解析几何知识点总结

合集下载

解析几何知识点总结大全

解析几何知识点总结大全

解析几何知识点总结大全几何学问点总结大全1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的全部线段中,垂线段最短 7平行公理经过直线外一点,有且只有一条直线与这条直线平行8假如两条直线都和第三条直线平行,这两条直线也相互平行 9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于18018推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角 21全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等24推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的全部点的集合30等腰三角形的性质定理等腰三角形的两个底角相等31推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32等腰三角形的顶角平分线、底边上的中线和高相互重合33推论3等边三角形的各角都相等,并且每一个角都等于6034等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60的等腰三角形是等边三角形37在直角三角形中,假如一个锐角等于30那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的全部点的集合42定理1关于某条直线对称的两个图形是全等形43定理2假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上45逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c 的平方,即a+b=c47勾股定理的逆定理假如三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理n边形的内角的和等于(n-2)18051推论任意多边的外角和等于36052平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线相互平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线相互平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线相互垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(ab)267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线相互垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且相互垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理假如两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理假如一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2S=Lh83(1)比例的基本性质假如a:b=c:d,那么ad=bc假如ad=bc,那么a:b=c:d84(2)合比性质假如a/b=c/d,那么(ab)/b=(cd)/d85(3)等比性质假如a/b=c/d=…=m/n(b+d+…+n0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理假如一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相像91相像三角形判定定理1两角对应相等,两三角形相像(ASA) 92直角三角形被斜边上的高分成的两个直角三角形和原三角形相像93判定定理2两边对应成比例且夹角相等,两三角形相像(SAS) 94判定定理3三边对应成比例,两三角形相像(SSS)95定理假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相像96性质定理1相像三角形对应高的比,对应中线的比与对应角平分线的比都等于相像比97性质定理2相像三角形周长的比等于相像比98性质定理3相像三角形面积的比等于相像比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的.点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同始终线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119推论3假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d?r②直线L和⊙O相切d=r③直线L和⊙O相离d?r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论假如两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论假如弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134假如两个圆相切,那么切点肯定在连心线上135①两圆外离d?R+r②两圆外切d=R+r③两圆相交R-r?d?R+r(R?r)④两圆内切d=R-r(R?r)⑤两圆内含d?R-r(R?r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)180/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积3a/4a表示边长143假如在一个顶点四周有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4144弧长计算公式:L=nR/180145扇形面积公式:S扇形=nR/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)解析几何方法总结然而相对于导数需要较强的技巧和想法来讲,解析几何更重要考察的是心里素养。

