第4章IC工艺之离子注入
硅集成电路工艺基础:第四章 离子注入
靶原子核也因碰撞而获得能量, 如果获得的能量大于原子束缚能,就 会离开原来所在晶格进入间隙,并留 下一个空位,形成缺陷。
电子碰撞:是注入离子与靶内自由电子以及束缚电子之间的碰撞, 这种碰撞能瞬时地形成电子-空穴对。
第四章 离子注入
离子注入技术是用一定能量的杂质离子束轰击要掺杂的 材料(称为靶,可以是晶体,也可以是非晶体),一部分 杂质离子会进入靶内,实现掺杂的目的。
离子注入是集成电路制造中常用的一种掺杂工艺,尤其 是浅结主要是靠离子注入技术实现掺杂。
离子注入的发展历史
1952年,美国贝尔实验室就开始研究用离子束轰击技术来改善半导体 的特性。
如果注入的是轻离子,或者是小剂量的重 离子,注入离子在靶中产生简单晶格损伤。
对于轻离子,开始时能量损失主要由电子 阻止引起,不产生移位原子。注入离子的能 量随注入深度的增加而减小,当能量减小到 小于交点Ec时,核阻止将起主导作用,几乎 所有的晶格损伤都产生于Ec点以后的运动中。 大多数情况下,每个注入离子只有一小部分 能量对产生间隙-空位缺陷有贡献。
横向效应与注入离子的种类和离子能量有关
(a) 杂质B、P、Sb通过lμ宽掩膜窗口注入到硅靶中的等浓度曲线 (b) 杂质P以不同能量注入硅靶中的等浓度曲线
硼、磷和砷入射到无定形硅靶中时,ΔRp和ΔR┴与入射能量的关系
4.2.3、沟道效应
沟道效应:当离子注入的方向与靶晶体的某个晶面平行时, 将很少受到核碰撞,离子将沿沟道运动,注入深度很深。 由于沟道效应,使注入离子浓度的分布产生很长的拖尾。
核阻止本领与离子能量的关系
如果屏蔽函数为:
微电子工艺 离子注入
称作投影射程。
内有多少条鱼浓度(个数域单位体积内有多少条鱼,…….离子源通过吸极电源把离子从离子源引出可变狭缝v⊕一个质量数为M的正离子,以速度v垂直于磁力线的方向进入磁场,受洛伦茨力的作用,在磁场中作匀速圆周运动的半径为R。
子离开分析仪电磁场的磁极平行平板电极⊕当离子束垂直进入均匀的正交电磁场时,将同时受到电场力和洛伦茨力的作用,这两个力的方向正好相反,只有在某个质量为M的离子在分析器中所受的电场力和洛伦茨力的数值相等时,不发生偏转而到达靶室,大于或小于M的离子则被偏转加速器加速离子,获得所需能量;高真空(<10-6Torr 静电加速器:调节离子能量静电透镜:离子束聚焦静电偏转系统:滤除中性粒子X方向扫描板Y方向扫描板扫描范围中性束偏转板+-的浓度比其它地方高。
终端台:控制离子束扫描和计量离子束扫描:扫描方式:静电扫描、机械扫描和混合扫描。
常用静电扫描和混合扫描。
静电光栅扫描适于中低束流机,机械扫描适于强束流机。
两种注入机扫描系统<110>向和偏转10°方向的晶体结构视图<111><100><110>40 kevP +31注入到硅中的浓度分布0.20.40.60.8 1.0µm43210 注入深度对准<110> 偏<110> 2°偏<110> 8°子在靶中行进的重要效应之一。
窗口边缘处浓度为同等深度窗口中心部位浓度的1/2离子越轻,阈值剂量越高;温度越高,阈值剂量越高。
扩散率提高,聚集成团,几种等时退火条件下,硅中注入硼离子的激活百分比。
第4章离子注入
掩模方式用于掺杂与刻蚀时的优点是生产效率高,设备
相对简单,控制容易,所以应用比较早,工艺比较成熟。缺 点是 需要制作掩蔽膜。
离子注入
High energy High dose Slow scan speed
离子注入机
低能 低剂量 快速扫描
Ion implanter
掺杂离子
束扫描
Mask xj Beam scan
13
离子注入的应用
