(完整word版)扩展卡尔曼滤波算法的matlab程序

合集下载

扩展卡尔曼滤波matlab程序

扩展卡尔曼滤波matlab程序

文件一% THIS PROGRAM IS FOR IMPLEMENTATION OF DISCRETE TIME PROCESS EXTENDED KALMAN FILTER% FOR GAUSSIAN AND LINEAR STOCHASTIC DIFFERENCE EQUATION.% By (R.C.R.C.R),SPLABS,MPL.% (17 JULY 2005).% Help by Aarthi Nadarajan is acknowledged.% (drawback of EKF is when nonlinearity is high, we can extend the % approximation taking additional terms in Taylor's series).clc; close all; clear all;Xint_v = [1; 0; 0; 0; 0];wk = [1 0 0 0 0];vk = [1 0 0 0 0];for ii = 1:1:length(Xint_v)Ap(ii) = Xint_v(ii)*2;W(ii) = 0;H(ii) = ‐sin(Xint_v(ii));V(ii) = 0;Wk(ii) = 0;endUk = randn(1,200);Qu = cov(Uk);Vk = randn(1,200);Qv = cov(Vk);C = [1 0 0 0 0];n = 100;[YY XX] = EKLMNFTR1(Ap,Xint_v,Uk,Qu,Vk,Qv,C,n,Wk,W,V);for it = 1:1:length(XX)MSE(it) = YY(it) ‐ XX(it);endtt = 1:1:length(XX);figure(1); subplot(211); plot(XX); title('ORIGINAL SIGNAL'); subplot(212); plot(YY); title('ESTIMATED SIGNAL');figure(2); plot(tt,XX,tt,YY); title('Combined plot');legend('original','estimated');figure(3); plot(MSE.^2); title('Mean square error');子文件::function [YY,XX] =EKLMNFTR1(Ap,Xint_v,Uk,Qu,Vk,Qv,C,n,Wk,W,V);Ap(2,:) = 0;for ii = 1:1:length(Ap)‐1Ap(ii+1,ii) = 1;endinx = 1;UUk = [Uk(inx); 0; 0; 0; 0];PPk = (Xint_v*Xint_v');VVk = [Vk(inx); 0; 0; 0; 0];Qv = V*V';for ii = 1:1:length(Xint_v)XKk(ii,1) =Xint_v(ii)^2; % FIRST STEP endPPk = Ap*PPk*Ap'; % SECOND STEPKk = PPk*C'*inv( (C*PPk*C') + (V*Qv*V') ); % THIRD STEPfor ii = 1:1:length(Xint_v)XUPK(ii,1) = XKk(ii)^2 + UUk(ii); % UPPER EQUATIONS.Zk(ii,1) = cos(XUPK(ii)) +VVk(ii); % UPPER EQUATIONS.endfor ii = 1:1:length(XKk)XBARk(ii,1) = XKk(ii) + Kk(ii)*(Zk(ii) ‐(cos(XKk(ii)))) ; % FOURTH STEPendII = eye(5,5);Pk = ( II ‐ Kk*C)*PPk; % FIFTH STEP%‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐%‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐for ii = 1:1:nUUk = [Uk(ii+1); 0; 0; 0; 0];PPk = XBARk*XBARk';VVk = [Vk(ii+1); 0; 0; 0; 0];XKk = exp(‐XBARk); % FIRST STEPPPkM = Ap*PPk*Ap'; % SECOND STEPKk = PPkM*C'*inv( (C*PPkM*C') + (V*Qv*V') ); % THIRD STEPfor nn = 1:1:length(XBARk)XUPK(nn) = exp(‐XKk(nn)) + UUk(nn); % UPPER EQUATIONS.Zk(nn) = cos(XUPK(nn)) + VVk(nn); % UPPER EQUATIONS.endfor in = 1:1:length(XUPK)XNEW(in) = XBARk(in) + Kk(in)*(Zk(in) ‐ cos(XBARk(in))); % FOURTH STEPendII = eye(5,5);Pk = (II ‐ Kk*C)*PPkM; % FIFTH STEPXBARk = XNEW;OUTX(ii) = XBARk(1,1);OUTY(ii) = Zk(1,1);endYY = OUTY;XX = OUTX;。