高中数学解析几何知识点归纳总结

高中数学解析几何知识点归纳总结

高中数学解析几何知识点归纳总结
1. 直线与平面的位置关系
- 直线与平面的交点可以有三种情况:交于一点、平行或重合。

- 直线与平面的夹角可以分为三种情况:直线在平面内、直线
与平面垂直或直线在平面外。

- 两个平面的位置关系可以分为三种情况:相交于一直线、平
行或重合。

2. 平面的方程
- 平面的方程有两种形式:点法式和一般式。

- 点法式方程:通过平面上一点和法向量来确定平面方程。

- 一般式方程:由平面的法向量和一个常数项确定平面方程。

3. 直线的方程
- 直线的方程也有两种形式:点向式和一般式。

- 点向式方程:通过直线上一点和方向向量来确定直线方程。

- 一般式方程:由直线的法向量和一个常数项确定直线方程。

4. 平面和直线的距离
- 平面和直线的距离可以使用点到平面的距离公式或点到直线
的距离公式。

5. 直线与直线的位置关系
- 直线与直线的位置关系可以分为三种情况:相交于一点、平
行或重合。

6. 空间中的球面与圆
- 空间中的球面方程与二维平面上的圆方程类似。

- 空间中的球面与圆的方程可以通过中心点和半径来确定。

7. 二次曲线
- 二次曲线包括椭圆、双曲线和抛物线。

- 二次曲线的方程可以通过焦点、直径等要素来确定。

以上是高中数学解析几何的一些主要知识点。

通过研究和掌握
这些知识,你将能够更好地理解和应用解析几何的相关概念和方法。

解析几何学知识点总结

解析几何学知识点总结

解析几何学知识点总结一、点、线、面的基本概念1. 点:点是几何学中的基本概念,它没有长、宽、高,只有位置,用来表示物体的位置。

在几何学中,我们经常用坐标系来表示点的位置。

2. 线:线是由一系列无限延伸的点构成的,它没有宽度,只有长度。

除了直线,还有曲线、射线等概念。

3. 面:面是由一系列线构成的,它有长度和宽度,但没有高度。

在几何学中,我们研究的一般是平面,即二维空间中的面。

二、直线和角1. 直线的性质:直线是无限延伸的,没有起点和终点。

直线上的任意两点确定了一条直线,直线是几何学中的基本要素。

2. 角:角是由两条射线共同起点构成的。

角的大小用度来表示,是几何学中重要的角度概念。

角的度数和弧度数可以相互转换,角的正弦、余弦、正切等三角函数也是很重要的。

三、多边形和圆1. 多边形:多边形是由有限个直线段构成的封闭图形,它有顶点、边和面。

在几何学中,我们所研究的多边形一般是指正多边形,它是边相等、角相等的多边形。

多边形的面积和周长是多边形的重要性质。

2. 圆:圆是一种特殊的曲线,是由到一个定点距离相等的所有点构成的。

圆是几何学中的重要图形,它的半径、直径、圆心、圆周长和面积都是圆的重要性质。

四、立体几何1. 立体图形:在几何学中,我们研究的不仅仅是平面图形,还有立体图形。

立体图形是有长度、宽度和高度的,像正方体、长方体、圆柱体、圆锥体和球体等图形都属于立体图形的范畴。

2. 立体图形的体积和表面积:立体图形的体积和表面积是立体图形的重要性质,它们是我们在实际应用中经常要用到的。

五、坐标系和向量1. 坐标系:在几何学中,我们经常用坐标系来表示点的位置。

常见的坐标系有直角坐标系、极坐标系和球坐标系等。

2. 向量:向量是具有大小和方向的物理量,它是几何学中的重要概念。

向量的加法、减法、数乘、数量积和向量积都是向量的重要运算。

这些是几何学中的一些重要知识点,它们涵盖了几何学的基本概念和性质。

几何学是一门非常宝贵的学科,它在很多领域都有着重要的应用价值。

解析几何知识点总结

解析几何知识点总结

解析几何知识点总结一、直线1、直线的倾斜角直线倾斜角的范围是0, π)。

当直线与 x 轴平行时,倾斜角为 0;当直线与 x 轴垂直时,倾斜角为π/2 。

2、直线的斜率经过两点 P₁(x₁, y₁),P₂(x₂, y₂)(x₁≠x₂)的直线的斜率 k =(y₂ y₁)/(x₂ x₁)。

当直线的倾斜角α≠π/2 时,直线的斜率 k =tanα 。

3、直线的方程(1)点斜式:y y₁= k(x x₁) ,其中(x₁, y₁) 是直线上的一点,k 是直线的斜率。

(2)斜截式:y = kx + b ,其中 k 是斜率,b 是直线在 y 轴上的截距。

(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁) ,其中(x₁, y₁),(x₂, y₂) 是直线上的两点。

(4)截距式:x/a + y/b = 1 ,其中 a 是直线在 x 轴上的截距,b是直线在 y 轴上的截距。

(5)一般式:Ax + By + C = 0 (A、B 不同时为 0)。

4、两条直线的位置关系(1)平行:若两条直线的斜率都存在,分别为 k₁,k₂,则 k₁=k₂;若两条直线的一般式方程分别为 A₁x + B₁y + C₁= 0 ,A₂x+ B₂y + C₂= 0 ,则 A₁B₂ A₂B₁= 0 且 A₁C₂ A₂C₁ ≠ 0 。

(2)垂直:若两条直线的斜率都存在,分别为 k₁,k₂,则k₁k₂=-1 ;若两条直线的一般式方程分别为 A₁x + B₁y + C₁=0 ,A₂x + B₂y + C₂= 0 ,则 A₁A₂+ B₁B₂= 0 。

5、点到直线的距离点 P(x₀, y₀) 到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²) 。

6、两条平行线间的距离两条平行线 Ax + By + C₁= 0 ,Ax + By + C₂= 0 (C₁≠C₂)间的距离 d =|C₁ C₂| /√(A²+ B²) 。

解析几何知识点总结

解析几何知识点总结

解析几何知识点总结第一部分:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。

(2)范围:(0,180)2.斜率:直线倾斜角α的正切值叫做这条直线的斜率. k=tan α(1).倾斜角为90°的直线没有斜率。

(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

(3)设经过A (x1,y1)和B (x2,y2)两点的直线的斜率为K ,则当X1≠X2时,k=tan α=Y1-Y2/X1-X2;当X1=X2时,α=90°;斜率不存在; 二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为x=x0;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:y=kx+b ;特别地,斜率存在且经过坐标原点的直线方程为:y=kx注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

3.两点式:若已知直线经过(x1,y1)和(x2,y2)两点,且(X1≠X2,y1≠y2)则直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (a ≠0,b ≠0)则直线方程:1=+bya x; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

《解析几何》知识点总结:第1章-向量代数

《解析几何》知识点总结:第1章-向量代数

第一章向量代数一、向量及其线性运算1.向量及其表示(1)向量:有大小和方向的量。

(2)表示:AB ,A 为向量的起点,B 为向量的重点。

(3)向量的模:||AB 。

(4)向径(半径向量/定位向量):称为P 的向径,简记为P 。

(5)单位向量:模为1,记为|a |aa o =。

(6)零向量:模为0,任意方向,与任何向量共线。

(7)自由向量:可自由平行移动。

(8)相等(相反):大小相等,方向相同(相反)。

(9)共线(平行):平行移动到同一始点,在一条直线上;共面。

(10)共面:平行移动到同一始点,在一个平面上。

2.向量的加法和减法(1)加法:①三角/多边形法则(定义1.1):首尾相连,第一个向量起点到最后一个向量终点;②平行四边形法则(定义1.2):首首相连,平行四边形过起点的对角线;③三角/多边形不等式:|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |。