1.P阱或N阱注入 ~1E12 atom/cm2 2.阈值调整注入 ~1E11 atom/cm2 3.场注入 ~1E12 atom/cm2 4.源漏注入 ~1E15 atom/cm2 5.隔离注入 ~1E15 atom/cm2 6.基区注入 ~1E12 atom/cm2 7.发射、收集区注入 ~1E15 atom/cm2 8.智能剥离氢注入 ~1E16 atom/cm2 9.材料改性注入 ~1E16 atom/cm2 10. SOI埋层注入 ~1E17-1E18 atom/cm2
4.9 理论模拟。
离子注入概述
离子注入
目的:掺杂(1954年,Shockley 提出);
应用:COMS工艺的阱,源、漏,调整VT的 沟道掺杂,防止寄生沟道的沟道隔断, 特别是浅结。
定义:离子注入是另一种对半导体进行掺杂的方 法。将杂质电离成离子并聚焦成离子束,在电场 中加速而获得极高的动能后,注入到硅中(称为 “靶” )而实现掺杂。
17
退火处理
通常,离子注入的深度较浅且浓度较大,必 须使它们重新分布。同时由于高能粒子的撞击, 导致硅结构的晶格发生损伤。
为恢复晶格损伤,在离子注入后要进行 退火处理。在退火的同时,掺入的杂质同 时向半导体体内进行再分布。
第四章离子注入
加速管
工艺腔 扫描盘
工艺控制参数
❖ 杂质离子种类:P+,As+,B+,BF2+,P++,B++,… ❖ 注入能量(单位:Kev)——决定杂质分布深度和形状,
10~200Kev ❖ 注入剂量(单位:原子数/cm2)——决定杂质浓度 ❖ 束流(单位:mA或uA)——决定扫描时间 ❖ 注入扫描时间(单位:秒)——决定注入机产能
Figure 17.15
中性束造成的注入不均匀性
带正电的离子束从质量分析器出来到硅片表面的过程中,
要经过加速、聚焦等很长距离,这些带电粒子将同真空系统中
的残余气体分子发生碰撞,其中部分带电离子会同电子结合,
成为中性的粒子。
对于出现在扫描 系统以前的中性粒子
没有偏转的中性束粒子继续向前
,扫描电场对它已不
200 kev 注入离子在 靶中的高斯分布图
硼原子在不同入射能量 对深度及浓度分布图
高斯分布只在峰值附近 与实际分布符合较好
根据离子注入条件计算杂质浓度的分布
❖ 已知杂质种类(P,B,As),离子注入能量(Kev),靶材 (衬底Si,SiO2,Si3N4等)
求解step1:查LSS表可得到Rp和ΔRp
和电子阻止(Se(E) )所损失的能量,总能量 损失为两者的和。
ddE xSnESeE
-dE/dx:能量损失梯度
E:注入离子在其运动路程上任一点x处的能量
Sn(E):核阻止本领
能量E的函数
Se(E):电子阻止本领
C: 靶原子密度 ~51022 cm-3 for Si
能量为E的 入射粒子在 密度为C的 靶内走过x 距离后损失 的能量
离子注入获奖课件
Typical implant voltages: 50~200 KeV, the trend is to lower voltages.
Typical implant dose: 1011~1016 cm2.
离子注入
二、离子注入旳特点
离子经加速,到达半导体表面; 离子经过碰撞损失能量,停留在不同深度旳位置, 此位置与离子能量有关;
Si Displaced Si ato去m 一定旳能量。靶原子也因碰撞 Si Si Si 而取核得碰能撞量,假如取得旳能量不
小于原注子入束离缚子能与,靶就内会原离子开核原间来
所旳在碰晶撞格。位置,进入晶格间隙,
并留下一种空位,形成缺陷。
核碰撞和电子碰撞
核阻止本事:能够了解为能量为E旳一种注入离子,在单位
产生沟道效应旳原因 当离子注入旳方向=沟道方向时,离子因为没有遇到晶格
而长驱直入,故注入深度较大。
沟道效应产生旳影响 在不应该存在杂质旳深度发觉杂质。
离子注入旳沟道效应
离子注入旳通道效应
离子注入旳沟道效应
处理沟道效应旳措施
1.倾斜样品表面,晶体旳主轴方向偏离注入方向,经典值为7°; 2.先重轰击晶格表面,形成无定型层; 3.表面长二氧化硅、氮化硅、氧化铝无定型薄层。
一级近似下,核阻止本事与入射离子旳能量无关。
注入离子在无定形靶中旳分布