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的算法。

在目标跟踪定位中,它可以用于估计目标的运动轨迹。

下面是一个简单的基于扩展卡尔曼滤波的目标跟踪定位算法的描述,以及一个简化的MATLAB程序实现。

算法描述1. 初始化:设置初始状态估计值(例如位置和速度)以及初始的估计误差协方差矩阵。

2. 预测:根据上一时刻的状态估计值和模型预测下一时刻的状态。

3. 更新:结合观测数据和预测值,使用扩展卡尔曼滤波算法更新状态估计值和估计误差协方差矩阵。

4. 迭代:重复步骤2和3,直到达到终止条件。

MATLAB程序实现这是一个简化的示例,仅用于说明扩展卡尔曼滤波在目标跟踪定位中的应用。

实际应用中,您需要根据具体问题和数据调整模型和参数。

```matlab% 参数设置dt = ; % 时间间隔Q = ; % 过程噪声协方差R = 1; % 观测噪声协方差x_est = [0; 0]; % 初始位置估计P_est = eye(2); % 初始估计误差协方差矩阵% 模拟数据:观测位置和真实轨迹N = 100; % 模拟数据点数x_true = [0; 0]; % 真实轨迹初始位置for k = 1:N% 真实轨迹模型(这里使用简化的匀速模型)x_true(1) = x_true(1) + x_true(2)dt;x_true(2) = x_true(2);% 观测模型(这里假设有噪声)z = x_true + sqrt(R)randn; % 观测位置% 扩展卡尔曼滤波更新步骤[x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R);end% 扩展卡尔曼滤波更新函数(这里简化为2D一维情况)function [x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R)% 预测步骤:无观测时使用上一时刻的状态和模型预测下一时刻状态F = [1 dt; 0 1]; % 状态转移矩阵(这里使用简化的匀速模型)x_pred = Fx_est + [0; 0]; % 预测位置P_pred = FP_estF' + Q; % 预测误差协方差矩阵% 更新步骤:结合观测数据和预测值进行状态更新和误差协方差矩阵更新K = P_predinv(HP_pred + R); % 卡尔曼增益矩阵x_est = x_pred + K(z - Hx_pred); % 更新位置估计值P_est = (eye(2) - KH)P_pred; % 更新误差协方差矩阵end```这个示例代码使用扩展卡尔曼滤波对一个简化的匀速运动模型进行估计。

扩展卡尔曼滤波算法的matlab程序

扩展卡尔曼滤波算法的matlab程序

clear allv=150; %%目标速度v_sensor=0;%%传感器速度t=1; %%扫描周期xradarpositon=0; %%传感器坐标yradarpositon=0; %%ppred=zeros(4,4);Pzz=zeros(2,2);Pxx=zeros(4,2);xpred=zeros(4,1);ypred=zeros(2,1);sumx=0;sumy=0;sumxukf=0;sumyukf=0;sumxekf=0;sumyekf=0; %%%统计的初值L=4;alpha=1;kalpha=0;belta=2;ramda=3-L;azimutherror=0.015; %%方位均方误差rangeerror=100; %%距离均方误差processnoise=1; %%过程噪声均方差tao=[t^3/3 t^2/2 0 0;t^2/2 t 0 0;0 0 t^3/3 t^2/2;0 0 t^2/2 t]; %% the input matrix of process G=[t^2/2 0t 00 t^2/20 t ];a=35*pi/180;a_v=5/100;a_sensor=45*pi/180;x(1)=8000; %%初始位置y(1)=12000;for i=1:200x(i+1)=x(i)+v*cos(a)*t;y(i+1)=y(i)+v*sin(a)*t;endfor i=1:200xradarpositon=0;yradarpositon=0;Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror,1,1); Zmeasure(2,i)=sqrt((y(i)-yradarpositon)^2+(x(i)-xradarpositon)^2)+random('Normal',0,rangeerror,1,1);xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%%观测值yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i));measureerror=[azimutherror^2 0;0 rangeerror^2];processerror=tao*processnoise;vNoise = size(processerror,1);wNoise = size(measureerror,1);A=[1 t 0 0;0 1 0 0;0 0 1 t;0 0 0 1];Anoise=size(A,1);for j=1:2*L+1Wm(j)=1/(2*(L+ramda));Wc(j)=1/(2*(L+ramda));endWm(1)=ramda/(L+ramda);Wc(1)=ramda/(L+ramda);%+1-alpha^2+belta; %%%权值if i==1xerror=rangeerror^2*cos(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*sin(Zmeasure(1,i))^2; yerror=rangeerror^2*sin(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*cos(Zmeasure(1,i))^2; xyerror=(rangeerror^2-Zmeasure(2,i)^2*azimutherror^2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i));P=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]'; endcho=(chol(P*(L+ramda)))';%for j=1:LxgamaP1(:,j)=xestimate+cho(:,j);xgamaP2(:,j)=xestimate-cho(:,j);endXsigma=[xestimate xgamaP1 xgamaP2];F=A;Xsigmapre=F*Xsigma;xpred=zeros(Anoise,1);for j=1:2*L+1xpred=xpred+Wm(j)*Xsigmapre(:,j);endNoise1=Anoise;ppred=zeros(Noise1,Noise1);for j=1:2*L+1ppred=ppred+Wc(j)*(Xsigmapre(:,j)-xpred)*(Xsigmapre(:,j)-xpred)';endppred=ppred+processerror;chor=(chol((L+ramda)*ppred))';for j=1:LXaugsigmaP1(:,j)=xpred+chor(:,j);XaugsigmaP2(:,j)=xpred-chor(:,j);endXaugsigma=[xpred XaugsigmaP1 XaugsigmaP2 ];for j=1:2*L+1Ysigmapre(1,j)=atan(Xaugsigma(3,j)/Xaugsigma(1,j)) ;Ysigmapre(2,j)=sqrt((Xaugsigma(1,j))^2+(Xaugsigma(3,j))^2);endypred=zeros(2,1);for j=1:2*L+1ypred=ypred+Wm(j)*Ysigmapre(:,j);endPzz=zeros(2,2);for j=1:2*L+1Pzz=Pzz+Wc(j)*(Ysigmapre(:,j)-ypred)*(Ysigmapre(:,j)-ypred)';endPzz=Pzz+measureerror;Pxy=zeros(Anoise,2);for j=1:2*L+1Pxy=Pxy+Wc(j)*(Xaugsigma(:,j)-xpred)*(Ysigmapre(:,j)-ypred)';endK=Pxy*inv(Pzz);xestimate=xpred+K*(Zmeasure(:,i)-ypred);P=ppred-K*Pzz*K';xukf(i)=xestimate(1,1);yukf(i)=xestimate(3,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EKF PRO%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if i==1ekf_p=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];ekf_xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]';ekf_xpred=ekf_xestimate;end;F=A;ekf_xpred=F*ekf_xestimate;ekf_ppred=F*ekf_p*F'+processerror;H=[-ekf_xpred(3)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(1)/(ekf_xpred(3)^2+ekf_xpred(1)^2)0;ekf_xpred(1)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(3)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0];ekf_z(1,1)=atan(ekf_xpred(3)/ekf_xpred(1)) ;ekf_z(2,1)=sqrt((ekf_xpred(1))^2+(ekf_xpred(3))^2);PHHP=H*ekf_ppred*H'+measureerror;ekf_K=ekf_ppred*H'*inv(PHHP);ekf_p=(eye(L)-ekf_K*H)*ekf_ppred;ekf_xestimate=ekf_xpred+ekf_K*(Zmeasure(:,i)-ekf_z);traceekf(i)=trace(ekf_p);xekf(i)=ekf_xestimate(1,1);yekf(i)=ekf_xestimate(3,1);errorx(i)=xx(i)+xradarpositon-x(i);errory(i)=yy(i)+yradarpositon-y(i);ukferrorx(i)=xestimate(1)+xradarpositon-x(i);ukferrory(i)=xestimate(3)+yradarpositon-y(i);ekferrorx(i)=ekf_xestimate(1)+xradarpositon-x(i); ekferrory(i)=ekf_xestimate(3)+yradarpositon-y(i);aa(i)=xx(i)+xradarpositon-x(i);;bb(i)=yy(i)+yradarpositon-y(i);sumx=sumx+(errorx(i)^2);sumy=sumy+(errory(i)^2);sumxukf=sumxukf+(ukferrorx(i)^2);sumyukf=sumyukf+(ukferrory(i)^2);sumxekf=sumxekf+(ekferrorx(i)^2);sumyekf=sumyekf+(ekferrory(i)^2);mseerrorx(i)=sqrt(sumx/(i-1));%噪声的统计均方误差mseerrory(i)=sqrt(sumy/(i-1));mseerrorxukf(i)=sqrt(sumxukf/(i-1));%UKF的统计均方误差mseerroryukf(i)=sqrt(sumyukf/(i-1));mseerrorxekf(i)=sqrt(sumxekf/(i-1));%EKF的统计均方误差mseerroryekf(i)=sqrt(sumyekf/(i-1));endfigure(1);plot(mseerrorxukf,'r');hold on;plot(mseerrorxekf,'g');hold on;plot(mseerrorx,'.');hold on;ylabel('MSE of X axis','fontsize',15);xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(2)plot(mseerroryukf,'r');hold on;plot(mseerroryekf,'g');hold on;plot(mseerrory,'.');hold on;ylabel('MSE of Y axis','fontsize',15); xlabel('sample number','fontsize',15); legend('UKF','EKF','measurement error');figure(3)plot(x,y);hold on;plot(xekf,yekf,'g');hold on;plot(xukf,yukf,'r');hold on;plot(xx,yy,'m');ylabel(' X ','fontsize',15);xlabel('Y','fontsize',15);legend('TRUE','UKF','EKF','measurements');。

信号处理 扩展卡尔曼滤波数据融合代码matlab

信号处理 扩展卡尔曼滤波数据融合代码matlab

信号处理扩展卡尔曼滤波数据融合代码matlab 如何使用扩展卡尔曼滤波(Extended Kalman Filter, EKF)进行数据融合的问题,并提供MATLAB代码示例。

引言:现代技术的快速发展使得传感器的数量和种类越来越多。

数据融合是将多个传感器的测量结果进行合并,以得到更准确、更可靠的估计值的过程。

扩展卡尔曼滤波是一种常用的数据融合算法,特别适用于非线性系统的估计。

正文:扩展卡尔曼滤波是对卡尔曼滤波的一种扩展,它利用非线性系统的一阶泰勒展开,以线性化的形式近似非线性系统。

步骤一:构建状态方程和观测方程首先,我们需要构建状态方程和观测方程。

状态方程描述系统的动力学变化,而观测方程描述传感器对状态量的测量。

假设我们有一个非线性系统,其状态方程可以表示为:x(k) = f(x(k-1), u(k-1)) + w(k-1)其中,x(k)是系统在时刻k的状态量,f是非线性函数,u(k-1)是时刻k-1的控制量,w(k-1)是过程噪声。

观测方程可以表示为:z(k) = h(x(k)) + v(k)其中,z(k)是传感器在时刻k的测量值,h是非线性函数,v(k)是观测噪声。

步骤二:线性化模型由于扩展卡尔曼滤波是基于线性化模型的,我们需要对状态方程和观测方程进行线性化处理。

线性化可以使用一阶泰勒展开来近似非线性函数。

具体地,我们可以通过对状态方程和观测方程求一阶偏导数得到线性化模型。

步骤三:初始化滤波器扩展卡尔曼滤波的初始化包括初始化状态量估计和协方差矩阵。

初始状态量估计可以通过系统初始条件提供,而协方差矩阵可以设置为一个足够大的值,表示对初始估计的不确定性。

步骤四:预测步骤在预测步骤中,我们使用状态方程和控制量来预测时刻k的状态量估计。

同时,我们也需要更新状态量的协方差矩阵。

具体地,预测的状态量估计可以表示为:x^(k) = f(x^(k-1), u(k-1))预测的协方差矩阵可以表示为:P^(k) = A * P(k-1) * A' + Q(k-1)其中,x^(k)是时刻k的预测状态量估计,P^(k)是时刻k的预测协方差矩阵,A是状态方程的雅可比矩阵,Q(k-1)是过程噪声的协方差矩阵。

自适应扩展卡尔曼滤波matlab

自适应扩展卡尔曼滤波matlab

自适应扩展卡尔曼滤波matlab自适应扩展卡尔曼滤波(Adaptive Extended Kalman Filter,AEKF)是一种用于非线性系统状态估计的滤波算法。

本文将介绍AEKF算法的原理、步骤和实现方法,并结合MATLAB 编写代码进行演示。

一、扩展卡尔曼滤波原理扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波算法。

它通过使用线性化系统模型的方式将非线性系统转换为线性系统,在每个时间步骤中用线性卡尔曼滤波器进行状态估计。

然而,EKF仅限于具有凸多边形测量特性的问题,并且对线性化过程误差敏感。

为了解决这些问题,AEKF通过自适应更新协方差矩阵的方式提高了滤波器的性能。

AEKF通过测量残差的方差更新协方差矩阵,从而提高了滤波器对非线性系统的适应能力。

AEKF算法的步骤如下:1. 初始化状态向量和协方差矩阵。

2. 根据系统的非线性动力学方程和测量方程计算预测状态向量和协方差矩阵。

3. 计算测量残差,即测量值与预测值之间的差值。

4. 计算测量残差的方差。

5. 判断测量残差的方差是否超过预设阈值,如果超过,则更新协方差矩阵。

6. 利用更新后的协方差矩阵计算最优滤波增益。

7. 更新状态向量和协方差矩阵。

8. 返回第2步,进行下一次预测。

二、AEKF算法的MATLAB实现下面,我们将使用MATLAB编写AEKF算法的代码,并通过一个实例进行演示。

首先,定义非线性系统的动力学方程和测量方程。

在本例中,我们使用一个双摆系统作为非线性系统模型。

