一个整式的完全平方,则加上的 单项式可以是________(只写一个) 10.计算(1)(2a +1)2-(1-2a )2 (2)(3x -y )2-(2x +y )2+5x (y -x ).11.已知22()19,()5a b a b +=-=,求(1)22a b + (2)ab12.若2282x y xy +==-,,求;22x y -()13. 33333121891291212123363+=+=+=+=+++==222,而(),所以(),,而(1+2+3) 3332121233636=+++==22(),,而(1+2+3) 所以3332312312312341001++=+++++=(),,而( 23333212312341001234100=+++++=+++=(),,而(),所以33331234+++=21234+++() 3333312345++++=2( )=_____ 求:(1)333322123...(_______)[__________](n n ++++==为整数)(2)333331112131415++++姓名 日期 等第课题:§9.4乘法公式(2) 学习目标:1. 导出平方差公式,并能运用公式进行简单的计算.aba 2.用图形面积,感受平方差公式的直观理解.3.经历探索平方差公式的过程,发展学生的符号感和推理能力. 重点、难点:正确熟练地运用平方差公式进行计算. 学习过程 一、【预学提纲】初步感知、激发兴趣 1. 如何表示图12. 将图1沿虚线剪下拼成图2,你能表示图2中阴影部分的面积吗?3. 你能用多项式乘法运算说明公式()()22b a b a b a -=-+是正确的吗?4. 平方差公式: 你能说出公式的结构特点吗? 二、【预学练习】初步运用、生成问题 1.判断正误:2234)34)(34(b x b x b x -=-+( )229)3)(3(a bc a bc bc a -=---( )916)34)(34(2-=-+x b x b x ( ) 259)53)(53(-=-+pq q p ( )2229)3)(3(c b a a bc bc a +-=---( )6)6)(6(2-=+-x x x ( )2.填空: ① 4))(2(2-=+a a ② 225)5)((x x -=-③)42(b a +( )=22416a b - ④ )(nny x +( )=n ny x22-⑤( )( )=22196169y x - ⑥ =+-)5)(5(22m n n m ( ) 三、【新知探究】师生互动、揭示通法 问题1. 用平方差公式计算:(1)()()y x y x +-55; (2)()()n m n m 22-+ 问题2. 用平方差公式的简便运算(1)701×699 (2)99×101四、【解疑助学】生生互动、突出重点 问题3.用平方差公式计算:(1)()()33x y x y -+-- (2)()()222332y x x y---(3)(-4a -1)(4a -1) (4)()()()()3312y y y y +---+五.【变式拓展】能力提升、突破难点 1.计算:(1)()()()()111142-+++x x x x (2)(2+1)(22+1)(24+1)(28+1)2.观察下式,你会发现什么规律? 3⨯5=15 而15=24—15⨯7=35 而35=26—1 … 11⨯13=143 而143=212—1 …请你将猜想到的规律用只含一个字母的式子表示出来六.【回扣目标】学有所成、悟出方法1.平方差公式:符号语言:文字语言:2. 平方差公式的特征①左边:二项式乘以二项式,两数(a 与b )的 与它们 的乘积. ②右边:这两数的 课题:§9.4乘法公式(2)七.【当堂反馈】分层达标、收获成功班级____________ 姓名______________ 评价________________ 1.下列多项式的乘法,可以利用平方差公式计算的是( ) A .(a -nb )(nb -a ) B.(-1-a )(a +1) C.(-m +n )(-m -n ) D.(ax +b )(a -bx )2. (m 2-n 2)-(m -n )(m +n )等于 ( )A.-2n 2B.0C.2m 2D.2m 2-2n 23. 判断:(1)()()22422b a a b b a -=-+( )(2)1211211212-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+x x x ( )(3)()()22933y x y x y x -=+-- ( )(4)()()22422y x y x y x -=+--- ( ) 4. 计算:(1)()()b a b a 7474+- ( 2)()()n m n m ---22(3)⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+b a b a 21312131 (4)()()x x 2525-+-5. 利用平方差公式进行计算.(1)701×699 (2)99×101八.【课后作业】及时巩固、查缺补漏 1.下列式中能用平方差公式计算的有 ( ) ①(x -12y )(x +12y ), ②(3a -bc )(-bc -3a ), ③(3-x +y )(3+x +y ), ④(100+1)(100-1) A.1个 B.2个 C.3个 D.4个 2.下列式中,运算正确的是 ( ) ①222(2)4a a =, ②2111(1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482aba b ++⨯⨯=.A.①②B.②③C.②④D.③④ 3.乘法等式中的字母a 、b 表示 ( )A.只能是数B.只能是单项式C.只能是多项式D.单项式、•多项式都可以 4.下列多项式相乘,不能用平方差公式计算的是 ( )A.)2)(2(x y y x --B.)2)(2(y x y x ---C.)2)(2(y x x y +-D.)2)(2(y x x y --- 5.下列运算中正确的是 ( )A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+ 6.1.(x +6)(6-x )=________,11()()22x x -+--=_____________. 7.222(25)()425a b a b --=-8.(x -1)(2x +1)( )=4x -1.9.(a +b +c )(a -b -c )=[a +( )][a -( )].10.18201999⨯=_________,403×397=_________. 11.计算(a +1)(a -1)(2a +1)(4a +1)(8a +1)12.计算:22222110099989721-+-++-13.计算:2481511111(1)(1)(1)(1)22222+++++14.已知9621-可以被在60至70之间的两个整数整除,则这两个整数是多少?姓名 日期 等第课题:§9.4乘法公式(3)学习目标:1.进一步理解完全平方公式、平方差公式的结构特点.2.能熟练地运用乘法公式进行计算,提高学生的计算能力.重点、难点:正确熟练地运用乘法公式公式进行计算.学习过程一、【预学提纲】初步感知、激发兴趣1.用4块完全相同的长方形拼成正方形(如图).2.能不能用不同的方法计算图中阴影部分的面积,你发现了什么?3.你能用所学的知识来解释()()ab a b a b 422=--+吗?你有几种方法二、【预学练习】初步运用、生成问题1.用乘法公式计算⑴ 2)35(p + ⑵ 2)72(y x - ⑶ 2)52(--a ⑷ )5)(5(b a b a -+2.你能用不同的方法计算(-2a -5)2吗?你发现了什么?(1)运用2)(b a +=222b ab a ++计算(-2 a -5)2;(2) 运用2)(b a -=222b ab a +-计算(-2 a -5)2;三、【新知探究】师生互动、揭示通法问题1. 问题1. 计算:(1) ()()()9432322++-a a a (2) ()()221212+--x x(3) ()()2233a b a b +- ⑷[(a -b )2-(a +b )2]2问题2. 计算:(1)()()44-+++y x y x (2)()()33+--+y x y x四、【解疑助学】生生互动、突出重点问题3 计算:(1)(2 x +3)2-2(2 x +3)(3 x -2) +(3 x -2)2(2 )(x 2+ x +1)( x 2- x +1)五.【变式拓展】能力提升、突破难点1.a +b =5, a b =3,求:(1) (a - b )2 ;(2) a 2+ b 2 ;(3) a 4+ b 42.已知31=+x x ,求⑴ 221xx + ,⑵ 2)1(x x -3.a 、b 满足a 2+ b 2-4 a +6 b +13=0,求代数式(a + b )2011的值六.【回扣目标】学有所成、悟出方法1. 完全平方公式:()=+2b a ,()=-2b a , 平方差公式: ()()=-+b a b a ;完全平方公式、平方差公式通常叫做 ,在计算时可以直接使用; 2.=++2)(c b a课题:§9.4乘法公式(3)七.【当堂反馈】分层达标、收获成功班级____________ 姓名______________ 评价________________1.若()36622++=-kx x x ,则=k . 2.若1022=+y x ,3=xy ,则()=-2y x . 3.()()()=-++2422x x x . 4.()()=+++-121222a a a a .5.化简求值:()()()()x y x y x y y x 232355-+-+-,其中1=x ,2=y .6.已知72=-y x ,5-=xy ,求4422-+y x 的值.八.【课后作业】及时巩固、查缺补漏1.如果1212++ax x 是两个数的和的平方的形式,那么a 的值是( )A .22B .11C .±22D .±112.下列运算正确的是( )A .523a a a =+B .632a a a =⋅C .()()22b a b a b a -=-+D .()222b a b a +=+ 3.若()()A y x y x +-=+222323,则代数式A=( ) A .xy 12- B .12xy C .24xy D .-24xy4.三个连续奇数,中间一个为n ,则这三个连续奇数之积为( )A .n n -24B .n n 43-C .n n 882-D .n n 283-5.对于任意整数n ,能整除代数式()()()()2233-+--+n n n n 的整数是 ( )A .4B .3C .5D .26.如果()()b x x a x -=+-25,那么______=a ,______=b .7.(a -b +c )(a +b -c )=[a -()][a +( )]=a 2-( )2 8.若1222=-y x ,x +y =6,则x -y = ,x = ,y = .9.观察下列各式:()()1112-=-+x x x ,()()11132-=++-x x x x ,()()111423-=+++-x x x x x ,根据规律可得()()=++⋅⋅⋅++--111x x x x n n10.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是 (请尽可能多的填写正确答案)11.计算:(1) )221)(221(y x y x --+-(2)()()[]222b a b a +--12.已知:()()6,422=-=+b a b a ,求:①22b a +,②ab13.已知5,2-=++=++xz yz xy z y x ,求222z y x ++的值.14.()()()()()2172232112-=-+++-x x x x x15.已知31=+x x ,求⑴ 221xx +,⑵2)1(x x -.姓名 日期 等第课题:§9.5因式分解(一)学习目标:1.了解因式分解的意义,会用提公因式法进行因式分解.2.经历通过整式乘法逆向得出因式分解方法的过程,发展学生逆向思考问题的能力和推理能力.重点、难点:学习过程一、【预学提纲】初步感知、激发兴趣1. 用简便方法计算:375×2.8+375×4.9+375×2.3 999+99922. 你能把多项式ab +ac +ad 写成积的形式吗?请说明你的理由.3. _________________________________,叫做这个多项式各项的公因式.公因式的构成:①系数: ;②字母: ;③指数: .4.什么是因式分解?因式分解与整式乘法有什么关系;二、【预学练习】初步运用、生成问题1.下列多项式的各项是否有公因式?如果有,是什么?(1)22ab b a + (2)3263x x - (3)2269b a abc -2.下列各式由左边到右边的变形,哪些是因式分解,哪些不是?(1)ab +ac +d =a (b +c )+d ;(2)a 2-1=(a +1)(a -1)(3)(a +1)(a -1)=a 2-13.填空并说说你的方法:(1)a 2b +ab 2=ab ( )(2)3x 2-6x 3=3x 2( )(3)9abc -6a 2b 2+12abc 2=3ab ( )三、【新知探究】师生互动、揭示通法问题1. 把下列各式分解因式(1)6a 3b -9a 2b 2c (2)(3)-2m 3+8m 2-12m (4)问题2. 辨别下面因式分解的正误并非指明错误的原因.(1)8a 3b 2-12ab 4+4ab =4ab (2a 2b -3b 3)(2)4x 4-2x 3y =x 3(4x -2y )(3)a 3-a 2=a 2(a -1)= a 3-a 2四、【解疑助学】生生互动、突出重点问题3.把下列各式分解因式:(1) 6p (p +q ) -4 q (p +q ); (2) (m +n )(p +q ) -(m +n )(p -q );(3) (2a +b )(2a -3b ) -3a (2a +b ) (4) x (x +y )(x -y ) -x (x +y )2;五.【变式拓展】能力提升、突破难点问题4.把下列各式分解因式;(1)()()x y x y x x -+-632; (2)()()223155a b a b a a ---(3) ()()a m a m ---332 (4)问题5.先因式分解,再求值.(1) x (a -x )(a -y ) -y (x -a )(y -a ),其中a=3,x=2,y=4(2) -ab (a -b )2+a (b -a )2-ac (a -b )2,其中a =3,b=2,c=1.问题6.已知a +b =7,ab =6,求a 2b +ab 2的值六.【回扣目标】学有所成、悟出方法1.对于多项式ab +ac +ad 各项都含有的因式,称为这个多项式的____________.2.把一个多项式化成几个整式的积的形式,叫做把这个多项式____________.3.如果多项式的各项含有公因式,那么就可以把这个公因式提出来,把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做__________.课题:§9.5因式分解(一)七.【当堂反馈】分层达标、收获成功班级____________ 姓名______________ 评价________________1. 多项式b ab b a +-632分解因式的结果是( ) A .()b a a 23- B .()123+-b a a C .()a a b 632- D .()1632+-a a b 2. 下列各式分解因式正确的是( )A .()()()()122-++=+-+b a b a b a ba B .()y x x x xy x 63632-=-- C .()b a ab ab b a -=-441412322 D .()c b a a ac ab a -+-=-+- 3. 多项式735334241632y x y x y x +-的公因式是 .4. 多项式32223320515b a b a b a -+提公因式后的另一个因式是 .5. 分解因式:⑴ab abx aby 61236+- ⑵x xy x +-632 ⑶()()q p q q p p +-+46;6. 利用因式分解计算:⑴978×85+978×7+978×8 ⑵3299809--⨯7. 已知40,13==+ab b a ,求22ab b a +的值.八.【课后作业】及时巩固、查缺补漏1.下式中,从左到右的变形是因式分解的是( )A .b a b a 32622⋅=B .()43432--=--x x x xC .()222-=-b ab ab abD .()()2422a a a -=+- 2.下列各式的因式分解正确的是( )A .()c b a a ac ab a -+-=-+-2B .()xy xyz y x xyz 2336922-=- C .()b a x x bx x a 2336322-=+- D .()y x xy xy y x +=+22222 3.把()()a m a m -+-222分解因式等于( ) A .()()m m a +-22 B .()()m m a --22 C .()()12--m a m D .()()12+-m a m4.因式分解()()x y x 2552-+-的结果是( )A .()()y x +-152B .()()y x --152C .()()y x +-125D .()()y x --1255.分解因式()()3286b a b a a ---时,应提取的公因式是( ) A .a B .()26b a a - C .()b a a -8 D . ()22b a - 6.观察下列各式:①adx abx -;②2262xy y x +;③124823++-m m m ;④3223b ab b a a -++;⑤()()()22265q p q p x y x q p +++-+;⑥()()()x y b y x y x a +--+42其中可用提公因式法分解因式的有 .(填序号) 7.多项式23224128xy z xy y x -+-各项的公因式是 . 8.200820072121⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=___________.9.因式分解:3ab 2+a 2b =_______.10.分解因式:a 2 -a b = ______________.11.把下列各式分解因式:⑴xy x +2 ⑵x x x ++23 ⑶x xy x 2812242+-- ⑷()y x a y x +--12.求证:对于任意自然数n ,n n 224-+能被5整除.13计算:(1)=⨯+⨯-31034323 ;(2)=⨯+⨯-234310343 ;(3)=⨯+⨯-345310343 ;根据计算过程,猜想下列各式的结果:(4)=⨯+⨯-200320042005310343; (5)=⨯+⨯-++n n n 31034312. 姓名 日期 等第课题:§9.6因式分解(二)(1)学习目标:1.进一步理解因式分解的意义;2. 会运用平方差公式分解因式.3.进一步发展学生的逆向思维能力重点、难点:会运用平方差公式分解因式.学习过程一、【预学提纲】初步感知、激发兴趣1.什么叫因式分解?2. ()()=-+b a b a ;22b a -= 上面哪个式子是因式分解?3.计算下列各式:(1)(a +2)(a -2)= ;(2) (a +b )( a -b )= ;(3) (3 a +2b )(3 a -2b )= .下面请你根据上面的算式填空:(1) a 2-4= ;(2) a 2-b 2= ;(3) 9a 2-4b 2= ;请同学们对比以上两题,你发现什么呢?二、【预学练习】初步运用、生成问题1.下列多项式中能用平方差公式分解因式的是( )A.22)(b a -+B.mn m 2052-C.22y x --D.92+-x2.依葫芦画瓢:(体验用平方差公式分解因式的过程)(1)x 2-4=x 2-22= (x +2)(x -2)(2)x 2-16 =( )2-( )2= ( )( )(3)9-y 2=( )2-( )2= ( )( )(4)1-a 2 =( )2-( )2= ( )( )三、【新知探究】师生互动、揭示通法问题1. 把下列各式分解因式;(1) 36-25x 2; (2) 16a 2-9b 2;(3)-x 2+y 2 (4)2422516a y b -+问题2. 把下列各式分解因式;(1) x 2y 2-z 2 (2) (x +2)2-9(3) (x +p )2-(x +q )2 (4) 9(a+b )2–4(a –b )2(5) 22(2)16(1)a a -++- (6) 22()()a b c a b c ++-+-四、【解疑助学】生生互动、突出重点问题3. 比一比,看谁算的又快又准确:(1)572-562 (2)962-952 (3) (1725)2-(825)2.问题4. 992-1是100的整数倍吗?请说明理由.五.【变式拓展】能力提升、突破难点问题5. 如何将44y x -分解因式?问题6.设a 1=32-12,a 2=52-32,a 3=72-52,…(1)用含n 的式子表示你所发现的规律(n 为大于0的自然数)(2)探究a n 是否为8的倍数,并用文字语言表述你所获得的结论六.【回扣目标】学有所成、悟出方法1.把乘法公式反过来,就可以得到因式分解的公式:平方差公式:乘法公式: 因式分解:课题:§9.6因式分解(二)(1)七.【当堂反馈】分层达标、收获成功班级____________ 姓名______________ 评价________________1.下列各式从左向右的变形,属于因式分解的有( )A 、(x +2)(x -2)=x 2-4B 、x 2-4+3x =(x +2)(x -2) +3xC 、a 2-4=(a +2)(a -2)D 、全不对2.下列各式中,不能运用平方差公式的是( )A 、-a 2+b 2B 、-x 2-y 2C 、49x 2y 2-z 2D 、16m 4-25n 2p 23.把下列各式分解因式;(1) 36-x 2 (2) a 2-91b 2 (3) x 2-16y 2(4) x 2y 2-9 (5) 2(x +2)2-21 (6)(x +a )2-(y +b )2(7) 25(a +b )2-4(a -b )2 (8) 0.25(x +y )2-0.81(x -y )2(9)81 a 4-b 4 (10)-4(a +b )2+( a -b ) 2八.【课后作业】及时巩固、查缺补漏1.下列代数式中能用平方差公式分解因式的是( )A .a 2+b 2B .-a 2-b 2C .a 2-c 2-2acD .-4a 2+b 22.-4+0.09x 2分解因式的结果是( )A .(0.3x +2)(0.3x -2)B .(2+0.3x )(2-0.3x )C .(0.03x +2)(0.03x -2)D .(2+0.03x )(2-0.03x )3.已知多项式x +81b 4可以分解为(4a 2+9b 2)(2a +3b )(3b -2a ),则x 的值是()A .16a 4B .-16a 4C .4a 2D .-4a 24.下列多项式中,能用公式法分解因式的是( )A .xy x -2B .xy x +2C .22y x +D .22y x - 5.如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )A .()2222a b a ab b -=-+B .()2222a b a ab b +=++C .22()()a b a b a b -=+-D .2()a ab a a b +=+6.分解因式:a 2-4b 7.代数式-9m 2+4n 2分解因式的结果是_________.8.分解因式x 2-9y 2=_______.9.25a 2-__________=(-5a +3b )(-5a -3b ).10.已知a +b =8,且a 2-b 2=48,则式子a -3b 的值是__________.11.把下列各式分解因式:①3(a +b )2-27c 2 ②16(x +y )2-25(x -y )2③a 2(a -b )+b 2(b -a ) ④(5m 2+3n 2)2-(3m 2+5n 2)212.计算7582-2582姓名 日期 等第课题:§9.6因式分解(二)(2)学习目标:1.会用完全平方公式进行因式分解.2.经历通过整式乘法逆向得出因式分解的方法的过程,发展学生逆向思维的能力和推理能力.重点、难点:灵活运用完全平方公式分解因式.学习过程一、【预学提纲】初步感知、激发兴趣1. ()=+2b a ;=++222b ab a ; ()=-2b a ;=+-222b ab a ;a 2+ +1=(a +1)2 ; a 2- +1=(a -1)2. 2. 你能将多项式1682++a a 分解因式吗?3. 判断下列各式是完全平方式吗?(1)a 2-4a +4 (2)x 2+4x +4y 2 (3)4a 2+2ab +0.25b 2(4)a 2-ab +b 2 (5)x 2-6x -9 (6)a 2+a +0.25二、【预学练习】初步运用、生成问题1.填空:(1)a 2+6a +9=a 2+2× × +( )2=( )2(2)a 2-6a +9=a 2-2× × +( )2=( )2(3)4m 2+ +n 2=(2m + )2;(4)x 2- +16y 2=( )2;(5)4a 2+9b 2+ =( )2;(6) +2pq +1=( )2.2.把下列多项式分解因式:(1) x 2+10x +25 (2) a 2-4a +4三、【新知探究】师生互动、揭示通法问题1. 把下列多项式分解因式:(1) a 2-12ab +36b 2 (2) 25x 2+10xy +y 2(3)-a 2+2ab -b 2 (4) -a 2-2ab -b 2问题2. 把下列多项式分解因式:(1) 4a 2+36ab +81b 2 (2)-4xy -4x 2-y 2(3) a 2+a +41 (4)94x 2+y 2-34xy四、【解疑助学】生生互动、突出重点问题3.利用因式分解计算:20092–2009×18+81问题4. 把下列多项式分解因式:(1)a 2b 2-2ab +1 (2)(x +y )2-18(x +y )+81(3)4-12(x -y )+ 9(x -y )2 (4)16a 4+8a 2+1五.【变式拓展】能力提升、突破难点问题5. 已知:4x 2+1+4k x 是关于x 的完全平方式,求k 2-2k+2的值.题6.设多项式A=(a 2+1)(b 2+1) -4ab试说明:不论a 、b 为何数,A 的值总是非负数;(2)令A=0,求a 、b 的值.问题7. a 2+6a +9误写为a 2+6a +9-1即a 2+6a +8如何分解?六.【回扣目标】学有所成、悟出方法把乘法公式反过来,就可以得到因式分解的公式:完全平方公式:乘法公式:因式分解:课题:§9.6因式分解(二)(2)七.【当堂反馈】分层达标、收获成功班级____________ 姓名______________ 评价________________1. 下列多项式能用完全平方公式分解因式的是( )A .x 2-6x -9B .a 2-16a +32C .x 2-2xy +4y 2D .4a 2-4a +12. -4x 2+4xy +(_______)=-(_______).3. 因式分解:244x x ++=________.4. (2010新疆维吾尔)利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.5. 分解因式:2244a ab b -+6. 已知x 2+k xy +64y 2是一个完全式,试求k 的值八.【课后作业】及时巩固、查缺补漏1.下列二次三项式是完全平方式的是( )A .x 2-8x -16B .x 2+8x +16C .x 2-4x -16D .x 2+4x +16 2.已知y 2+my +16是完全平方式,则m 的值是( )A .8B .4C .±8D .±43.下列各式属于正确分解因式的是( )A .1+4x 2=(1+2x )2B .6a -9-a 2=-(a -3)2C .1+4m -4m 2=(1-2m )2D .x 2+xy +y 2=(x +y )24.若1=x ,21=y ,则2244y xy x ++的值是( )A.2 B.4 C.23 D.21 5.把x 4-2x 2y 2+y 4分解因式,结果是( ) A .(x -y )4 B .(x 2-y 2)4 C .[(x +y )(x -y )]2 D .(x +y )2(x -y )26.分解因式:x 2-2x +1= .7.分解因式:=++222y xy x .8.9a 2+(________)+25b 2=(3a -5b )29.已知9x 2-6xy +k 是完全平方式,则k 的值是________.10.分解因式 x (x -1)-3x +4= .11.因式分解:a 2+10a +2512.因式分解:m 2-12mn +36n 213.已知x =-19,y =12,求代数式4x 2+12xy +9y 2的值.14.已知│x -y +1│与x 2+8x +16互为相反数,求x 2+2xy +y 2的值.15.给出三个整式a 2,b 2和2ab .(1) 当a =3,b =4时,求a 2+b 2+2ab 的值;(2) 在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写出你所选的式子及因式分解的过程.姓名 日期 等第课题:§9.6因式分解(二)(3)学习目标:1.进一步熟悉提公因式法、平方差公式、完全平方公式分解因式;能根据不同题目的特点选择较合理的分解因式的方法;2.综合运用所学的因式分解的知识和技能,感悟整体代换等数学思想重点、难点:知道因式分解的一般步骤,能综合运用提公因式法,运用公式法分解因式.学习过程一、【预学提纲】初步感知、激发兴趣1. 比一比,看谁算得快(1)65.52-34.52 (2)1012-2×101×1+1(3)482+48×24+122 (4)5×552-5×4522. 分解因式①4a4-100;②a4-2a2b2+b43. 回顾前面所学过的因式分解的方法:二、【预学练习】初步运用、生成问题把下列各式分解因式:(1)ab2-2a2b-ab (2)a2-1 (3)a2b2-4ab+4(4)a3-a (5)a4-4a2b2+4b4 (6)-2xy-x2-y2三、【新知探究】师生互动、揭示通法问题1. 把下列各式分解因式:(1)18a2-50 (2)2x2y-8xy+8y (3)a2(x-y)-b2(x-y)问题2.把下列各式分解因式:(1)a4-16 (2)81x4-72x2y2+16y4(3)(a2+b2)2-4a2b2 (4)(x2-2x)2+2(x2-2x)+1四、【解疑助学】生生互动、突出重点问题3.分解因式a4-8a2+16小明:解:a 4-8a 2+16=(a 2-4)2=(a +2)2(a -2)2=(a 2+2a +4)(a 2-2a +4)这种解法对吗?如果不对,指出错误原因.问题4.利用因式分解计算: (1)223.2213.23.73.721⨯+⨯-⨯ (2)44×29-11×34五.【变式拓展】能力提升、突破难点问题5.下列多项式中(1)10am -15a ;(2)4xm 2-9x ;(3)4am 2-12am +9a ;(4) -4m 2-9,含有因式2m -3的有( )A 、1个B 、2个C 、3个D 、4个问题6.已知,如图,4个圆的半径都为a ,用代数式表示其中阴影部分的面积,并求当a =10,π取3.14时,阴影部分的面积.问题7. 已知a +b =4,ab =52,求a 3b -a 2b 2+ab 3的值问题8.两个小孩的年龄分别是:x 岁,y 岁,已知x 2+xy =99,试求这两个孩子的年龄六.【回扣目标】学有所成、悟出方法1.运用平方差公式与完全平方公式,把一个多项式分解因式的方法叫做 .2.通常,把一个多项式分解因式,应先 ,再 .进行多项式因式分解时,必须把每一个因式 为止.课题:§9.6因式分解(二)(3)七.【当堂反馈】分层达标、收获成功班级____________ 姓名______________ 评价________________1.分解因式2x 2-8=_____ .2.分解因式:34x x -= .3.下列因式分解:①324(4)x x x x -=-;②2244(2)a a a -+=-;③222(2)2a a a a --=--;④2211()42x x x ++=+.其中正确的是_______.(只填序号) 4.分解因式:=-+-x x x 232 .5. 因式分解:(1)πR 2-πr 2 (2)3244x x x -+(3)()()22429x y x y --++ (4)(1)32244a c a bc ab c -+;八.【课后作业】及时巩固、查缺补漏1. 分解因式2x 2-32的结果是( )A .2(x 2-16)B .2(x +8)(x -8)C .2(x +4)(x -4)D .(2x +8(x -8)2.把多项式322x x x -+分解因式结果正确的是( )A .2(2)x x x -B .2(2)x x -C .(1)(1)x x x +-D .2(1)x x -3.把代数式223363xy y x x +-分解因式,结果正确的是( )A .)3)(3(y x y x x -+B .)2(322y xy x x +-C .2)3(y x x -D .2)(3y x x -4.)把代数式269mx mx m -+分解因式,下列结果中正确的是( )A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x -5.把x 2-y 2-2y -1分解因式结果正确的是( )A .(x +y +1)(x -y -1)B .(x +y -1)(x -y -1)C .(x +y -1)(x +y +1)D .(x -y +1)(x +y +1)。

