沪科版七年级上册数学4.5《角的比较与补余角》教案2-教学文档
沪科版七年级数学上册4.5.2角的比较与角的补(余)角优秀教学案例
1.通过小组合作、讨论交流的方式,引导学生主动参与课堂学习,培养他们的合作意识和团队精神。
2.利用实物、模型等直观教具,结合生活实例,让学生在实际操作中感受角的大小和补(余)角的关系,提高学生的动手操作能力。
3.设计具有挑战性的问题情境,激发学生的探究欲望,培养他们独立思考和解决问题的能力。
(二)讲授新知
在讲授新知的环节,我会首先从角的定义出发,回顾角的度量单位——度,以及如何使用量角器测量角的大小。接着,我会引入补角和余角的概念,通过动态图示和实际操作,让学生直观地理解补角和余角的含义。我会给出具体的例子,如直角三角形的两个锐角互为补角,以及一个角的余角是它的补角的补角等。在讲解过程中,我会注重使用直观的语言和教具,确保学生能够清晰地理解这些概念。
4.反思与评价环节的重视
本案例中,反思与评价环节得到了充分的重视。教师鼓励学生在课后进行自我反思,总结学习收获和不足,明确今后的学习方向。同时,开展多元化的评价方式,关注学生的全面发展。这样的设计有助于提高学生的自我认知,培养他们自我评价和反思的能力。
5.教学内容与过程的系统性与连贯性
本案例在教学内容与过程的设计上,注重紧密联系,层层递进。这样的设计有助于学生形成完整的知识结构,更好地理解角的补(余)角的概念、性质和应用。同时,教师通过典型例题的讲解和作业的布置,帮助学生巩固所学知识,提高教学效果。
(三)学生小组讨论
在学生小组讨论的环节,我会根据学生的不同程度,设计不同难度的问题,引导学生分组讨论。例如,基础问题可以是:“找出图中所有的补角和余角。”进阶问题可以是:“如果已知一个角的大小,如何求它的补角和余角?”挑战性问题可以是:“在平面图形中,如何利用补角和余角的性质求解未知角?”通过小组合作,学生能够相互启发,共同解决问题,提高他们的合作能力和解决问题的能力。
2024年沪科版七年级数学上册 4.5 角的比较与补(余)角 课时2(课件)
新知探究 知识点1 补角和余角的概念
α β
如图,∠α+∠β=90°,∠α叫作∠β的余角, ∠β也叫作∠α的余角,∠α与∠β互余.
新知探究 知识点1 补角和余角的概念
特别提醒:(1)余(补)角指的是两个角之间的数量 关系,与位置无关,且它们是成对出现的,单独的一 个角或两个以上的角不能称为余(补)角. (2)若两个角互余,则这两个角一定都是锐角;若 两个角互补,则这两个角可能都是直角,也可能是一 个锐角、一个钝角.
余角
同角(或等角) 的余角相等
°,那么∠2=∠3; (2)如果∠1+∠2=90°,∠3+∠4=90
°,且∠1=∠3,那么∠2=∠4
随堂练习
【教材P160 练习 第1题】
1. 填表:
∠α
50° 45° 60° n°(0<n<90)
∠α的余角 40° 45° 30° ( 90-n )°
∠α的补角 130° 135° 120° ( 180-n ) °
新知探究 知识点2 补角和余角的性质 【归纳总结】
性质
数学语言
(1)如果∠1+∠2= 180°, ∠1+∠3= 18
补角
同角(或等角) 的补角相等
0°,那么∠2=∠3; (2)如果∠1+∠2=180°,
∠3+∠4=180
°,且∠1=∠3, 那么∠2=∠4
(1)如果∠1+∠2= 90°,∠1+∠3= 90
第4章 几何图形初步
4.5 角的比较与补(余)角
第2课时 补角和余角 七上数学 HK
学习目标
1. 了解补角、余角的概念. 2. 掌握补角和余角的性质.