```matlabfunction x_next = nonlinear_dynamics(x_current, u)% Nonlinear system dynamicstheta1 = x_current(1);theta2 = x_current(2);d_theta1 = x_current(3);d_theta2 = x_current(4);g = 9.8; % Gravitational accelerationd_theta1_next = d_theta1 + dt * (-3*g*sin(theta1) - sin(theta1-theta2) ...+ 2*sin(theta1-theta2)*(d_theta2^2 + d_theta1^2*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));d_theta2_next = d_theta2 + dt * (2*sin(theta1-theta2)*(2*d_theta2^2 ...+ d_theta1^2*cos(theta1-theta2) + g*cos(theta1) +g*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));theta1_next = theta1 + dt * d_theta1_next;theta2_next = theta2 + dt * d_theta2_next;x_next = [theta1_next; theta2_next; d_theta1_next;d_theta2_next];endfunction y = measurement_model(x)% Measurement model, measure the angles of the double pendulumtheta1 = x(1);theta2 = x(2);y = [theta1; theta2];end```然后,定义AEKF算法的实现。

matlab扩展卡尔曼滤波实例

matlab扩展卡尔曼滤波实例

matlab扩展卡尔曼滤波实例在MATLAB中实现卡尔曼滤波的过程。

第一步:准备数据要使用卡尔曼滤波算法,首先需要准备尽可能准确的测量数据。

我们假设我们正在跟踪一个匀速运动的物体,我们使用一个简单的模型来生成数据。

以下是一个MATLAB代码示例:matlab生成匀速运动数据t = 0:0.1:10; 时间范围v = 2; 速度x_true = 5 + v*t; 真实位置x_meas = x_true + 0.5*randn(size(t)); 测量位置(加入噪声)上述代码生成了10秒钟内物体的真实位置(x_true)和加入高斯噪声的测量位置(x_meas)。

第二步:初始化卡尔曼滤波器在开始使用卡尔曼滤波器之前,需要初始化滤波器的状态估计和协方差矩阵。

以下是一个示例代码:matlab初始化卡尔曼滤波器参数x_est = 0; 状态估计P_est = 1; 协方差矩阵Q = 1; 过程噪声方差R = 0.5; 测量噪声方差在上述代码中,我们初始化了状态估计(x_est)、协方差矩阵(P_est)、过程噪声方差(Q)和测量噪声方差(R)。

第三步:卡尔曼滤波迭代卡尔曼滤波的核心是迭代过程,其中包含两个关键步骤:预测和更新。

预测步骤是使用系统模型来预测下一时刻的状态和协方差矩阵。

更新步骤将测量值与预测结果进行比较,以改进状态估计和协方差矩阵。

以下是一个MATLAB代码示例:matlab卡尔曼滤波迭代for k = 1:length(t)预测步骤x_pred = x_est;P_pred = P_est + Q;更新步骤K = P_pred / (P_pred + R);x_est = x_pred + K*(x_meas(k) - x_pred);P_est = (1 - K)*P_pred;保存状态估计结果x_est_hist(k) = x_est;end在上述代码中,我们首先进行预测步骤,计算预测状态(x_pred)和预测协方差矩阵(P_pred)。

卡尔曼滤波 matlab算法

卡尔曼滤波 matlab算法

卡尔曼滤波 matlab算法卡尔曼滤波是一种用于状态估计的数学方法,它通过将系统的动态模型和测量数据进行融合,可以有效地估计出系统的状态。

在Matlab中,实现卡尔曼滤波算法可以通过以下步骤进行:1. 确定系统的动态模型,首先需要将系统的动态模型表示为状态空间方程,包括状态转移矩阵、控制输入矩阵和过程噪声的协方差矩阵。

2. 初始化卡尔曼滤波器,在Matlab中,可以使用“kf = kalmanfilter(StateTransitionModel, MeasurementModel, ProcessNoise, MeasurementNoise, InitialState, 'State', InitialCovariance)”来初始化一个卡尔曼滤波器对象。

其中StateTransitionModel和MeasurementModel分别是状态转移模型和测量模型,ProcessNoise和MeasurementNoise是过程噪声和测量噪声的协方差矩阵,InitialState是初始状态向量,InitialCovariance是初始状态协方差矩阵。

3. 进行预测和更新,在每个时间步,通过调用“predict”和“correct”方法,可以对状态进行预测和更新,得到最优的状态估计值。

4. 实时应用,将测量数据输入到卡尔曼滤波器中,实时获取系统的状态估计值。

需要注意的是,在实际应用中,还需要考虑卡尔曼滤波器的参数调节、性能评估以及对不确定性的处理等问题。

此外,Matlab提供了丰富的工具箱和函数,可以帮助用户更便捷地实现和应用卡尔曼滤波算法。

总的来说,实现卡尔曼滤波算法需要对系统建模和Matlab编程有一定的了解和技能。

希望以上内容能够对你有所帮助。

完整word版Kalman滤波MATLAB综合实验报告

完整word版Kalman滤波MATLAB综合实验报告

《数学实验》综合实验报告实验名称综合实验(Kalman滤波)2016年 5月一、【实验目的】明白滤波计算流程能够调用相关函数进行数据处理使用循环函数和二维曲线画图有效的构建仿真模型,产生模拟数据二、【实验原理分析】卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。