2023学年人教版数学八年级上册压轴题专题精选汇编(乘法公式)解析版

2023学年人教版数学八年级上册压轴题专题精选汇编(乘法公式)解析版

2023学年人教版数学八年级上册压轴题专题精选汇编乘法公式考试时间:120分钟试卷满分:100分一.选择题(共10小题满分20分每小题2分)1.(2分)(2022春•碑林区校级期末)如图正方形ABCD的边长为x其中AI=5 JC=3 两个阴影部分都是正方形且面积和为60 则重叠部分FJDI的面积为()A.28 B.29 C.30 D.31【思路引导】利用正方形和长方形的性质将ID与DJ的关系表示出来再利用阴影部分面积和为60即可求出ID与DJ从而得到长方形FJDI的长和宽即可求解.【完整解答】解:设ID=y DJ=z∵两个阴影部分都是正方形∴DN=ID=x DM=DJ=y∵四边形ABCD为正方形∴AD=CD∵AD=AI+ID CD=CJ+DJ∴AI+ID=CJ+DJ∵AI=5 CJ=3∴5+y=3+z∴y=z﹣2∵阴影部分面积和为60∴y2+z2=60将y=z﹣2代入y2+z2=60中得:(z﹣2)2+z2=60解得:z=1+或z=1﹣(舍)∴y=z﹣2=﹣1∴ID=﹣1 DJ=1+∴S长方形FJDI=ID•DJ=(﹣1)×(1+)=28.故选:A.2.(2分)(2022春•埇桥区校级期中)如图两个正方形的边长分别为a b如果a+b=5 ab=6 则阴影部分的面积为()A.2.5 B.2 C.3.5 D.1【思路引导】用a和b表示出阴影部分面积再通过完全平方式的变换可求出阴影部分面积.【完整解答】解:S阴影=a2+b2﹣a2﹣b(a+b)=(a2+b2)﹣ab=(a+b)2﹣ab把a+b=5 ab=6代入得:原式=×25﹣×6=3.5.故选:C.(2022春•碑林区校级期中)如图有两个正方形A B现将B放置在A的内部得到图甲将A B 3.(2分)并列放置以正方形A与正方形B的边长之和为新的边长构造正方形得到图乙若图甲和图乙中阴影部分的面积分别为1和8 则正方形A B的面积之和为()A.8 B.9 C.10 D.12【思路引导】设出大小正方形得边长a b用a和b表示出阴影部分的面积找出相应关系即可求解.【完整解答】解:设大小正方形边长分别为a bS阴1=(a﹣b)2=1 即a2+b2﹣2ab=1S阴2=(a+b)2﹣a2﹣b2=8 得:ab=4.∴a2+b2﹣2×4=1∴a2+b2=9.故选:B.4.(2分)(2022春•包河区期中)已知(2022﹣m)(2020﹣m)=2021 那么(2022﹣m)2+(2020﹣m)2的值为()A.4046 B.2023 C.4042 D.4043【思路引导】利用完全平方公式变形即可.【完整解答】解:∵(a﹣b)2=a2﹣2ab+b2∴a2+b2=(a﹣b)2+2ab.∴(2022﹣m)2+(2020﹣m)2=[(2022﹣m)﹣(2020﹣m)]2+2×(2022﹣m)(2020﹣m)=4+2×2021=4046.故选:A.5.(2分)(2022•重庆模拟)下列四种说法中正确的有()①关于x y的方程2x+6y=199存在整数解.②若两个不等实数a b满足2(a4+b4)=(a2+b2)2则a b互为相反数.③若(a﹣c)2﹣4(a﹣b)(b﹣c)=0 则2b=a+c.④若x2﹣yz=y2﹣xz=z2﹣xy则x=y=z.A.①④B.②③C.①②④D.②③④【思路引导】①对数的讨论利用小学知识可解决;②利用完全平方公式整理得到两个数的平方相等则两数相等或者互为相反数;③重新整理得到完全平方公式即得结论;④两两组合相等两数差为0 然后因式分解即得结论.【完整解答】①因为x y为整数时 2x+6y=2(x+3y)是偶数而199是奇数它们不可能相等;故①错误.②由2(a4+b4)=(a2+b2)2得:2a4+2b4=a4+2a2b2+b4a4+b4﹣2a2b2=0(a2﹣b2)2=0∴a2﹣b2=0∴a2=b2∵a≠b∴a=﹣b即a b互为相反数;故②正确.③若(a﹣c)2﹣4(a﹣b)(b﹣c)=0 则2b=a+c(a﹣c)2﹣4(a﹣b)(b﹣c)=0a2﹣2ac+c2﹣4ab+4ac+4b2﹣4bc=0a2+2ac+c2﹣4b(a+c)+4b2=0(a+c)2﹣4b(a+c)+4b2=0(a+c﹣2b)2=0∴a+c﹣2b=0∴2b=a+c;故③正确.④∵x2﹣yz=y2﹣xz=z2﹣xy∴x2﹣yz﹣y2+xz=0y2﹣xz﹣z2+xy=0∴(x+y+z)(x﹣y)=0(x+y+z)(y﹣z)=0.∴x+y+z=0或x﹣y=0 y﹣z=0∴x=y=z或x+y+z=0故④错误.综上所述四种说法中正确的有②③故选:B.6.(2分)(2022•南京模拟)如图点C是线段BG上的一点以BC CG为边向两边作正方形面积分别是S1和S2两正方形的面积和S1+S2=40 已知BG=8 则图中阴影部分面积为()A.6 B.8 C.10 D.12【思路引导】设BC=a CG=b建立关于a b的关系最后求面积.【完整解答】解:设BC=a CG=b则S1=a2S2=b2a+b=BG=8.∴a2+b2=40.∵(a+b)2=a2+b2+2ab=64∴2ab=64﹣40=24∴ab=12∴阴影部分的面积等于ab=×12=6.故选:A.7.(2分)(2021秋•望城区期末)如果4x2+2kx+25是一个完全平方式那么k的值是()A.20 B.±20 C.10 D.±10【思路引导】利用完全平方公式的特点即“首平方尾平方二倍底数乘积放中央”可知2kx为二倍底数乘积进而可得到答案.【完整解答】解:∵4x2+2kx+25=(2x±5)2∴2kx=±2×2x•5=±20x∴k=±10故选:D.8.(2分)(2021秋•凉山州期末)2×(3+1)(32+1)(34+1)(38+1)(316+1)+1的计算结果是()A.332+1 B.332﹣1 C.331D.332【思路引导】把因数2写成3﹣1后利用平方差公式依次计算即可得出结果.【完整解答】解:2×(3+1)(32+1)(34+1)(38+1)(316+1)+1=(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)+1=(32﹣1)(32+1)(34+1)(38+1)(316+1)+1=(34﹣1)(34+1)(38+1)(316+1)+1=(38﹣1)(38+1)(316+1)+1=(316﹣1)(316+1)+1=332﹣1+1=332故选:D.9.(2分)(2021秋•望城区期末)如果一个正整数能表示为两个正整数的平方差那么这个正整数就称为“智慧数”例如:7=7×1=(4+3)×(4﹣3)=42﹣32 7就是一个智慧数 8=4×2=(3+1)×(3﹣1)=32﹣12 8也是一个智慧数则下列各数不是智慧数的是()A.2021 B.2022 C.2023 D.2024【思路引导】根据“智慧数”的定义对每个选项进行判断即可得出答案.【完整解答】解:∵2021=2021×1=(1011+1010)(1011﹣1010)=10112﹣10102∴2021是智慧数∴选项A不符合题意;∵2022不能写成两个正整数的平方差∴2022不是智慧数∴选项B符合题意;∵2023=2023×1=(1012+1011)(1012﹣1011)=10122﹣10112∴2023是智慧数∴选项C不符合题意;∵2024=1012×2=(507+505)(507﹣505)=5072﹣5052∴2024是智慧数∴选项D不符合题意;故选:B.10.(2分)(2021秋•井研县期末)如图所示将四张全等的长方形硬纸片围成一个正方形根据图形阴影部分面积的关系可以直观地得到一个关于a b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)【思路引导】用两种方法正确的表示出阴影部分的面积再根据图形阴影部分面积的关系即可直观地得到一个关于a b的恒等式.【完整解答】解:方法一阴影部分的面积为:(a﹣b)2方法二阴影部分的面积为:(a+b)2﹣4ab所以根据图形阴影部分面积的关系可以直观地得到一个关于a b的恒等式为(a﹣b)2=(a+b)2﹣4ab.故选:C.二.填空题(共10小题满分20分每小题2分)11.(2分)(2022春•仪征市期末)计算20222﹣2020×2024的结果是 4 .【思路引导】运用平方差公式进行简便运算.【完整解答】解:20222﹣2020×2024=20222﹣(2022﹣2)(2022+2)=20222﹣(20222﹣22)=20222﹣20222+22=4.故答案为:4.12.(2分)(2022春•文登区期末)如图由四张大小相同的矩形纸片拼成一个大正方形和一个小正方形.如果大正方形的面积为75 小正方形的面积为3 则矩形的宽AB为2.【思路引导】根据图形的面积设矩形的长为a宽为b得出(a+b)2=75 (a﹣b)2=3 进而得到a+b=5a﹣b=求出b即可.【完整解答】解:设矩形的长为a宽为b则有(a+b)2=75 (a﹣b)2=3所以a+b=5a﹣b=所以b=2即矩形的AB为2故答案为:2.13.(2分)(2022春•钱塘区期末)如图边长为6的正方形ABCD中放置两个长和宽分别为a b(a<6 b <6)的长方形若长方形的周长为16 面积为15.75 则图中阴影部分面积S1+S2+S3=12.5 .【思路引导】由长方形的周长16 面积为15.75 确定a+b=8 ab=15.75 通过观察图形分别用含有a 和b的式子表示出阴影部分的面积S1S2S3然后整理化简S1+S2+S3通过完全平方公式计算出a2+b2从而求出值.【完整解答】解:由题知a+b=16÷2=8 ab=15.75.∴(a+b)2=64a2+2ab+b2=64a2+b2=64﹣2ab=64﹣2×15.75=32.5∵S1=(6﹣b)2S3=(6﹣a)2S2=[b﹣(6﹣a)]2=(a+b﹣6)2∴阴影部分面积S1+S2+S3=(6﹣b)2+(6﹣a)2+(a+b﹣6)2=36﹣12b+b2+36﹣12a+a2+(8﹣6)2=a2+b2﹣12b﹣12a+76=a2+b2﹣12(b+a)+76=32.5﹣12×8+76=12.5.故答案为:12.5.14.(2分)(2022•三水区一模)现有两个正方形A B.如图所示进行两种方式摆放:方式1:将B放在A 的内部得甲图;方式2:将A B并列放置构造新正方形得乙图.若甲图和乙图阴影部分的面积分别为1和12 则正方形A B的面积之和为13 .【思路引导】设正方形A的边长为a正方形B的边长为b由图形得出关系式求解即可.【完整解答】解:设正方形A的边长为a正方形B的边长为b由图甲得a2﹣b2﹣2(a﹣b)b=1即a2+b2﹣2ab=1由图乙得(a+b)2﹣a2﹣b2=12得:2ab=12所以a2+b2=13故答案为:13.15.(2分)(2022春•海安市校级月考)若(2021﹣A)(2020﹣A)=2022 则(2021﹣A)2+(A﹣2020)2=4045 .【思路引导】根据完全平方公式(a±b)2=a2±2ab+b2即可求出答案.【完整解答】解:设x=2021﹣A y=2020﹣A∴x﹣y=2021﹣A﹣2020+A=1∵(2021﹣A)(2020﹣A)=2022∴xy=2022∴原式=x2+y2=(x﹣y)2+2xy=1+2×2022=4045故答案为:4045.16.(2分)(2022春•杏花岭区校级月考)①(x﹣1)•(x+1)=x2﹣1②(x﹣1)•(x2+x+1)=x3﹣1③(x﹣1)•(x3+x2+x+1)=x4﹣1……A题:猜想(x﹣1)•(x49+x48+…+x+1)=x50﹣1 .B题:当(x﹣1)•(x5+x4+x3+x2+x+1)=0 代数式x2023﹣1=﹣2或0 .【思路引导】(1)由规律可得(x﹣1)•(x n﹣1+…+x5+x4+x3+x2+x+1)=x n﹣1 再根据数值可得其答案;(2)可由(x﹣1)•(x5+x4+x3+x2+x+1)=x6﹣1=0 求出x的值再代入x2023﹣1得其值.【完整解答】解:(1)(x﹣1)•(x49+x48+…+x+1)=x50﹣1故答案为x50﹣1;(2)∵(x﹣1)•(x5+x4+x3+x2+x+1)=x6﹣1=0 ∴x=1或﹣1当x=﹣1时x2023﹣1=(﹣1)2023﹣1=﹣1﹣1=﹣2;当x=1时x2023﹣1=12023﹣1=1﹣1=0 ∴x2023﹣1=﹣2或0故答案为﹣2或0.17.(2分)(2022春•新华区月考)有甲乙丙三种纸片若干张(数据如图a>b).(1)若要用这三种纸片紧密拼接成一个边长为(2a+b)大正方形则需要取甲纸片 4 张.(2)取其中的若干个(三种图形都要取到)拼成一个长方形使其面积为a2+nab+12b2则n可能的整数值有 3 个.【思路引导】(1)通过拼成的正方形面积求解.(2)通过分解第三项求确定n.【完整解答】解:(1)大正方形的面积为;(2a+b)2=4a2+4ab+b2.∴需要甲纸片4张乙纸片4张丙1张故答案为:4.(2)∵12b2=b•12b=2b•6b=3b•4b∴n=1+12=13或n=2+6=8或n=3+4=7.故答案为:3.18.(2分)(2021春•龙岗区期中)计算:(5+1)(52+1)(54+1)(58+1)(516+1)+=.【思路引导】本题是平方差公式的应用把多项式:(5+1)(52+1)(54+1)(58+1)(516+1)+转化为(5﹣1)(5+1)(52+1)(54+1)(58+1)(516+1)+=(532﹣1)+的形式然后再利用平方差公式计算(516•2﹣1)+=.【完整解答】解:(5+1)(52+1)(54+1)(58+1)(516+1)+=(5﹣1)(5+1)(52+1)(54+1)(58+1)(516+1)+=(532﹣1)+=.19.(2分)(2021秋•黔江区期末)4x2+Q+1是完全平方式请你写一个满足条件的单项式Q是±4x或4x4或﹣4x2或﹣1 .【思路引导】设这个单项式为Q如果这里首末两项是2x和1这两个数的平方那么中间一项为加上或减去2x和1积的2倍故Q=±4x;如果这里首末两项是Q和1 则乘积项是4x2=2•2x2所以Q=4x4;如果该式只有4x2项或1 它也是完全平方式所以Q=﹣1或﹣4x2.【完整解答】解:∵4x2+1±4x=(2x±1)2;4x2+1+4x4=(2x2+1)2;4x2+1﹣1=(±2x)2;4x2+1﹣4x2=(±1)2.∴加上的单项式可以是±4x 4x4﹣4x2﹣1中任意一个.故答案为±4x或4x4或﹣4x2或﹣1.20.(2分)(2022春•宁阳县期末)请看杨辉三角(1)并观察下列等式(2):根据前面各式的规律则(a+b)6的第三项的系数为15 .【思路引导】通过观察可以看出(a+b)6的展开式为6次7项式a的次数按降幂排列b的次数按升幂排列各项系数分别为1 6 15 20 15 6 1.【完整解答】解:由题意可得:(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6则(a+b)6的第三项的系数为:15.故答案为:15.三.解答题(共8小题满分60分)21.(4分)(2022春•南京期中)计算:(1)(x+3)2﹣(x+3)(x﹣3)(2)(x+2y﹣1)(x+2y+1)【思路引导】(1)直接利用完全平方公式以及平方差公式计算得出答案;(2)直接利用完全平方公式以及平方差公式计算得出答案.【完整解答】解:(1)(x+3)2﹣(x+3)(x﹣3)=x2+6x+9﹣(x2﹣9)=6x+18;(2)(x+2y﹣1)(x+2y+1)=(x+2y)2﹣1=x2+4y2+4xy﹣1.22.(6分)(2022春•榆阳区期末)如图某地有一块长为(a+4b)米宽为(a+3b)米的长方形地块规划部门计划将阴影部分进行绿化中间边长为(a+b)米的空白正方形地块将修建一个凉亭.(1)求绿化部分的总面积(用含有a b的代数式表示);(2)若a=2 b=5 求出此时绿化部分的总面积.【思路引导】(1)求出长方形地块的面积和正方形凉亭的面积再相见得出答案;(2)把a=2 b=5代入(1)的式子计算即可.【完整解答】解:(1)由题意得:长方形地块的面积=(a+4b)(a+3b)=(a2+7ab+12b2)(平方米)正方形凉亭的面积为:(a+b)2=(a2+2ab+b2)(平方米)则绿化面积S=(a2+7ab+12b2)﹣(a2+2ab+b2)=(5ab+11b2)(平方米);(2)∵a=2 b=5∴绿化总面积S=5ab+11b2=5×2×5+11×52=325(平方米).23.(8分)(2022春•永丰县期末)如图将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形)请认真观察图形解答下列问题:(1)用图1可以验证的乘法公式是(a+b)2=a2+2ab+b2;(2)如果图1中的a b(a>b)满足a2+b2=57 ab=12 求(a+b)2的值;(3)如图2 点C是线段AB上的一点以AC BC为边向两边作正方形面积分别是S1和S2设AB=8 两正方形的面积和S1+S2=28 求图中阴影部分面积.【思路引导】(1)利用面积相等求解;(2)代入完全平方公式求解;(3)代入公式整体求解.【完整解答】解:(1)正方形面积整体计算是:(a+b)2分割计算是:a2+2ab+b2;∴(a+b)2=a2+2ab+b2.故答案为:(a+b)2=a2+2ab+b2.(2)(a+b)2=a2+2ab+b2=57+2×12=81;(3)设AC=m BC=n则m+n=8 m2+n2=28∴2mn=(m+n)2﹣(m2+n2)=64﹣28=36所以阴影部分得面积为:0.5mn=9.24.(8分)(2022春•邗江区期末)完全平方公式:(a±b)2=a2±2ab+b2适当的变形可以解决很多的数学问题.例如:若a+b=3 ab=1 求a2+b2的值;解:因为a+b=3 所以(a+b)2=9 即:a2+2ab+b2=9 又因为ab=1 所以a2+b2=7.根据上面的解题思路与方法解决下列问题:(1)若x+y=8 x2+y2=40 求xy的值;(2)填空:①若(4﹣x)x=5 则(4﹣x)2+x2= 6 ;②若(4﹣x)(5﹣x)=8 则(4﹣x)2+(5﹣x)2=17 .(3)如图在长方形ABCD中AB=25 BC=15 点E.F是BC CD上的点且BE=DF=x分别以FC CE为边在长方形ABCD外侧作正方形CFGH和CEMN若长方形CEPF的面积为200平方单位求图中阴影部分的面积和.【思路引导】(1)利用完全平方公式的变形求解;(2)利用完全平方公式的变形结合引入新参数简化计算;(3)理解题意转化问题再利用完全平方公式的变形求解.【完整解答】解:(1)∵2xy=(x+y)2﹣(x2+y2)=64﹣40=26∴xy=13.(2)①令a=4﹣x b=x则a+b=4 ab=5∴a2+b2=(a+b)2﹣2ab=16﹣10=6.\∴(4﹣x)2+x2=6故答案为:6.②令a=4﹣x b=5﹣x则a﹣b=﹣1 ab=8∴a2+b2=(a﹣b)2+2ab=1+16=17∴(4﹣x)2+(5﹣x)2=17故答案为:17.(3)由题意得:(25﹣x)(15﹣x)=200令a=25﹣x b=15﹣x则:a﹣b=10 ab=200∴a2+b2=(a﹣b)2+2ab=100+400=500∴(25﹣x)2+(15﹣x)2=500所以阴影部分的面积和为500平方米.25.(8分)(2022春•渠县期末)完全平方公式:(a±b)2=a2±2ab+b2适当的变形可以解决很多的数学问题.例如:若a+b=3 ab=1 求a2+b2的值.解:因为a+b=3所以(a+b)2=9 即:a2+2ab+b2=9 又因为ab=1所以a2+b2=7根据上面的解题思路与方法解决下列问题:(1)若x+y=8 x2+y2=40 求xy的值;(2)填空:若(4﹣x)(x﹣5)=﹣8 则(4﹣x)2+(x﹣5)2=17 .(3)如图点C是线段AB上的一点以AC BC为边向两边作正方形设AB=6 两正方形的面积和S1+S2=18 求图中阴影部分面积.【思路引导】(1)根据完全平方公式得出2xy=(x+y)2﹣(x2+y2)整体代入求值即可;(2)根据完全平方公式将(4﹣x)2+(5﹣x)2转化为[(4﹣x)﹣(5﹣x)]2+2(4﹣x)(5﹣x)再整体代入求值即可;(3)设AC=m CF=n可得m+n=6 m2+n2=18 求出0.5mn即可.【完整解答】解:(1)2xy=(x+y)2﹣(x2+y2)=64﹣40=24∴xy=12(2)由(4﹣x)﹣(5﹣x)=﹣1∴[(4﹣x)﹣(5﹣x)]2=(4﹣x)2﹣2(4﹣x)(5﹣x)+(5﹣x)2=(﹣1)2;又∵(4﹣x)(5﹣x)=8∴(4﹣x)2+(5﹣x)2=1+2(4﹣x)(5﹣x)=1+2×8=17;故答案为:17.(3)设AC=m CF=n∵AB=6∴m+n=6又∵S1+S2=18∴m2+n2=18由完全平方公式可得(m+n)2=m2+2mn+n2∴62=18+2mn∴mn=9∴S阴影部分=0.5×mn=0.5×9=4.5答:阴影部分的面积为4.5.26.(8分)(2022春•郴州期末)两个边长分别为m和n的正方形如图放置(图1)其未叠合部分(阴影)面积为S1;若在图1中大正方形的右上角再摆放一个边长为n的小正方形(如图2)两个小正方形叠合部分(阴影)面积为S2.(1)用含m n的代数式分别表示S1S2;(2)若m﹣n=10 mn=20 求S1+S2的值;(3)若S1+S2=30 求图3中阴影部分的面积S3.【思路引导】(1)S1可以看作两个正方形的面积差即S1=m2﹣n2S2是长为2n﹣m高为n的长方形的面积即S2=(2n﹣m)•n=2n2﹣mn;(2)将S1+S2=m2﹣n2+2n2﹣mn变形为(m﹣n)2+mn再代入计算即可;(3)由S1+S2=30 可得到m2+n2﹣mn=30 由图3看得出S3=(m2+n2﹣mn)整体代入计算即可.【完整解答】解:(1)S1可以看作两个正方形的面积差即S1=m2﹣n2S2是长为2n﹣m高为n的长方形的面积即S2=(2n﹣m)•n=2n2﹣mn;(2)∵m﹣n=10 mn=20∴S1+S2=m2﹣n2+2n2﹣mn=m2+n2﹣mn=(m﹣n)2+mn=100+20=120;(3)∵S1+S2=m2+n2﹣mn=30∴S3=m2+n2﹣m2﹣n(m+n)=m2﹣mn+n2=(m2+n2﹣mn)=×30=15.27.(8分)(2021秋•蒙阴县期末)图1 是一个长为2m宽为2n的长方形沿图中虚线用剪刀平均分成四块小长方形然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为(m﹣n)2;(2)观察图2 三个代数式(m+n)2(m﹣n)2mn之间的等量关系是(m+n)2﹣4mn=(m﹣n)2;(3)若x+y=﹣6 xy=2.75 求x﹣y;(4)观察图3 你能得到怎样的代数恒等式呢?【思路引导】(1)表示出阴影部分的边长即可得出其面积;(2)大正方形的面积减去矩形的面积即可得出阴影部分的面积也可得出三个代数式(m+n)2(m﹣n)2mn之间的等量关系.(3)根据(2)所得出的关系式可求出(x﹣y)2继而可得出x﹣y的值.(4)利用两种不同的方法表示出大矩形的面积即可得出等式.【完整解答】解:(1)图②中的阴影部分的面积为(m﹣n)2故答案为:(m﹣n)2;(2)(m+n)2﹣4mn=(m﹣n)2故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)(x﹣y)2=(x+y)2﹣4xy=25则x﹣y=±5;(4)(2m+n)(m+n)=2m(m+n)+n(m+n)=2m2+3mn+n2.28.(10分)(2021春•姑苏区期中)学习整式乘法时老师拿出三种型号的卡片如图1:A型卡片是边长为a的正方形B型卡片是边长为b的正方形C型卡片是长和宽分别为a b的长方形.(1)选取1张A型卡片 2张C型卡片 1张B型卡片在纸上按照图2的方式拼成一个为(a+b)的大正方形通过不同方式表示大正方形的面积可得到乘法公式(a+b)2=a2+2ab+b2;(2)请用这3种卡片拼出一个面积为a2+5ab+6b2的长方形(数量不限)在图3的虚线框中画出示意图并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A型卡片 4张C型卡片按图4的方式不重叠地放在长方形DEFG框架内图中两阴影部分(长方形)为没有放置卡片的部分.已知GF的长度固定不变DG的长度可以变化图中两阴影部分(长方形)的面积分别表示为S1S2.若S=S2﹣S1则当a与b满足a=2b时S为定值且定值为a2.(用含a或b的代数式表示)【思路引导】(1)用两种方法表示图2的面积即可得出公式;(2)由a2+5ab+6b2可得A型卡片1张B型卡片6张C型卡片5张;(3)设DG长为x求出S1S2即可解决问题.【完整解答】解:(1)方法1:大正方形的面积为(a+b)2方法2:图2中四部分的面积和为:a2+2ab+b2因此有(a+b)2=a2+2ab+b2故答案为:(a+b)2=a2+2ab+b2.(2)如图(3)设DG长为x.∵S1=a[x﹣(a+2b)]=ax﹣a2﹣2ab S2=2b(x﹣a)=2bx﹣2ab ∴S=S2﹣S1=(2bx﹣2ab)﹣(ax﹣a2﹣2ab)=(2b﹣a)x+a2由题意得若S为定值则S将不随x的变化而变化可知当2b﹣a=0时即a=2b时S=a2为定值故答案为:a=2b a2。