课堂导入
沪科版七年级数学上册角的比较与补(余)角【教案+课件】
∠AOB是∠AOC与∠COB的差,
记作∠AOB=∠AOC-∠COB.
O
A
类似地,∠AOC-∠AOB=∠COB.
探究新知
例1 如图④,求解下列问题: (1)比较∠ AOC与∠BOC,∠BOD与∠COD的大小; (2)将∠AOC写成两个角的和与两个角的差的情势.
A B C
O
图④
D
解:(1)由图④可以看出: ∠AOC>∠BOC(OB在∠AOC 内) ∠BOD>∠COD(OC在∠BOD内) (2)∠AOC=∠AOB+∠BOC, ∠AOC=∠AOD—∠DOC.
探究新知
(2)叠合法:
叠合∠DEF与∠ABC,把∠DEF移动,使它的顶点E移到和∠ABC的顶点B重合,
一边ED和BA重合,另一边EF和BC落在BA的同旁.
如图①,如果EF和BC重合,那么∠DEF=∠ABC.
C(F)
B(E) 图①
A(D)
探究新知
(2)叠合法:
如图②,如果EF落在∠ABC的内部,那么∠DEF<∠ABC;
探究新知
例2 如图⑥,∠1=∠3,∠1与∠2互补,∠3与∠4互补,那么∠2与∠4有什 么关系?
图⑥ 解:因为∠1与∠2互补,所以∠2=180°-∠1. 因为∠3与∠4互补,所以∠4=180°-∠3. 又因为∠1=∠3,所以∠2=∠4.究新知
问题:余角有无上面补角类似的性质?如果有,你能说明道理吗?
课堂总结
问题:通过这节课的学习,你有哪些收获?
1. 角的大小的比较方法:(1)度量法;(2)叠合法.
2. 角平分线的定义及性质: 在角的内部,以角的顶点为端点的一条射线把这个角分成两个相等的角,这 条射线叫做这个角的平分线. 若OC是∠AOB的平分线,则∠AOC=∠COB=1∠AOB,∠AOB=2∠AOC=
沪科版七年级数学上册:4.5角的比较与补(余)角教学设计
四、教学内容与过程
(一)导入新课
在导入新课环节,我将利用学生的生活经验和已有知识,激发他们对角的新认识的好奇心。首先,我会通过展示一些生活中的图片,如房门的开合、剪刀的使用、三角板的形状等,让学生观察并指出这些图片中的角。通过这个活动,学生能够直观地感受到角在生活中的普遍存在。接着,我会提出问题:“你们知道这些角的大小如何比较吗?它们之间有什么关系?”通过问题引导,自然过渡到本节课的学习内容。
-学生通过直观比较和逻辑推理,掌握各种类型角的定义,并能在具体问题中正确分类和应用。
3.理解补角和余角的概念,能够计算给定角的补角和余角。
-学生应理解补角是使两角和为180°的两个角,余角是使两角和为90°的两个角,并能够运用基本的数学运算,计算出补角和余角的度数。
(二)过程与方法
1.通过直观演示和动手操作,培养学生观察、分析、比较的能力。
(三)学生小组讨论
在小组讨论环节,我会将学生分成若干小组,每个小组根据提供的材料(量角器、三角板、图形等)进行讨论。我会给每个小组分配不同的讨论主题,如“如何比较两个角的大小”、“补角和余角的计算方法”等。学生在小组内通过观察、讨论和实际操作,共同解决问题。在这个过程中,我会在各个小组间巡回指导,提供必要的帮助和提示。
-通过教师演示和小组合作,学生可以观察不同角的模型,分析角的性质,通过比较活动来加深对角概念的理解。
2.运用分类讨论的方法,提升学生解决问题的策略。
-在进行角的分类时,教师引导学生通过分类讨论的方法,将角按照大小和性质分类,培养学生面对复杂问题时采用逐步分析和解决的能力。
2023-2024学年沪科版七年级数学上册教案:4.5角的比较与补(余)角教案
2023-2024学年沪科版七年级数学上册教案:4.5角的比较与补(余)角教案一. 教材分析本节课教材为沪科版七年级数学上册,主要内容是角的比较与补(余)角。
这部分内容是学生在学习了角的概念和分类的基础上,进一步探究角的性质和运算。
通过本节课的学习,学生能够理解补角和余角的概念,掌握求补角和余角的方法,并能运用到实际问题中。