注入离子在靶内分布是与注入方向有着一定旳关系, 一般来说,粒子束旳注入方向与靶垂直方向旳夹角比较小。
注入离子在靶内受到旳碰撞是随机过程。假如注入旳 离子数量很小,它们在靶内旳分布是分散旳,但是大量注 入离子在靶内旳分布是按一定统计规律分布。
虽然晶体某个晶向平行于离子注入方向,但注入离子进入晶 体前,在无定形旳介质膜中屡次碰撞后已经偏离了入射方向,偏 离了晶向。
集成电路工艺第四章:离子注入
其中N为入射离子总数, 为第i 其中N为入射离子总数,RPi为第i个离子的投影射 程
离子投影射程的平均标准偏差△ 离子投影射程的平均标准偏差△RP为
其中N 其中N为入射离子总数 Rp 为平均投影射程 Rpi为第 Rpi为第i个离子的投影射程 为第i
离子注入浓度分布
LSS理论描述了注入离子在无定形靶中的浓度分布 LSS理论描述了注入离子在无定形靶中的浓度分布 为高斯分布其方程为
其中φ为注入剂量 其中 为注入剂量 χ为离样品表面的深度 为离样品表面的深度 Rp为平均投影射程 为平均投影射程 △Rp为投影射程的平均标准偏差 为投影射程的平均标准偏差
离子注入的浓度分布曲线
离子注入浓度分布的最大浓度Nmax 离子注入浓度分布的最大浓度Nmax
从上式可知,注入离子的剂量φ越大, 从上式可知,注入离子的剂量φ越大,浓度峰值越高 从浓度分布图看出, 从浓度分布图看出,最大浓度位置在样品内的平均投 影射程处
4.2 离子注入工艺原理
离子注入参数
注入剂量φ 注入剂量 注入剂量φ是样品表面单位面积注入的离子总数 是样品表面单位面积注入的离子总数。 注入剂量 是样品表面单位面积注入的离子总数。单 位:离子每平方厘米
其中I为束流,单位是库仑每秒( 其中 为束流,单位是库仑每秒(安 培) t为注入时间,单位是秒 为注入时间, 为注入时间 q为电子电荷,等于 ×10-19库仑 为电子电荷, 为电子电荷 等于1.6× n为每个离子的电荷数 为每个离子的电荷数 A为注入面积,单位为 2 —束斑 为注入面积, 为注入面积 单位为cm
2267 475 866 198 673 126
4587 763 1654 353 1129 207
6736 955 2474 499 1553 286
第四章离子注入
1954年,Bell Lab. ,Shockley 提出; 应用:COMS工艺的阱,源、漏,调整VT的沟道掺 杂,防止寄生沟道的沟道隔断,特别是浅结。 定义:将带电的、且具有能量的粒子入射到衬底中。 特点: ①注入温度低:对Si,室温;对GaAs,<400℃。避免了 高温扩散的热缺陷;光刻胶,铝等都可作为掩蔽膜。 ②掺杂数目完全受控:同一平面杂质均匀性和重复性在 ±1%(高浓度扩散5%-10%);能精确控制浓度分 布及结深,特别适合制作高浓度浅结器件。
max
⎢ ⎣ 2
∆RP
⎥ ⎦
Nmax=0.4NS/ΔRP—峰值浓度(在RP处),NS—注入剂量
4.2 注入离子分布
4.2.2 横向效应 ①横向效应与注入 能量成正比; ②是结深的30% -50%; ③窗口边缘的离子 浓度是中心处的50%;
4.2 注入离子分布
4.2.3 沟道效应(ion channeling) 非晶靶:对注入离子的 阻挡是各向同性; 单晶靶:对注入离子的 阻挡是各向异性; 沟道:在单晶靶的主晶 轴方向呈现一系列平行 的通道,称为沟道。
dR dR
n
dR
e
n
e
−1 E0 dE R = ∫ dR = − ∫ = ∫ [S n (E ) + S e (E )] dE E0 dE / dR 0 0
式中,E0—注入离子的初始能量。
4.2 注入离子分布
2.投影射程XP: 总射程R在离子入射方向 (垂直靶片)的投影长度 ,即离子注入的有效深度。 3.平均投影射程RP: 投影射程XP的平均值,具 有统计分布规律-几率分 布函数。
4.1 核碰撞和电子碰撞
4.1.1 核阻挡本领Sn(E) Sn(E)=(dE/dx)n (dE/dx)n --核阻挡能量 损失率.