乘法公式专项练习题

乘法公式专项练习题

乘法公式专项练习题一、选择题1.平方差公式(a+b )(a -b )=a 2-b 2中字母a ,b 表示( )A .只能是数B .只能是单项式C .只能是多项式D .以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是( )A .(a+b )(b+a )B .(-a+b )(a -b )C .(13a+b )(b -13a ) D .(a 2-b )(b 2+a )6 C .-6 D .-55. 若x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于( ) A.-1 B.0 C.1 D.26. 计算[(a 2-b 2)(a 2+b 2)]2等于( )A.a 4-2a 2b 2+b 4B.a 6+2a 4b 4+b 6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 87. 已知(a +b )2=11,ab =2,则(a -b )2的值是( ) A.11 B.3 C.5 D.198. 若x 2-7xy +M 是一个完全平方式,那么M 是( ) A.27y 2 B.249y 2 C.449y 2 D.49y 2 9. 若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是( )A. x n 、y n 一定是互为相反数B.(x1)n 、(y 1)n 一定是互为相反数 3.下列计算中,错误的有( ) A .1个 B .2个 C .3个 D .4个①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.4.若x 2-y 2=30,且x -y=-5,则x+y 的值是( ) A .5 B .C.x 2n 、y 2n 一定是互为相反数D.x 2n -1、-y 2n -1一定相等10. 已知19961995a x =+,19961996b x =+,19961997c x =+,那么222a b c ab bc ca ++---的值为( ). (A )1 (B )2 (C )3 (D )411. 已知0x ≠,且22(21)(21)M x x x x =++-+,22(1)(1)N x x x x =++-+,则M 与N 的大小关系为( ). (A )M N > (B )M N < (C )M N = (D )无法确定12. 设a b c 、、是不全相等的任意有理数.若2x a bc =-,22y b ca z c ab =-=-,,则x y z 、、( ). A .都不小于0 B .都不大于0 C .至少有一个小于0 D .至少有一个大于0二、填空题1. (-2x+y )(-2x -y )=______. (-3x 2+2y 2)(______)=9x 4-4y 4.2. (a+b -1)(a -b+1)=(_____)2-(_____)2.3. 两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____ .4. 若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________.5. 5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________.6. 多项式912x +加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是____________(填上你认为正确的一个即可,不必考虑所有的可能情况)。

七年级下数学第九章从面积到乘法公式单元测验[1]

七年级下数学第九章从面积到乘法公式单元测验[1]

从面积到乘法公式单元测验姓名 班级 学号___________ 成绩____________一、选择题(本大题共10题,每题2分,共20分)1.计算(1-m )(-m-1),结果正确的是( )A .m 2-2m-1B .m 2-1C .1-m 2D .m 2-2m+12.若a 的值使得x 2+4x+a=(x+2)2-1成立,则a 的值为A.5B.4C.3D.23. 下列从左到右的变形,属于因式分解的是( )A .(x+3)(x -2)=x 2+x -6B .ax -ay -1=a (x -y )-1C .8a 2b 3=2a 2·4b 3D .x 2-4=(x+2)(x -2)4.(x+2)(x-2)(x 2+4)的计算结果是A.x 4+16B.-x 4-16C.x 4-16D.16-x 4 5.计算(a+b )2-(a-b )2的结果是( ) A .2a 2+2b 2 B .2a 2-2b 2 C .4ab D .-4ab6.若(x+4)(x-2)= q px x ++2,则p 、q 的值是( )A 、2,8B 、-2,-8C 、-2,8D 、2,-87.19922-1991×1993的计算结果是A.1B.-1C.2D.-2 8.小明在计算一个二项整式的平方时,得正确 结果x 2-6xy+ , 但最后一项不慎被污染了,这一项应该是( )。

A.9y 2B.y 2C.3yD.6y 29.若()()212-+-x mx x 的运算结果中x 的二次项系数为零,则m 的值是( )。

A .1 B .–1 C .–2 D .210.两个连续奇数的平方差一定是( )A.3的倍数B.5的倍数C.8的倍数D.16的倍数.二、填空题(每空2分,共20分)11、计算: 2x ·(-3x 2 )2 = ;(2x +5)(x -5) =_____________.12、计算:(3x -2)2=_______________;(—a+2b)(a+2b)= ______________.13.计算: ·c b a c ab 532243—=; ()()b a b b a a --+=_______________.14、计算742-262=_______________=______________15.多项式x 2+kx+25是另一个多项式的平方,则k= .16.若x 2-- y 2=12,x+y=-2,则x —y= .三、计算(本大题共4题,每题5分,共20分)17. (-2ab 2)2·(3a 2b-2ab-1) 18. (x+3)2-(x+2)(2-x)19.923×1013 20.(a+b--c )(a-b+c)四、分解因式:(每小题4分,共20分)21.-8a 3b 2+12ab 3c -6a 2b 22.3a (x -y )+9(y -x )23.(2m -3n )2-2m+3n 24.16mn 4-m 25.a 2-3a -4五、解答题(本大题3题,26题6分,27题8分,28题6分)26.已知a+b=-5,ab=6,求下列各式的值:(1)a 2+b 2.(2)(a -b)2.(3)(a -2)(b -2).27.已知x(x -1)-(x 2-y)=-2.求 的值28.观察下面的各式的规律:12+(1×2)2+22=(1×2+1)222+(2×3)2+32=(2×3+1)232+(3×4)2+42=(3×4+1)2……先写出第10行式子,然后再写出第n 行式子,并说明你的结论。

乘法公式练习题及答案

乘法公式练习题及答案

乘法公式练习题及答案1.下列各式中,相等关系一定成立的是A.2=2B.=x2-6C.2=x2+y2D.6+x=2.下列运算正确的是A.x2+x2=2xB.a2·a3= a5C.4=16x6D.=x2-3y23.下列计算正确的是232A.·=-8x-12x-4xB.=x3+y3C.=1-16a2D.2=x2-2xy+4y24.的计算结果是A.x4+1B.-x4-1C.x4-1D.16-x45.19922-1991×1993的计算结果是A.1B.-1C.D.-26.对于任意的整数n,能整除代数式-的整数是A.B.C.D.27.=1-25a2, =4x2-9,=4a4-25b28.99×101== .9.=[z+][ ]=z2-2.10.多项式x2+kx+25是另一个多项式的平方,则k=.11.2=2+ ,a2+b2=[2+2], a2+b2=2+,a2+b2=2+ .12.计算.2-2;2-2;2-+2;1.23452+0.76552+2.469×0.7655;-2;+y413.已知m2+n2-6m+10n+34=0,求m+n的值11114.已知a+=4,求a2+2和a4+4的值. aaa15.已知2=654481,求的值.16.解不等式2+2>13.17.已知a=1990x+1989,b=1990x+1990,c=1990x+1991,求a2+b2+c2-ab-ac-bc的值.18.如果=63,求a+b的值.19.已知2=60,2=80,求a2+b2及ab的值.yyy20.化简+++…+,并求当x=2,y=9时1?22?38?9 的值.21.若f=2x-1=2×-1,f=2×3-1),求f?ff0200322.观察下面各式:12+2+22=222+2+32=232+2+42=2……写出第2005个式子;写出第n个式子,并说明你的结论.参考答案1.A2.B3.C4.C5.A6.C7.1-5a x+ -2a2+5b18.100-1 100+199.x-y z- x-y 10.±10 11.4ab -ab22ab12.原式=8mn;原式=-30xy+15y;原式=-8x2+99y2;提示:原式=1.23452+2×1.2345×0.7655+0.76552=2=22= 原式=-xy-3y2;原式=x413.提示:逆向应用整式乘法的完全平方公式和平方的非负性.∵m2+n2-6m+10n+34=0,∴+=0,22即+=0,由平方的非负性可知,?m?3?0,?m?3, ∴ ∴m+n=3+=-2. n??5.?n?5?0,14.提示:应用倒数的乘积为1和整式乘法的完全平方公式.11∵a+=4,∴2=42. aa111∴a2+2a·+2=16,即a2+2+2=16. aaa11∴a2+2=14.同理a4+4=194. aa15.提示:应用整体的数学思想方法,把看作一个整体. ∵2=654481,∴t2+116t+582=654481.∴t2+116t=654481-582.∴=+48×68=654481-582+48×68=654481-582+=654481-582+582-102=654481-100=654381.316.x<17.解:∵a=1990x+1989,b=1990x+1990,c=1990x+1991,∴a-b=-1,b-c=-1,c-a=2.∴a2+b2+c2-ab-ac-be 1=1=[++]七年级数学乘法公式专项练习题一、精心选一选1.下列多项式的乘法中能用平方差公式计算的是A.B.C.D.2.下列等式成立的是A.?4x4?yB.2?4x2?9y2C.??36m2?25D.?m4?4n23.等式?16b4?9a4中,括号内应填入的是A.3a2?4bB.4b2?3aC.?3a2?4bD.a2?4b24.若a2?b2?20,且a?b??4,则a?b的值是A.?B.4C.?5D.55.式子2?2是由两个整式相乘得到的,那么其中的一个整式可能是A.?3B.3C.?11D.117.计算2?2的结果是A.82B.8C.8b2?8aD.8a2?8b28.已知2?13,2?5,则mn的值是A.2B.C.D.二、细心填一填9.?____________.10.?_________.11.a??___________.12.设20082?A,则2007?2009?_________.13.22?__________.14.若4x2?12x?m是关于x的一个完全平方式,则m?_____.第 1 页共页)15.一个正方形的边长是a?12b,则它的面积是______________.16.?_______________.三、耐心做一做17.计算:.18.求值:19. 已知p?q??5,pq?6,求下列各式的值.p2q?pq2; p2?q2.20. 已知甲数为2a,乙数比甲数的2倍多3,丙数比甲数的2倍少3,求这三个数的积,并求当a??2.5时的积.21. 某农场为了鼓励学生集体到农场去参加劳动,许诺学生到农场劳动后,每人将得到与参加劳动人数数量相等的苹果,第一天去农场参加劳动的学生有a人,第二天有b人,第三天有人,第四天有人.请你求出这四天农场共送出多少个苹果?共页第页1112?,其中a?,b?3.33322. 阅读下列材料,解答下列问题.利用完全平方公式把一个式子或一个式子的一部分改写为完全平方式或几个完全平方式的和的形式,这种方法叫做配方法.如a2?2ab?b2?2;x2?4x??x2?4x?43??3; (2)请你给下列两个式子配方:x2?10x?24;9a2?12a?15.七年级数学乘法公式专项练习题参考答案一、1~4. BCAC;~8. DACA.二、9.9?4a2;10.16m2?49; 11.16?2a;12.A2?1;13.p4?8p2?16; 14.9;15.a?ab?214b; 16.x?4y?9z?6xz.22242222三、17.原式a?16.18.原式?19??22892b.当a?223,b?3时,原式?89?3?8. 19.原式?pq?630;原式??2pq??2?6?13.20.由题意,得乙数为4a?3,丙数为4a?3,故这三个数的积是2a2332a?32a?18a.当a??2.5时,原式?32??18455.21.这四天农场共送出的苹果数:a?ba?b?a?2ab ?b?a?4ab?4b?3a?6ab?6b. 2222222222222.x?10x?24?x?10x?25?1??1;9a?12a?15??2?3a?2?2?2?15??11.共页第页222222221. 填空=b2-a2; =a2-4b2;;;;;.计算:;;; 10199.3.计算:4.已知5.先化简,再求值:,,,求:的值。

第九章从面积到乘法公式复习(2)

第九章从面积到乘法公式复习(2)

第九章复习(2)一、复习内容1、 因式分解:和 与整式乘法过程相反步骤:先看是否可以提公因式(看系数,看字母),在看项数,两项基本考虑用用平方差,三项基本考虑完全平方公式2、方法:提公因式法ma+mb+mc =m(a+b+c)公式法:完全平方公式:a 2+2ab+b 2 = (a+b)2; a 2-2ab+b 2= (a -b)2平方差公式: a 2-b 2 = (a+b)(a-b)二、基础练习1.下列式子中,含有(x-y)的因式是________.(填序号)(1)(x+y)(y-x) (2)x-y+2 (3) -3(x-y)3 (4) (y-x)3+(x-y)2. 如果,3,1-=--=+x y y x 那么=-22y x ;3. 如果。

,则=+=+-==+2222,7,0y x xy y x xy y x 4.直接写出因式分解的结果: (1)=-222y y x ; (2)=+-12632a a ; (3)=++1442a a ___________; (4) =-2ab a _______________;5.(1)若x 2+mx+1是完全平方式,则m= ;(2)已知2249x mxy y -+是关于,x y 的完全平方式,则m = ;6.(1)若m 2+n 2-6n +4m +13=0,则m 2-n 2 =_________;(2)已知,012=-+m m 则=++2004223m m 三、典例分析例1. 因式分解:(1))x y ()y x (x 2-+- (2)22222y x 4)y x (-+(3)222332b a 8b a 4b a 2+- (4)1)(4)(42++-+b a b a(5)16(x-1)2—(x+2)2(6)(x -2)(x -4)+1例2.已知51,1==+xy y x ,求:(1);22xy y x + (2))1)(1(22++y x 的值例3.利用因式分解计算:(1)29×19.98+57×19.98+14×19.98(2)39×37-13×34 (3)482+48×24+122例4.已知3322))((y x y xy x y x -=++-,利用这一结论回答下列问题:(6分)(1)若b a -=4,33b a -=28,试求22b ab a ++的值;(2)因式分解m n n m -+-33。

专题1.3 乘法公式【十大题型】(举一反三)(北师大版)(原卷版)

专题1.3 乘法公式【十大题型】(举一反三)(北师大版)(原卷版)

专题1.3 乘法公式【十大题型】【北师大版】【题型1 判断运用乘法公式计算的正误】 (1)【题型2 利用完全平方式确定系数】 (2)【题型3 乘法公式的计算】 (2)【题型4 利用乘法公式求值】 (2)【题型5 利用面积法验证乘法公式】 (3)【题型6 乘法公式的应用】 (4)【题型7 平方差公式的几何背景】 (6)【题型8 完全平方公式的几何背景】 (8)【题型9 乘法公式中的新定义问题】 (10)【题型10 乘法公式的规律探究】 (11)【知识点乘法公式】平方差公式:(a+b)(a-b)=a2-b2。