对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。

它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。

近来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

设系统可用一个线性随机微分方程来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。

A和B是系统参数,对于多模型系统,他们为矩阵。

Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。

W(k)和V(k)分别表示过程和测量的噪声。

他们被假设成高斯白噪声,他们的协方差分别是Q,R(这里假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。

首先要利用系统的过程模型,来预测下一状态的系统。

假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的协方差还没更新。

我们用P表示协方差:P(k|k-1)=A P(k-1|k-1) A'+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的协方差,P(k-1|k-1)是X(k-1|k-1)对应的协方差,A'表示A的转置矩阵,Q是系统过程的协方差。

卡尔曼滤波算法及MATLAB实现

卡尔曼滤波算法及MATLAB实现

卡尔曼滤波算法及MATLAB实现这一段时间对现代滤波进行了学习,对自适应滤波器和卡尔曼滤波器有了一定认识,并对它们用MATLAB对语音信号进行了滤波,发现卡尔曼滤波器还是比较有用,能够在较大的噪声中还原原来的信号。

新的学期马上就开始了,由于TI的开发板一直在维修,所以学习TI开发板的计划搁置,但是对声音信号的处理及滤波器的认识有了进一步提高。

新的学期继续努力!卡尔曼滤波的基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。

语音信号在较长时间内是非平稳的,但在较短的时间内的一阶统计量和二阶统计量近似为常量,因此语音信号在相对较短的时间内可以看成白噪声激励以线性时不变系统得到的稳态输出。

假定语音信号可看成由一AR模型产生:时间更新方程:测量更新方程:K(t)为卡尔曼增益,其计算公式为:其中、分别为过程模型噪声协方差和测量模型噪声协方差,测量协方差可以通过观测得到,则较难确定,在本实验中则通过与两者比较得到。

由于语音信号短时平稳,因此在进行卡尔曼滤波之前对信号进行分帧加窗操作,在滤波之后对处理得到的信号进行合帧,这里选取帧长为256,而帧重叠个数为128;下图为原声音信号与加噪声后的信号以及声音信号与经卡尔曼滤波处理后的信号:原声音信号与加噪声后的信号原声音信号与经卡尔曼滤波处理后的信号MATLAB程序实现如下:%%%%%%%%%%%%%%%%%基于LPC全极点模型的最大后验概率估计法,采用卡尔曼滤波%%%%%%%%%%%%%% clear;clc;%%%%%%%%%%%%%%%%%%%%%%%%%%%加载声音数据%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%load voice.maty=m1(2,:);x=y+0.08*randn(1,length(y));%%%%%%%%%%%%%%%原声音信号和加噪声后的信号%%%%%%%%%%%%%%% figure(1);subplot(211);plot(m1(1,:),m1(2,:));xlabel('时间');ylabel('幅度');title('原声音信号');subplot(212);plot(m1(1,:),x);xlabel('时间');ylabel('幅度');title('加噪声后的信号'); %%%%%%%%%%%%%%%%%%%%%%%%%输入参数%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Fs=44100; %信号采样的频率bits=16; %信号采样的位数N=256; %帧长m=N/2; %每帧移动的距离lenth=length(x); %输入信号的长度count=floor(lenth/m)-1; %处理整个信号需要移动的帧数%%%先不考虑补零的问题p=11; %AR模型的阶数a=zeros(1,p);w=hamming(N); %加汉明窗函数y_temp=0;F=zeros(11,11); %转移矩阵F(1,2)=1;F(2,3)=1;F(3,4)=1;F(4,5)=1;F(5,6)=1;F(6,7)=1;F(7,8)=1;F(8,9)=1;F(9,10)=1;F(10,11)=1;H=zeros(1,p); %S0=zeros(p,1);P0=zeros(p);S=zeros(p);H(11)=1;s=zeros(N,1);G=H';P=zeros(p);%%%%%%%%%%%%%%%%测试噪声协方差%%%%%%%%%%%%%%%%%%%%%%y_temp=cov(x(1:7680));x_frame=zeros(256,1);x_frame1=zeros(256,1);T=zeros(lenth,1);for r=1:count%%%%%%%%%%%%%%%%%%%5%%%%%分帧处理%%%%%%%%%%%%%%%%%%%%% x_frame=x((r-1)*m+1:(r+1)*m);%%%%%%%%%%%%%%%%采用LPC模型求转移矩阵参数%%%%%%%%%%%%%%if r==1[a,VS]=lpc(x_frame(:),p);else[a,VS]=lpc(T((r-2)*m+1:(r-2)*m+256),p);end%%%%%%%%%%%%%%%%帧长内过程噪声协方差%%%%%%%%%%%%%%%%%%if (VS-y_temp>0)VS=VS-y_temp;elseVS=0.0005;endF(p,:)=-1*a(p+1:-1:2);for j=1:256if(j==1)S=F*S0;Pn=F*P*F'+G*VS*G';elseS=F*S; %时间更新方程Pn=F*P*F'+G*VS*G';endK=Pn*H'*(y_temp+H*P*H').^(-1); %卡尔曼增益P=(eye(p)-K*H)*Pn; %测量更新方程S=S+K*[x_frame(j)-H*S];T((r-1)*m+j)=H*S;end%%%%%%%%%%%%%%%%对得到的每帧数据进行加窗操作%%%%%%%%%%%%%%%%%%%%%%%%ss(1:256,r)=T((r-1)*m+1:(r-1)*m+256);sss(1:256,r)=ss(1:256,r).*w;end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%合帧操作%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for r=1:countif r==1s_out(1:128)=sss(1:128,r);else if r==counts_out(r*m+1:r*m+m)=sss(129:256,r);elses_out(((r-1)*m+1):((r-1)*m+m))=sss(129:256,r-1)+sss(1:128,r);endendendfigure(2)subplot(211);plot(m1(1,:),m1(2,:));xlabel('时间');ylabel('幅度');title('原声音信号');subplot(212);plot((1:1109760)/Fs,s_out);xlabel('时间');ylabel('幅度');title('经卡尔曼滤波后的声音信号');。

(整理)卡尔曼滤波简介及其算法MATLAB实现代码.

(整理)卡尔曼滤波简介及其算法MATLAB实现代码.
P(k|k-1)=A P(k-1|k-1) A’+Q………(2)
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系统的测量值:
Z(k)=H X(k)+V(k)
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R)………(4)
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。

卡尔曼滤波 matlab代码

卡尔曼滤波 matlab代码

卡尔曼滤波matlab代码卡尔曼滤波Matlab 代码卡尔曼滤波是一种递归的状态估计算法,用于估计随时间变化的系统状态,它通过将过去的观测值与预测模型相结合,得出对当前状态的最优估计。

在Matlab中,我们可以利用内置函数或自己编写的函数来实现卡尔曼滤波算法。

首先,我们需要定义一个状态空间模型。

状态空间模型由状态方程和观测方程组成。

状态方程描述了系统状态如何从先前的状态和控制输入中演化到当前状态,观测方程描述了如何从系统状态中得出观测值。

在Matlab中,我们可以使用以下代码定义状态方程和观测方程。

matlab状态方程A = [1 1; 0 1]; 状态转移矩阵B = [0.5; 1]; 控制输入矩阵C = [1 0]; 观测矩阵Q = [0.1 0; 0 0.1]; 状态噪声协方差矩阵R = 1; 观测噪声方差观测方程sys = ss(A, B, C, 0);[K, P, E] = lqr(sys, Q, R); 最优控制器增益矩阵上述代码中,`A`是状态转移矩阵,表示系统状态如何从t-1时刻转移到t 时刻。