半导体制造工艺之离子注入原理
半导体制造工艺之离子注入原理引言离子注入是半导体制造工艺中的一种重要方法,广泛应用于半导体器件的加工和制造过程中。
离子注入工艺通过将高能离子注入到半导体晶体中,改变材料的物理和化学性质,实现半导体器件的特定功能和性能。
本文将详细介绍离子注入的原理以及其在半导体制造中的应用。
离子注入原理离子注入是利用离子束对半导体材料进行信息改变的过程,其原理基于以下几个关键步骤:1.离子源生成:离子注入过程首先需要一个稳定的离子源。
常见的离子源包括离子源装置和离子源材料。
离子源装置通过电离气体产生离子束,而离子源材料通常是一种固体材料,通过加热或溶解的方式释放离子。
2.离子加速:生成的离子束经过电场加速,增加其能量和速度。
加速电场的大小决定了离子注入的能量和深度。
3.汇聚和对准:离子束通过极板或磁场对准系统,确保离子束准确地注入到半导体材料的目标区域。
4.离子注入:离子束与半导体材料进行相互作用,离子穿过材料表面,在材料内部形成注入层。
离子注入的能量和剂量可以控制和调节,影响着半导体的特性和性能。
5.后续处理:注入完成后,需要进行一系列的后续处理步骤,如退火、清洗等,以恢复和优化器件的电学性能。
离子注入的应用离子注入在半导体制造中有着广泛的应用,主要体现在以下几个方面:1.掺杂:离子注入可在半导体材料中引入杂质原子,从而改变材料的电学性质。
通过控制离子注入的能量和剂量,可以实现器件中的PN结、N型、P型等区域。
2.改变表面特性:离子注入还可用于改变半导体材料表面的化学和物理特性。
例如,在CMOS制造中,通过离子注入改变材料表面的电导率,形成NMOS、PMOS等区域。
3.改善电子迁移率:离子注入还可用于改善半导体器件中电子的迁移率,提高器件的性能。
通过注入低能量离子,形成浅表层,可以减少晶格缺陷,提高电子的迁移率。
4.修复损伤:半导体材料在制造过程中往往会受到损伤,如晶格位错、空位等。
离子注入可用于修复这些损伤,提高材料的完整性和性能。
半导体工艺之离子注入
半导体离子注入工艺--离子注入离子注入法掺杂和扩散法掺杂对比来说,它的加工温度低、容易制作浅结、均匀的大面积注入杂质、易于自动化等优点。
当前,离子注入法已成为超大规模集成电路制造中不可缺少的掺杂工艺。
1.离子注入原理:离子是原子或分子经过离子化后形成的,即等离子体,它带有一定量的电荷。
可通过电场对离子进行加速,利用磁场使其运动方向改变,这样就可以控制离子以一定的能量进入wafer内部达到掺杂的目的。
离子注入到wafer中后,会与硅原子碰撞而损失能量,能量耗尽离子就会停在wafer中某位置。
离子通过与硅原子的碰撞将能量传递给硅原子,使得硅原子成为新的入射粒子,新入射离子又会与其它硅原子碰撞,形成连锁反应。
杂质在wafer中移动会产生一条晶格受损路径,损伤情况取决于杂质离子的轻重,这使硅原子离开格点位置,形成点缺陷,甚至导致衬底由晶体结构变为非晶体结构。
2.离子射程离子射程就是注入时,离子进入wafer内部后,从表面到停止所经过的路程。
入射离子能量越高,射程就会越长。
投影射程是离子注入wafer内部的深度,它取决于离子的质量、能量,wafer的质量以及离子入射方向与晶向之间的关系。
有的离子射程远,有的射程近,而有的离子还会发生横向移动,综合所有的离子运动,就产生了投影偏差。
3.离子注入剂量注入剂量是单位面积wafer表面注入的离子数,可通过下面的公式计算得出 ,式中,Q 是剂量;I 是束流, 单位是安培;t 是注入时间,单位是秒;e 是电子电荷,1.6×10-19C ;n 是电荷数量;A 是注入面积,单位是 。
4.离子注入设备离子注入机体积庞大,结构非常复杂。
根据它所能提供的离子束流大小和能量可分为高电流和中电流离子注入机以 及高能量、中能量和低能量离子注入机。
离子注入机的主要部件有:离子源、质量分析器、加速器、聚焦器、扫描系统以及工艺室等。
(1)离子源离子源的任务是提供所需的杂质离子。
在合适的气压下,使含有杂质的气体受到电子碰撞而电离,最常用的杂质源有和 等, (2)离子束吸取电极吸取电极将离子源产生的离子收集起来形成离子束。
第四章离子注入
❖ 能量为E的注入离子在单位密度靶内运动单位长度时,损失给靶原子核的 能量。
Sn
E
dE dx n
❖ 能量为E的一个注入离子与靶原子核碰撞,离子能量转移到原子核上,结 果将使离子改变运动方向,而靶原子核可能离开原位,成为间隙原子核, 或只是能量增加。
❖低能量时核阻止本领随能量的增加呈线性增加,而在某个中等能量达到最大值,在高 能量时,因快速运动的离子没有足够第的四时章离间子与注靶入原子进行有效的能量交换,所以核阻 止变小。