(2)减法:三角形法则(定义1.3):首首相连,OA OB AB -=。

3.向量的数乘(1)定义1.4:实数λ与向量a 的乘积是一个向量,记为λa。

|λa|=|λ||a|,方向取决于λ。

4.运算律(图形法证明)①交换律:a ±b =b ±a②结合律:(a ±b )±c =a ±(b ±c );λ(μa )=(λμ)a③分配律:(λ+μ)a =λa +μa ;λ(a +b )=λa +λb5.共线及共面向量的判定(1)定理1.1:向量b 与非零向量a 共线⟺∃λ∈R ,使b=λa ;推论1.1:两个向量a ,b 共线⟺∃λ,μ∈R ,且λ,μ不同时为0,使λa +μb =0。

(2)定理1.2:若a ,b 不共线,向量c 与a ,b 共面⟺∃λ,μ∈R ,使c =λa +μb ;推论1.2:三个向量a ,b ,c 共面⟺∃λ,μ,φ∈R ,使λa +μb+φc =0。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结一、基本概念1. 点、直线和平面•点:在平面上,点是最基本的几何对象,可以用坐标表示。

在空间中,点可以用三维坐标表示。

•直线:由无数个点连成的无限延伸的轨迹,可以由两个不重合的点唯一确定。

•平面:由无数点在同一平面上组成。

2. 基本图形•线段:连接两点的线段,有起点和终点,可以用线段的长度表示。

•射线:一个起点和一个终点在同一条直线上的线段,有起始点但没有终结点。

•角:由两条半直线和公共端点组成,以顶点为中心点,夹在两条半直线之间。

二、坐标系与向量1. 坐标系•笛卡尔坐标系:直角坐标系,是一个由两条垂直的坐标轴组成的平面,用于表示点的位置。

•极坐标系:以一个点为极点,在此点设一根射线作为极轴,并规定每一个点到该射线的距离和与该射线正方向所成角度来表示该点的坐标。

2. 向量•向量的定义:向量是有大小和方向的量,表示一段膨胀或者收缩的箭头。

•向量的运算:向量可以做加法和乘法运算,具备平移、缩放和旋转的特性。

•向量的表示:向量可以用有序数组、列矩阵或坐标表示。

三、直线与圆1. 直线的方程•点斜式方程:通过已知点和斜率来表示直线的方程。

•斜截式方程:通过截距和斜率来表示直线的方程。

•两点式方程:通过两个已知点来表示直线的方程。

•一般式方程:直线的一般方程为Ax + By + C = 0。

2. 圆的方程•标准方程:圆的标准方程为(x−a)2+(y−b)2=r2,其中(a,b)为圆心坐标,r为半径长度。

•一般方程:圆的一般方程为x2+y2+Dx+Ey+F=0。

四、曲线与曲面1. 二次曲线•椭圆:由平面上到两个定点的距离之和为常数的点的轨迹组成。

•抛物线:由平面上到一个定点的距离与到一条定直线的距离相等的点的轨迹组成。

•双曲线:有两个定点F1和F2称为焦点,对于任意一点P的到两个焦点的距离之差是常数。

2. 二次曲面•椭球面:由空间中到两个定点的距离之和为常数的点的轨迹组成。

•抛物面:由空间中到一个定点的距离与到一条定直线的距离相等的点的轨迹组成。

高_中数学解析几何知识点大总结.

高_中数学解析几何知识点大总结.

高_中数学解析几何知识点大总结.一、实数系统:1、有理数体系:有理数是可以用有限个整数的乘积和商来表示的运算对象,它们形成有理数体系。

常用的有理数有整数、分数和真分数。

2、无理数体系:无理数是不具备有限个整数的乘积和商来表示的运算对象,它们形成无理数体系。

常用的无理数有平方根数和立方根数。

二、几何:1、点,直线,圆和椭圆:点是几何的基本元素,是距离的集合,没有大小和形状;由两点确定的直线是几何中的基本要素,没有长度和粗细;圆是一种特殊的曲线,它的半径不变,圆的形状是无限的;椭圆是一种曲线,它的一个轴长不变,另一个轴可以改变长度,所以有无限多种椭圆。

2、平行,垂直和相交:平行线是指在同一平面内,相互偏离而永不相交的两条或多条直线;垂直线是指在同一平面内,两条直线在顶点处刚好相交;相交线是指在同一平面内,它们在某一点有交点。