`B`是控制输入矩阵,表示控制输入如何影响系统状态的演化。

`C`是观测矩阵,用于将系统状态映射到观测值。

`Q`是状态噪声协方差矩阵,用于描述系统状态的不确定性。

`R`是观测噪声方差,用于描述观测值的不确定性。

接下来,我们可以利用卡尔曼滤波算法来估计系统状态。

在Matlab中,可以使用`kalman`函数来实现卡尔曼滤波。

matlab卡尔曼滤波x0 = [0; 0]; 初始状态估计P0 = eye(2); 初始估计误差协方差矩阵观测值t = 0:0.1:10;u = sin(t);w = sqrt(Q) * randn(size(t));v = sqrt(R) * randn(size(t));x = zeros(2, length(t));y = zeros(1, length(t));for k = 1:length(t)系统模型x(:, k+1) = A * x(:, k) + B * u(k) + w(:, k);y(:, k) = C * x(:, k) + v(:, k);end卡尔曼滤波x_hat = zeros(size(x));P = zeros(size(P0));for k = 1:length(t)预测x_hat(:, k+1) = A * x_hat(:, k) + B * u(k);P = A * P * A' + Q;更新K = P * C' / (C * P * C' + R);x_hat(:, k+1) = x_hat(:, k+1) + K * (y(:, k) - C * x_hat(:, k+1));P = (eye(2) - K * C) * P;end在上述代码中,`x0`和`P0`分别是初始状态估计和初始估计误差协方差矩阵。

(完整word版)卡尔曼滤波算法(C--C++两种实现代码)

(完整word版)卡尔曼滤波算法(C--C++两种实现代码)

卡尔曼滤波算法实现代码C++实现代码如下: ============================kalman.h================= =============== // kalman.h: interface for the kalman class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_#if _MSC_VER > 1000 #pragma once #endif // _MSC_VER > 1000#include <math.h> #include "cv.h"class kalman { public: void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state; CvMat* process_noise; CvMat* measurement; const CvMat* prediction; CvPoint2D32f get_predict(float x, float y);kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman();};#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_)============================kalman.cpp=============== =================#include "kalman.h" #include <stdio.h>/* tester de printer toutes les valeurs des vecteurs */ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */CvRandState rng; const double T = 0.1; kalman::kalman(int x,int xv,int y,int yv) {cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 ); process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;/* create matrix data */ const float A[] = { 1, T, 0, 0, 0, 1, 0, 0, 0, 0, 1, T, 0, 0, 0, 1 };const float H[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 };const float P[] = { pow(320,2), pow(320,2)/T, 0, 0, pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0, 0, 0, pow(240,2), pow(240,2)/T, 0, 0, pow(240,2)/T, pow(240,2)/pow(T,2) };const float Q[] = { pow(T,3)/3, pow(T,2)/2, 0, 0, pow(T,2)/2, T, 0, 0, 0, 0, pow(T,3)/3, pow(T,2)/2, 0, 0, pow(T,2)/2, T };const float R[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 }; cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 ); rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A)); memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H)); memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q)); memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P)); memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R)); //cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) ); //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1)); //cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x; state->data.fl[1]=xv; state->data.fl[2]=y;state->data.fl[3]=yv; cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise ); }CvPoint2D32f kalman::get_predict(float x, float y) {/* update state with current position */ state->data.fl[0]=x; state->data.fl[2]=y;/* predict point position */ /* x'k=A 鈥 k+B 鈥 kP'k=A 鈥 k-1*AT + Q */ cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl [0]), 0 ); cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */ cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman-> state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, meas urement, measurement );cvKalmanCorrect( cvkalman, measurement ); float measured_value_x = measurement->data.fl[0]; float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 ); float predict_value_x = prediction->data.fl[0]; float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y)); }void kalman::init_kalman(int x,int xv,int y,int yv) { state->data.fl[0]=x;state->data.fl[1]=xv; state->data.fl[2]=y; state->data.fl[3]=yv; cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv; }c 语言实现代码如下:#include "stdlib.h" #include "rinv.c" int lman(n,m,k,f,q,r,h,y,x,p,g) int n,m,k; double f[],q[],r[],h[],y[],x[],p[],g[]; { int i,j,kk,ii,l,jj,js; double *e,*a,*b; e=malloc(m*m*sizeof(double)); l=m; if (l<n) l=n; a=malloc(l*l*sizeof(double)); b=malloc(l*l*sizeof(double)); for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { ii=i*l+j; a[ii]=0.0; for (kk=0; kk<=n-1; kk++) a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { ii=i*n+j; p[ii]=q[ii]; for (kk=0; kk<=n-1; kk++) p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j]; } for (ii=2; ii<=k; ii++) { for (i=0; i<=n-1; i++) for (j=0; j<=m-1; j++) { jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++) a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];} for (i=0; i<=m-1; i++) for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj]; for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j]; } js=rinv(e,m); if (js==0){ free(e); free(a); free(b); return(js);} for (i=0; i<=n-1; i++) for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0; for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk]; } for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0; for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j]; } for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i]; for (j=0; j<=n-1; j++) b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j]; } for (i=0; i<=n-1; i++) { jj=(ii-1)*n+i;for (j=0; j<=m-1; j++) x[jj]=x[jj]+g[i*m+j]*b[j*l];} if (ii<k){ for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j]; if (i==j) a[jj]=1.0+a[jj]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*l+j; b[jj]=0.0; for (kk=0; kk<=n-1; kk++) b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=n-1; kk++) a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*n+j; p[jj]=q[jj]; for (kk=0; kk<=n-1; kk++) p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk]; } }} free(e); free(a); free(b); return(js);}。

matlab simulink 拓展卡尔曼滤波

matlab simulink 拓展卡尔曼滤波

matlab simulink 拓展卡尔曼滤波概述
拓展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波器。