硅的<110 >方向沟道开口约1.8
Å, <100 >方向沟道开口
110
111
约11.22 Å, <111>方向沟道开口介
于两者之间。因此,沟道效应
依<110 >、 <111>、 <100 >顺序减
弱。
100
倾斜旋转硅片后的无序方向
第四章离子注入
实践表明,沟道效应与多种因素有关,包括:
单晶靶的取向
❖ 8、离子注入是通过硅表面的薄膜入射到硅中, 该膜起到了保护作用,防止污染。
❖ 9、容易实现化合物半导体材料的掺杂。 第四章离子注入
缺点
会在晶体中引入晶格损伤 产率低 设备复杂,投资大
第四章离子注入
基本概念
❖ 靶:被掺杂的材料称为靶 ❖ 散射离子:一束离子轰击靶时,其中一部分离
子在靶表面就被反射了,不能进入的离子称散 射离子。 ❖ 注入离子:进入靶内的离子称注入离子
第四章离子注入
横向效应不但与注入离子的种类有关,也与入射离子的能量有关。
第四章离子注入
35 keV As注入
120 keV As注入
横向效应影响MOS晶体管的有效沟道长度。 (扫描电镜照片)
离子注入工艺课件
•
衷心感谢社会各界对电建事业的明白 关心和 支持。2 0.8.110 7:48:36 07:48A ug-201 1-Aug-2 0
•
可怕的不是失败,而是自甘堕落。。0 7:48:36 07:48:3 607:48 Tuesda y, August 11, 2020
•
既然我已经踏上这条道路,那么,任 何东西 都不应 妨碍我 沿着这 条路走 下去。 。20.8.1 120.8.1 107:48: 3607:4 8:36August 11, 2020
(3)衬底温度低,一般保持在室温 ,因此,像二氧化硅、氮化硅、铝何光 刻胶等都可以用来作为选择掺杂的掩蔽 膜。
(4)离子注入深度是随离子能量的
增加而增加,因此掺杂深度可以通过控
制离子束能量高低来实现。另外,在注
入过程中可精确控制电荷量,从而可精
20确20/8控/11 制掺杂浓度。
5
(5)离子注入是一个非平衡过程,不 受杂质在衬底材料中的固溶度限制,原 则上对各种元素均可掺杂。
(6)离子注入时的衬底温度低,这样 就可以避免了高温扩散所引起的热缺陷。
(7)由于注入的直进性,注入杂质是 按掩膜的图形近于垂直入射,因此横向 效应比热扩散小的多,有利于器件特征 尺寸的缩小。
2020/8/11
6
(8)离子往往是通过硅表面上的薄膜 注入到硅中,因此硅表面上的薄膜起到 了保护膜作用
2020/8/11
8
三、离子注入原理
“离子” 是一种经离化的原子和分子,也称
“等离子体”,它带有一定量的电荷。“等离子 发生器”已广泛应用到CVD、金属镀膜、干法刻 蚀、光刻胶的去除等工艺中,而在离子注入的设 备中,它被用来制造工艺所要注入的离子。因为 离子带电荷,可以用加速场进行加速,并且借助 于磁场来改变离子的运动方向。当经加速后的离 子碰撞一个固体靶面之后,离子与靶面的原子将 经历各种不同的交互作用,如果离子“够重”, 则大多数离子将进入固体里面去。反之,许多离 子将被靶面发射。
半导体工艺--离子注入
注入离子将能量转移给晶格原子 – 产生自由原子(间隙原子-空位缺陷对)
自由原子与其它晶格原子碰撞 – 使更多的晶格原子成为自由原子 – 直到所有自由原子均停止下来,损伤才停止
一个高能离子可以引起数千个晶格原子位移
9、退火:
退火:将完成离子注入的硅片在一定的温度下,经 过适当的热处理,则硅片上的损伤就可能得到消除, 少数载流子寿命以及迁移率也会不同程度的得到恢复, 杂质也得到一定比例的电激活。
2、离子束的性质:
离子束是一种带电原子或带电分子的束状流, 能被电场或磁场偏转,能在高压下加速而获得很高 的动能。
离子束的用途: 掺杂、曝光、刻蚀、镀膜、退火、净化、改性、 打孔、切割等。不同的用途需要不同的离子能量 E :
E < 10 KeV ,刻蚀、镀膜 E = 10 ~ 50 KeV,曝光 E > 50 KeV,注入掺杂
7、离子与衬底原子的相互作用:
注入离子与衬底原子的相互作用,决定了注入离 子的分布、衬底的损伤。
注入离子与靶原子的相互作用,主要有离子与电 子的相互作用,称为电子阻止。和离子与核的相互作 用,称为核阻止。核阻止主要表现为库仑散射。
在同样能量下,靶原子质量越大,核阻止越大,靶原 子质量越小电子阻止越大。
10、离子注入的 优缺点:
优点:
1、可控性好,离子注入能精确控制掺杂的浓度分布 和掺杂深度,因而适于制作极低的浓度和很浅的结深;