两个数的和与这两个数的差的积,等于这两个数的平方差。

这个公式叫做平方差公式。

完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。

两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍。

这两个公式叫做完全平方公式。

【题型1判断运用乘法公式计算的正误】【例1】(2023春·贵州毕节·七年级统考期末)计算(x−y+3)(x+y−3)时,下列变形正确的是()A.[(x−y)+3][(x+y)−3]B.[(x+3)−y][(x−3)+y]C.[x−(y+3)][x+(y−3)]D.[x−(y−3)][x+(y−3)]【变式1-2】(2023春·天津滨海新·七年级统考期末)在下列多项式的乘法中,不可以用平方差公式计算的是()A.(x+y)(x−y)B.(−x+y)(x+y)C.(−x−y)(−x+y)D.(x−y)(−x+y)【变式1-3】(2023春·广东茂名·七年级统考期中)下列多项式不是完全平方式的是().+m2+m C.a2+2ab+b2D.t2+4t+4A.x2−4x−4B.14【题型2利用完全平方式确定系数】【例2】(2023春·江苏扬州·七年级统考期末)若将多项式4a2−2a+1加上一个单项式成为一个完全平方式,则这个单项式可以是.(只要写出符合条件的一个)【变式2-1】(2023春·四川达州·七年级校考期中)若x2+2(m−3)x+1是完全平方式,x+n与x+2的乘积中不含x的一次项,则n m的值为.【变式2-2】(2023春·七年级课时练习)若9x2−(k−1)xy+25y2是关于x的完全平方式,则k=.【变式2-3】(2023春·福建泉州·七年级晋江市季延中学校考期中)已知B是含字母x的单项式,要使x2+B+14是完全平方式,那么B=.【题型3乘法公式的计算】【例3】(2023春·云南昭通·七年级校考期末)计算:(1)(2m−n+3p)(2m+3p+n);(2)化简求值:(x−3)(x+3)−(x2−2x+1),其中x=12.【变式3-1】(2023春·山东东营·六年级统考期末)利用整式乘法公式计算.(1)1002−98×102;(2)(a+b+3)(a+b−3);(3)(−2m+3)(−2m−3);x−2y 2.【变式3-2】(2023春·湖南永州·七年级校联考期中)1−1−=.【变式3-3】(2023春·江西抚州·七年级校联考期中)运用乘法公式计算:(1)(2m−3n)(−2m−3n)−(2m−3n)2(2)1002−992+982−972+…+22−12.【题型4利用乘法公式求值】【例4】(2023春·山东济南·七年级统考期末)设a=x−2022,b=x−2024,c=x−2023.若a2+b2 =16,则c2的值是( )A.5B.6C.7D.8【变式4-1】(2023春·广西贵港·七年级校考期末)若x−y−7=0,则代数式x2−y2−14y的值为.【变式4-2】(2023春·湖南永州·七年级校考期中)(1)已知a+1a =3,求a2+1a2的值;(2)已知(a−b)2=9,ab=18,求a2+b2的值.【变式4-3】(2023春·陕西西安·七年级校考期中)已知m满足(3m−2015)2+(2014−3m)2=5.(1)求(2015−3m)(2014−3m)的值.(2)求6m−4029的值.【题型5利用面积法验证乘法公式】【例5】(2023春·七年级课时练习)如图,阴影部分是在边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形.给出下列2种割拼方法,其中能够验证平方差公式的是()A.①B.②C.①②D.①②都不能【变式5-1】(2023春·山东烟台·六年级统考期末)在下面的正方形分割方案中,可以验证(a+b)2=(a−b)2 +4ab的图形是()A.B.C.D.【变式5-2】(2023春·福建宁德·七年级校联考期中)下列等式不能用如图所示的方形网格验证的是()A.(a+b)2=a2+2ab+b2B.(a+b)(b+c)=ab+ac+b2+bcC.(a+b+c)2=a2+b2+c2+2ab+2ac+2bcD.(a+b)(a−b)=a2−b2【变式5-3】(2023春·江西抚州·七年级统考期末)(1)课本再现:如图1,2是“数形结合”的典型实例,应用“等积法”验证乘法公式.图1验证的是______,图2验证的是______;(2)应用公式计算:①已知x+y=5,xy=−1,求x2+y2的值;②求20222−2021×2023的值.【题型6乘法公式的应用】【例6】(2023春·浙江宁波·七年级校考期中)如图,为了美化校园,某校要在面积为30平方米长方形空地ABCD中划出长方形EBKR和长方形QFSD,若两者的重合部分GFHR恰好是一个边长为3米的正方形,现将图中阴影部分区域作为花圃,若长方形空地ABCD的长和宽分别为m和n,m>n,花圃区域AEGQ和HKCS 总周长为14米,则m-n的值为()A.4米B.7米C.5米D.3.5米【变式6-1】(2023春·陕西西安·七年级校考期中)我们知道,将完全平方公式(a±b)2=a2±2ab+b2适当的变形,可以解决很多数学问题.请你观察、思考,并解决以下问题:(1)若m+n=9,mn=10,求m2+n2的值;(2)如图,一农家乐准备在原有长方形用地(即长方形ABCD)上进行装修和扩建,先用长为120m的装饰性篱笆围起该长方形院子,再以AD、CD为边分别向外扩建正方形ADGH、正方形DCEF的空地,并在两块正方形空地上建造功能性花园,该功能性花园面积和为2000m2,求原有长方形用地ABCD的面积.【变式6-2】(2023春·湖南邵阳·七年级统考期中)如图,某校一块边长为2a m的正方形空地是七年级四个班的清洁区,其中分给七年级(1)班的清洁区是一块边长为(a−2b)m的正方形.(0<2b<a)(1)分别求出七年级(2)班、七年级(3)班的清洁区的面积.(2)七年级(4)班的清洁区的面积比七年级(1)班的清洁区的面积多多少?【变式6-3】(2023春·浙江温州·七年级期中)学校为迎接艺术节,准备在一个正方形空地ABCD上搭建一个表演舞台,如图所示,正中间是“红五月”三个正方形平台.其中“五”字正方形和“月”字正方形边长均为a 米,“红”字正方形边长为b米.Ⅰ号区域布置造型背景,Ⅱ号区域设置为乐队演奏席.(1)用含a,b的代数式表示阴影部分的面积(即Ⅰ和Ⅱ面积之和)并化简;(2)若阴影部分的面积(即Ⅰ和Ⅱ面积之和)为288平方米,且a+b=20米,求“红”字正方形边长b的值.【题型7平方差公式的几何背景】【例7】(2023春·安徽安庆·七年级统考期中)将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,请用含a,b的式子表示:S1=______ ,S2=______ ;(不必化简)(2)由(1)中的结果可以验证的乘法公式是______ ;(3)利用(2)中得到的公式,计算:20232−2022×2024.【变式7-1】(2023春·全国·七年级期末)如图1的两个长方形可以按不同的形式拼成图2和图3两个图形.(1)在图2中的阴影部分的面积S1可表示为;(写成多项式乘法的形式);在图3中的阴影部分的面积S2可表示为;(写成两数平方差的形式);(2)比较图2与图3的阴影部分面积,可以得到的等式是;A.(a+b)2=a2+2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2(3)请利用所得等式解决下面的问题:①已知4m2﹣n2=12,2m+n=4,则2m﹣n=;②计算(2+1)(22+1)(24+1)(28+1)×…×(232+1)+1的值,并直接写出该值的个位数字是多少.【变式7-2】(2023春·陕西咸阳·七年级咸阳市秦都中学校考阶段练习)【知识生成】(1)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如:从边长为a的正方形中剪掉一个边长为b的正方形如图1,然后将剩余部分拼成一个长方形如图2.图1中剩余部分的面积为______,图2的面积为______,请写出这个代数恒等式;【知识应用】(2)应用(1)中的公式,完成下面任务:若m是不为0的有理数,已知P=(a+2m)(a−2m),Q=(a+m) (a−m),比较P、Q大小;【知识迁移】(3)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图3表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图3中图形的变化关系,通过计算写出一个代数恒等式.【变式7-3】(2023春·山西大同·七年级统考期中)【实践操作】(1)如图①,在边长为a的大正方形中剪去一个边长为b的小正方形(a>b),把图①中L形的纸片按图②剪拼,改造成了一个大长方形如图③,请求出图③中大长方形的面积;(2)请写出图①、图②、图③验证的乘法公式为:.【应用探究】(3)利用(2)中验证的公式简便计算:499×501+1;(4)计算:1−×1−×1−×…×1−×1−【知识迁移】(5)类似地,我们还可以通过对立体图形进行变换得到代数恒等式如图④,将一个棱长为a的正方体中去掉一个棱长为b的正方体,再把剩余立体图形切割分成三部分如图⑤,利用立体图形的体积,可得恒等式为:a3−b3=.(结果不需要化简)【题型8完全平方公式的几何背景】【例8】(2023春·浙江温州·七年级校联考期中)图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为;(2)观察图2,三个代数式(m+n)2,(m−n)2,mn之间的等量关系是;(3)若x+y=−6,xy=11,则x−y=;(直接写出答案)4【变式8-1】(2023春·七年级课时练习)完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因ab=1,所以a2+b2=7根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,则xy的值为______;(2)拓展:若(4−x)x=3,则(4−x)2+x2=______.(3)应用:如图,在长方形ABCD中,AB=20,BC=12,点E、F是BC、CD上的点,且BE=DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和正方形CEMN,若长方形CEPF的面积为160,求图中阴影部分的面积和.【变式8-2】(2023春·江苏·七年级期中)【知识生成】通常情况下,通过用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.如图1,在边长为a的正方形中剪掉一个边长为b的小正方形(a>b).把余下的部分沿虚线剪开拼成一个长方形(如图2).图1中阴影部分面积可表示为:a2-b2,图2中阴影部分面积可表示为(a+b)(a-b),因为两个图中的阴影部分面积是相同的,所以可得到等式:a2-b2=(a+b)(a-b);【拓展探究】图3是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图4的形状拼成一个正方形.(1)用两种不同方法表示图4中阴影部分面积:方法1:,方法2:;(2)由(1)可得到一个关于(a+b)2、(a-b)2、ab的的等量关系式是;(3)若a+b=10,ab=5,则(a-b)2=;【知识迁移】(4)如图5,将左边的几何体上下两部分剖开后正好可拼成如右图的一个长方体.根据不同方法表示它的体积也可写出一个代数恒等式:.【变式8-3】(2023春·江苏·七年级期中)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个相同的长方形拼成的一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a−b)2、(a+b)2、ab三者之间的等量关系式:________﹔【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:(a+b)3=a3+b3+3ab(a+b).利用上面所得的结论解答下列问题:(1)已知x+y=6,xy=11,求(x−y)2的值;4(2)已知a+b=6,ab=7,求a3+b3的值.【题型9乘法公式中的新定义问题】【例9】(2023春·河北石家庄·七年级统考期中)新定义:如果a,b都是非零整数,且a=4b,那么就称a 是“4倍数”.验证:嘉嘉说:232−212是“4倍数”,琪琪说:122−6×12+9也是“4倍数”,判断说得对(填“嘉嘉”、“琪琪”或“嘉嘉、琪琪”).【变式9-1】(2023春·浙江金华·七年级统考期末)定义:两个自然数的平方和加上这两个自然数乘积的两倍即可得到一个新的自然数,我们把这个新的自然数称为“完全数”,例如:22+32+2×2×3=25,其中“25”就是一个“完全数”,则任取两个自然数可得到小于200且不重复的“完全数”的个数有( )A.14个B.15个C.26个D.60个【变式9-2】(2023春·广东揭阳·七年级校联考期中)现定义一种运算“⊕”,对任意有理数m,n规定:m⊕n=mn(m−n),如:1⊕2=1×2(1−2)=−2,则(a+b)⊕(a−b)的值是.【变式9-3】(2023春·江苏徐州·七年级统考期中)对于任意有理数a、b、c、d,定义一种新运算:a cb d=a2+b2−cd.(1)12−13=______;(2)对于有理数x、y,若x ky xy是一个完全平方式,则k______;(3)对于有理数x、y,若x+y=10,xy=22.①求2x−y 3x−yy x−y的值;②将长方形ABCD和长方形CEFG按照如图方式进行放置,其中点B、C、G在同一条直线上,点E在边CD上,连接BD、BF.若AD=x,AB=nx,FG=y,EF=ny,图中阴影部分的面积为45,求n的值.【题型10乘法公式的规律探究】【例10】(2023·上海·七年级假期作业)杨辉是我国南宋时著名的数学家,他发现了著名的三角系数表,它的其中一个作用是指导按规律写出形如(a+b)n(其中n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)4展开式中所缺的系数.=a3+3a2(−b)+3a(−b)2+(−b)3(a+b)1=a+b(a−b)1=a−b(a+b)2=a2+2ab+b2(a−b)2=a2+2a(−b)+(−b)2=a2−2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a−b)3=a3+3a2(−b)+3a(−b)2+(−b)3(1)仔细观察上边的图和下边的式子,写出(a−b)3=___________;(2)直接在横线上填数字:(a+b)4=a4+___________a3b+___________a2b2+___________ab3+___________ b4;(3)请根据你找到的规律写出下列式子的结果:(x−y)5=___________;(2x−y)5=___________.【变式10-1】(2023·安徽合肥·统考模拟预测)观察下列等式:第1个等式:1×2+1=22−1;第2个等式:2×3+2=32−1;第3个等式:3×4+3=42−1;第4个等式:4×5+4=52−1;…按照以上规律,解决下列问题:(1)写出第5个等式: ;(2)写出你猜想的第n个等式(用含n的等式表示,n≥1,且n为整数),并加以证明.【变式10-2】(2023春·安徽合肥·七年级中国科技大学附属中学校考期中)观察下列等式:①32−124=1+1;②42−224=1+2;③52−324=1+3;④62−424=1+4;⑤72−524=1+5……(1)请按以上规律写出第⑥个等式______;(2)猜想并写出第n个等式______;并证明猜想的正确性【变式10-3】(2023春·全国·七年级专题练习)仔细观察下列等式:第1个:52﹣12=8×3第2个:92﹣52=8×7第3个:132﹣92=8×11第4个:172﹣132=8×15…(1)请你写出第6个等式: ;(2)请写出第n个等式,并加以验证;(3)运用上述规律,计算:8×7+8×11+…+8×399+8×403.。

数学面积公式试题答案及解析

数学面积公式试题答案及解析

数学面积公式试题答案及解析1.一个平行四边形的高是10厘米,相邻的两条边的长度分别是8厘米、12厘米.这个平行四边形的面积是()平方厘米.A.96B.80C.120D.40【答案】B【解析】根据垂线段最短的性质可知,这条10厘米的高,是边长为8厘米边长上的高,由此利用平行四边形的面积公式即可解答.解:8×10=80(平方厘米),答:这个平行四边形的面积是80平方厘米.故选:B.点评:此题考查平行四边形的面积公式的计算应用,关键是根据垂线段最短的性质,判断出相对应的底.2.测量土地面积时,常常要用到更大的面积单位、.【答案】平方千米、公顷【解析】测量土地的面积时,用到的单位有平方米、较大的用公顷作单位,再大的用平方千米作单位,但常常要用到更大的面积单位是平方千米和公顷.解:测量土地的面积时,常用到的面积单位是平方千米、公顷.故答案为:平方千米、公顷.点评:此题考查了学生对测量土地的常用面积单位的掌握情况.3.一个边长是质数的正方形,其面积一定是()A.质数B.合数C.偶数D.奇数【答案】B【解析】根据质数与合数的意义,一个自然数,如果只有1和它本身两个因数,这样的数叫做质数.一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数.由此解答.解:正方形的面积=边长×边长,假设正方形的边长是3厘米,它的面积是3×3=9(平方厘米),9的因数有:1,3,9;9是合数.所以,一个边长是质数的正方形,其面积一定是合数.故选:B.点评:此题主要根据质数与合数的意义,以及正方形的面积计算方法解决问题.4.要剪一个面积是12.56平方厘米的圆形纸片,至少需要面积是()平方厘米的正方形纸片(π取3.14).A.12.56B.14C.16D.20【答案】C【解析】由题意可知:需要的正方形纸张的边长应等于圆的直径,圆的面积已知,于是可以利用圆的面积求出半径的平方值,而正方形的边长等于2×半径,从而可以求出正方形纸张的面积.解:设圆的半径为r,则正方形纸张的边长为2r,则r2=12.56÷3.14,=4;正方形的面积:2r×2r,=4r2,=4×4,=16(平方厘米);故选:C.点评:解答此题的关键是明白:正方形纸张的边长应等于圆的直径.5.有一块边长是10分米的正方形木板,把它锯成一个尽可能大的圆板,面积减少了百分之几?【答案】面积减少了21.5%【解析】由题意知,在正方形内剪出的面积最大的圆、,其直径就等于正方形的边长,即10分米;可利用圆面积公式S=πr2求得即可求出圆的面积,则减少的面积就等于正方形的面积与圆的面积之差,再除以正方形的面积,即可求出减少的百分数.解:10×10﹣3.14×(10÷2)2,=100﹣3.14×25,=100﹣78.5,=21.5(平方分米),21.5÷100,=0.215,=21.5%;答:面积减少了21.5%.点评:解答此题要明确:在正方形内剪出面积最大的圆,其直径就等于正方形的边长.6.王大伯家有一块长8米,宽6米的菜园,每平方米收的菜可以卖12元,这块地收的菜可卖多少元?【答案】576【解析】先依据长方形的面积公式求出菜园的面积,再乘12元,就是总收入.解:8×6×12,=48×12,=576(元);答:这块地收的菜可卖576元.点评:此题主要考查长方形的面积的计算方法在实际生活中的应用.7.一张长方形纸的长为米,宽是长的,这张纸宽多少米?它的面积是多少平方米?【答案】这张纸宽米,它的面积是平方米【解析】先依据分数乘法的意义计算出长方形的宽,即=米,进而依据长方形的面积公式即可求解.解:=(米),=(平方米);答:这张纸宽米,它的面积是平方米.点评:此题主要依据分数乘法的意义,以及长方形的面积公式解决问题.8.一种圆形标志牌,它的直径是4分米.现有一块长12分米,宽8分米的长方形铁板,用来裁剪这种圆形标志牌.(1)这块铁板最多可以做几块标志牌?(2)做标志牌后的废料面积是多少?【答案】(1)(12÷4)×(8÷4),=3×2,=6(块),答:最多可以做6块标志牌.(2)12×8﹣3.14×(4÷2)2×6,=96﹣75.36,=20.64(平方分米),答:废料面积是20.64平方分米【解析】(1)先分别计算出在长方形铁板的长和宽上,各能截取多少个4分米,再将得到的值相乘,就是能截取的直径为4分米的圆形标志牌的个数.(2)用长方形的面积减去剪出的这几个圆的面积,就是废料面积.解:(1)(12÷4)×(8÷4),=3×2,=6(块),答:最多可以做6块标志牌.(2)12×8﹣3.14×(4÷2)2×6,=96﹣75.36,=20.64(平方分米),答:废料面积是20.64平方分米.点评:解答此题的关键是,分别计算出在长方形铁板的长和宽上各含有多少个4分米,从而可以求得截取的直径为4分米的圆形标志牌的个数.9.一块正方形田地的周长是24km,那么这块田地的面积是多少?【答案】这块田地的面积是36平方千米【解析】先依据正方形的周长公式C=4a计算出正方形的边长,进而依据正方形的面积公式S=a2,即可求出这块田地的面积.解:24÷4=6(千米),6×6=36(平方千米);答:这块田地的面积是36平方千米.点评:此题主要考查正方形的周长面积的计算方法在实际生活中的应用.10.长方形长10厘米,宽6厘米,剪下一个最大的正方形,这个正方形的面积是多少平方厘米?【答案】这个正方形的面积是36平方厘米【解析】由题意可知:剪下的正方形的边长应等于长方形的宽,长方形的宽已知,利用正方形的面积公式即可求解.解:6×6=36(平方厘米);答:这个正方形的面积是36平方厘米.点评:此题主要考查正方形的面积的计算方法,关键是明白:剪下的正方形的边长应等于长方形的宽.11.学校操场长为80米,宽为50米.在这个操场上面做一个最大的正方形篮球场,篮球场面积是多少平方米?除去篮球场的面积,操场还剩下多少平方米?【答案】操场还剩下1500平方米【解析】首先要明白:所做的最大篮球场的边长应等于操场的宽,从而可以求出篮球场的面积;总面积减篮球场的面积就是操场还剩下的面积.解:篮球场的面积:50×50=2500(平方米);还剩下的面积:80×50﹣2500,=4000﹣2500,=1500(平方米);答:操场还剩下1500平方米.点评:解答此题的关键是明白:所做的最大篮球场的边长应等于操场的宽,从而问题得解.12.王大叔打算围一块周长是28米的长方形菜地,长和宽都是整米数,共有多少种不同的围法?每种围法得到的长方形菜地的面积各是多少?在下表中填出来.【答案】【解析】长方形的周长=(长+宽)÷2,王大叔打算围一块周长是28米的长方形菜地,28÷2=14米,即一条宽与一条长的度和是14米,由于长和宽都是整米数,因此只要将14拆分为两个数相加和的形式即可,有几种拆分方法就用几个方案.然后再根据面积公式求出每种方案的面积.解:28÷2=14(米),由于14=1+13=2+12=3+11=4+10=5+9=6+8=7+7.所以共有七种方案,每种方案围成的长方形的面积分别为:方案一:1×13=13平方米;方案二:2×12=24平方米;方案三:3×11=33平方米;方案四:4×10=40平方米;方案五:5×9=45平方米;方案六:6×8=48平方米;方案七:7×7=49平方米;如下表:.点评:根据长方形的周长公式得长+宽=14米,并通过拆分得出七种方案是完成本题的关键.13.学校要给一间教室铺地砖,如果用长3分米,宽2分米的长方形地砖,800块正好铺满,这间教室的面积是多少平方米?【答案】48【解析】根据长方形的面积公式:s=ab,把数据代入公式求出每块地砖的面积,再用每块地砖的面积乘所用的块数即可.解:3分米=0.3米,2分米=0.2米,0.3×0.2×800,=0.06×800,=48(平方米),答:这间教室的面积是48平方米.点评:此题属于长方形面积的实际应用,根据长方形的面积公式解答,注意:长度单位之间的换算.14.龙龙家的西餐桌桌面长100厘米,宽70厘米,桌面的面积是多少平方厘米?如果宽不变,将长增加20厘米,面积增加了多少平方厘米?【答案】桌面的面积是7000平方厘米;面积增加了1400平方厘米【解析】(1)根据长方形的面积公式S=ab,把桌面长100厘米,宽70厘米,代入公式,即可求出桌面的面积;(2)根据长增加20厘米,宽不变,知道增加的图形的是一个长是70厘米,宽是20厘米的长方形,由此根据长方形的面积公式,代入数据,列式解答即可.解:(1)桌面的面积是:100×70=7000(平方厘米),(2)增加的面积是:70×20=1400(平方厘米),答:桌面的面积是7000平方厘米;面积增加了1400平方厘米.点评:此题主要考查了长方形的面积公式S=ab,的实际应用,另外注意要找准对应的长与宽,再代入公式.15.一块正方形土地,周长是3200米.这块土地有多少公顷?【答案】这块土地有64公顷【解析】先利用正方形的周长公式求出正方形的边长,再据正方形的面积公式即可求解.解:3200÷4=800(米),800×800=640000(平方米)=64(公顷);答:这块土地有64公顷.点评:此题主要考查正方形的周长面积的计算方法.16.量出下面长方形的长和宽,计算它的面积.(单位:厘米,取整厘米数)【答案】面积:5×3=15(平方厘米);【解析】测量出这个长方形的长和宽的值,利用长方形的面积公式即可求解.解:面积:5×3=15(平方厘米);答:长方形的面积是15平方厘米.点评:此题主要考查长方形的面积的计算方法.17.一个棉农给棉花喷农药,每公顷棉田喷农药95千克.在一块长500米,宽300米的棉田里喷药,需要多少千克农药?【答案】需要1425千克农药【解析】根据长方形的面积公式可求出棉田的面积是多少平方米,再化成公顷数,然后乘上每公顷棉田喷农药的千克数,即可解决问题.解:500×300=150000(平方米)=15公顷,95×15=1425(千克);答:需要1425千克农药.点评:本题主要考查了长方形面积的实际应用,列式时要注意单位名称的换算.18.阳光小区要铺设一条通道,通道长82米,宽1.6米.现在用边长是0.4米的红、黄两种正方形地砖铺设.(如图是铺设的局部图示)(1)铺设这条通道一共需多少块地砖?(2)铺设这条通道一共需要多少块红地转?【答案】(1)82×1.6÷(0.4×0.4),=131.2÷0.16,=820(块),答:铺设这条人行通道一共需要800块地砖.(2)82÷0.4=205(列),205÷3=68…1,所以红砖有:68×8+4=548(块);答:铺设这条人行通道一共需要548块红色地砖【解析】(1)此题可以先求得这个人行通道的总面积和每一块正方形地砖的面积,利用除法的意义即可求得需要的地砖的块数;(2)根据题干可得,以长为边一共可以铺82÷0.4=205列,每列有4块方砖,每三列为一个循环周期,每个循环周期都有8块红色砖,由此只要计算出有几个循环周期即可解答.解:(1)82×1.6÷(0.4×0.4),=131.2÷0.16,=820(块),答:铺设这条人行通道一共需要800块地砖.(2)82÷0.4=205(列),205÷3=68…1,所以红砖有:68×8+4=548(块);答:铺设这条人行通道一共需要548块红色地砖.点评:(1)此题考查了图形的密铺问题,这里利用长方形和正方形的面积公式以及除法的意义即可解决;(2)根据题干中图形的排列特点得出红砖与黄砖的排列规律是解决此题的关键.19.有一个长方形,如果它的宽减少3分米,面积就减少45平方分米;如果长减少3分米,面积就减少36平方分米.求原来这个长方形的面积?【答案】180平方分米【解析】依据它的宽减少3分米,面积就减少45平方分米,可以求出原长方形的长;长减少3分米,面积就减少36平方分米,可以求出原长方形的宽,进而依据长方形的面积公式即可求出原来这个长方形的面积.解:(45÷3)×(36÷3),=15×12,=180(平方分米),答:原来这个长方形的面积是180平方分米.点评:此题主要考查长方形的面积的计算方法的灵活应用.20.明明的房问正好是个长方形,长2.94米,宽2.6米.明明的房间面积有多大?【答案】7.644平方米【解析】利用长方形的面积S=ab,据此代入数据即可求解.解:2.94×2.6=7.644(平方米);答:明明的房间面积有7.644平方米.点评:此题主要考查长方形的面积的计算方法.21.下面两个图形的周长和面积是否分别相等?【答案】周长不相等,面积相等【解析】观察图形可知,第一个图形的周长等于边长2厘米的正方形的周长与两条1厘米的线段长度之和,面积等于边长2厘米的正方形的面积与边长1厘米的正方形的面积之差;第二个图形的周长等于边长2厘米的正方形的周长,面积等于边长2厘米的正方形的面积与边长1厘米的正方形的面积之差,据此计算即可解答.解:(1)2×4+1×2,=8+2,=10(厘米),2×2-1×1=3(平方厘米)(2)2×4=8(厘米),2×2-1×1=3(平方厘米)答:两个图形的周长不相等,面积相等.点评:此题主要考查不规则图形的周长的计算方法.22.如图所示,一个正方形的水池的周围,环绕着一条宽5米的小路,小路的面积为300平方米,那么正方形水池的面积是多少?【答案】100平方米【解析】如图可以将小路的面积平均分成4的长方形,用300除以4求出每个小长方形的面积,再用每个小长方形的面积除以路的宽,求出每个小长方形的长,用小长方形的长减去5即可求出中间水池的边长,再根据正方形的面积公式:s=a2,把数据代入公式解答即可.解:300÷4÷5﹣5,=75÷5﹣5,=15﹣5,=10(米),10×10=100(平方米),答:正方形水池的面积是100平方米.点评:此题主要考查正方形的面积公式的灵活运用,关键是求出水池的边长.23.一个长方形花坛面积是92平方分米,已知长是23分米,宽是多少分米?【答案】4分米【解析】长方形的面积=长×宽,代入数据即可求解.解:92÷23=4(分米);答:这个花坛的宽是4分米.点评:此题主要考查长形的面积的计算方法的灵活应用.24.一个长方形的周长是72厘米,长和宽的比是5:4,这个长方形的面积是多少平方厘米?【答案】320平方厘米【解析】首先根据长方形的周长公式:c=(a+b)×2,求出长与宽的和,已知长与宽的比是5:4,根据按比例分配的方法分别求出长、宽,然后根据长方形的面积公式:s=ab,把数据代入公式进行解答.解:5+4=9(份),长是:72÷2×=36×=20(厘米),宽是:72÷2×=36×=16(厘米),面积:20×16=320(平方厘米);答:这个长方形的面积是320平方厘米.点评:此题主要考查长方形的周长公式、面积公式的灵活运用.25.幸福村有一块长方形的果园,长80米宽60米,每棵苹果树占地12平方米,如按每棵苹果树收苹果180千克计算,这个果园一年大约收苹果多少吨?【答案】72吨【解析】先利用长方形的面积公式求出果园的面积,再除以每棵苹果树的占地面积,就是苹果树的棵数,进而再乘每棵苹果树收苹果的重量,问题得解.解:80×60÷12×180,=4800÷12×180,=400×180,=72000(千克),=72(吨),答:这个果园一年大约收苹果72吨.点评:此题主要考查长方形的面积的计算方法在实际生活中的应用.26.边长为16厘米的正方形纸,可以剪成多少个面积是4平方厘米的小正方形?【答案】64个【解析】根据正方形的面积公式:s=a2,求出这张纸的面积,再根据包含除法的意义(求一个数里面包含多少个另一个数),用除法解答.解:(16×16)÷4,=256÷4,=64(个);答;可以剪成64个面积是4平方厘米的小正方形.点评:此题主要考查正方形的面积计算,直接根据正方形的公式求出面积,再用除法解答.27.小云家有一块长方形的菜地,面积是68.4平方米,他的宽是7.2米,长是多少米?【答案】9.5米【解析】根据长方形的面积计算方法,用面积除以宽即可求出长;由此解答.解:68.4÷7.2=9.5(米);答:长是9.5米.点评:此题的解答主要根据长方形的面积计算方法,求一个因数等于积除以另一个因数.28.已知圆面积与长方形的面积相等(如图),圆的周长是6.28厘米,求长方形的长.【答案】3.14厘米【解析】根据图形可知这个圆的半径与长方形的宽相等,因为圆的面积=πr2,长方形的面积=长×宽可得:则长方形的长就等于这个圆的周长的一半,据此即可解答问题.解:6.28÷2=3.14(厘米),答:这个长方形的长是3.14厘米.点评:此题主要考查圆的面积与长方形的面积公式的灵活应用.29.一个矩形ABCD被分割成九个小矩形,且这些小矩形的面积如图所示,那么矩形ABCD的面积是.【答案】【解析】根据题意矩形ABCD的面积等于九个小矩形的面积之和,据此解答即可解:矩形ABCD的面积=1+2+++3+4+6+12+16,=(1+2++3+4+6+12+16)+(+),=44++,=.故答案为.点评:此题考查长方形和正方形的面积,解决此题的关键是矩形ABCD的面积等于九个小矩形的面积之和.30.如图是用五个相同的小长方形拼成的一个大长方形,大长方形的周长是88厘米,求大长方形的面积.【答案】480平方厘米【解析】由图可知:小长方形的2条长与3条宽相等,大长方形的长是小长方形长的2倍,宽是小长方形的长加宽,设小长方形的长为a厘米,表示出大长方形的长和宽,根据周长是88厘米,列出方程求出小长方形的长和宽,进而求出大长方形的长和宽以及面积.解:小长方形的2条长与3条宽相等,那么小长方形的长:宽=3:2,宽是长的;设小长方形的长为a厘米,则小长方形的宽是a厘米,大长方形的长是2a厘米;宽是a+a=a(厘米);(2a+a)×2=88,2a+a=44,a=44,a=12;小长方形的长就是12厘米,宽就是12×=8(厘米);大长方形的长是小长方形长的2倍,宽是小长方形的长加宽,所以:大长方形的长是:12×2=24(厘米)大长方形的宽是:12+8=20(厘米)大长方形的面积是:24×20=480(平方厘米)答:这个大长方形的面积是480平方厘米.点评:根据图找出小长方形长和宽之间的关系,以及大长方形的长和宽与小长方形长和宽的关系,利用大长方形的周长是44厘米,求出小长方形的长和宽,进而求解.31.一个长方形,如果长增加3cm,面积就增加12cm2,如果长减少3cm,就得到一个正方形.这个长方形面积是cm2.【答案】28【解析】如图所示,由“如果长增加3cm,面积就增加12cm2”即可求出这个长方形的宽,再据“如果长减少3cm,就得到一个正方形”即可求得长方形的长为(宽+3)厘米,于是即可利用长方形的面积公式求解.解:长方形的宽:12÷3=4(厘米),长方形的长:4+3=7(厘米),长方形的面积:7×4=28(平方厘米);答:这个长方形的面积是28平方厘米.故答案为:28.点评:此题主要考查长方形的面积的计算方法的灵活应用,关键是利用题目条件先求出长方形的长和宽的值.32.三个边长2cm的正方形拼成一个长方形,则长方形的周长为cm,面积为提示:别忘了单位名称.【答案】16,12平方厘米【解析】把边长为2厘米的正方形拼成长方形的方法只有一种,就是拼成一个长为3个边长是2厘米、宽为2厘米的长方形,即拼成的长方形的长是3×2=6(厘米)、宽是2厘米,然后根据长方形的周长和面积公式进行解答即可.解:拼成的长方形的长是:3×2=6(厘米),宽是2厘米.长方形的周长是:(6+2)×2,=8×2,=16(厘米);长方形的面积是:6×2=12(平方厘米);答:长方形的周长是16厘米,面积是12平方厘米.故答案为:16,12平方厘米.点评:本题的关键是求出拼成的长方形的长和宽,再根据长方形的周长和面积公式进行计算.33.周长不相等的两个长方形,它们的面积也不相等..(判断对错)【答案】×【解析】解答本题可用举例法,如:一个长为4厘米,宽为3厘米,周长是14厘米的长方形;另一个长为6厘米,宽为2厘米,周长是16厘米的长方形,它们的面积都为12,由此判断即可.解:如:一个长为4厘米,宽为3厘米,周长是14厘米的长方形;另一个长为6厘米,宽为2厘米,周长是16厘米的长方形,它们的面积都为12.故周长不相等的两个长方形,它们的面积也不相等的说法是错误的.故答案为:×.点评:考查了长方形的周长和面积,本题举出反例即可作出判断.34.一块正方形彩纸的边长是6分米,它的面积是平方分米.【答案】36【解析】正方形的面积S=a2,据此代入数据即可求解.解:6×6=36(平方分米);答:它的面积是36平方分米.故答案为:36.点评:此题主要考查正方形的面积的计算方法.35.填空并不难,看谁先过关.(1)测量土地的面积时,常用和作单位.(2)边长是的正方形的面积是1公顷.边长是1千米的正方形的面积是平方千米.【答案】公顷,平方千米,100米,1【解析】常用的面积单位有平方米、平方分米、平方厘米;边长是1千米的正方形,根据正方形的面积公式S=a2,1×1=1(平方千米);由高级单位平方千米化低级单位公顷,乘进率100;由公顷再化成低级单位平方米,乘进率10000.解:(1)测量土地的面积时,常用公顷和平方千米作单位.(2)边长是 100米的正方形的面积是1公顷.边长是1千米的正方形的面积是 1平方千米.故答案为:公顷,平方千米,100米,1.点评:本题主要是考查常用的面积单位及面积的单位换算,注意,平方千米、公顷、平方米间的进率比较难记,一定要记住.36.将一个直径是4dm的圆等分成若干份剪开,再拼成一个近似的长方形,这个长方形的周长是dm,面积是dm2.【答案】16.56,12.56【解析】把圆等分成若干份后再拼成一个近似的长方形,这个长方形的长相当于圆周长的一半,宽相当于圆的半径,先求出这个长方形的长和宽,进而运用公式求它的周长和面积.解:长方形的长:3.14×4÷2=6.28(dm),长方形的宽:4÷2=2(dm),长方形的周长:(6.28+2)×2=16.56(dm);长方形的面积:6.28×2=12.56(dm2).答:这个长方形的周长是16.56dm,面积是12.56dm2.点评:解决此题关键是理解拼成的长方形的长是圆周长的一半,宽是圆的半径,进而根据圆的周长、半径与直径之间的关系解答即可.37.用一根长15.7厘米的铁丝围成一个正方形,正方形的面积是平方厘米;如果用这根铁丝围成一个圆,这个圆的面积是平方厘米.【答案】15.405625,19.625【解析】(1)用一根长15.7厘米的铁丝围成一个正方形,这个正方形的周长就是15.7厘米,用它除以4,求出这个正方形的边长,再根据正方形的面积公式,求出它面积,(2)用一根长15.7厘米的铁丝围成一个圆,这个圆的周长就是15.7,用它除以2,再除以π,求出这个圆的半径,再根据圆的面积公式求出圆的面积.解:(1)15.7÷4=3.925(厘米),3.925×3.925=15.405625(平方厘米).(2)15.7÷2÷3.14=2.5(厘米),3.14×2.52=3.14×6.25=19.625(平方厘米).故答案为:15.405625,19.625.点评:本题的关键是求出这个正方形的边长和圆的半径,再根据正方形和圆的面积公式进行解答.38.把14个棱长是1厘米的小正方体拼摆在一起(如图所示).从左面看到的图形面积是平方厘米.【答案】6【解析】该几何体从左面看到的图形是2层,下层4正方形,上层2个正方形,共4+2=6个小正方形,因为该正方形的边长是1厘米,即面积是1平方厘米,看到的是由6个小正方形组成的图形,所以面积是46×1=6平方厘米;据此判断.解:根据题干分析可得,从左面看到的正方形一共有4+2=6个,所以1×1×6=6(平方厘米),答:从左面看到的图形面积是6平方厘米.故答案为:6.点评:解答此题应先画出从左面看到图形的形状是解答本题的关键所在;用到知识点:正方形的面积计算方法.39.一个正方形和一个长方形的周长相等,长方形的长是 10米,宽是6米,正方形的面积是平方米.【答案】64【解析】首先根据长方形的周长公式:c=(a+b)×2,求出长方形的周长,再根据正方形的周长公式:c=4a,求出正方形的边长,然后把数据代入正方形的公式:s=a2,即可求出正方形的面积.解:(10+6)×2÷4,=16×2÷4,=32÷4,=8(米),8×8=64(平方米);答:正方形的面积是64平方米.故答案为:64.点评:此题主要考查长方形、正方形的周长和面积公式的灵活应用.40.正方形的一组对边增加6厘米,另一组对边减少4厘米,结果得到的长方形与原正方形面积相等,原正方形的面积是平方厘米.【答案】144【解析】要求原正方形的面积,应知道原来的边长.依据条件“得到的长方形与原正方形面积相等”,将数据代入公式即可求得结果.解:如图所示,设原正方形的边长为x厘米,如图,由于正方形ABCD与长方形AEGH面积相等,而长方形AEFD是正方形ABCD和长方形AEGH的公共部分,所以长方形EBCF的面积等于长方形DFGH的面积,于是6×(x﹣4)﹣4x=0,6x﹣24﹣4x=0,6x﹣4x=24,2x=24,x=12;所以原正方形的面积是:12×12=144(平方厘米).故答案为:144.点评:此题主要考查长方形的面积公式及图形面积的大小关系,将数据代入公式即可求得结果.41.用一根长12.56分米的铁丝围成一个正方形,正方形的面积是平方分米;如果用这根铁丝围成一个圆,这个圆的面积是平方分米.【答案】9.8596,12.56【解析】由“长12.56分米的铁丝围成一个正方形”可以求得正方形的边长,也就能求正方形的面积.又因铁丝长就是圆的周长,就能求圆的半径,也就能求圆的面积了.解:12.56÷4=3.14(分米),3.14×3.14=9.8596(平方分米);12.56÷3.14÷2=2(分米),3.14×2×2=12.56(平方分米);所以正方形的面积是9.8596平方分米,圆的面积是12.56平方分米.故答案为9.8596,12.56.点评:此题主要考查正方形的周长及面积公式和圆的周长及面积公式,利用周长相等,将数据代入公式即可求得结果.42.一个正方形的周长是1.2米,它的面积是平方米.【答案】0.09【解析】先利用正方形的周长求出正方形的边长,进而利用正方形的面积公式即可求解.。