3、向量:向量是用来表示直线上的一点到另一点的距离,它有两个特征:方向和大小。

三、解析几何:1、给定两个点:如果已经给定了两个点,则可以从这两个点构造一条连续的直线,从而求出这两个点之间的距离。

2、给定一点和直线:如果已经给定了一点和一条直线,则可以求出该点到直线的距离。

3、给定两条直线:如果已经给定了两条直线,则可以求出它们之间有无交点,以及两条直线之间的距离。

4、给定一点和它所在的圆心:如果已经给定了一点和它所在的圆心,则可以求出该点到圆心的距离。

5、给定两个圆:如果已经给定了两个圆,则可以求出它们之间有无交点,以及两个圆之间的距离。

四、三维几何:1、球形:球是一个由三维几何中的最精简的图形,它是一种空间图形,由中心点和半径确定。

它可以用来描述运动物体在空间中的运动轨迹。

2、胶囊:胶囊是一种特殊的三维几何,它由一组圆环构成,每个圆环都是完整的并且平行。

3、多边体:多边体是由于把一个或多个多边形拼接而成的空间图形,它可以用来描述运动物体在三维空间中的位置。

4、棱锥:棱锥是一种线框体,它由一系列类似多边形的棱面组成,每个棱面都是平的或者曲的。

高中解析几何知识点

高中解析几何知识点

解析几何学问点一、基本内容(一)直线的方程1、 直线的方程确定直线方程须要有两个相互独立的条件,而其中一个必不行少的条件是直线必需经过一已知点.确定直线方程的形式许多,但必需留意各种形式的直线方程的适用范围.2、两条直线的位置关系两条直线的夹角,当两直线的斜率k 1,k 2都存在且k 1·k 2≠外留意到角公式与夹角公式的区分.(2)推断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来推断.但若直线斜率不存在,则必需用一般式的平行垂直条件来推断.(二)圆的方程(1)圆的方程1、 驾驭圆的标准方程及一般方程,并能娴熟地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若已知圆上三点,则用一般式便利,留意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化.2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标(,)22D E --,半径为22142D E F +-。

3、 在圆(x -a )2+(y -b )2=r 2,若满意a 2+b 2=r 2条件时,能使圆过原点;满意a=0,r >0条件时,能使圆心在y 轴上;满意b r =时,能使圆与x 轴相切;满意2a b r -=条件时,能使圆与x -y =0相切;满意|a |=|b |=r 条件时,圆与两坐标轴相切.4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ),1PA PBk k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系①在解决的问题时,肯定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,探讨直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式(三)曲线与方程(1)求曲线方程的五个步骤:(1)建立适当的直角坐标系,用(x ,y )表示曲线上随意一点M 的坐标;建标(2)写出适合条件P 的点M 的集合P ={M |P (M )}; 设点(3)用坐标表示条件P (M ),列出方程f (x ,y )=0 列式(4)化方程f (x ,y )=0为最简方程 化简(5)证明以化简后的方程的解为坐标的点都是这条曲线上的点.除个别状况外,化简过程都是同解变形过程,步骤(5)可以不写,也可以省略步骤(2),干脆列出曲线方程.(2)求曲线方程主要有四种方法:(1)条件直译法:假如点运动的规律就是一些几何量的等量关系,这些条件简洁、明确,易于表达,我们可以把这些关系直译成含“x ,y ”(或ρ,θ)的等式,我们称此为“直译法”.(2)代入法(或利用相关点法):有时动点所满意的几何条件不易求出,但它随另一动点的运动而运动,称之为相关点.假如相关点满意的条件简明、明确,就可以用动点坐标把相关的点的坐标表示出来,再用条件直译法把相关点的轨迹表示出来,就得到原动点的轨迹.(3)几何法:利用平面几何或解析几何的学问分析图形性质,发觉动点运动规律.(4)参数法:有时很难干脆找出动点的横纵坐标之间关系.假如借助中间参量(参数),使x ,y 之间的关系建立起联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程.(四)圆锥曲线(1)椭圆(1)椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.这里应特殊留意常数大于|F1F2|因为,当平面内的动点与定点F1,F2的距离之和等于|F1F2|时,其动点轨迹就是线段F1F2;当平面内的动点与定点F1,F2的距离之和小于|F1F2|时,其轨迹不存在.(2)椭圆的标准方程之所以称它为标准方程,是因为它的形式最简洁,这与利用对称性建立直角坐标系有关.同时,还应留意理解下列几点,1)标准方程中的两个参数a和b,确定了椭圆的形态和大小,是椭圆的定形条件.2)焦点F1,F2的位置,是椭圆的定位条件,它确定椭圆标准方程的类型.也就是说,知道了焦点位置,其标准方程只有一种形式,不知道焦点位置,其标准方程具有两种类型.3)任何一个椭圆,只需选择适当的坐标系,其方程均可以写成标准形式,当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.1)范围:焦点在x轴时,椭圆位于直线x=±a和y=±b所围成的矩形里.2)对称性:椭圆关于x轴,y轴和原点都是对称的,这时坐标轴为椭圆的对称轴,原点是椭圆的对称中心.椭圆的对称中心叫做椭圆中心.3)顶点:椭圆与对称轴的交点为椭圆的顶点A1(-a,0)A2(a,0)B1(0,b)B2(0,-b)线段A1A2,B1B2分别叫做椭圆的长轴,短轴,长分别为2a,2b.<1.e越接近于1,则椭圆越扁,反之,e越接近于0,椭圆越接近于圆.5)焦半径:椭圆上任一点到焦点的距离为焦半径.如图所示,当焦点在x轴上时,任一点到左焦点的焦半径为r1=a+ex0.6)|A1F1|=a-c|A1F1|=a+c10)椭圆的其次定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(e<1=的点的轨迹.。

解析几何知识点管综

解析几何知识点管综

解析几何知识点管综一、直线。

1. 直线的倾斜角与斜率。

- 倾斜角α:直线l向上的方向与x轴正方向所成的最小正角,α∈[0,π)。

- 斜率k = tanα(α≠(π)/(2)),经过两点P_1(x_1,y_1),P_2(x_2,y_2)(x_1≠x_2)的直线的斜率k=(y_2 - y_1)/(x_2 - x_1)。