在MATLAB Simulink中,可以使用EKF进行状态估计和参数估计。

下面是一个简单的步骤来说明如何在MATLAB Simulink中实现拓展卡尔曼滤波:
1. 打开MATLAB Simulink并创建一个新模型。

2. 在模型中添加一个EKF模块。

在Simulink库中找到EKF模块,并将其拖动到模型中。

3. 配置EKF模块的参数。

打开EKF模块的参数对话框,配置以下参数:
* 状态转移矩阵A:根据系统模型进行设置。

* 测量矩阵H:根据传感器测量模型进行设置。

* 过程噪声协方差矩阵Q:根据系统噪声模型进行设置。

* 测量噪声协方差矩阵R:根据传感器测量噪声模型进行设置。

4. 添加输入和输出模块。

在模型中添加输入模块(如模拟输入模块)来接收系统的输入信号,并添加输出模块(如模拟输出模块)来输出
估计结果。

5. 连接输入和输出模块到EKF模块。

将输入模块的输出信号连接到EKF模块的输入端口,将EKF模块的输出信号连接到输出模块的输入端口。

6. 运行模型并进行仿真。

点击Simulink窗口中的“运行”按钮,运行模型并进行仿真。

在仿真期间,输入信号将被处理并通过EKF进行状态估计和参数估计,最终输出估计结果。

需要注意的是,拓展卡尔曼滤波器的参数设置对于估计结果的准确性和稳定性至关重要。

因此,需要仔细选择合适的参数并根据实际系统进行验证和调整。

扩展卡尔曼滤波算法的matlab程序

扩展卡尔曼滤波算法的matlab程序

clear all v=150; %% 目标速度v_sensor=0;%% 传感器速度t=1; %% 扫描周期xradarpositon=0; %% 传感器坐标yradarpositon=0; %%ppred=zeros(4,4);Pzz=zeros(2,2);Pxx=zeros(4,2); xpred=zeros(4,1); ypred=zeros(2,1);sumx=0; sumy=0;sumxukf=0;sumyukf=0; sumxekf=0;sumyekf=0; %%% 统计的初值L=4; alpha=1; kalpha=0; belta=2; ramda=3-L;azimutherror=0.015; %% 方位均方误差rangeerror=100; %% 距离均方误差processnoise=1; %% 过程噪声均方差tao=[t A3/3 22/2 0 0;22/2 tO 0;0 0 tA3/3 tA2/2;0 0 tA2/2 t]; %% the input matrix of processG=[tA2/2 0t 00 tA2/20 t ];a=35*pi/180; a_v=5/100;a_sensor=45*pi/180; x(1)=8000; %% 初始位置y(1)=12000;for i=1:200 x(i+1)=x(i)+v*cos(a)*t; y(i+1)=y(i)+v*sin(a)*t; end for i=1:200xradarpositon=0;yradarpositon=0;Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror ,1,1);Zmeasure(2,i)=sqrt((y(i)-yradarpositon)A2+(x(i)-xradarpositon)A2)+random('Normal',0,rangeerror ,1,1);xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%% 观测值yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i));measureerror=[azimutherror A2 0;0 rangeerror A2];processerror=tao*processnoise;vNoise = size(processerror ,1);wNoise = size(measureerror ,1);A=[1 t 0 0;0 1 0 0;0 0 1 t;0 0 0 1];Anoise=size(A,1);for j=1:2*L+1Wm(j)=1/(2*(L+ramda));Wc(j)=1/(2*(L+ramda));endWm(1)=ramda/(L+ramda);Wc(1)=ramda/(L+ramda);%+1-alphaA2+belta; %%% 权值if i==1xerror=rangeerrorA2*cos(Zmeasure(1,i))A2+Zmeasure(2,i)A2*azimutherrorA2*sin(Zmeasure(1,i))A2; yerror=rangeerrorA2*sin(Zmeasure(1,i))A2+Zmeasure(2,i)A2*azimutherrorA2*cos(Zmeasure(1,i))A2; xyerror=(rangeerrorA2-Zmeasure(2,i)A2*azimutherrorA2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i)); P=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(tA2) xyerror/t 2*xyerror/(tA2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t A2) yerror/t 2*yerror/(t A2)];xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]'; endcho=(chol(P*(L+ramda)))';%for j=1:LxgamaP1(:,j)=xestimate+cho(:,j);xgamaP2(:,j)=xestimate-cho(:,j);endXsigma=[xestimate xgamaP1 xgamaP2];F=A;Xsigmapre=F*Xsigma;xpred=zeros(Anoise,1);for j=1:2*L+1xpred=xpred+Wm(j)*Xsigmapre(:,j);endNoise1=Anoise;ppred=zeros(Noise1,Noise1);for j=1:2*L+1 ppred=ppred+Wc(j)*(Xsigmapre(:,j)-xpred)*(Xsigmapre(:,j)-xpred)';endppred=ppred+processerror;chor=(chol((L+ramda)*ppred))';for j=1:LXaugsigmaP1(:,j)=xpred+chor(:,j);XaugsigmaP2(:,j)=xpred-chor(:,j);endXaugsigma=[xpred XaugsigmaP1 XaugsigmaP2 ];for j=1:2*L+1Ysigmapre(1,j)=atan(Xaugsigma(3,j)/Xaugsigma(1,j)) ; Ysigmapre(2,j)=sqrt((Xaugsigma(1,j))A2+(Xaugsigma(3,j))A2); endypred=zeros(2,1);for j=1:2*L+1ypred=ypred+Wm(j)*Ysigmapre(:,j);endPzz=zeros(2,2);for j=1:2*L+1Pzz=Pzz+Wc(j)*(Ysigmapre(:,j)-ypred)*(Ysigmapre(:,j)-ypred)';endPzz=Pzz+measureerror;Pxy=zeros(Anoise,2);for j=1:2*L+1Pxy=Pxy+Wc(j)*(Xaugsigma(:,j)-xpred)*(Ysigmapre(:,j)-ypred)';endK=Pxy*inv(Pzz); xestimate=xpred+K*(Zmeasure(:,i)-ypred);P=ppred-K*Pzz*K';xukf(i)=xestimate(1,1);yukf(i)=xestimate(3,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% EKF PRO%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if i==1ekf_p=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t A2) xyerror/t 2*xyerror/(t A2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(tA2) yerror/t 2*yerror/(tA2)];ekf_xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]';ekf_xpred=ekf_xestimate;end;F=A;ekf_xpred=F*ekf_xestimate;ekf_ppred=F*ekf_p*F'+processerror;H=[-ekf_xpred(3)/(ekf_xpred(3)A2+ekf_xpred(1)A2) 0 ekf_xpred(1)/(ekf_xpred(3)A2+ekf_xpred(1)A2)0;ekf_xpred(1)/sqrt(ekf_xpred(3)A2+ekf_xpred(1)A2) 0ekf_xpred(3)/sqrt(ekf_xpred(3)A2+ekf_xpred(1)A2) 0];ekf_z(1,1)=atan(ekf_xpred(3)/ekf_xpred(1)) ;ekf_z(2,1)=sqrt((ekf_xpred(1))A2+(ekf_xpred(3))A2);PHHP=H*ekf_ppred*H'+measureerror;ekf_K=ekf_ppred*H'*inv(PHHP);ekf_p=(eye(L)-ekf_K*H)*ekf_ppred;ekf_xestimate=ekf_xpred+ekf_K*(Zmeasure(:,i)-ekf_z);traceekf(i)=trace(ekf_p);xekf(i)=ekf_xestimate(1,1);yekf(i)=ekf_xestimate(3,1);errorx(i)=xx(i)+xradarpositon-x(i);errory(i)=yy(i)+yradarpositon-y(i);ukferrorx(i)=xestimate(1)+xradarpositon-x(i); ukferrory(i)=xestimate(3)+yradarpositon-y(i);ekferrorx(i)=ekf_xestimate(1)+xradarpositon-x(i); ekferrory(i)=ekf_xestimate(3)+yradarpositon-y(i);aa(i)=xx(i)+xradarpositon-x(i);; bb(i)=yy(i)+yradarpositon-y(i);sumx=sumx+(errorx(iF2);sumy=sumy+(errory(i)A2); sumxukf=sumxukf+(ukferrorx(iF2); sumyukf=sumyukf+(ukferrory(i)A2); sumxekf=sumxekf+(ekferrorx(i)A2); sumyekf=sumyekf+(ekferrory(i)A2);mseerrorx(i)=sqrt(sumx/(i-1));% 噪声的统计均方误差mseerrory(i)=sqrt(sumy/(i-1));mseerrorxukf(i)=sqrt(sumxukf/(i-1));%UKF 的统计均方误差mseerroryukf(i)=sqrt(sumyukf/(i-1));mseerrorxekf(i)=sqrt(sumxekf/(i-1));%EKF 的统计均方误差mseerroryekf(i)=sqrt(sumyekf/(i-1));endfigure(1);plot(mseerrorxukf,'r');hold on;plot(mseerrorxekf,'g');hold on;plot(mseerrorx,'.');hold on; ylabel('MSE of X axis','fontsize',15); xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(2) plot(mseerroryukf,'r');hold on;plot(mseerroryekf,'g'); hold on;plot(mseerrory,'.');hold on; ylabel('MSE of Y axis','fontsize',15); xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(3) plot(x,y); hold on; plot(xekf,yekf,'g'); hold on; plot(xukf,yukf,'r'); hold on; plot(xx,yy,'m'); ylabel(' X ','fontsize',15); xlabel('Y','fontsize',15); legend('TRUE','UKF','EKF','measurements');。