七年级数学从面积到乘法公式

七年级数学从面积到乘法公式

• 10、计算题: • (x-3y)(y+3x)-(x-3y)(3y-x) 解:原式=xy+3x2-3y2-9xy+(x-3y)2 解法二: =3x2-3y2-8xy+x2-6xy+9y2 =(x-3y)(y+3x-3y+x) =(x-3y)(4x-2y) =4x2-14xy+6y2 =4x2-2xy-12xy+6y2 =4x2-14xy+6y2 • 11、计算题: • (p+2q)2-2(p+2q)(p+3q)+(p+3q)2 解:原式=(p+2q-p-3q)2 =(-q)2=q2
• 6、已知1km2的土地上,一年内从太阳得到的能量相当 于燃烧1.3×108kg煤所产生的能量,在我国9.6×106km2 的土地上,一年内从太阳得到的能量相当于燃烧煤__ 1.248×1015 _______ kg(用科学记数法表示) 2y+xy2=_____ • 7、若x-y=5,xy=6,则x2y-xy2=________,x 30 ±42 • 8、编一道因式分解题(编写要求:既要用提取公因式, ax4-2ax2y2+ay4 又要用到两个公式),这个多项式是________ • 9、已知(3x+ay)2=9x2-48xy+by2,那么a,b的值分别为_ -8,64 ________。
1 +y2+4y+4=0 4 1 2 (x- ) +(y+2)2=0 2 1
因为(x-
2 所以,x- 1 =0,y+2=0 1 2 即,x= ,y=-2 2
)2≥0,(y+2)2≥0
• 19、某居民小区进行美化环境教育,要在一块长为a,宽为b的长 1 方形绿地上建花坛,要求花坛所占面积不超过绿地面积的 。小 2 明为此设计了一个如图①的方案,花坛是由一个长方形和两个半 1 3 圆组成的,其中m,n分别是a,b的 ,如果已知a= b,那么小明 2 2 的设计方案是否符合要求?(通过计算说明) • 你能否用正方形、圆(或圆的一部分)或三角形为小区设计一个 既符合要求又美观的图案(圆、正方形和三角形的个数不限)? 请把你的设计方案画在图②的长方形中,并说明你设计意图及其 合理性。

中考数学总复习《乘法公式》专项提升练习题-带答案

中考数学总复习《乘法公式》专项提升练习题-带答案

中考数学总复习《乘法公式》专项提升练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、平方差公式1.计算:(1)(3x+5)(3x−5);(2)(12x+13)(12x−13);(3)(2x+y)(2x−y).2.利用乘法公式计算:(1)5002﹣499×501.(2)5023×49133.已知m=√5+1,n=√5−1.求值:(1)m2+n2;(2)nm +mn.4.(1)先化简,再求值:(2x+1)(2x−1)−5x(x−1)+(x−1)2,其中x=−13;(2)计算:20222−2021×2023−992.5.如图,有一个边长为2a(a>10)米的正方形池塘,为了创建文明农村,需在南北方向上扩大3米,东西方向上减少3米,从而得到一个长方形池塘.(1)求改造后的长方形池塘的面积;(2)改造后的长方形池塘的面积比原正方形池塘的面积变大还是变小了,请通过计算说明.6.如图,一长方形模具长为2a,宽为a,中间开出两个边长为b的正方形孔.(1)求图中阴影部分面积(用含a、b的式子表示)(2)用分解因式计算当a=15.7,b=4.3时,阴影部分的面积.二、完全平方公式 10.运用完全平方公式计算:(1)(4m +n)2;(2)(y −12)2.11.解方程:(3x −1)2=(2−5x )2.12.(a −2b +c )213.计算:(7+4√3)(7−4√3)−(√3−1)2.14.放学时,王老师布置了一道因式分解题:(x +y )2+4(x -y )2-4(x 2-y 2),小明思考了半天,没有得出答案.请你帮小明解决这个问题.15.回答下列问题(1)若x 2+1x 2=4,则(x +1x )2=________,(x −1x )2=________.(2)若a +1a =5,则a 2+1a 2=________;(3)若a 2−6a +1=0,求2a 2+2a 2的值.16.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为b (a >b )连结AF 、CF 、AC ,若a +b =10,ab =20,求阴影部分的面积.17.阅读下列文字:我们知道,图形是一种重要的数学语言,我国著名的数学家华罗庚先生曾经说:“数缺形时少直观,形缺数时难入微”.例如,对于一个图形,通过不同的方法计算图形的面积,就可以得到一个数学等式.(1)模拟练习:如图,写出一个我们熟悉的数学公式:______;(2)解决问题:如果a+b=10,ab=12求a2+b2的值;(3)类比探究:如果一个长方形的长和宽分别为(8−x)和(x−2),且(8−x)2+(x−2)2=20,求这个长方形的面积.18.为了纪念革命英雄夏明翰,衡阳市政府计划将一块长为(2a+b)米,宽为(a+b)米的长方形(如图所示)地块用于宣传革命英雄事迹,规划部门计划将阴影部分进行绿化,中间将修建一座夏明翰雕像.(1)试用含a,b的代数式表示绿化的面积是多少平方米?(2)若a+b=5,ab=6请求出绿化面积.19.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个大正方形,如图2所示.(1)请直接写出(a+b)2,(a−b)2,ab之间的等量关系________.(2)若xy=−3,x−y=4求x+y的值.(3)如图3,线段AB=10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和正方形CBGF,连接AF;若两个正方形的面积S1+S2=32,求阴影部分△ACF面积.20.如图①,正方形ABCD是由两个长为a、宽为b的长方形和两个边长分别为a、b 的正方形拼成的.(1)利用正方形ABCD面积的不同表示方法,直接写出(a+b)2、a2+b2、ab之间的关系式,这个关系式是;(2)若m满足(2024−m)2+(m−2023)2=4047,请利用(1)中的数量关系,求(2024−m)(m−2023)的值;(3)若将正方形EFGH的边FG、GH分别与图①中的PG、MG重叠,如图②所示,已知PF= 8,NH=32求图中阴影部分的面积(结果必须是一个具体数值).参考答案1.解:(1)原式=5002−(500−1)×(500+1)=5002−(5002−1)=5002−5002+1=1;(2)原式=(50+23)×(50−23)=2500−49=249959.2.解:(1)(3x +5)(3x −5)=(3x)2−52=9x 2−25;(2)(12x +13)(12x −13) =(12x)2−(13)2 =14x 2−19; (3)(2x +y )(2x −y )=(2x)2−y 2=4x 2−y 2.3.(1)解:∵m =√5+1 n =√5−1∵m 2+n 2=(√5+1)2+(√5−1)2=5+2√5+1+5−2√5+1=6+6=12;(2)解:由题意知=12(√5+1)(√5−1)=124=3.4.解:(1)原式=4x 2−1−5x 2+5x +x 2−2x +1=3x .当x =−13时,原式=3×(−13)=−1. (2)原式=20222−(2022−1)×(2022+1)−(100−1)2=20222−20222+1−10000+200−1=−98005.解:(1)由题可得,改造后池塘的长为(2a +3)m ,宽为(2a -3)m∵改造后的面积为:(2a−3)(2a+3)=(4a2−9)m2.(2)原来的面积为:2a×2a=4a2(m2)∵4a2−(4a2−9)=9>0∵改造后的长方形池塘的面积与原来相比变小了.6.解:(1)2a•a﹣2b2=2(a2﹣b2);(2)当a=15.7,b=4.3时,阴影部分的面积2(a2﹣b2)=2(a+b)(a﹣b)=2(15.7+4.3)(15.7﹣4.3)=456.7.(1)解:1√14−√13=√14+√13(√14+√13)(√14−√13)=√14+√13(√14)2−(√13)2=√14+√1314−13=√14+√13(2)解:(1√2+1+1√3+√2+1√4+√3+⋯+1√2021+√2020)×(√2021+1)=(√2-1+√3-√2+√4-√3+……+√2021-√2020)×(√2021+1)=(√2021-1)×(√2021+1)=2021-1=2020(3)解:34−√13−6√13−√7−23+√7=(4+√13)-(√13+√7)-(3-√7)=4+√13-√13-√7-3+√7=18.(1)解:S阴影=S边长为a的正方形−S边长为b的正方形,即S阴影=a2−b2.故答案为:a2−b2.(2)观察图形可知,阴影部分裁剪下来,重新拼成一个长方形,它的宽是a−b,长是a+b,面积是(a+b)(a−b).故答案为:a−b a+b(a+b)(a−b).(3)图1和图2表示的面积相等,可得a2−b2=(a+b)(a−b).故答案为:a2−b2=(a+b)(a−b).(4)①20222−2021×2023=20222−(2022−1)(2022+1)=20222−(20222−1)=1②(2m+n+p)(2m+n−p)=[(2m+n)+p][(2m+n)−p]=(2m+n)2−p2=4m2+4mn+n2−p29.(1)解:图1中阴影部分的面积为a2−b2,图2中的阴影部分的面积为(a+b)(a−b)∵图1和图2中两阴影部分的面积相等∵上述操作能验证的等式是a2−b2=(a+b)(a−b)故答案为:a2−b2=(a+b)(a−b);(2)解:①∵9a2−b2=36∵(3a+b)(3a−b)=36∵3a+b=9∵3a−b=4故答案为:4;②(1−122)⋅(1−132)⋅(1−142)⋅(1−152)⋅⋅⋅(1−120222)=(1+12)×(1−12)×(1+13)×(1−13)×(1+14)×(1−14)×⋯×(1+12022)(1−12022)=32×12×43×23×54×34×⋯×20232022×20212022=12×(32×23)×(43×34)×⋯×(20212022×20222021)×20232022=12×1×20232022=20234044.10.解:(1)(4m+n)2=(4m)2+2⋅(4m)⋅n+n2=16m 2+8mn +n 2;(2)(y −12)2=y 2−2⋅y ⋅12+(12)2=y 2−y +14. 11.解:∵(3x −1)2=(2−5x )2∵3x −1=±(2−5x )解得x =12或x =38.12.解:原式=(a −2b)2+2c(a −2b)+c 2=a 2−4ab +4b 2+2ac −4bc +c 2=a 2+4b 2+c 2−4ab +2ac −4bc .13.解:原式=49−48−(3−2√3+1)=2√3−314.解:把(x +y ),(x -y )看作完全平方公式里的a ,b .解:设x +y =a ,x -y =b则原式=a 2+4b 2-4ab =(a -2b )2=[(x +y )-2(x -y )]2=(3y -x )2.故答案为(3y -x )2.15.(1)解:∵x 2+1x 2=4∵(x +1x )2=x 2+2x ⋅1x +1x 2=x 2+2+1x 2=6,(x −1x )2=x 2−2x ⋅1x +1x 2=x 2−2+1x 2=2故答案为:6;2;(2)解:∵a +1a =5 ∵(a +1a )2=a 2+2+1a 2=25∵a 2+1a 2=(a +1a )2−2=23 故答案为:23;(3)解∵a 2−6a +1=0∵a ≠0∵a −6+1a =0∵a +1a =6∵(a+1a )2=a2+2+1a2=36∵a2+1a2=(a+1a)2−2=34∵2a2+2a2=2(a2+1a2)=68.16.解:∵两个正方形的面积=a2+b2=(a+b)2−2ab=100−40=60 ,SΔADC=12a2SΔFGC=12(a+b)⋅b∵阴影部分的面积为:60−12a2−12(a+b)⋅b=60−12a2−12ab−12b2=60−12(a2+b2)−12ab=60−12×60−12×20=20.17.(1)解:(1)用大正方形面积公式求得图形的面积为:(a+b)2;用两个小正方形面积加两个长方形面积和求出图形的面积为:a2+2ab+b2.故答案为:(a+b)2=a2+2ab+b2;(2)解:(2)∵a+b=10ab=12∴a2+b2=(a+b)2﹣2ab=100﹣24=76;(3)解:(3)设8﹣x=a x﹣2=b∵长方形的两邻边分别是8﹣x x﹣2∴a+b=8﹣x+x﹣2=6∵(8﹣x)2+(x﹣2)2=20∴a2+b2=(a+b)2﹣2ab=62﹣2ab=20∴ab=8∴这个长方形的面积=(8﹣x)(x﹣2)=ab=8.18.解:(1)根据题意可得绿化的面积为:(2a+b)(a+b)−a2=2a2+2ab+ab+b2−a2=a2+3ab+b2;(2)∵a+b=5∵a2+3ab+b2=a2+2ab+b2+ab=(a+b)2+ab=52+6=31(平方米).19.(1)解:由图2各部分的面积关系得:(a+b)2−(a−b)2=4ab故答案为:(a+b)2−(a−b)2=4ab;(2)由(1)题结果可得(x+y)2=(x−y)2+4xy=16−12=4∵x+y=±√4=±2∵x+y的值为±2;(3)设AC=x,BC=y则x2+y2=32 x+y=10∵2xy=(x+y)2−(x2+y2)=102−32=68∵xy=682=34∵S△ACF=12AC×CF=12×34=17∵阴影部分△ACF面积为17.20.解:(1)(a+b)2=a2+b2+2ab(2)设2024−m=a m−2023=b则(2024−m)(m−2023)=ab a+b=1由已知得:a2+b2=4047(a+b)2=a2+b2+2ab∵12=4047+2ab∵ab=−2023∵(2024−m)(m−2023)=−2023(3)设正方形EFGH的边长为x,则PG=x−8NG=32−x∵S阴=S正方形APGM+2S长方形PBNG+S正方形CQGN∵S阴=(x−8)2+2(x−8)(32−x)+(32−x)2∵(a+b)2=a2+b2+2ab=[(x−8)+(32−x)]2=242=576∵S阴。