2. 直线方程的几种形式。

- 点斜式:y - y_0=k(x - x_0)(直线过点(x_0,y_0),斜率为k)。

- 斜截式:y = kx + b(k为斜率,b为直线在y轴上的截距)。

- 两点式:(y - y_1)/(y_2 - y_1)=(x - x_1)/(x_2 - x_1)(x_1≠ x_2,y_1≠ y_2,直线过两点(x_1,y_1),(x_2,y_2))。

- 截距式:(x)/(a)+(y)/(b)=1(a≠0,b≠0,a为x轴上的截距,b为y轴上的截距)。

- 一般式:Ax + By+C = 0(A、B不同时为0)。

3. 两直线的位置关系。

- 平行:l_1:y = k_1x + b_1,l_2:y = k_2x + b_2,则l_1∥ l_2Leftrightarrow k_1 = k_2且b_1≠ b_2;对于l_1:A_1x + B_1y + C_1 = 0,l_2:A_2x + B_2y + C_2 = 0,l_1∥ l_2Leftrightarrow(A_1)/(A_2)=(B_1)/(B_2)≠(C_1)/(C_2)。

- 垂直:l_1:y = k_1x + b_1,l_2:y = k_2x + b_2,则l_1⊥ l_2Leftrightarrowk_1k_2=- 1;对于l_1:A_1x + B_1y + C_1 = 0,l_2:A_2x + B_2y + C_2 = 0,l_1⊥l_2Leftrightarrow A_1A_2 + B_1B_2 = 0。

- 相交:联立两直线方程求解交点坐标。

解析几何知识点总结

解析几何知识点总结

解析几何知识点总结解析几何是数学中的一个分支,主要研究几何图形的性质和变换。

以下是一些常见的解析几何知识点总结:1. 点的坐标:在笛卡尔坐标系中,一个点可以用它的 x 坐标和 y 坐标来表示。

2. 直线的方程:直线可以用一般式方程、点斜式方程和两点式方程等表示。

其中,一般式方程为 Ax + By + C = 0,点斜式方程为 y - y1 = m(x - x1),两点式方程为 (y - y1)/(x - x1) = (y2 - y1)/(x2 - x1)。

3. 直线与圆的关系:直线与圆的交点可以通过将直线方程代入圆的方程来求解。

当直线与圆相切时,直线的斜率等于切线的斜率;当直线与圆相交时,直线的斜率必定与切线的斜率不相等。

4. 距离公式:两点之间的距离可以通过勾股定理计算,即 d = √((x2 - x1)^2 + (y2 - y1)^2)。

5. 向量:向量是由大小和方向组成的量,可以用始点和终点的坐标来表示。

向量的加法、减法、数量积和向量积等运算可以通过坐标运算进行。

6. 平移、旋转和缩放:平移是将图形沿着指定向量的方向平移一定距离,旋转是将图形绕指定点旋转一定角度,缩放是将图形按照指定的比例增大或缩小。

7. 曲线的方程:曲线的方程可以通过给定的条件推导得到。

例如,圆的方程为 (x -a)^2 + (y - b)^2 = r^2,椭圆的方程为 (x/a)^2 + (y/b)^2 = 1,直角双曲线的方程为 (x^2/a^2) - (y^2/b^2) = 1。

8. 坐标变换:坐标变换是将图形从一个坐标系变换到另一个坐标系。

常用的坐标变换包括平移变换、旋转变换、缩放变换和剪切变换等。

以上是解析几何的一些常见知识点总结,希望对你有所帮助。

专题-解析几何知识点汇总(全)

专题-解析几何知识点汇总(全)