二. 学情分析七年级的学生已经掌握了角的概念和分类,对数学运算也有一定的理解。
但是,对于补角和余角的概念和运算,他们可能还比较陌生。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等方式,自主探索和发现补角和余角的性质和运算规律,从而达到理解掌握的目的。
三. 教学目标1.知识与技能:学生能够理解补角和余角的概念,掌握求补角和余角的方法,并能运用到实际问题中。
2.过程与方法:学生通过自主探索、合作交流,培养观察、思考、交流的能力。
3.情感态度与价值观:学生能够积极参与数学学习,体验成功的喜悦,培养对数学的兴趣。
四. 教学重难点1.重点:学生能够理解补角和余角的概念,掌握求补角和余角的方法。
2.难点:学生能够灵活运用补角和余角的性质和运算规律解决实际问题。
五. 教学方法采用自主探索、合作交流的教学方法,让学生在观察、操作、思考的过程中,发现补角和余角的性质和运算规律,培养学生的观察能力、思考能力和交流能力。
六. 教学准备教师准备PPT,内容包括角的比较与补(余)角的概念、性质和运算规律。
学生准备笔记本,用于记录学习过程中的思考和发现。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题:角的比较与补(余)角。
例如,一个直角三角形,其中一个角为30度,求另一个角的度数。
学生尝试解答,引发对补角和余角的思考。
2.呈现(10分钟)教师通过PPT呈现角的比较与补(余)角的概念、性质和运算规律。
学生认真听讲,记录学习内容。
3.操练(10分钟)教师给出一些练习题,学生独立完成。
沪科版数学七年级上册《4.5 角的比较与补(余)角》教学设计
沪科版数学七年级上册《4.5 角的比较与补(余)角》教学设计一. 教材分析本节课的内容是沪科版数学七年级上册《4.5 角的比较与补(余)角》,主要包括角的补角和余角的概念,以及它们的性质。
学生在学习本节课之前,已经掌握了角的基本概念,如锐角、直角、钝角等,同时也学习了平行线的性质。
本节课的内容是学生对角的概念的进一步拓展,对于提高学生的数学思维能力和解决实际问题具有重要意义。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于角的概念有一定的了解。
但是,对于角的补角和余角的概念,以及它们的性质,可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题出发,通过观察、思考、操作、交流等活动,逐步理解和掌握角的补角和余角的概念和性质。
三. 教学目标1.知识与技能:能够理解角的补角和余角的概念,能够运用角的补角和余角的性质解决实际问题。
2.过程与方法:通过观察、思考、操作、交流等活动,培养学生的逻辑思维能力和抽象思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 教学重难点1.教学重点:角的补角和余角的概念,以及它们的性质。
2.教学难点:角的补角和余角的性质的应用。
五. 教学方法1.情境教学法:通过实际问题情境,引导学生观察、思考、操作、交流,从而理解和掌握角的补角和余角的概念和性质。
2.引导发现法:教师引导学生发现问题,引导学生通过自己的探索和发现,理解和掌握角的补角和余角的性质。
3.小组合作学习:学生分组进行讨论和交流,共同解决问题,培养学生的合作意识和团队精神。
六. 教学准备1.教学课件:制作角的补角和余角的教学课件,包括角的补角和余角的概念,以及它们的性质。
2.教学素材:准备一些实际问题,用于引导学生理解和掌握角的补角和余角的概念和性质。
3.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)教师通过一个实际问题,如“一个角的补角是多少?”引导学生思考和讨论,激发学生的学习兴趣。