2013七年级数学从面积到乘法公式测试

2013七年级数学从面积到乘法公式测试

从面积到乘法公式★A 卷二 基础知识点点通班级 姓名 成绩一、选择题(每题3分,共30分)1. 下列计算中正确的是( )A.623a a a =∙B.22))((b a b a b a -=-+C.222)(b a b a +=+D.222)2)((b a b a b a -=-+2. 计算))((x y y x ---的结果是( )A.22y x +-B.22y x --C.22y x -D.22y x +3. 与)9(b a -之积等于2281a b -的因式是( )A.b a -9B.b a +9C.b a --9D.a b 9-4. 22)(b a --的运算结果为( )A.2242b b a a +-B.2242b b a a ++C.2242b b a a ---D.222b ab a ++5. 若22)(y x p y x -=∙--,那么p 等于( )A.y x --B.y x +-C.y x -D.y x +6. 若1622+-mx x 是完全平方式,则m 的值是( )A.2B.2±C.4D.4±7. 下列各式,能用平方差计算的是( ) A.)231)(312(a b b a --- B.)23)(23(22a b b a ++- C.)2)(2(22-+-n m n m D.)3)(3(a bc bc a ---8. 当2-=x 时,代数式122-+-x x 的值等于( )A.9B.9-C.1D.1-9. 已知4=-y x ,12=xy ,则22y x +的值为( )A.28B.40C.26D.2510.计算结果为12224+-y x y x 的是( )A.222)1(-y xB.22)1(+y xC.22)1(-y xD.22)1(--y x二、填空题(每空1分,共20分)11.22)()()1)(1(-=-+--y x y x ,])2[()()2(22a b b a --=- 12.22)(6=++xy x ,222)(23)(=++y xy 13.=-=+n n n n 2223)()32(14.=+-+)4)(2)(2(2a a a ,4416)()2)(2(a x a x a x -=+-15.若m y x =+,n xy = ,则=+22y x ,=-2)(y x ,=+-22y xy x 16.已知m c b a =++,n c b a =++222,则=++ca bc ab17.如果2294y Mxy x +-是一个完全平方式,则=m 18.计算==-22267419.计算==29.8 三、解答题(第20题、第21题每题3分,第22题、第23题、第24题每题4分,第25题5分)20.简便计算⑴2002200420032⨯- ⑵2298⑶8110879⨯ ⑷28.9921.计算⑴)212)(212(22--+-x x ⑵))((n m n m y x y x +- ⑶22)3121()3121(b a b a -+ ⑷2)(z y x ++22.化简求值:)2)(2()2)(2(a b a b a b b a -+-+-,其中1=a ,2=b23.解方程:x x x x x 12)63)(2()3(2)1(522-+-=+--24.利用乘法公式计算⑴)4)(2)(16)(2(24+++-x x x x ⑵)231)(132(a b b a -+--25.已知1=+b a ,1-=ab ,求2)(3b a -的值。

2013七年级数学从面积到乘法公式测试2

2013七年级数学从面积到乘法公式测试2

从面积到乘法公式一、选择题(每题2分,共20分)1. 333)2(8ab b a -∙等于( )A.0B.6616b a -C.6664b a -D.6416b a -2. )5()()(223332abc c b a b a ∙-∙-等于( )A.314135c b a -B.236365c b a -C.314135c b aD.236365c b a3. 单项式乘以多项式依据的运算律是( )A.加法结合律B.乘法结合律C.乘法分配律D.乘法交换律4. 方程)2(4)6()23(2+=---x x x 的解为( )A.2=xB.3=xC.6=xD.4=x5. 下列计算正确的是( )A.y x xy xy y x xy 222212183)46(-=∙-B.12)12)((232+--=-+-x x x x xC.y x z y x y x yz xy y x 222232396)132)(3(--=-+--D.221232)2143(ab b a ab b a m m -=∙-++6. 下列计算中⑴ay ax y x a -=-)(⑵bxby xy b =)(⑶y x y x b b b +=+⑷344)6(216=⑸221212---=n n n xy y x 正确的个数是( )A.0个B.1个C.2个D.3个7. 当1-=a 时,n 为整数,则)63(112321n n n n n a a a a a +---++++的值是() A.9 B.3 C.-3 D.-98. 如果)51)((++x q x 的积中不含x 项,则q 等于( ) A.51B.5C.51- D.5-9. 多项式b x x ++2与多项式22--ax x 的乘积不含2x 和3x 项,则2)3(2ba --的值是( )A.8-B.4-C.0D.94-10. 长方形一边长n m 23+,另一边比它长n m -,则这个长方形面积是()A.2221112n mn m ++B.222512n mn m ++C.222512n mn m +-D.221112n mn m ++二、填空题(每空2分,共20分)11.若c bx ax x x ++=--2)25)(32(,则=a ,=b ,=c 12.=+-+)1)(1(2x x x ,=+-)13)(72(x x 13.ac ab a c b a 313132)2()(2--=-- ny my nx mx n m ++--=+)()(14.=----)154(65)232(311x x x x15.已知62-=ab ,则=---)(352b ab b a ab 16.如果a x -与b x -的乘积中不含x 的一次项,那么a 与b 的关系为三、解答题(第17题每题4分,第18题每题6分,第19题,第20题,第21题每题6分,共50分)17.计算: ⑴)21)(214(242x x x x --+-⑵)](3)3()3([2b a a b b a -+--- ⑶)32(6)543(5)32(4z y x z z y x y z y x x +--+-++-⑷544)()(98)])([(85a b b a b a b a -+∙-+⑸)]32(2)2321(43[22a ab b a ab ab ab -+--18.化简求值⑴)4)(56()32)(13(----+x x x x ,其中2-=x⑵)3)(5()96)(2(22b a b a a b ab a b a +-----其中32=a ,34-=b19.已知72=+y x ,522=+y x ,求)1(23)24(2222y y x y x -+--+的值20.已知4=+y x ,6=-y x ,化简xy x xy y y y xy 3)2()(22-+-+,并求它值21.若))(123(2b x x x ++-中不含2x 项,求b 的值,并求))(123(2b x x x ++-的值。

苏科版数学七年级下册从面积到乘法公式

苏科版数学七年级下册从面积到乘法公式

第十章 从面积到乘法公式★B 卷一 能力训练级级高 班级 姓名 成绩一、选择题(每题2分,共20分)1. 333)2(8ab b a -•等于( )A.0B.6616b a -C.6664b a -D.6416b a - 2. )5()()(223332abc c b a b a •-•-等于( ) A.314135c b a - B.236365c b a - C.314135c b a D.236365c b a3. 单项式乘以多项式依据的运算律是( )A.加法结合律B.乘法结合律C.乘法分配律D.乘法交换律 4. 方程)2(4)6()23(2+=---x x x 的解为( )A.2=xB.3=xC.6=xD.4=x 5. 下列计算正确的是( ) A.y x xy xy y x xy 222212183)46(-=•- B.12)12)((232+--=-+-x x x x xC.y x z y x y x yz xy y x 222232396)132)(3(--=-+--D.221232)2143(ab b a ab b a m m -=•-++6. 下列计算中⑴ay ax y x a -=-)(⑵bxby xy b =)(⑶y x y x b b b +=+ ⑷344)6(216=⑸221212---=n n n xy y x 正确的个数是( ) A.0个 B.1个 C.2个 D.3个7. 当1-=a 时,n 为整数,则)63(112321n n n n n a a a a a +---++++的值是( ) A.9 B.3 C.-3 D.-98. 如果)51)((++x q x 的积中不含x 项,则q 等于( )A.51B.5C.51- D.5-9. 多项式b x x ++2与多项式22--ax x 的乘积不含2x 和3x 项,则2)3(2ba --的值是( )A.8-B.4-C.0D.94-10. 长方形一边长n m 23+,另一边比它长n m -,则这个长方形面积是( )A.2221112n mn m ++B.222512n mn m ++C.222512n mn m +-D.221112n mn m ++二、填空题(每空2分,共20分)11.若c bx ax x x ++=--2)25)(32(,则=a ,=b ,=c12.=+-+)1)(1(2x x x ,=+-)13)(72(x x13.ac ab a c b a 313132)2()(2--=-- ny my nx mx n m ++--=+)()(14.=----)154(65)232(311xx x x15.已知62-=ab ,则=---)(352b ab b a ab16.如果a x -与b x -的乘积中不含x 的一次项,那么a 与b 的关系为三、解答题(第17题每题4分,第18题每题6分,第19题,第20题,第21题每题6分,共50分)17.计算:⑴)21)(214(242x x x x --+-⑵)](3)3()3([2b a a b b a -+---⑶)32(6)543(5)32(4z y x z z y x y z y x x +--+-++-⑷544)()(98)])([(85a b b a b a b a -+•-+⑸)]32(2)2321(43[22a ab b a ab ab ab -+--18.化简求值⑴)4)(56()32)(13(----+x x x x ,其中2-=x⑵)3)(5()96)(2(22b a b a a b ab a b a +-----其中32=a ,34-=b19.已知72=+y x ,522=+y x ,求)1(23)24(2222y y x y x -+--+的值20.已知4=+y x ,6=-y x ,化简xy x xy y y y xy 3)2()(22-+-+,并求它的值。

专题16 乘法公式-重难点题型(举一反三)(学生版)

专题16  乘法公式-重难点题型(举一反三)(学生版)

专题 乘法公式-重难点题型【知识点1 乘法公式】平方差公式:(a +b )(a -b )=a 2-b 2。

两个数的和与这两个数的差的积,等于这两个数的平方差。

这个公式叫做平方差公式。

完全平方公式:(a +b )2=a 2+2ab +b 2,(a -b )2=a 2-2ab +b 2。

两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍。

这两个公式叫做完全平方公式。

【题型1 乘法公式的基本运算】【例1】(2021•锦江区校级开学)下列运算正确的是( )A .(x +y )(﹣y +x )=x 2﹣y 2B .(﹣x +y )2=﹣x 2+2xy +y 2C .(﹣x ﹣y )2=﹣x 2﹣2xy ﹣y 2D .(x +y )(y ﹣x )=x 2﹣y 2【变式1-1】(2021春•龙岗区校级期中)下列关系式中,正确的是( )A .(a ﹣b )2=a 2﹣b 2B .(a +b )(﹣a ﹣b )=a 2﹣b 2C .(a +b )2=a 2+b 2D .(﹣a ﹣b )2=a 2+2ab +b 2【变式1-2】(2021春•舞钢市期末)下列乘法运算中,不能用平方差公式计算的是( )A .(m +1)(﹣1+m )B .(2a +3b ﹣5c )(2a ﹣3b ﹣5c )C .2021×2019D .(x ﹣3y )(3y ﹣x ) 【变式1-3】(2021春•龙岗区校级月考)下列各式,能用平方差公式计算的是( )A .(2a +b )(2b ﹣a )B .(﹣a ﹣2b )(﹣a +2b )C .(2a ﹣3b )(﹣2a +3b )D .(13a +1)(−13a −1) 【题型2 完全平方公式(求系数的值)】【例2】(2021春•仪征市期中)若多项式4x 2﹣mx +9是完全平方式,则m 的值是( )A .6B .12C .±12D .±6 【变式2-1】(2021春•南山区校级期中)如果x 2+8x +m 2是一个完全平方式,那么m 的值是( )A .4B .16C .±4D .±16【变式2-2】(2021春•新城区校级期末)已知:(x ﹣my )2=x 2+kxy +4y 2(m 、k 为常数),则常数k 的值为 .【变式2-3】(2021春•邗江区期中)若x 2﹣2(m ﹣1)x +4是一个完全平方式,则m = .【题型3 完全平方公式的几何背景】【例3】(2021春•兴宾区期末)有A ,B 两个正方形,按图甲所示将B 放在A 的内部,按图乙所示将A ,B 并列放置构造新的正方形.若图甲和图乙中阴影部分的面积分别为3和16,则正方形A ,B 的面积之和为( )A.13B.19C.11D.21【变式3-1】(2021春•芝罘区期末)用4块完全相同的长方形拼成如图所示的正方形,用不同的方法计算图中阴影部分的面积,可得到一个关于a,b的等式为()A.4a(a+b)=4a2+4ab B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+2ab+b2D.(a+b)2﹣(a﹣b)2=4ab【变式3-2】(2021春•岚山区期末)现有四个大小相同的长方形,可拼成如图1和图2所示的图形,在拼图2时,中间留下了一个边长为4的小正方形,则每个小长方形的面积是()A.3B.6C.12D.18【变式3-3】(2021春•深圳期中)有两个正方形A,B.现将B放在A的内部得图甲,将A,B并列放置后,构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B,如图丙摆放,则阴影部分的面积为()A.28B.29C.30D.31【题型4 平方差公式的几何背景】【例4】(2021•庐江县开学)如图1,在边长为a的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图2),利用这两个图形的面积,可以验证的等式是()A.a2+b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)【变式4-1】(2021春•博山区期末)如图1,将一个大长方形沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示图形,正好是边长为x的大正方形剪去一个边长为1的小正方形(阴影部分).这两个图能解释下列哪个等式()A.(x﹣1)2=x2﹣2x+1B.(x+1)(x﹣1)=x2﹣1C.(x+1)2=x2+2x+1D.x(x﹣1)=x2﹣x【变式4-2】(2021春•洪江市期末)如图(1),从边长为a的大正方形的四个角中挖去四个边长为b的小正方形后,将剩余的部分剪拼成一个长方形,如图(2),通过计算阴影部分的面积可以得到()A.(a﹣2b)2=a2﹣4ab+b2B.(a+2b)2=a2+4ab+b2C.(a﹣2b)(a+2b)=a2﹣4b2D.(a+b)2=a2+2ab+b2【变式4-3】(2020春•阳谷县期末)如图1,将边长为a的大正方形剪去一个边长为b的小正方形,再沿图中的虚线剪开,然后按图2所示进行拼接,请根据图形的面积写出一个含字母a,b的等式.【题型5 乘法公式(求代数式的值)】【例5(2021春•邗江区校级期末)若xy=﹣1,且x﹣y=3.(1)求(x﹣2)(y+2)的值;(2)求x2﹣xy+y2的值.【变式5-1】(2021•宁波模拟)已知(2x+y)2=58,(2x﹣y)2=18,则xy=.【变式5-2】(2021春•驿城区期末)已知a ﹣b =9,ab =﹣14,则a 2+b 2的值为 .【变式5-3】(2021春•聊城期末)已知:a ﹣b =6,a 2+b 2=20,求下列代数式的值:(1)ab ;(2)﹣a 3b ﹣2a 2b 2﹣ab 3.【题型6 乘法公式的综合运算】【例6】(2020秋•东湖区期末)实践与探索如图1,边长为a 的大正方形有一个边长为b 的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)上述操作能验证的等式是 ;(请选择正确的一个)A .a 2﹣b 2=(a +b )(a ﹣b )B .a 2﹣2ab +b 2=(a ﹣b )2C .a 2+ab =a (a +b )(2)请应用这个公式完成下列各题:①已知4a 2﹣b 2=24,2a +b =6,则2a ﹣b = .①计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.【变式6-1】(2021•滦南县二模)【阅读理解】我们知道:(a +b )2=a 2+2ab +b 2①,(a ﹣b )2=a 2﹣2ab +b 2①,①﹣①得:(a +b )2﹣(a ﹣b )2=4ab ,所以ab =(a+b)24−(a−b)24=(a+b 2)2−(a−b 2)2. 利用上面乘法公式的变形有时能进行简化计算.例:51×49=(51+492)2−(51−492)2=502−12=2500﹣1=2499. 【发现运用】根据阅读解答问题 (1)填空:102×98= (102+982) 2﹣ (102−982) 2;(2)请运用你发现的规律计算:19.2×20.8.【变式6-2】(2021春•平顶山期末)我们将(a+b)2=a2+2ab+b2进行变形,如:a2+b2=(a+b)2﹣2ab,ab= (a+b)2−(a2+b2)2等.根据以上变形解决下列问题:(1)已知a2+b2=8,(a+b)2=48,则ab=.(2)已知,若x满足(25﹣x)(x﹣10)=﹣15,求(25﹣x)2+(x﹣10)2的值.(3)如图,四边形ABED是梯形,DA①AB,EB①AB,AD=AC,BE=BC,连接CD,CE,若AC•BC=10,则图中阴影部分的面积为.【变式6-3】(2021春•滨江区校级期末)数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积:方法1:;方法2:;(2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系;(3)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,(a﹣b)2=13,求ab的值;①已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.。

乘除法 小数 面积 总复习

乘除法 小数 面积 总复习
验算:
96 ×9
864
252÷5= 100……3
10 0 5 503
5
3
验算:
100
×5
500

3
503
1.运算算理: ① 公式:被除数÷除数=商……余数 ② 验算:商×除数+余数=被除数 ③ 余数一定要比除数小 ( 最大的余数:除数-1 最小的余数:1 )
2.(三位数除以一位数)商位数判断方法: ①被除数最高位大于或等于除数,则商是三位数。 ②被除数最高位小于除数,则商是两位数。
(2)买三样东西一共要花多少钱?
2.3+3.5+3.9=9.7(元)
答:买三样东西一共要花9.7元。
2.一罐茶叶26.6元,一个茶杯4.5元,买一个茶杯和 一罐茶叶,40元够吗?(两种方法计算)
① 26.6+4.5=31.1(元) 31.1<40 答:40元够。
② 40-4.5=35.5(元) 35.5>26.6
小数大小比较
3.25 < 4.25
3.43 > 3.34
9.98 < 10.03
89.9 > 89.8
5.78 > 5.48
4.01 > 4
30角 > 0.48元 4.1分米 = 0.41米 9.9元+0.2元 < 11元 3.7分米 < 2米
小数大小比较的方法: ① 先比较整数部分,整数部分大的数就大。 ② 如果整数部分相同,再比较小数部分,一位 一位地比,直到比出大小为止。 ③ 若小数带单位,要转化成相同单位再比较。
2.写出以下小数。
三点四 写作: 3.4
零点三九 写作: 0.39
九点七零 写作: 9.70
二十二点零 写作: 22.0
七十八点四九五
写作: 78.495