直线的方程1、直线的方程:类型直线方程方向向量d法向量n斜率k截距x轴/y轴/两点式x x1y y1x2x1y2y1(x2x1,y2y1)(y2y1,x1x2)y2y1x2x1点方向式点法向式点斜式截距式斜截式x xy yu va(x x) b(y y) 0(u,v)(v, u)vuab//(b, a)(1,k)( m,n)(1,k)(B, A)(a,b)(k, 1)(n,m)(k, 1)(A,B)//y yk(x x)x y1m ny kx bAx By C 0knm//m/nbCBkAB一般式C A注意:(1)点法向式方程和一般式方程可以表示所有的直线;(2)两点式方程和点方向式方程不能表示垂直于x轴或垂直于y轴的直线;(3)点斜式方程和斜截式方程不能表示垂直于x轴的直线;(4)截距式方程不能表示经过原点的直线.2、直线的倾斜角和斜率:(1)直线的倾斜角为平面直角坐标系中直线与x轴正半轴的夹角.取值范围: [0, );(2)直线的斜率:tan , [0,) (, )22k不存在,2;k 0 0k 2 0 0k tan 在[0, )和 k 不存在 = 2(2, )上单调递增.2k 0 2 y 2 y 1(3)若直线过点(x x ,x 1 x 21,y 1),(x 2,y 2),则该直线的斜率k 2 x 1,k R .不存在,x 1 x 23、两条直线的位置关系:已知l 1:a 1x b 1y c 1 0,l 2:a 2x b 2y c 2 0,则(1)系数法:①l 1 l 2 a 1a 2 b 1b 2 0;特别地,若l 1的斜率为k 1,l 2的斜率为k 2,l 1 l 2 k 1 k 2 1;②l 1与l 2相交 a 1b 2 a 2b 1;③l 1与l 2重合 a 1:b 1:c 1 a 2:b 2:c 2;④l 与l a 1:b 1 a 2:b 212平行 a .1:c 1 a 2:c 2或b 1:c 1 b 2:c 2(2)向量法:已知l 的法向量为 n11 (a 1,b 1),l 2的法向量为n 2 (a 2,b 2),则①l l12 n 1 n 20 a 1a 2 b 1b 2 0;特别地,若l 1的斜率为k 1,l 2的斜率为k 2,则l 1 l 2 k 1 k 2 1;②l l1与2相交 n 1与n 2不平行 a 1b 2 a 2b 1;③l 1与l 2平行或重合 n 1与n 2平行 a 1b 2 a 2b 1.(3)行列式法:已知Da 1b 1a ,Db 1xc 12b 2c 2b ,D y a 1c 12a 2c ,则21l 1与l2相交 D 0;②l1与l2重合 D D x D y 0;则③1与2平行 l l D 0.D x、D y 不全为零4、两条相交直线l 1:a 1x b 1y c 1 0和l 2:a 2x b 2y c 2 0的夹角 :(1)若l 1、l 2的法向量分别为n 1 (a 1,b 2)、n 2 (a 2,b 2),且l 1、l 2的方向向量分别为d 1、d 2,则n n 2cos 1n 1 n 2a 1a 2b 1b 2a 12 b 12 a 22 b 22d 1 d 2 或cos, [0,];2d 1 d 2(2)若l 1、l 2的斜率分别为k 1、k 2,且l 1到l 2的角为 1,l 2到l 1的角为 2,则tank k 1k k 2k 1 k 2, [0,);tan 1 2,tan 2 1.1 k 1k 21 k 1k 21 k 1k 225、点到直线的距离公式:(1)点P (x 0,y 0)到直线l :Ax By C 0的距离为dAx 0 By 0 CA B22;(2)直线l 1:Ax By C 1 0与直线l 2:Ax By C 2 0的距离为dC 1 C 2A B22.6、直线l :Ax By C 0同侧/异侧:(1)Ax 0 By 0 C 0(A 0) P (x 0,y 0)在直线l :Ax By C 0(A 0)的右侧;Ax 0 By 0 C 0(A 0) P (x 0,y 0)在直线l :Ax By C 0(A 0)的左侧.(2)点M (x 1,y 1)、N (x 2,y 2)在直线l 同侧 (Ax 1 By 1 C )(Ax 2 By 2 C ) 0;点M (x 1,y 1)、N (x 2,y 2)在直线l 异侧 (Ax 1 By 1 C )(Ax 2 By 2 C ) 0.7、点关于直线的对称问题:点直线P (x 0,y 0)x 轴P (x 0, y 0)y 轴P ( x 0,y 0)y xP (y 0,x 0)y xP ( y 0, x 0)x mP (2m x 0,y 0)y n P (x 0,2n y 0)对称点补充:①点P(x0,y)关于直线y x b的对称的点为P (yb,xb);②点P(x0,y)关于直线y x b的对称的点为P (b y,b x);A(n y) B(m x)③点P(x0,y)关于直线Ax By C 0的对称点P (m,n)满足 m x.n yA B C 022或者P (m,n),其中 8、三线共点问题:三条互不平行的直线l1:a1x b1y c10,直线l2:a2x b2y c20,直线l3:a3x b3y c30共m x0 2AD Ax By C,D 022.A Bn y0 2BDa1点的充要条件是a2b1b2b3c1c20.c3a39、直线系方程:具有某一个共同性质的一簇直线称为直线系.(1)平行直线系:①斜率为k0(常数)的直线系:,例:y 2x b;y kx b(b为参数)②平行于直线A0x By 0的直线系:Ax By C 0(C为参数).(2)过已知点的直线系:①以斜率k作为参数的直线系:y y0 k(x x),直线过定点(x,y);②以斜率k作为参数的直线系:y kx b0,直线过定点(0,b).③过两条直线l1:A1x B1y C10,l2:A2x B2y C20的交点的直线系:A 1x B1y C1(A2x B2y C2) 0( 为参数).注意:对于①②,过定点且平行于y轴或与y轴重合的直线不在直线系内;对于③,其中直线l2不在直线系内.10、定直线上动点与两定点距离和差问题:(1)定直线上动点与两定点距离和:问题已知定直线l上动点P,两个定点A、B,求PA PB的取值范围.取值范围A、B在l的解答步骤同侧 A B,AB, ①作点A关于l的对称点A ;②联结A B,交l于M;③点M为最小值状态点.①联结AB交l于M;②点M为最小值状态点.异侧(2)定直线上动点与两定点距离差:已知定直线l上动点P,两个定点A、B,点A、B到l的距离分别为d1、d2,问题直线AB与直线l的夹角为 ,求PA PB的取值范围.A、B在l的d1与d2的大小关系d1d2取值范围解答步骤①联结AB并延长交l于M;②点M为最大值状态点./①联结BA并延长交l于M;②点M为最小值状态点.①作点A关于l的对称点A ;②联结A B并延长交l于M;③点M为最大值状态点./①作点A关于l的对称点A ;②联结BA 并延长交l于M;2AB cos ,ABAB,ABAB,AB cos同侧d1 d2d 1 d2d 1 d2A B cos ,A BA B,A BA B,AB cos异侧d1d2d1d2点M为最小值状态点.曲线的方程(一)曲线的方程概论1、轴对称的两个曲线:曲线对称轴曲线F(x,y) 0x轴F(x, y) 0y轴y x y x x m y n F( x,y) 0F(y,x) 0F( y, x) 0F(2m x,y) 0F(x,2n y) 0补充:①曲线F (x ,y ) 0关于y x b 对称的曲线方程为F (y b ,x b ) 0;②曲线F (x ,y ) 0关于y x b 对称的曲线方程为F (b y ,b x ) 0.2、中心对称的两个曲线:曲线对称中心曲线F (x ,y ) 03、轴对称的曲线:曲线对称轴条件(m ,n )F (2m x ,2n y ) 0F (x ,y ) 0y x F (y ,x ) F (x ,y )补充:y x F ( y , x ) F (x ,y )x mF (2m x ,y ) F (x ,y )y nF (x ,2n y ) F (x ,y )a b对称。