2、注入温度低,一般不超过 400℃,退火温度也在 650℃ 左右,避免了高温过程带来的不利影响,如结 的推移、热缺陷、硅片的变形等;
3、工艺灵活,可以穿透表面薄膜注入到下面的衬底 中,也可以采用多种材料作掩蔽膜,如 SiO2 、金属 膜或光刻胶等;
4、离子注入系统:
集成电路工艺基础——04离子注入[可修改版ppt]
离子注入应用
❖隔离工序中防止寄生沟道用的沟道截断 ❖调整阈值电压用的沟道掺杂 ❖CMOS阱的形成 ❖浅结的制备
在特征尺寸日益减小的今日,离子注入已经成为 一种主流技术。
离子注入系统的原理示意图
使带电粒子偏转,分出中性粒子流 中性束路径
类似电视机,让束流上下来回的对圆片扫描
❖ 一个离子在停止前所经过的总路程,称为射程R ❖ R在入射轴方向上的投影称为投影射程Xp ❖ R在垂直入射方向的投影称为射程横向分量Xt
❖平均投影射程Rp: 所有入射离子的投影 射程的平均值 ❖标准偏差:
注入离子在无定形靶中的分布
❖ 对于无定形靶(SiO2、Si3N4、光刻胶等),注入离子的 纵向分布可用高斯函数表示:
n(x)N exp1[(xRp)2]
max
2 R
p
其中:
N
N s
0.4Ns
max 2R R
p
p
注入离子在无定形靶中的分布
❖横向分布(高斯分布)
▪ 入射离子在垂直入射方向平面内的杂质分布 ▪ 横向渗透远小于热扩散
注入离子在无定形靶中的分布
❖ 高斯分布只在峰值附近与实际分布符合较好。
▪ 轻离子/重离子入射对高斯分布的影响 ▪ 实践中,用高斯分布快速估算注入离子在靶材料中的
❖ 注入离子在靶内能量损失方式
▪ 电子碰撞(注入离子与靶原子周围电子云的碰撞)
• 能瞬时形成电子-空穴对 • 两者质量相差大,碰撞后注入离子的能量损失很小,
散射角度也小,虽然经过多次散射,注入离子运动方 向基本不变。电子则被激发至更高的能级(激发)或 脱离原子(电离)。
4.2 注入离子在无定形靶中的分布
▪ 离子方向=沟道方向时………离子因为没有碰到晶格 而长驱直入………
半导体工艺-离子注入(精)
半导体工艺--离子注入离子注入法掺杂相比扩散法掺杂来说,它的加工温度低、容易制作浅结、均匀的大面积注入杂质、易于自动化等优点。
目前,离子注入法已成为超大规模集成电路制造中不可缺少的掺杂工艺。
1.离子注入原理离子是原子或分子经过离子化后形成的,即等离子体,它带有一定量的电荷。
可通过电场对离子进行加速,利用磁场使其运动方向改变,这样就可以控制离子以一定的能量进入wafer内部达到掺杂的目的。
离子注入到wafer中后,会与硅原子碰撞而损失能量,能量耗尽离子就会停在wafer中某位置。
离子通过与硅原子的碰撞将能量传递给硅原子,使得硅原子成为新的入射粒子,新入射离子又会与其它硅原子碰撞,形成连锁反应。
杂质在wafer中移动会产生一条晶格受损路径,损伤情况取决于杂质离子的轻重,这使硅原子离开格点位置,形成点缺陷,甚至导致衬底由晶体结构变为非晶体结构。
2.离子射程离子射程就是注入时,离子进入wafer内部后,从表面到停止所经过的路程。
入射离子能量越高,射程就会越长。
投影射程是离子注入wafer内部的深度,它取决于离子的质量、能量,wafer的质量以及离子入射方向与晶向之间的关系。
有的离子射程远,有的射程近,而有的离子还会发生横向移动,综合所有的离子运动,就产生了投影偏差。
3.离子注入剂量注入剂量是单位面积wafer表面注入的离子数,可通过下面的公式计算得出,式中,Q是剂量;I是束流,单位是安培;t是注入时间,单位是秒;e是电子电荷,1.6×10-19C;n是电荷数量;A是注入面积,单位是。
4.离子注入设备离子注入机体积庞大,结构非常复杂。
根据它所能提供的离子束流大小和能量可分为高电流和中电流离子注入机以及高能量、中能量和低能量离子注入机。
离子注入机的主要部件有:离子源、质量分析器、加速器、聚焦器、扫描系统以及工艺室等。
(1)离子源离子源的任务是提供所需的杂质离子。
在合适的气压下,使含有杂质的气体受到电子碰撞而电离,最常用的杂质源有和等,(2)离子束吸取电极吸取电极将离子源产生的离子收集起来形成离子束。
集成电路制造技术 第四章 离子注入
第四章 离子注入
靶:被掺杂的材料 晶体靶:Si片; 无定形靶:SiO2、Si3N4、光刻胶等。 无定形靶:可精确控制注入深度。 离子注入原理 杂质元素离化,杂质离子,强场加速,获得能量,
轰击基片。依赖离子动能。 离子注入设备 ①离子源;②质量分析器;③加速器;④偏束板;⑤
扫描器;⑥靶室