4.14七年级数学下册_第九章从面积到乘法公式复习教案_苏科版 2

4.14七年级数学下册_第九章从面积到乘法公式复习教案_苏科版 2

第九章从面积到乘法公式单元总结提升班级____________姓名____________学号___________备课时间: 主备人:单元总结归纳一、本章的知识框图二、重点、难点突破重点:(一)单项式乘以单项式单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(二)单项式乘以多项式1.单项式与多项式的相乘,用单项式乘多项式的每一项,再把所得的积相加.即a(b+c+d)= ab+ac+ad.2.其几何意义为:3.单项式与多项式相乘的步骤:(1)按乘法分配律把乘积写成单项式与单项式乘积的代数和的形式;(2)进行单项式的乘法运算.(三)多项式乘以多项式1.多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.2.其几何意义为:3.多项式与多项式相乘的步骤:(1)用一个多项式的每一项乘另一个多项式的每一项;(2)把所得的积相加.(四)乘法公式1. 完全平方式公式:(a±b)2= a2±2ab+b2.(1)特征:完全平方公式的左边是一个二项式的完全平方,右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.可概括为“首平方,尾平方,乘积2倍放中央,中央符号回头望”.(2)语言叙述:两个数的和的平方等于这两个数的平方和与它们的积的2倍的和;两个数的差的平方等于这两个数的平方和与它们的积的2倍的差(3)几何意义:(a+b)2= a2+2ab+b2、(a-b)2=a2-2ab+b22.平方差公式:(a+b)(a-b)=a2-b2.(1)特征:公式的左边是两个数的和乘以这两个数的差,而公式的右边恰好是这两个数的平方差.(2)语言叙述:两个数的和乘以这两个数的差等于这两个数的平方差.(3)几何意义:5.因式分解(1)因式分解与整式乘法的区别与联系:把一个多项式写成几个整式积的形式叫做多项式的因式分解. 它与整式乘法是两种互逆的恒等变形.(2)提公式法分解因式:提公因式的依据是乘法分配律,其实质是分配律的“逆用”;提公因式分解因式的步骤是:a.找出多项式各项的公因式;b.提出多项式的公因式;提公因式分解因式的关键是正确找出各项的公因式,当一个多项式的公因式正确找出后,需要提取公因式,此时可以直接观察出提出公因式后剩下的另一个公因式;也可以用原多项式去除以公因式,所得的商即为提出公因式后,剩下的另一个因式.(3)公式法分解因式:平方差公式分解因式:a2-b2=(a+b)(a-b),两个数的平方差等于这两个数的和与这两个数的差的积.完全平方公式分解因式:a2±2ab+b2=(a±b)2,两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.难点:1. 单项式与单项式相乘,应注意:(1)先把各因式里的系数组成一组,积的系数等于各因式系数的积,即进行有理数的乘法运算,先确定积的符号,再计算绝对值;(2)相同字母相乘时,利用同底数幂的乘法法则“底数不变,指数相加”;(3)对于只在一个单项式中出现的字母,应连同它的指数一起写在积里,注意不能漏掉这部分因式;(4)单项式乘法中若有乘方、乘法等混合运算,应按“先乘方,再乘法”的顺序进行;(5)单项式与单项式相乘的积仍是单项式,对于字母因式的幂的底数是多项式形式的,应将其作为一个整体来运算;(6)对于三个或三个以上的单项式相乘,法则仍适用.2. 单项式与多项式相乘应注意:(1)单项式与多项式相乘,结果仍是多项式,其项数与因式中多项式的项数相同;(2)计算时要注意符号问题,多项式中每一项都包括它前面的符号,为了避免发生符号上的错误,计算时可以分为两步:先把“-”号放在括号外,把单项式与多项式相乘,然后去括号;(3)在混合运算时,要注意运算顺序,结果有同类项的要进行合并.3. 多项式乘以多项式应注意:(1)运算时要按一定的顺序进行,防止漏项,积的项数在没有合并同类项之前,应是两个多项式项数的积;(2)多项式是几个单项式的和,每项都包括前面的符号,在计算时要正确确定积中各项的符号;(3)运算结果有同类项的要合并同类项,并按某个字母的升幂或降幂排列.4.乘法公式(1)运用完全平方公式时应注意:明确使用和的完全平方公式还是差的完全平方公式;分清公式中的a、b分别代表什么;结果是三项式,首尾两项分别是左边二项式的每一项的平方,中间项是左边两项的积的二倍,尤其是中间项的二倍不能忘记.(2)运用平方差公式时应注意:首先明确能否利用平方差公式计算(能利用平方差的标准是一个二项式是两数的和,另一个二项式是这两数的差,我们把符号相同的数看作是a,把符号相反的项看作是b);结果是平方差,且两个数(项)的位置不能弄错;必须注意系数、指数的变化(3)灵活应用乘法公式首先必须做到心中牢记公式的“模样”,在此前提下再认真地对题目进行细致观察,想法设法通过调整项的位置和添括号等变形技巧,把式子凑成公式的“模样”,然后就可以应用公式进行计算了,这里关键是要善“变”.5.因式分解(1)对因式分解结果的约定:a.与原多项式相等;b.为积的形式,即从整体上看,最后结果应是一些因式的乘积;c.每个因式都是整式;d.在指定数集里,每个多项式不能再分解.e.形式最简.(2)用提公因式法分解因式应注意:a.公因式要提尽;b.小心漏项,提公因法分解因式后,括号里多项式的项数与原多项式的项数应该相同;c.提取公因式后的多项式首项一般取正号;d.分解因式与整式的乘法是互逆的过程,所以可以用整式的乘法来验证因式分解的正确性;e.把含有相同字母的式子作为公因式提出来时,要特别注意统一式子中字母的顺序;f.提公因式要干净彻底,也就是说当把多项式提出公因式后,剩下的另一个因式中应该再不能提出公因式了.(3)使用公式法分解因式:如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式;如果多项式是三项,其中两项同号,且能写成两数的平方和的形式,另一项是这两数乘积的2倍,可以运用完全平方公式分解.有时多项式不能直接使用公式时,还可以适当将它们变形.(4)综合运用提公因式法和运用公式法分解因式时要注意: 1.如果多项式各项有公因式,应先提公因式,再进一步分解; 2.分解因式必须分解到每个多项式的因式都不能再分解为止; 3.因式分解的结果必须是几个整式的积的形式.即:“一提”、“二套”、“三查”.特别强调“三查”,检查多项式的每一个因式是否还能继续分解因式,还可以用整式乘法检查因式分解的结果是否正确.整合拓展创新类型之一、基本概念型例1 下列变形中哪些变形是因式分解,哪些是整式乘法? (1)8a 2b 3c=2a 2b ·2b 3·2c (2)3a 2+6a=3a(a+2)(3)x 2-21y=(x+y1)(x -y1)(4)x 2-4+3x=(x+2)(x -2)+3x (5)ma+mb+na+nb=m(a+b)+n(a+b) (6)(2a+5b)(2a -5b)=4a 2-25b 2【思路分析】因式分解必须是左边是多项式,右边整体是积,且每个因式都是整式,它与整式乘法是互逆的恒等变形.变式题 下列变形中,因式分解对不对?为什么? (1)x 2y -xy 2=xy(x -y)(2)a 3-2ab+ab 2=a(a -b)2=a(a 2-2ab+b 2) (3)62ab -4ab 2+2ab=2ab(3a -2b) (4)4a 2-100=(2a+10)(2a -10) (5)a 2-b 2=(a -b)2提示: 第(2)题提取公因式a 后,括号里是a2-2b+b2,不是完全平方式;第(3)出现了漏项;第(4)题没有分解彻底,应先提取公因式4,再用平方差公式;第(5)题混淆了两个乘法公式.解:只有(1)是正确的.类型之二、基本运算型 1.整式乘法的运算例2 先规定一种运算:a *b=ab+a-b ,其中a 、b 为有理数,则a *b+(b-a )*b 等于( )A.a 2-b ;B.b 2-b ;C.b 2;D.b 2-a. 【点评】解决这类问题,理清题目意思是解题关键. 变式题 已知:A=2x 2+3xy-y 2,B=-21xy ,C=81x 3y 3-41x 2y 4.求:2AB 2-C.提示:直接代入计算,在复杂的式子计算中,先算乘方,再算多项式乘法,最后合并同类项例3 计算:(1)3(m+1)2-5(m+1)(m-1)+2(m-1)2(2)[(4x n+1-21y )2+4y (x n-16y )]÷8x 2.变式题 计算:(1)(a+b+c-d )(a-b+c+d ); (2)(x+1)(x+2)(x+3)(x+4).解:(1)观察运算符号,两多项式中a 、c 符号相同,b 、d 符号相反,因此可以把a 、c 结合在一起,看成一项,把b 、d 结合在一起,看成另一项,应用平方差公式计算.(2)经过观察1+4=2+3,因此将(x+1)(x+4)和(x+2)(x+3)先分别相乘,出现相同部分x 2+5x ,再视其为整体进行运算.2.因式分解例4 (1)分解因式:2x 2-18= ; (2) 分解因式:a 3-2a 2b+ab 2= ; (3) 分解因式:x 2-y 2+ax+ay= .【思路分析】(1)、(2)先提公因式,再用公式法;(3)要利用分组分解法.【点评】中考对因式分解的要求不太高,都以基本题为主.但有不少学生在解答第(1)、(2)题时常常在提公因式后就结束答题,从而失分.因此,在做因式分解时,最后一定要检验,使每个因式不能再分解才能结束.变式题 先阅读,再分解因式:x 4+4=(x 4+4x 2+4)-4x 2=(x 2+2)2-(2x )2=(x 2+2x+2)(x 2-2x-2). 仿照这种方法把多项式644+x 分解因式.提示 仿照例题,运用添项、减项(配方),使其可以用平方差公式分解. 解:644+x =(x 4+16x 2+64)-16x 2=(x 2+8)2-(4x )2=(x 2+4x+8)(x 2-4x+8) 类型之三、基本应用型例5 若x 2-4x +y 2-10y +29=0,求x 2y 2+2x 3y 2+x 4y 2的值.【思路分析】一个方程求两个未知数显然不容易,考虑已知等式的特点,将其整理为两个完全平方式的和,利用其非负性求出x 、y ,再化简所求代数式后代入求值.解:因为x 2-4x +y 2-10y +29=0,所以(x 2-4x+4)+(y 2-10y +25)=0, (x-2)2+(y-5)2=0,所以x=2,y=5.x2y2+2x3y2+x4y2= x2y2(1+2x+x2)= (xy)2(1+x)2=(2×5)2×(1+2)2=900.【点评】利用因式分解,根据完全平方式的非负性是由一个方程解两个未知数的常用方法之一.变式题矩形的周长是28cm,两边长为x,y,若x3+x2y-xy2-y3=0,求矩形的面积.提示把已知等式分解因式,利用矩形边长的非负性寻求解题途径.解:因为x3+x2y-xy2-y3=0,所以(x3+x2y)-(xy2+y3)=0,x2(x+y)-y2(x+y)=0,(x2-y2)(x+y)=0,(x+y)(x-y)(x+y)=0,(x+y)2(x-y)=0,又因为矩形的边长总是非负数,即(x+y)2>0,所以有x-y=0,即x=y.而由矩形的周长是28cm得到x+y=14,所以x=y=7.矩形的面积为49C㎡.答:矩形的面积为49C㎡.例6 若x2+7xy+my2-5x+43y-24可以分解成x,y的两个一次因式的积,试确定m的值.【思路分析】令x2+7xy+my2-5x+43y-24=(x+a y+b)(x+cy+d),再对比系数求得m.解:设x2+7xy+my2-5x+43y-24=(x+a y+b)(x+cy+d)=x2+(a+c)xy+a cy2+(b+d)x+(a d+bc)y+bd.对比多项式的系数得由③,⑤两式可得b=-8,d=3,或b=3,d=-8.(1)当b=-8,d=3时,得a=9,c=-2,⑥(2)当b=3,d=-8时,得a=-2,c=9.⑦∴m=-18.【点评】本题实质考查了学生对待定系数法的理解与运用能力. 变式题 已知多项式2x 3-x 2+m 有一个因式(2x+1),求m 的值.解答: 由已知条件可以设2x 3-x 2+m=(2x+1)(x 2+a x+b),则2x 3-x 2+m=2x 3+(2a +1)x 2+ (a +2b)x+b.对比多项式系数可得类型之四、思想方法型 1.整体转化思想例7 a 、b 互为相反数,c 、d 互为倒数,e 的绝对值是2,并且x=e+3ba 3+2cd+21e 2,求9x 2+[x (4x-3)-2x (x-3)]的值.【思路分析】整体确定a+b 、cd 的值,进而得到x 的值,将求值式化简后再代入. 解:根据题意,a+b=0,cd=1,|e|=2,所以x=e+b a 33+2cd+21e 2=e)+b a (3+2cd+21e 2=e 03×+2×1+21×22=2+2=4.原式=9x 2+(4x 2-3x-2x 2+6x )=11x 2+3x=11×42+4×3=6+12=188.【点评】本题综合性强,涉及到以前学过的互为相反数的和为0,互为倒数的积为1,绝对值的意义,题目较复杂,但还是应依据先化简,再求值的原则.变式题 (1)已知(a+b )2=144 , (a-b)2=36, 求ab 与a 2 + b 2 的值. (2)设m 2+m-1=0,求m 3+2m 2+2004的值. 提示:本题在解题时要运用整体思想. 解:(1)已知(a+b )2=144, (a-b)2=36,a2 +2ab+ b2=144,a2 -2ab+ b2=36,把ab 与a2 + b2分别看作是整体,两式相加得到2(a2 + b2)=180,即a2 + b2=90,两式相减,得到4ab=108,即ab=27.答:ab=27,a2 + b2=90.(2)∵m2+m-1=0,∴m2+m=1.∴m3+2m2+2004=m(m2+m)+m2+2004=m·1+m2+2004=m2+m+2004=1+2004=2005.答:m3+2m2+2004=2005.2.数形结合思想例8 在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)(a-b)=a2-b2;B.(a+b)2=a2+2ab+b2;C.(a-b)2=a2-2ab+b2;D.(a+2b)(a-b)=a2+ab-2b2.a图2图1【思路分析】先写出图中面积的不同表达形式,再比较作出判断.解:原阴影部分的面积为a2-b2,移动后阴影部分的面积为(a+b)(a-b),因此有(a+b)(a-b)=(a-b)2,选A.【点评】从面积到乘法公式,从乘法公式到面积表达式,充分展示了数学里的“数”与“形”的和谐美.由“数”到“形”,有“形”到“数”,这样反复观察思考、操作运算,对提高我们对数学的认识,锻炼我们的数学思维是大有益处的.变式题(苏科版课课练P63 6)如图,利用图形因式分解:a2+7ab+12b2. Array提示:结合图形寻求答案.解:a2+7ab+12b2=(a+3b)(a+4b).五、实践型1.思维实践型例9 多项式9x 2+1加上一个单项式后,使它能成为一个整式的完全平方式,那么加上的单项式可以是 .(填上一个你认为正确的即可)【思路分析】许多学生在解答此题时,由于受思维定势的影响,习惯于依据课本上的完全平方公式得9x 2+1+6x=(3x+1)2,或9x 2+1-6x=(3x-1)2,只要再动动脑筋,还可以得出:9x 2+1+481x 4=(29x 2+1)2,9x 2+1-1=(3x )2,9x 2+1-9x 2=12.解:所加的单项式可以是±6x 或481x 4或-1或-9x 2.【点评】这是一个适度的开放题,对思维要求能力比较高.变式题 观察一组式子:32+42=52,52+122=132,72+242=252,92+402=412,… 猜想一下,第n 个式子是 .提示: 通过观察几个具体的等式,而抽象出一般规律,本题可以通过变形产生平方差,再反复用平方差公式得解.解:观察已知式子,可知每个等式左边第二项的底数与右边的结果的底数为相邻的两个连续整数,变形可得52-42=32,132-122=52,252-242=72,412-402=92,…且有关系5=2×1×(1+1)+1,13=2×2×(2+1)+1,25=2×3×(3+1)+1,41=2×4×(4+1)+1,…从而第n 个式子中右边的底数为2n (n+1)+1,因此有:[2n ·(n+1)+1]2-[2n (n+1)]2={[2n ·(n+1)+1]+[2n (n+1)]}{[2n (n+1)+1]-[2n (n+1)]}=4n 2+4n+1=(2n+1)2.故第n 个式子为(2n+1)2+(2n 2+2n )2=(2n 2+2n+1)2. 2.动手实践型例10 现有足够的2×2,3 ×3的正方形和2×3的矩形图片A 、B 、C (如图),先从中各选取若干个图片拼成不同的图形,请你在下面给出的方格纸(每个小正方形的边长均为1)中,按下列要求画出一种拼法的示意图(要求每两个图片之间既无缝隙,也不重叠,画图时必须保留作图痕迹).(1)选取A 型、B 型两种图片各1块,C 型图片2块,拼成一个正方形;(2)选取A型图片4块、B型图片1块,C型图片4块,拼成一个正方形;(3)选取A型图片3块、B型图片1块,再选取若干块C型图片,拼成一个矩形.【思路分析】按常规思路是用画图(或实物图片)尝试去拼接,这样费时费力,效率低.若设A形纸片的边长是a,B型纸片的边长为b(b>a),则C型纸片的长为b、宽为a,抓住“拼接前后面积不变”这一条件,运用因式分解,可使解题目标的实施更明确,过程更简明.如(1)因拼接前后的总面积不变是a2+b2+2ab,分解因式得(a+b)2,则所拼接正方形边长为a+b.可拼接如图1所示的草图(注:没在提供的方格图中画).(2)由拼接前后的面积是4a2+b2+4ab,分解因式得(2a+b)2,则所拼接正方形边长为2a+b.可拼接如图2所示的草图.(3)拼接图形面积为3a2+b2+()ab,()为整数,能够拼接为某一图,则其必能分解,结合因式分解,知b2+4ab+3a2=(b+a)(b+3a),即选4张C型纸片即可拼接成一矩形,由分解因式的特点,可拼出如图3的草图.变式题(苏科版课课练P63 6)已知3种形状的长方形和正方形纸片(如图1):用它们拼成一个长为(3a+2b)、宽为(a+b)的长方形,各需多少块?并画出图形.提示:根据拼接前后面积不变知道长方形的面积为(3a+2b )(a+b )=3a 2+5ab+2b 2,显然需要A 正方形纸片3张、B 正方形纸片2张、C 长方形纸片5张,共10张纸片.解:需要A 正方形纸片3张、B 正方形纸片2张、C 长方形纸片5张,共10张纸片. 画图如图2所示. 中考名题欣赏1.计算:(-1-2a )(2a-1)= ; 化简:(21m+n )(m-2n )= .解:(1)方法1:(-1-2a )(2a-1)=-2a+1-4a 2+2a=1-4a 2;方法2:(-1-2a )(2a-1)=-(2a+1)(2a-1)=-(4a 2-1)=1-4a 2; 方法3:(-1-2a )(2a-1)=(-1-2a )(-1+2a )=(-1)2-(2a )2=1-4a 2. (2)方法1:原式=21m 2-mn+mn-2n 2=21m 2-2n 2;方法2:原式=21(m+2n )(m-2n )=21(m 2-4n 2)=21m 2-2n 2; 方法3:原式=2(21m+n )(21m-n )=2(41m 2-n 2)=21m 2-2n 2.【点评】该题考查乘法的基本运算和灵活运用乘法公式的能力,可以按多项式乘多项式的法则进行,也可以通过适当变形巧用乘法公式来简化计算.【方法技巧】对多项式进行适当变形,可达到运用乘法公式来简捷解题的目的.中考中对整式乘法知识的考查难度不大,但很灵活,在解题时我们一定要透过现象看本质,抓住特点,创造性地解题.2.(1)把代数式xy 2-9x 分解因式,结果正确的是( ) A.x (y 2-9) B.x (y+3)2 C.x (y+3)(y-3) D.x (y+9)(y-9)(2)把代数式a 3+ab 2-2a 2b 分解因式的结果是 . 解:(1)xy 2-9x=x (y 2-9)= x (y+3)(y-3),故选C ; (2)原式=a (a 2+b 2-2ab )=a (a 2-2ab+b 2)=a (a-b )2.【点评】该题既考查因式分解的概念,又考查因式分解的方法,先提公因式,再根据项数确定应用什么公式.在中考中,对因式分解的考查一般以填空题、选择题的形式出现,比较容易,但失分率却比较高,主要是对因式分解的概念模糊,分解不彻底所致.如第(1)题,不少考生可能选A ,第(2)题误填a (a 2+b 2-2ab ).3. (1)如图1是一个正方形与一个直角三角形所组成的图形,则该图形的面积为 ( )A.m 2+21mn B.2-m2mn c.2+m2mn D.2+nm22(2)三种不同类型的矩形地砖长宽如图2所示若先有A 类4块,B 类4块,C 类2块,要拼成一个正方形,则应多余出一块 型地砖;这样的地砖拼法表示了一个两数和的平方的几何意义,这个两数和的平方是 .解:(1)S=m 2+21·m ·(n-m )=m 2+21mn-21m 2=2+m2mn ,选C ;(2)通过动手操作可得如图3(答案不唯一),易知多了一块C 型地砖,其面积为(2m+n )2或4m 2+4mn+n 2.因此,依次填入C ,(2m+n )2= 4m 2+4mn+n 2.【点评】第(1)题可分别求出正方形和直角三角形的面积,再求和;第(2)题可通过动手操作,摆出图形来寻求答案. 该题考查学生数形结合的能力以及对单项式乘以多项式和乘法公式——完全平方公式的理解和掌握.利用几何的面积法与代数的计算法相结合,考查了学生的数形结合的能力,提升了难度,更体现了新课标的基本理念.4.老师在黑板上写出三个算式:52-32=8×2,92-72=8×4,152-32=8×27,王华又接着写出了两个具有同样规律的算式:112-52=8×12,152-72=8×22,……(1)请你再写出两个(不同于上面算式)具有上述规律的算式; (2)用文字写出反映上述算式的规律; (3)证明这个规律的正确性.解:(1)写出两个正确的算式,如:32-12=8×1,72-32=8×5等等; (2)规律:任意两个奇数的平方差等于8的倍数;(3)证明:设m 、n 为两个整数,两个奇数可表示为2m+1和2n+1, 则(2m+1)2-(2n+1)2=4(m-n )(m+n+1).当m 、n 同是奇数或偶数时,m-n 一定为偶数,所以4(m-n )一定是8的倍数;当m 、n 一奇一偶时,则m+n+1一定是偶数,所以4(m+n-1)一定是8的倍数.所以,任意两奇数的平方差是8的倍数.(说明:规律说成是:“两奇数的平方差是4的倍数”且证明正确也可得满分,如果证明中加设m >n 的条件,不扣分).【点评】这是一则探索规律题,等式左边是两个奇数的平方差,(大数减小数),右边是8的倍数.【方法技巧】解决探索规律题,要认真观察已给的等式和自己写出的等式,充分联想已有的知识,大胆猜想相应的结论,再进行严密推理说明,即认真观察,广泛联想,大胆猜测,小心论证.5.化简:(2x-1)2-(3x-1)(3x-1)+5x (x-1),再选一个你喜欢的数代替x 求值. 解:分别用完全平方公式、平方差公式、单项式乘以多项式的法则进行计算,再去括号,合并同类项.原式=4x 2-4x+1-(9x 2-1)+5x 2-5x=4x 2-4x+1-9x 2+1+5x 2-5x=-9x+2. 取一个x 值,代入求值即可.取x=0,则原式=2.【点评】这是一道自编自解题,先化简,后取一个x 值代入求值,但取x 值既要使原代数式有意义,又要使计算简捷方便.6.物资调运是国民经济的重要问题,安排得当可以为国家节省大量资金和物力,下面是一个车床调运的实例.北京与上海分别制造同种型号的车床10台和6台,这些车床计划分配到武汉和西安两地,运送一台车床的费用(单位:元)如下图1所示,如果北京发往武汉x 台,上海发往西安y 台,求总运费.图1解:作出如图2的网络图,并标上相关的数据,由图易知总运费W=500x+400(10-x )+950y+700(6-y)=100x+250y+8200(元)(答略).【点评】这是一道实际应用题,先从题目中(特别是表格中)提取相关信息,借助于整式运算的知识来解答.这里运用“词、数、图、式”一体化的解题思路,架起“示意图”这座桥梁,达到解决数学问题的目的.这种方法将数化形,其优越性在于直观、形象,是将具体问题抽象为数学模型的一种普遍使用的方法.章内专题阅读如何用乘法公式?乘法公式是初一代数的重要内容,对今后学习数学影响很大.也是中考考查的重要知识点.本文介绍如何使用乘法公式.1.直接用例1 计算(3x2+y)(3x2-y)分析本题符合平方差公式的结构特征,其中3x2相当于公式中的a、y相当于公式中的b,故可直接使用平方差公式.解原式=(3x2)2-y2=9x4-y2.2.连续用例2计算(x+1)(x2+1)(x4+1)(x8+1)(x-1).分析按顺序直接计算量很大,把最后一个因式放到前面,则可连续使用平方差公式.解原式=(x-1)(x+1)(x2+1)(x4+1)(x8+1)=(x2-1)(x2+1)(x4+1)(x8+1)=(x4-1)(x4+1)(x8+1)=(x8-1)(x8+1)= x16-1.3.整体用例3计算2)y-(新教案9.4(3)例4变式题)x-(z32分析将x-3y看成一个整体,原式可用完全平方公式计算.解原式=[(x-3y)-2z]2=(x-3y)2-4(3x-y)z+4z2=x2-6xy+9y2-12x+4y+4z2.4.逆向用例4 求证:无论x为何值,代数式4x2-12x+2都不小于-7.分析乘法公式是恒等式,必要时可逆向使用.本题配方后用完全平方式的非负性判断原式的取值范围.解 原式=(4x 2-12x+9)-7=(2x-3)2-7, 因为(2x-3)2≥0,所以 原式=(2x-3)2-7≥-7. 5.变序用例5 计算22)32()32(-+x x分析 先用积的乘方化为[(2x+3)(2x-3)]2,对用平方差公式,再用平方公式计算,改变运算顺序,要比先用完全平方公式将(2x+3)2、(2x-3)2展开后再计算要简便得多.解 原式=[(2x+3)(2x-3)]2=(4x 2-9)2=16x 4-72x 2+81.6.凑项用例6 计算(5+4)(52+42)(54+44)(58+48)…(5256+4256)分析 直接计算显然太麻烦.注意到从第二个因式开始每个因式的前项(或后项)都是前一个因式的前项(或后项)的平方,如果式子的开头能使用平方差公式,则后面就能反复循环使用.而式子的开头没有(5-4)这一因式,因此必然要拼凑因式(5-4).7.裂项用例7已知a 2-2a+b 2+4b+5=0,求(a+b)2005的值. (新教案9.6(2)例3)分析 一个方程两个未知数一般是不能确定其解的.但本题中的条件可通过裂项、分组、配方后求出a 、b 的值.8.搭配用例8 求证(x-1)(x-3)(x-5)(x-7)+16是完全平方式.分析 考察四个因式有序变化的结构特征,可让它们“均衡”搭配.即一、四两个因式与二、三两个因式分别搭配运算后,把得到的其中某一个因式看成一个整体再作恒等变形.9.消元用例9 已知实数x、y、Z满足z2=xy+y-9,x+y=5,求(x+z)-y.分析条件z2=xy+y-9是三个未知量的复杂关系,可通过x+y=5消元,化为二个未知量的关系,实现“减肥瘦身”.解 x=5-y,所以z2=(5-y)y+y-9,所以(y2-6y+9)+z2=0,所以(y-3)2+z2=0,解得y=3,z=0,所以x=2,故.(x+z)-y=(2+0)-3= 18.。

乘法公式典型题复习1

乘法公式典型题复习1
2 2
2
1 1 2 1 训练:已知:.x + = 5, 求x + 2 的值。 x x 1
a
4
3. 己知 己知x+y=a xy=b 求: ①x2+y2 ②x3+y3 2 2 2 2 4. 已知(a+b) =10,( -b) =2 求a +b , ab的值 已知( + ) ,(a- ) 的值 ,(
a2 + b2 .5.已知a+b=5,ab=7,求 2
2
签一签
1、. 如果多项式 是一个完全平方式,则m的值是 2 2、.如果多项式 是一个完全平方式,则k的值是
x − mx + 9
2
x + 8x + k


例1:已知: + b) = 40, (a − b) = 4, 求ab的值。 (a
2 2
(a + b) − (a − b) 40 − 4 解:ab = = =9 4 4
(
)
课内练习 1、 、
2、计算:( )103 、计算:(1) :(
2 2
(2)198 )
4
3、判断(2+1)( +1)( +1)…… 、判断( )(2 )(2 )( )( ) 2048 (2 +1)的个位数字是几? 的个位数字是几? 的个位数字是几 4、1.2345 +0.7655 +2×1.2345×0.7655 、 × ×
1 x 2
+2=9,
1 1 4 同理x 同理 +2+ , 4 =47. 4 =49,∴x + x x
例3:计算 :计算1999 -2000×1998 ×
〖解析〗此题中2000=1999+1,1998=1999-1, 解析〗此题中 , , 正好符合平方差公式。 正好符合平方差公式。 2 2 解:1999 -2000×1998 =1999 -(1999+1)× × ( ) 2-(19992-12)=19992(1999-1) =1999 ( ) 2 1999 +1 =1