高中解析几何知识点

高中解析几何知识点

高中解析几何知识点1.坐标系和坐标表示方法:-笛卡尔坐标系及其性质:直角坐标系中,平面上的每个点都可以用一个有序数对表示。

-参数方程和参数化表示:给定直角坐标系中的方程,如直线、曲线等,可以通过参数方程或参数化表示,简化计算过程。

2.向量及其运算:-向量的表示方法:向量可以用有向线段表示,也可以用坐标表示。

-向量的基本运算:向量的相等、相反、数乘、加减等运算法则。

-向量的数量积和向量积:向量的数量积和向量积的定义及其性质。

3.点、线、面及其性质:-直线与平面的位置关系:直线与平面的相交、平行、重合等关系。

-三角形和四边形的性质:三角形和四边形的角度、边长、面积、重心、外心、内心等性质。

4.平面解析几何:-直线的方程:直线的点斜式、两点式、截距式、一般式等方程及其应用。

-圆的方程:圆的标准式、一般式、截距式等方程及其应用。

5.空间解析几何:-空间直线的方程:空间直线的参数方程、一般方程、两平面交线等方程及其应用。

-空间平面的方程:空间平面的点法式、一般式、截距式等方程及其应用。

6.变换与坐标运算:-平移、旋转和对称变换:平面和空间中图形的平移、旋转和对称的定义和性质。

-坐标运算:点的对称、平移、旋转的坐标运算方法。

7.空间几何体的性质:-圆锥曲线的方程:椭圆、双曲线和抛物线的标准方程及其性质。

-空间几何体的体积和表面积:球、柱体、锥体等空间几何体的体积和表面积的计算方法。

以上是高中解析几何的一些重要知识点,它们是数学学习中的基础,也是解决实际问题的重要工具。

在学习解析几何时,需要注重理论和实践结合,通过大量的练习和应用,掌握解析几何的核心概念和方法,提高数学解决问题的能力。

(完整版)解析几何知识点总结

(完整版)解析几何知识点总结

抛物线的标准方程、图象及几何性质:0>p1、定义:2、几个概念:① p 的几何意义:焦参数p 是焦点到准线的距离,故p 为正数; ② 焦点的非零坐标是一次项系数的14;③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。

④ 通径:2p3、如:AB 是过抛物线)0(22>=p px y 焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,l MN ⊥,N 为垂足,l BD ⊥,l AH ⊥,D ,H 为垂足,求证:(1)DF HF ⊥; (2)BN AN ⊥; (3)AB FN ⊥;(4)设MN 交抛物线于Q ,则Q 平分MN ; (5)设),(),,(2211y x B y x A ,则221p y y -=,22141p x x =; (6)pFB FA 2||1||1=+; (7)D O A ,,三点在一条直线上(8)过M 作AB ME ⊥,ME 交x 轴于E ,求证:||21||AB EF =,||||||2FB FA ME ⋅=;1、 双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。

第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数)1(>e e 的点的轨迹。

两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。

常数叫做离心率。

注意: a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。

||221F F a =表示两条射线;||221F F a >没有轨迹;2、 双曲线的标准方程①焦点在x 轴上的方程:22221x y a b -=(a>0,b>0); ②焦点在y 轴上的方程:22221y x a b-= (a>0,b>0);③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2-ny 2=1(m ·n<0); ④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程. 3、双曲线的渐近线:①求双曲线12222=-b y a x 的渐近线,可令其右边的1为0,即得02222=-b y a x ,因式分解得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线的标准方程、图象及几何性质:0
p
>
关于抛物线知识点的补充: 1、定义:
2、几个概念:
① p 的几何意义:焦参数p 是焦点到准线的距离,故p 为正数; ② 焦点的非零坐标是一次项系数的1
4

③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。

④ 通径:2p
3、如:AB 是过抛物线)0(22>=p px y 焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,l MN ⊥,N 为垂足,l BD ⊥,l AH ⊥,
D ,H 为垂足,求证:
(1)DF HF ⊥; (2)BN AN ⊥; (3)AB FN ⊥;
(4)设MN 交抛物线于Q ,则Q 平分MN ;
(5)设),(),,(2211y x B y x A ,则221p y y -=,2
214
1p x x =; (6)
p
FB FA 2
||1||1=+; (7)D O A ,,三点在一条直线上
(8)过M 作AB ME ⊥,ME 交x 轴于E ,求证:||2
1||AB EF =,||||||2FB FA ME ⋅=;
关于双曲线知识点的补充:
1、 双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||
21F F )的点的轨迹。