防止寄生沟道的沟道隔断,特别是浅结。 定义:将带电的、具有能量的粒子入射到衬底中 可以独立控制杂质分布(离子能量)和杂质浓度(离子流密
度和注入时间) 各向异性掺杂 容易获得高浓度掺杂(特别是重杂质原子,如P和As等)。
扩散与注入的比较
扩散
离子注入
高温,硬掩膜 900-1200 ℃
各向同性
低温,光刻胶掩膜 室温或低于400℃
各向异性
不能独立控制结深和浓度 可以独立控制结深和浓度
离子注入2步骤:
离子注入和退火再分布。离子注入通过高能离子
束轰击硅片表面,掺杂窗口处,杂质离子被注入 硅本体,其他部位,杂质离子被保护层屏蔽,完 成选择掺杂。杂质离子在一定位置形成一定分布。 离子注入的深度(平均射程)较浅且浓度较大,必 须重新再分布。掺杂深度由注入杂质离子能量和 质量决定,掺杂浓度由注入杂质离子的数目(剂量) 决定。
注入工艺: 源/漏(S/D)区注入
Low energy (20 keV), high current (>1015/cm2)
集成电路工艺原理4
分析磁铁
中性离子 重离子 石磨
4.2 离子注入装置
分析磁铁
4.2 离子注入装置
电极
+100 kV+80 kV+60 kV+40 kV+20 kV 0 kV
加速管
粒子束 来自分 析磁体
粒子束 至工艺腔
+100 kV
100 MΩ 100 MΩ 100 MΩ 100 MΩ 100 MΩ
4.2 离子注入装置
4.1 概述
离子注入应用
4.1 概述
离子注入应用
4.1 概述
离子注入特点
离子注入是一个物理过程,即不发生化学反应。 它能够重复控制杂质的浓度和深度,因而几乎在所用 应用中都优于扩散。它已经成为满足亚0.25μm特征 尺寸和大直径硅片制作要求的标准工艺。 离子注入是半导体工艺中有别于扩散的一种制 结方法。这种方法具有以下特点: (1)注入的离子是通过质量分析器选取出来的,被 选取的离子纯度高,能量单一,从而保证了掺杂纯度 不受杂质源纯度的影响。另外,注入过程是在清洁、 干燥的真空条件下进行的,这样就大大降低了各种-well
n++
倒掺杂阱
p-type dopant p-well
p++
p+ 埋层 p+ Silicon substrate
4.1 概述
n-type dopant n-well
n+ n++ p+ Buried layer p+ Silicon substrate
穿通阻挡层
p-type dopant p-well
4.1 概述
离子注入特点
(4)离子注入的深度随离子能量的增加而增加。 因此,可以通过控制注入离子的能量和剂量,以 及采用多次注入相同或不同杂质,得到各种形式 的杂质分布。对于突变的杂质分布,采用离子注 入技术很容易实现。 (5)离子注入是一个非平衡过程,不受杂质在 衬底材料中溶解度的限制,原则上对各种元素均 可掺杂(但掺杂剂占据衬底晶格格点而变为激活 杂质是有限的),这就使掺杂工艺灵活多样,适 应性强。根据需要可从几十种元素中挑选合适的 N型或P型杂质进行掺杂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章IC工艺之离子注入
Annealing of Silicon Crystal
•Ion Beam
•Repaired Si lattice structure and activated dopant-silicon bonds
•a) Damaged Si lattice during implant
– 离子注入技术的优缺点 – 剂量和射程在注入工艺中的重要性 – 离子注入系统的主要子系统 –
第4章IC工艺之离子注入
CMOS Structure with Doped Regions
•p-channel Transistor
•N
•O
•M
•K
•p+
•L •LI oxide
•n-channel Transistor
– 能量损失: 散射路径R,靶材料密度,阻止本领S
第4章IC工艺之离子注入
– 能量损失
第4章IC工艺之离子注入
– 注入离子的分布N(x)(无电子散射) 注入剂量0(atom/cm-2),射程:Rp 标准偏差Rp
•Sampling slit in disk
•Scanning disk with wafers
•Dopant ions •Beam scan
•Low energy •Low dose •Fast scan speed
•Ion implanter
•High energy •High dose •Slow scan speed
•Beam scan
•Mask •xj
•Mask
•Silicon substrate