卡尔曼滤波简介及其算法MATLAB实现代码 (1)

卡尔曼滤波简介及其算法MATLAB实现代码 (1)

卡尔曼滤波简介说明及其算法MATLAB实现代码卡尔曼滤波算法实现代码(C,C++分别实现)卡尔曼滤波器简介近来发现有些问题很多人都很感兴趣。

所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。

现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。

因为这里不能写复杂的数学公式,所以也只能形象的描述。

希望如果哪位是这方面的专家,欢迎讨论更正。

卡尔曼滤波器– Kalman Filter1.什么是卡尔曼滤波器(What is the Kalman Filter?)在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。

跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。

1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。

1957年于哥伦比亚大学获得博士学位。

我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。

如果对这编论文有兴趣,可以到这里的地址下载:.edu/~welch/media/pdf/Kalman1960.pdf。

简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。

对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。

他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。

近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

信号处理 扩展卡尔曼滤波数据融合代码matlab -回复

信号处理 扩展卡尔曼滤波数据融合代码matlab -回复

信号处理扩展卡尔曼滤波数据融合代码matlab -回复信号处理扩展卡尔曼滤波数据融合代码(Matlab)在本文中,我将介绍如何使用Matlab实现信号处理中的扩展卡尔曼滤波数据融合算法。

扩展卡尔曼滤波是一种广泛应用于估计问题的滤波方法,特别适用于非线性系统。

在信号处理中,数据融合是将多个传感器或信息源的数据融合在一起以获得更准确和鲁棒的估计结果的方法。

步骤1: 定义系统模型首先,我们需要定义系统的动力学模型以及我们感兴趣的状态变量。

对于一个简单的例子,假设我们有一个运动的目标,我们想要估计它的位置和速度。

我们可以使用以下状态方程来建模系统的动力学:x(k) = A*x(k-1) + B*u(k) + w(k)其中,x(k)是系统的状态向量,A是状态转移矩阵,B是输入控制矩阵,u(k)是输入控制向量,w(k)是过程噪声。

在这个例子中,我们假设系统是线性的。

步骤2: 定义观测模型接下来,我们需要定义观测模型,它将我们的状态向量映射到观测向量。

在本例中,我们假设我们有两个传感器,每个传感器都可以测量目标的位置。

观测模型可以定义如下:y(k) = H*x(k) + v(k)其中,y(k)是观测向量,H是观测矩阵,v(k)是测量噪声。

在这个例子中,我们假设观测模型是线性的。

步骤3: 初始化变量在实际应用中,我们需要为扩展卡尔曼滤波算法初始化一些变量。

这些变量包括状态向量的初始估计值、协方差矩阵的初始估计值以及过程噪声和测量噪声的协方差矩阵。

步骤4: 实现扩展卡尔曼滤波算法现在我们可以开始实现扩展卡尔曼滤波算法。

算法的核心是通过递推计算状态向量的估计值和协方差矩阵的估计值。

具体步骤如下:a. 预测步骤:- 根据动力学模型预测下一个状态向量的估计值:x(k k-1) = A*x(k-1 k-1) + B*u(k)- 根据动力学模型预测下一个协方差矩阵的估计值:P(k k-1) =A*P(k-1 k-1)*A' + Qb. 更新步骤:- 计算卡尔曼增益:K(k) = P(k k-1)*H'*(H*P(k k-1)*H' + R)^-1- 使用观测值更新状态向量的估计值:x(k k) = x(k k-1) + K(k)*(y(k) - H*x(k k-1))- 使用观测值更新协方差矩阵的估计值:P(k k) = (I - K(k)*H)*P(k k-1)c. 重复步骤a和步骤b,直到所有的观测值都被处理完成。

卡尔曼滤波定位解算matlab代码,TDOA定位的扩展卡尔曼滤波定位算法Matlab源码

卡尔曼滤波定位解算matlab代码,TDOA定位的扩展卡尔曼滤波定位算法Matlab源码

卡尔曼滤波定位解算matlab代码,TDOA定位的扩展卡尔曼滤波定位算法Matlab源码TDOA/AOA定位的扩展卡尔曼滤波定位算法Matlab源码(2007-08-24 01:48:23)标签:知识/探索function[MX,MY,SS]=ExtendedKalmanFilter(D1,D2,D3,A1,A2,A3,Flag1,FLAG2,S0,P0,SigmaR,Sigm aAOA)%% TDOA/AOA定位的扩展卡尔曼滤波定位算法%% 此程序为GreenSim团队原创作品,转载请注明%% 输⼊参数列表% D1 基站1和移动台之间的距离% D2 基站2和移动台之间的距离% D3 基站3和移动台之间的距离% A1 基站1测得的⾓度值% A2 基站2测得的⾓度值% A3 基站3测得的⾓度值% Falg1 1×1矩阵,取值1,2,3,表明是以哪⼀个基站作为基准站计算TDOA数据的% FLAG2 N×3矩阵,取值0和1,每⼀⾏表⽰该时刻各基站的AOA是否可选择,% 1表⽰选择AOA数据,FLAG2并⾮⼈为给定,⽽是由LOS/NLOS检测模块确定% S0 初始状态向量,4×1矩阵% P0 预测误差矩阵的初始值,4×4的矩阵% SigmaR ⽆偏/有偏卡尔曼输出距离值的⽅差,由事先统计得到% SigmaAOA 选择AOA数据的⽅差,⽣成AOA数据的规律已知,因此可以确定%% 输出参数列表% MX% MY%% 第⼀步:计算TDOA数据if Flag1==1TDOA1=D2-D1;TDOA2=D3-D1;elseif Flag1==2TDOA1=D1-D2;TDOA2=D3-D2;elseif Flag1==3TDOA1=D1-D3;TDOA2=D2-D3;。

卡尔曼滤波matlab代码

卡尔曼滤波matlab代码

卡尔曼滤波matlab代码
卡尔曼滤波(Kalman Filter)是一种有效融合测量数据的算法,由德国工程师卡尔曼博士发明,能够处理从随机过程中获得的非完全信息,将历史数据和测量信息进行综合的面向状态的算法。

它利用模型估计和更新未知状态,以达到估计未知状态的目的。

步骤1:设定卡尔曼滤波器:卡尔曼滤波器是利用上一时刻状态估计结果和当前测量值来对当前状态继续估计,因此每次只需输入一个新的测量值,即可完成所有的风险估计。

步骤2:确定状态转移模型:卡尔曼滤波用于处理非完全信息,从未知状态开始,将先验状态估计与新数据进行融合,在此过程中,必须根据状态转移模型确定状态转移参数。

步骤3:建立测量模型:通过测量模型将状态变量转换为可度量的测量量,即各状态变量与其输出测量变量之间的函数关系。

步骤4:在滤波器中实现卡尔曼滤波:。

卡尔曼滤波 matlab代码

卡尔曼滤波 matlab代码

卡尔曼滤波 matlab代码【实用版】目录一、卡尔曼滤波简介二、卡尔曼滤波算法原理三、MATLAB 代码实现卡尔曼滤波四、总结正文一、卡尔曼滤波简介卡尔曼滤波是一种线性高斯状态空间模型,主要用于估计动态系统的状态,具有良好的实时性、鲁棒性和准确性。