第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数)1(>e e 的点的轨迹。

两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。

常数叫做离心率。

注意: a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。

||221F F a =表示两条射线;||221F F a >没有轨迹;
2、 双曲线的标准方程
①焦点在x 轴上的方程:22221x y a b -=(a>0,b>0); ②焦点在y 轴上的方程:22
221y x a b
-= (a>0,b>0);
③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2-ny 2=1(m ·n<0); ④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程. 3、双曲线的渐近线:
①求双曲线122
2
2=-
b
y
a
x
的渐近线,可令其右边的1为0,即得02
2
2
2=-
b y a
x
,因式分解得到。

②与双曲线122
22=-b
y a x 共渐近线的双曲线系方程是λ=-2222b
y a x ;
4、等轴双曲线: 为222t y x =-,其离心率为2
5、共轭双曲线:
6、几个概念:
①焦准距:b 2c ; ②通径:2b 2a ; ③等轴双曲线x 2-y 2
= (∈R,≠0):渐近线是y=±x,离心率为: 2 ;④22221x y a b -=焦
点三角形的面积:b 2cot 2
(其中∠F 1PF 2=);
⑤弦长公式:221212(1)[()4]k x x x x ++-c 2=a 2-b 2,而在双曲线中:c 2=a 2+b 2,
双曲线的图象及几何性质:
离心率
)1(>=
e a
c
e (离心率越大,开口越大) 准 线
c
a x 2
±
=
c
a y 2±
=
渐近线 x a
b y ±
= x b
a y ±
= 通 径
ep a
b 222
=(p 为焦准距)
焦半径
P 在左支
201||||ex a PF ex a PF -=--= P 在右支
201||||ex a PF ex a PF +-=+= P 在下支0
201||||ey a PF ey a PF -=--= P 在上支0
201||||ey a PF ey a PF +-=+=
焦准距
c
b c a c p 22=
-= 7、直线与双曲线的位置关系:讨论双曲线与直线的位置关系时通常有两种处理方法:①代数法:②、数形结合法。

8、双曲线中的定点、定值及参数的取值范围问题:
①定点、定值问题:通常有两种处理方法:第一种方法是从特殊入手,先求出定点(或定值),再证明这个点(值)与
变量无关;第二种方法是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

②关于最值问题:常见解法有两种:代数法与几何法。

若题目中的条件和结论能明显体现几何特征及意义,则考虑利用图形的性质来解决,这就是几何法;若题目中的条件和结论难以体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,求函数的最值常用的方法有配方法、判别式法、重要不等式法、函数的单调性法等。

③参数的取值范围问题:此类问题的讨论常用的方法有两种:第一种是不等式(组)求解法根据题意结合图形列出所
讨论的参数适合的不等式(组),通过解不等式再得出参数的变化范围;第二种是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围。

关于椭圆知识点的补充: 1、椭圆的标准方程:
① 焦点在x 轴上的方程:22221x y a b += (a>b>0); ②焦点在y 轴上的方程:22
221y x a b
+= (a>b>0);
③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2
+ny 2
=1(m>0,n>0); ④、参数方程:cos sin x a y b φ
φ=⎧⎨=⎩
2、椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹。

第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数)10(<<e e 的点的轨迹。

|PF 1|
d =
e (椭圆的焦半径
公式:|PF 1|=a+ex 0, |PF 2|=a-ex 0)其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距;定直线叫做准线。

常数叫做离心率。

注意: ||22
1
F F a >表示椭圆;||22
1
F F a =表示线段21F F ;||221F F a <没有轨迹;
3、 焦准距:b 2c ;
4、通径:2b 2a ;
5、点与椭圆的位置关系;
6、22
221x y a b
+=焦点三角形的面积:b 2tan 2 (其中
∠F 1PF 2=
);
7、弦长公式:|AB|=221212(1)[()4k x x x x ++-; 8、 椭圆在点P (x 0,y 0)处的切线方程:00221x x y y
a b
+=; 9、直线与椭圆的位置关系:
凡涉及直线与椭圆的问题,通常设出直线与椭圆的方程,将二者联立,消去x 或y ,得到关于y 或x 的一元二次方程,再利用根与系数的关系及根的判别式等知识来解决,需要有较强的综合应用知识解题的能力。

10、椭圆中的定点、定值及参数的取值范围问题:
①定点、定值问题:通常有两种处理方法:第一种方法是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;第二种方法是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

②关于最值问题:常见解法有两种:代数法与几何法。

若题目中的条件和结论能明显体现几何特征及意义,则考虑利用图形的性质来解决,这就是几何法;若题目中的条件和结论难以体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,求函数的最值常用的方法有配方法、判别式法、重要不等式法、函数的单调性法等。

③参数的取值范围问题:此类问题的讨论常用的方法有两种:第一种是不等式(组)求解法根据题意结合图形列出
所讨论的参数适合的不等式(组),通过解不等式(组)得出参数的变化范围;第二种是函数的值域求解法:把所
讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围
椭圆图象及几何性质:。

相关文档
最新文档