苏科版七年级下数学第九章从面积到乘法公式提高题

苏科版七年级下数学第九章从面积到乘法公式提高题

单乘单 1、计算(-3x 2y)3·(-2xy 3z)2[2(a -b)3][-3(a -b)2][-32(a -b)]3423332435⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-⋅c ab b a ab·c b a c ab 532243—=2、计算(-4x n +1y n )3[(-xy)n ]2的结果是( )A .64x 5n+3y 5n B. -64x 5n+3y 5n C .12x 5n+1y 5n D.-12x 5n+1y 5n 3、若992213yx yxyx n nm m =⋅++-,则n m 43-的值为( ) (A )3(B )4 (C )5 (D )6多乘多1、(x+5)(x-7)=2、计算()()514+-y y(3x 2-2x -5)(-2x +3)(x -1)(2x -3)(3x +1)()()()()4321----x x x x3、若()()1532-+=++kx x m x x ,则m k +的值为( )(A )3- (B )5 (C )2- (D )2完全平方公式 1、(2x-4y)2 = 2、(-3a-5b)2= 3、(m -n -3)24、(2x +3y -z)25、下列式子中一定相等的是( )A 、(a- b )2 = a 2 - b 2B 、(a+ b)2 =a 2 + b 2C 、(a - b)2 = b 2 -2ab + a 2D 、(-a - b)2 = b 2 -2ab + a26、已知2249x mxy y -+是关于,x y 的完全平方式,则m = ;7、若二项式4m 2+1加上一个单项式后是一含m 的完全平方式,则单项式为8、有个多项式,它的中间项是12xy ,它的前后两项被墨水污染了看不清,请你把前后两项补充完整,使它成为完全平方式,你有几种方法?(要求至少写出两种不同的方法). 多项式:+12xy+=( )2多项式:+12xy+=( )2完全平方公式的关系1、x 2+y 2=(x+y )2- =(x -y )2+ .2、已知若3,2a b ab +=-=,则22a b += ,()2a b -= ; 已知(a+b )2=144 (a-b)2=36, 求ab 与a 2+ b 2的值3、已知x+y=0,xy=-6,则x 3y+xy 3的值是( )A .72B .-72C .0D .6 4、若a +351=a ,则221aa +=______若,41=+x x 求 441xx + = *5、已知a 2-3a +1=0.求aa 1+、221a a +和21⎪⎭⎫ ⎝⎛-a a 的值;平方差公式1、(2x-3y)(3x-2y )= ______________2、(—a+2b)(a+2b)= ______________.3、(6x-7y)(-6x-7y) = ______________4、(2a+b+3)(2a+b -3)5、(a -2b +3)(a +2b -3)6、下列计算是否正确?为什么(5x +2y)(5x -2y)=(5x)2-(2y)2=25x 2-4y 2(-1+3a)(-1-3a)=(-1)2+(3a)2=1+9a 2(-2x -3y)(3y -2x)=(3y)2-(2x)2=9y 2-4x 27、下列算式能用平方差公式计算的是( ) A.(2a +b )(2b -a ) B.)121)(121(--+x x C.(3x -y )(-3x +y ) D.(-m -n )(-m +n )妙用公式化简22222)()()(b a b a b a ++-(x +y) ( x 2+y 2) ( x -y))(44y x +2)5241(y x -2)5241(y x +[(x -y)2+(x +y)2](x 2-y 2)(2a +1)2-(1-2a )220092)1()1()1(1x x x x x x --∙∙∙------十字相乘公式1、计算: (1) (x +2)(x +1) (2) (x +2)(x -1) (3)(x -2)(x +1) (4) (x -2)(x -1) (5)(x +2)(x +3) (6) (x +2)(x -3) (7) (x -2)(x +3) (8) (x -2)(x -3) (9)(x +a )(x +b )你通过计算发现了什么规律 2、若)3)((62++=++x m x px x ,则___________==p m3、若(x+4)(x-2)= q px x ++2,则p 、q 的值是( )A 、2,8B 、-2,-8C 、-2,8D 、2,-84、两式相乘结果为1832--a a 的是( ) (A )()()92-+a a (B )()()92+-a a (C )()()36-+a a (D )()()36+-a a 整式混合运算1、(2a +1)2-(2a +1)(-1+2a)2、(1-y)2-(1+y)(-1-y)3、(1-2x)(1-3x)-4(3x -1)24、下面是小明和小红的一段对话: 小明说:“我发现,对于代数式()()()x x x x x 1033231++-+-,当2008=x 和2009=x 时,值居然是相等的.”小红说:“不可能,对于不同的值,应该有不同的结果.”在此问题中,你认为谁说的对呢?说明你的理由.5、试说明331122(24)(42)44m n m n n n ⎛⎫⎛⎫+-+-+ ⎪⎪⎝⎭⎝⎭的值与n 无关.面积公式1、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是: ( )A .()2222——b ab a b a +=B .()2222b ab a b a ++=+C .()ab a b a a 2222+=+D .()()22——b a b a b a =+2、按图中所示的几种方法分割正方形,你有何发现?请将你发现的结论分别用等式表示出来.3、(1)如图1,可以求出阴影部分的面积是 (写成两数平方的差的形式); (2)如图2,若将图1的阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2的阴影部分面积,可以得到乘法公式 (用式子表达).4、如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +2b)、宽为(a +b)的大长方形,则需要C 类卡片 张.5、例如,由两个边长分别a 、b 、c 为的直角三角形和一个两条直角边都是c 的直角三角形拼成一个新的图形,试用不同的方法计算这个图形的面积,你能发现什么?简便计算1982 10.5×9.52.39×91+156×2.39-2.39×4722234.0766.3468.0766.3+⨯+个个个m m m 9991999999∙∙∙+∙∙∙⨯∙∙∙()117)17)(17)(17(6842+++++()()()()12121212)12(2842+∙∙∙++++n2006200420052⨯-999910199⨯⨯222)119899(100++200220022001200120012000⨯-⨯222222100994321-+∙∙∙+-+-)1011()411)(311)(211(2222-∙∙∙---数学内应用1、解方程:()()()21212322--+=-a a a2、已知a 、b 、c 、d 为四个连续的奇数,设其中最小的奇数为d=2n-1(n 为正整数),当ac-bd=88时,求出这四个奇数。

专题1.6乘法公式的几何背景专项训练(30道)(举一反三)(北师大版)(原卷版)

专题1.6乘法公式的几何背景专项训练(30道)(举一反三)(北师大版)(原卷版)

专题1.6 乘法公式的几何背景专项训练(30道)【北师大版】1.(2021秋•无为市期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.b2+ab=b(a+b)C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x的值.②计算:(1−122)(1−132)(1−142)⋯(1−120202)(1−120212).2.(2021秋•商城县期末)如图1所示,边长为a的正方形中有一个边长为b(b<a)的小正方形.如图2所示是由图1中的阴影部分拼成的一个长方形.(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,则S1=,S2=(直接用含a,b的代数式表示)(2)请写出上述过程所揭示的数学公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.3.(2021秋•长春期末)将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,请用含a,b的式子表示:S1=,S2=;(不必化简)(2)由(1)中的结果可以验证的乘法公式是;(3)利用(2)中得到的公式,计算:20212﹣2020×2022.4.(2021春•奉化区校级期末)某同学利用若干张正方形纸片进行以下操作:(1)从边长为a的正方形纸片中减去一个边长为b的小正方形,如图1,再沿线段AB把纸片剪开,最后把剪成的两张纸片拼成如图2的等腰梯形,这一过程所揭示的公式是.(2)先剪出一个边长为a的正方形纸片和一个边长为b的正方形纸片,再剪出两张边长分别为a和b的长方形纸片,如图3,最后把剪成的四张纸片拼成如图4的正方形.这一过程你能发现什么代数公式?(3)先剪出两个边长为a的正方形纸片和一个边长为b的正方形纸片,再剪出三张边长分,别为a和b 的长方形纸片,如图5,你能否把图5中所有纸片拼成一个长方形?如果可以,请画出草图,并写出相应的等式,如果不能,请说明理由.5.(2021秋•东莞市期末)从边长为a的正方形中减掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(2)运用你从(1)写出的等式,完成下列各题:①已知:a﹣b=3,a2﹣b2=21,求a+b的值;②计算:(1−122)×(1−132)×(1−142)×⋯×(1−120202)×(1−120212).6.(2021秋•黔西南州期末)如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)写出根据上述操作利用阴影部分的面积关系得到的等式:.(2)请应用(1)中的等式,解答下列问题:①已知4a2﹣b2=24,2a+b=6,则2a﹣b=;②计算:2002﹣1992+1982﹣1972+…+42﹣32+22﹣12.7.(2021秋•科左中旗期末)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是(用式子表示),即乘法公式中的公式.(2)运用你所得到的公式计算:①10.3×9.7;②(x+2y﹣3z)(x﹣2y﹣3z).8.(2021秋•西城区校级期中)数形结合是数学学习中经常使用的数学方法之一,在研究代数问题时,如:学习平方差公式和完全平方公式,我们通过构造几何图形,用面积法可以很直观地推导出公式.以下三个构图都可以用几何方法生成代数结论,请尝试解决问题.构图一,小函同学从边长为a的大正方形纸板中挖去一个边长为b的小正方形后,将其裁成四个相同的等腰梯形(如图(1)),然后拼成一个平行四边形(如图(2)),那么通过计算两个图形阴影部分的面积,可以验证成立的公式为().A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)构图二、小云同学在数学课上画了一个腰长为a的等腰直角三角形,如图3,他在该三角形中画了一条平行于一腰的线段,得到一个腰长为b(a>b)的新等腰直角三角形,请你利用这个图形推导出一个关于a、b的等式.9.(2021秋•思明区校级期末)用纸片拼图时,我们发现利用图1中的三种纸片(边长分别为a,b的正方形和长为b宽为a的长方形)各若干,可以拼出一些长方形来解释某些等式,比如图2可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)图3可以解释为等式;(2)要拼出一个两边长为a+b,2a+b的长方形,需要图1中的三种纸片各多少块?请先画出图形,再利用整式乘法验证你的结论.10.(2021春•东海县期末)如图1,是边长分别为a和b的两种正方形纸片.(1)若用这两种纸片各1张按照如图2方式放置,其未叠合部分(阴影部分)面积为S1,则S1=;(用含a,b的代数式表示)(2)在(1)中图2的基础上,再在大正方形的右下角摆放一张边长为b的小正方形纸片(图3),两个小正方形叠合部分(阴影部分)面积为S2,试求S2.(用含a,b的代数式表示)11.(2021秋•孝义市期末)完全平方公式是多项式乘法(a+b)(p+q)中,p=a,q=b的特殊情形.完全平方公式可以用图形表示说明.知识再现如图1,大正方形的面积有两种表示方法.方法一:大正方形可以看作是边长为(a+b)的正方形,则大正方形的面积可以表示为;方法二:大正方形的面积还可以看作是两个正方形的面积与两个长方形的和,即S1,S2,S3,S4的和,则大正方形的面积可以表示为;所以图1中大正方形的面积可以说明的公式是;经验总结完全平方公式可以从“数”和“形”两个角度进行探究,并通过公式的变形或图形的转化可以解决很多数学问题.例如:如图1,已知a+b=3,ab=1,求a2+b2的值.方法一:解:∵a+b=3,∴(a+b)2=9,即:a2+2ab+b2=9,又∵ab=1∴a2+b2=7.方法二:解:∵a+b=3,即大正方形的面积为9,∵ab=1,∴S2=S3=ab=1,∴S1+S4=S大正方形﹣S2﹣S3=9﹣1﹣1=7.即a2+b2=7.应用迁移如图2,点C是线段AB上的一点,以AC、BC为边向两边作正方形,连接BD,若AB=5,两正方形的面积和S1+S2=13,求△BCD的面积.(用两种方法解答)12.(2021秋•章贡区期末)图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)观察图2,请你写出下列三个代数式(a+b)2,(a﹣b)2,ab之间的等量关系为.(2)运用你所得到的公式,计算:若m、n为实数,且mn=﹣3,m﹣n=4,试求m+n的值.(3)如图3,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=8,两正方形的面积和S1+S2=26,求图中阴影部分面积.13.(2021秋•龙岩期末)(1)【观察】如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).请你写出(a+b)2,(a ﹣b)2,ab之间的等量关系:.(2)【应用】若m+n=6,mn=5,则m﹣n=;(3)【拓展】如图3,正方形ABCD的边长为x,AE=5,CG=15,长方形EFGD的面积是300,四边形NGDH和四边形MEDQ都是正方形,四边形PQDH是长方形,求图中阴影部分的面积.14.(2021秋•巧家县期末)数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.15.(2021秋•花都区期末)如图1,有A型、B型、C型三种不同形状的纸板,A型是边长为a的正方形,B型是边长为b的正方形,C型是长为b,宽为a的长方形.现用A型纸板一张,B型纸板一张,C型纸板两张拼成如图2的大正方形.(1)观察图2,请你用两种方法表示出图2的总面积.方法1:;方法2:;请利用图2的面积表示方法,写出一个关于a,b的等式:.(2)已知图2的总面积为49,一张A型纸板和一张B型纸板的面积之和为25,求ab的值.(3)用一张A型纸板和一张B型纸板,拼成图3所示的图形,若a+b=8,ab=15,求图3中阴影部分的面积.16.(2021秋•上蔡县期末)利用平面图形中面积相等的等量关系可以得到某些数学公式.例如:根据图①,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.(1)根据图②,可以得到的数学公式是;(2)根据图③,请写出(a+b)、(a﹣b)、ab的等量关系是.(3)根据图④,请写出一个等式:;(4)小明同学使用图⑤中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片,恰好拼成一个面积为(3a+b)(a+3b)的长方形,则可得x+y+z的值为;(5)类似地,利用立体图形体积的等量关系也可以得到某些数学公式.现请你根据图⑥,写出一个等式:.17.(2021秋•西峰区期末)阅读材料:若满足(8﹣x)(x﹣6)=﹣3,求(8﹣x)2+(x﹣6)2的值.解:设8﹣x=a,x﹣6=b,则(8﹣x)(x﹣6)=ab=﹣3,a+b=8﹣x+x﹣6=2.所以(8﹣x)2+(x﹣6)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10.请仿照上例解决下面的问题:(1)问题发现:若x满足(3﹣x)(x﹣2)=﹣10,求(3﹣x)2+(x﹣2)2的值;(2)类比探究:若x满足(2022﹣x)2+(2021﹣x)2=2020.求(2022﹣x)(2021﹣x)的值;(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).18.(2021秋•宽城区期末)【教材呈现】图①、图②、图③分别是华东师大版八年级上册数学教材第33页、第34页和第52页的图形,结合图形解决下列问题:(1)分别写出能够表示图①、图②中图形的面积关系的乘法公式:,.(2)图③是用四个长和宽分别为a、b的全等长方形拼成的一个正方形(所拼图形无重叠、无缝隙),写出代数式(a+b)2、(a﹣b)2、4ab之间的等量关系:.【结论应用】根据上面(2)中探索的结论,回答下列问题:(3)当m+n=5,mn=4时,求m﹣n的值.(4)当A=m+34,B=m﹣3时,化简(A+B)2﹣(A﹣B)2.19.(2021秋•南昌县期末)阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.图1给出了若干个边长为a和边长为b的小正方形纸片及若干个边长为a、b的长方形纸片.请解答下列问题:(1)图2是由图1提供的几何图形拼接而得,可以得到(a+b)(a+2b)=;(2)请写出图3中所表示的数学等式:;(3)请按要求利用所给的纸片在图4的方框中拼出一个长方形,要求所拼出图形的面积为(2a+b)(a+b),进而可以得到等式:(2a+b)(a+b)=;(4)利用(3)中得到的结论,解决下面的问题:若4a2+6ab+2b2=5,a+b=12,求2a+b的值.20.(2021秋•丹棱县期末)阅读下列文字,我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片.若干个长为a和宽为b的长方形纸片,利用所给的纸片拼出一个几何图形,使得计算它的面积能得到数学公式:2a2+5ab+2b2=(2a+b)(a+2b).21.(2021秋•永春县期中)发现与探索:小丽发现通过用两种不同的方法计算同一几何体体积,就可以得到一个恒等式.如图是棱长为(a+b)的正方体,被如图所示的分割线分成8块.(1)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式为;(2)已知a+b=4,ab=2,利用上面的规律求a3+b3的值.22.(2021春•盐湖区校级期末)阅读材料并解答问题:我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些等式也可以用这种方式表示,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2来表示.(1)上述的方法体现了一种数学思想方法,这种数学思想方法是.A、转化思想B、方程思想C、数形结合思想D、分类讨论(2)请写出图3中所表示的整式乘法的等式.(3)试画出一个几何图形,使它的面积能够表示:(a+b)(a+3b)=a2+4ab+3b2.(4)请仿照上述方法写出另一个含有a、b的等式,并画出与之对应的几何图形.23.(2021春•龙华区期末)阅读下面的材料,然后解答后面的问题:在数学中,“算两次”是一种常用的方法.其思想是,对一个具体的量用方法甲来计算,得到的答案是A,而用方法乙计算则得到的答案是B,那么等式A=B成立.例如,我们运用“算两次”的方法计算图1中最大的正方形的面积,可以得到等式(a+b)2=a2+2ab+b2.理解:(1)运用“算两次”的方法计算图2中最大的正方形的面积,可以得到的等式是;应用:(2)七(1)班某数学学习小组用8个直角边长为a、b的全等直角三角形拼成如图3所示的中间内含正方形A1B1C1D1与A2B2C2D2的正方形ABCD,运用“算两次”的方法计算正方形A2B2C2D2的面积,可以得到的等式是;拓展:如图4,已知Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,点D是AB上一动点.求CD的最小值.24.(2021春•靖江市月考)如图①是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图②).(1)根据上述过程,写出(a+b)2、(a﹣b)2、ab之间的等量关系:;(2)利用(2)中的结论,若x+y=4,xy=94,则(x﹣y)2的值是;(3)实际上通过计算图形的面积可以探求相应的等式,如图③,请你写出这个等式:;(4)如图④,点C是线段AB上的一点,分别以AC、BC为边在AB的同侧作正方形ACDE和正方形CBFG,连接EG、BG、BE,当BC=1时,△BEG的面积记为S1,当BC=2时,△BEG的面积记为S2…,以此类推,当BC=n时,△BEG的面积记为S n时,试求S2021﹣S2020的值.25.(2020秋•天河区期末)某地产公司为了吸引年轻人购房,推出“主房+多变入户花园”的两种户型.即在图1中边长为a米的正方形主房进行改造.户型一是在主房两侧均加长b米(0<9b<a).阴影部分作为入户花园,如图2所示.户型二是在主房一边减少b米后,另一边再增加b米,阴影部分作为入户花园.如图3所示.解答下列问题:(1)设两种户型的主房面积差为M,入户花园的面积差为N,试比较M和N的大小.(2)若户型一的总价为50万元,户型二的总价为40万元,试判断哪种户型单价较低,并说明理由.26.(2021春•临渭区期末)数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1、图2、图3分别能解释的乘法公式.(2)用4个全等的长和宽分别为a、b的长方形拼摆成一个如图4的正方形,请你写出这三个代数式(a+b)2、(a﹣b)2、ab之间的等量关系.(3)根据(2)中你探索发现的结论,完成下列问题:①当a+b=5,ab=﹣6时,则a﹣b的值为.②设A=x+2y−34,B=x﹣2y﹣3,计算:(A+B)2﹣(A﹣B)2的结果.27.(2021秋•延边州期末)(1)在数学中,完全平方公式是比较熟悉的,例如(a﹣b)2=a2﹣2ab+b2.若a﹣b=3,ab=2,则a2+b2=;(2)如图1,线段AB上有一点C,以AC、CB为直角边在上方分别作等腰直角三角形ACE和CBF,已知,EF=2,△ACF的面积为6,设AC=a,BC=b,求△ACE与△CBF的面积之和;(3)如图2,两个正方形ABCD和EFGH重叠放置,两条边的交点分别为M、N.AB的延长线与FG交于点Q,CB的延长线与EF交于点P,已知AM=7,CN=3,阴影部分的两个正方形EPBM和BQGN的面积之和为60,则正方形ABCD和EFGH的重叠部分的长方形BMHN的面积为.28.(2021秋•二道区期末)例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因为ab=1,所以a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)填空:若(4﹣x)x=5,则(4﹣x)2+x2=;(3)如图所示,已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,且AE=1,CF=2,长方形EMFD的面积是12,分别以MF、DF为边作正方形MFRN和正方形GFDH,则x的值为.29.(2021秋•朝阳区校级期中)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式.(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张两边长分别为a、b的长方形纸片拼出一个面积为(5a+7b)(9a+4b)的长方形,则x+y+z=.30.(2021春•姑苏区期中)学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式;(2)请用这3种卡片拼出一个面积为a2+5ab+6b2的长方形(数量不限),在图3的虚线框中画出示意图,并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A型卡片,4张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,图中两阴影部分(长方形)为没有放置卡片的部分.已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2.若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.(用含a或b的代数式表示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从面积到乘法公式复习题
班级 姓名 学号
一.选择题(每小题2分,共14分)
1.计算()()b a b a --+33等于: ( )
A .2269b ab a --
B .2296a ab b --—
C .229a b -
D .2
2
9b a - 2.下列各式中,是完全平方式的是
( )
A .m 2-mn+n 2
B .x 2-2x-1
C .x 2+2x+0.25
D .0.25b 2-ab+a 2
3. 下列计算中①x (2x-x +1)=2x 2-x +1;②(a+b )2=a 2+b 2;③(x-4)2=x 2-4x+16; ④(5a -1)(-5a -1)=25a 2-1;⑤(-a-b )2=a 2+2ab+b 2,正确的个数有 ( )
A .1个
B .2个
C .3个
D .4个
4. 若m+m 1
=3,则m 2+2m 1的值是 ( )
A .7
B .11
C .9
D .1
5. ()
()212-+-x mx x 的积中x 的二次项系数为零,则m 的值是: ( )
A .1
B .–1
C .–2
D .2 6. (x-3y )2=(x+3y)2+M,则M 等于
( ) A .6xy B .-6xy
C .±12xy
D .-12xy
7.若一个长方形的长是宽的2倍,宽为 2.5×104cm ,那么这个长方形的面积是
( )
A .1.25×104cm 2
B .1.25×106cm 2
C .1.25×108cm 2
D .1.25×109cm 2 二.填空题(每空2分,共32分)
8. 计算: (2x +5)(x -5) =___________;(3x -2)2=_______________;
(—a +2b )(a +2b )= ______________;()()b a b b a a --+=_____________. 9. ·c b a c ab 532243—=; ()22——a b a = 22b ab + ()()=⨯⨯⨯2
4
103105________;
(用科学记数法表示) 10.(1)若))(3(152n x x mx x ++=-+,则m = ; (2)若(a +b )2=7,(a —b )2=3,则ab = ;
若a -b =13, a 2-b 2=39,则(a +b )2= ;
(3)若2249x mxy y -+是关于,x y 的完全平方式,则m = ;
(4)若3,2a b ab +=-=,则22
a b += ,()2
a b -= ;
11. 若1,2=-=-c a b a ,则=-+--22)()2(a c c b a
12. 用一张包装纸包一本长.宽.厚如图所示的书(单位:cm ), 如果将封面和封底每一边都包进去3cm .则需长方形的包装 纸 2
cm .
13. 多项式4a 2+1加上一个单项式后,使它成为一个完全平方式,那么加上的单项式可以是
(填上你认为正确的所有答案)
三.解答题(共54分)
14.计算(每小题3分,共21分)
1. 2)72(y x - 2.(x-2y )(x +2y ) 3.(x +4y )2(x -4y )2
4.22)33
()33(
--+a
a 5.2.39×91+156×2.39-2.39×47
6.()()()y x x y y x -+--33322
7. (x +y ) ( x 2+y 2) ( x -y ))(4
4
y x +
15.(本题4分)已知:22b a )1(:,12ab ,7b a +==+试求 (2) 2
)b a (- 的值.
16. (本题4分)已知()72
=+b a ,()42
=b a —,求2
2b a +和ab 的值
用这种方法不仅可比大
小,也能解计算题哟!
17. (本题4分)解方程: ()()()()2531233128x x x x +--+-=
18. (本题10分)先化简,再求值:
① (x -5y )(-x -5y )-(-x +5y )2,其中x =0.5,y =-1;
② ()321212
2+⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛
+⎪⎭⎫ ⎝⎛a a a —— ,其中a = —2
19.阅读解答题:(本题5分)
有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.
例:(2004年河北省初中数学竞赛题)若
x =123456789×123456786,y =123456788×123456787,试比较x .y
的大小.
解:设123456788=a ,
那么x =()()2212———a a a a =+, y =()a a a a ——21= ∵()()02222<a a a a y x ——————== ∴x <y 看完后,你学到了这种方法吗?再亲自试一试吧,你准行!
问题:计算: 2
2
1.123450.12345
2.2469 1.123450.12345 1.12345⨯⨯-⨯-
20.阅读下列材料并回答问题: (本题6分)
我们知道,两数和的平方公式―(a +b )2=a 2+2 ab +b 2‖可以用平面图形的面积来表示,(如图A ).实际上,有些代数恒等式也可以用用平面图形的面积来表示,例如:(2a +b )(a +b )可以用图形B 或者C 的面积来表示。

①请写出图形D 所表示的一个代数恒等式: ; ②试画出一个平面图形,使它的面积能够表示代数恒等式:(a +b )(c +d )=ac + ad + bc + bd ③请仿照上述方法另写出一个关于x .y 的代数恒等式,并设计画出一个与之相对应的平面图形。

(要求与上述所列举的代数恒等式不同)
a
b
a b
a
b
D a 2
a
b
C
ab b 2
A B
b 2
a 恒等式为:
a
b
b。

相关文档
最新文档