它广泛应用于导航、定位、机器人控制等领域。

二、卡尔曼滤波算法原理卡尔曼滤波主要包括两个部分:预测阶段和更新阶段。

预测阶段:1.初始化状态变量和协方差矩阵。

2.根据系统动态模型,预测系统的状态变量和协方差矩阵。

更新阶段:1.测量系统的状态变量,得到观测数据。

2.根据观测数据和预测的状态变量,计算卡尔曼增益。

3.使用卡尔曼增益,更新状态变量和协方差矩阵。

三、MATLAB 代码实现卡尔曼滤波以下是一个简单的卡尔曼滤波 MATLAB 代码示例:```MATLABfunction [x, P] = kalman_filter(x, P, F, Q, H, R, z)% 初始化x = 初始状态向量;P = 初始协方差矩阵;% 预测阶段F = 系统动态矩阵;Q = 测量噪声协方差矩阵;H = 观测矩阵;R = 观测噪声协方差矩阵;z = 观测数据;% 预测状态变量和协方差矩阵[x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R);% 更新阶段[x_upd, P_upd] = update(x_pred, P_pred, z);% 输出结果x = x_upd;P = P_upd;endfunction [x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R)% 预测状态变量和协方差矩阵x_pred = F * x;P_pred = F * P * F" + Q;endfunction [x_upd, P_upd] = update(x_pred, P_pred, z)% 更新状态变量和协方差矩阵S = H" * P_pred * H;K = P_pred * H" * S^-1;x_upd = x_pred + K * (z - H * x_pred);P_upd = (I - K * H") * P_pred;end```四、总结卡尔曼滤波是一种高效、准确的状态估计方法,适用于各种线性高斯动态系统。

扩展卡尔曼定位算法matlab

扩展卡尔曼定位算法matlab

扩展卡尔曼定位算法matlab扩展卡尔曼定位算法matlab随着现代化的发展,定位技术被广泛应用在车辆导航,物流追踪等领域,其中扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种常用的定位算法。

本文将介绍如何使用matlab实现扩展卡尔曼定位算法,以逐步展示算法的实现流程。

1. EKF简介扩展卡尔曼滤波是一种基于卡尔曼滤波的信号处理算法。

与传统卡尔曼滤波不同的是,扩展卡尔曼滤波通过非线性化处理使得卡尔曼滤波适用于非线性系统。

它利用贝叶斯推断推断系统的隐藏状态,以提高对实际系统的估计精度。

基本的扩展卡尔曼滤波算法包括预测和更新两个步骤,其中预测步骤通过卡尔曼滤波推断当前状态的方差,更新步骤通过贝叶斯规则进行状态改进,以实现系统的定位。

2. EKF算法框架在实现EKF算法之前,需要先了解其算法框架。

其中,EKF算法框架包括系统模型、状态模型、观测模型和误差模型。

具体步骤如下:(1)定义状态变量x表示定位系统状态,y表示测量的变量;(2)建立状态模型和测量模型的动态方程;(3)通过预测状态变量计算卡尔曼滤波增益,并通过误差模型确定卡尔曼滤波增益;(4)观测模型选择Rayleigh模型或其他模型,并通过贝叶斯规则计算状态的当前值;(5)反复执行预测和更新步骤,以获得更为准确的定位结果。

3. EKF算法的matlab实现(1)使用matlab编写定位系统的状态方程;(2)使用matlab编写测量方程,以观测当前状态并计算卡尔曼滤波增益;(3)执行扩展卡尔曼滤波算法,在上述状态和测量方程的基础上实现预测和更新步骤,并实现误差估计和更新卡尔曼滤波增益;(4)通过matlab绘制定位结果的图像,以便更直观地观察算法性能。

4. 算法优化对于大规模系统,EKF算法的计算量较大,导致运算速度慢。

针对这一问题,可以采用分解卡尔曼滤波(Decomposed Kalman Filter,DKF)等算法进行优化,以大幅提高计算速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ypred=ypred+Wm(j)*Ysigmapre(:,j);
xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%%观测值
yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i));
measureerror=[azimutherror^2 0;0 rangeerror^2];
processerror=tao*processnoise;
end
Wm(1)=ramda/(L+ramda);
Wc(1)=ramda/(L+ramda);%+1-alpha^2+belta; %%%权值
if i==1
xerror=rangeerror^2*cos(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*sin(Zmeasure(1,i))^2;
Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror,1,1);
Zmeasure(2,i)=sqrt((y(i)-yradarpositon)^2+(x(i)-xradarpositon)^2)+random('Normal',0,rangeerror,1,1);
xgamaP2(:,j)=xestimate-cho(:,j);
end
Xsigma=[xestimate xgamaP1 xgamaP2];
F=A;
Xsigmapre=F*Xsigma;
xpred=zeros(Anoise,1);
for j=1:2*L+1
xpred=xpred+Wm(j)*Xsigmapre(:,j);
processnoise=1; %%过程噪声均方差
tao=[t^3/3 t^2/2 0 0;
t^2/2 t 0 0;
0 0 t^3/3 t^2/2;
0 0 t^2/2 t]; %% the input matrix of process
G=[t^2/t ];
a=35*pi/180;
xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]';
end
cho=(chol(P*(L+ramda)))';%
for j=1:L
xgamaP1(:,j)=xestimate+cho(:,j);
ypred=zeros(2,1);
sumx=0;
sumy=0;
sumxukf=0;
sumyukf=0;
sumxekf=0;
sumyekf=0; %%%统计的初值
L=4;
alpha=1;
kalpha=0;
belta=2;
ramda=3-L;
azimutherror=0.015; %%方位均方误差
rangeerror=100; %%距离均方误差
end
Noise1=Anoise;
ppred=zeros(Noise1,Noise1);
for j=1:2*L+1
ppred=ppred+Wc(j)*(Xsigmapre(:,j)-xpred)*(Xsigmapre(:,j)-xpred)';
end
ppred=ppred+processerror;
vNoise = size(processerror,1);
wNoise = size(measureerror,1);
A=[1 t 0 0;
0 1 0 0;
0 0 1 t;
0 0 0 1];
Anoise=size(A,1);
for j=1:2*L+1
Wm(j)=1/(2*(L+ramda));
Wc(j)=1/(2*(L+ramda));
P=[xerror xerror/t xyerror xyerror/t;
xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);
xyerror xyerror/t yerror yerror/t;
xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];
chor=(chol((L+ramda)*ppred))';
for j=1:L
XaugsigmaP1(:,j)=xpred+chor(:,j);
XaugsigmaP2(:,j)=xpred-chor(:,j);
end
Xaugsigma=[xpred XaugsigmaP1 XaugsigmaP2 ];
for j=1:2*L+1
Ysigmapre(1,j)=atan(Xaugsigma(3,j)/Xaugsigma(1,j)) ;
Ysigmapre(2,j)=sqrt((Xaugsigma(1,j))^2+(Xaugsigma(3,j))^2);
end
ypred=zeros(2,1);
for j=1:2*L+1
a_v=5/100;
a_sensor=45*pi/180;
x(1)=8000; %%初始位置
y(1)=12000;
for i=1:200
x(i+1)=x(i)+v*cos(a)*t;
y(i+1)=y(i)+v*sin(a)*t;
end
for i=1:200
xradarpositon=0;
yradarpositon=0;
clear all
v=150; %%目标速度
v_sensor=0;%%传感器速度
t=1; %%扫描周期
xradarpositon=0; %%传感器坐标
yradarpositon=0; %%
ppred=zeros(4,4);
Pzz=zeros(2,2);
Pxx=zeros(4,2);
xpred=zeros(4,1);
yerror=rangeerror^2*sin(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*cos(Zmeasure(1,i))^2;
xyerror=(rangeerror^2-Zmeasure(2,i)^2*azimutherror^2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i));
相关文档
最新文档