•Suppressor aperture
•Faraday cup
•Ion beam
•Current integrator
•Scanning direction
第4章IC工艺之离子注入
– 对于无定型材料, – 有:
为高斯分布
– 97页 图4.8
第4章IC工艺之离子注入
– 平均射程
第4章IC工艺之离子注入
•I
•J
•n+
•n+ •STI
•p– •p+
•p– •p+
•STI
•n •n+ •n++
•F
•n-well
•E
•C
•n– •n+
•n– •n+
•STI
•p+
•p
• •p++
•B •p– epitaxial layer
•A •p+ silicon substrate
第4章IC工艺之离子注入
第4章IC工艺之离子注入
第4章IC工艺之离子注入
•Page 107
第4章IC工艺之离子注入
第4章IC工艺之离子注入
– 多能量、多剂量注入
第4章IC工艺之离子注入
– 4.1.2. 设备
第4章IC工艺之离子注入
Analyzing Magnet
•Ion source •Extractio n assembly
•沟道峰
第4章IC工艺之离子注入
– 沟道效应的消除(临界角)
第4章IC工艺之离子注入
– 4. 2. 2.卢瑟福背散射RBS-C 作用?。。。
第4章IC工艺之离子注入
– 4.3. 注入离子的激活与辐照损伤的消除
P.103~112 1)注入离子未处于替位位置 2)晶格原子被撞离格点
Ea为原子的位移阈能 •大剂量——非晶化 •临界剂量(P。111) •与什么因素有关? •如何则量?
第4章IC工艺之离子注入
2020/11/26
第4章IC工艺之离子注入
问题的提出: – 短沟道的形成? – GaAs等化合物半导体?(低温掺杂) – 低表面浓度? – 浅结? – 纵向均匀分布或可控分布? – 大面积均匀掺杂? – 高纯或多离子掺杂?
第4章IC工艺之离子注入
要求掌握: – 基本工艺流程(原理和工艺控制参数) – 选择性掺杂的掩蔽膜(Mask) – 质量控制和检测 – 后退火工艺的目的与方法 – 沟道效应 – 在器件工艺中的各种主要应用
•Analyzing magnet
•Ion beam
•Lighter ions
•Neutrals
•Heavy ions
•Graphite
•Figure 17.14
•
第4章IC工艺之离子注入
第4章IC工艺之离子注入
4.2. 沟道效应和卢瑟福背散射 6. 2. 1.沟道效应(page 101)
第4章IC工艺之离子注入
• a) Low dopant concentration (n–, p–) and shallow junction (xj)
•Mask •xj
•Mask
•Silicon substrate
• b) High dopant concentration (n+, p+)第an4d章dICe工ep艺j之un离c子tio注n入(xj)
•Photo
•Etch
•Photoresist mask •Implant
•Hard mask (oxide or nitride)
第4章IC工艺之离子注入
4.1. 离子注入原理
4.1.1. 物理原理(P.90-98) 通过改变高能离子的能量,控制注入离子在靶材
料中的位置。
•Ion implanter
•Energetic dopant ion
•Silicon crystal lattice
•Si •Si •Si •X-rays
•Si •Si •Si •Atomic collision
•Si •Si •Displaced Si atom
•Si •Si •Si •Si
•Figure 17.9
•
第4章IC工艺之离子注入
第4章IC工艺之离子注入
– 重离子在材料中与靶原子的碰撞是“弹性” 库仑散射
第4章IC工艺之离子注入
– 级联散射
第4章IC工艺之离子注入
Energy Loss of an Implanted Dopant Atom
•Electronic collision •Si •Si •Si •Si •Si •Si •Si •Si •Si •Si •Si •Si
第4章IC工艺之离子注入
Ion Implant in Process Flow
•Wafer fabrication (front-end)
•Wafer start
•Thin Films
•Polish
•Unpatterned wafer
•Completed wafer
•Test/Sort
•Diffusion •Anneal after implant