沪科版数学七年级上册4.5《角的比较与补(余)角》教学设计2
沪科版数学七年级上册4.5《角的比较与补(余)角》教学设计2一. 教材分析《角的比较与补(余)角》这一节主要让学生了解和掌握补角和余角的概念,学会用角度来比较和计算补角和余角。
学生需要通过观察、操作、探究等活动,培养他们的空间观念和逻辑思维能力。
二. 学情分析学生在学习这一节之前,已经掌握了角的概念,对直线、射线也有了一定的理解。
但是,对于补角和余角的概念,他们可能是初次接触,因此需要通过实例来理解和掌握。
同时,学生可能对于角度的计算还不太熟悉,需要在教学中进行引导和训练。
三. 教学目标1.让学生了解补角和余角的概念,能正确找出一个角的补角和余角。
2.让学生掌握比较角的大小方法,能运用补角和余角的概念解决实际问题。
3.培养学生的空间观念和逻辑思维能力。
四. 教学重难点1.重点:补角和余角的概念,以及如何找出一个角的补角和余角。
2.难点:如何引导学生理解和掌握补角和余角的概念,以及如何运用补角和余角的概念解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、探究等活动,自主发现和总结补角和余角的概念。
2.采用案例分析法,让学生通过解决实际问题,巩固补角和余角的概念。
3.采用小组合作法,让学生在小组内进行讨论和交流,培养他们的团队协作能力。
六. 教学准备1.准备一些角度不同的卡片,用于让学生找出补角和余角。
2.准备一些实际问题,用于让学生运用补角和余角的概念解决。
七. 教学过程1.导入(5分钟)通过出示一些角度不同的卡片,让学生找出补角和余角,引发学生的兴趣,导入新课。
2.呈现(10分钟)讲解补角和余角的概念,让学生通过观察和操作,自主发现和总结补角和余角的概念。
3.操练(10分钟)让学生在小组内进行讨论和交流,找出卡片中各个角的补角和余角,培养他们的团队协作能力。
4.巩固(10分钟)出示一些实际问题,让学生运用补角和余角的概念解决,巩固所学知识。
5.拓展(10分钟)让学生举例说明补角和余角在实际生活中的应用,培养他们的实际应用能力。
沪科版七年级数学上册教学设计:4.5角的比较与补(余)角教学设计
沪科版七年级数学上册教学设计:4.5角的比较与补(余)角教学设计一. 教材分析《角的比较与补(余)角》是沪科版七年级数学上册的一章,主要介绍了角的概念,角的比较,以及补角和余角的概念。
本章内容是学生进一步学习几何知识的基础,对于学生形成完整的几何知识体系具有重要意义。
二. 学情分析学生在学习本章内容前,已经掌握了角的初步知识,对实数有一定的了解,但对于角的比较和补(余)角的概念可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际操作和思考,逐步理解并掌握这些概念。
三. 教学目标1.了解角的概念,能够正确识别各种角。
2.能够进行角的比较,判断角的大小关系。
3.理解补角和余角的概念,能够找出两个角的补(余)角。
4.能够运用补(余)角的概念解决实际问题。
四. 教学重难点1.重点:角的比较方法,补角和余角的概念及应用。
2.难点:角的比较方法的灵活运用,补(余)角在实际问题中的运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际问题,探索和发现角的比较方法,以及补(余)角的概念。
2.利用多媒体和实物模型,直观展示角的比较和补(余)角的概念,帮助学生形象理解。
3.通过小组合作和讨论,培养学生团队合作精神和解决问题的能力。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,如“在平面直角坐标系中,两个点的坐标分别为(2,3)和(4,1),求这两个点之间的角度”。
引导学生思考角的比较方法。
2.呈现(10分钟)利用多媒体和实物模型,呈现角的比较方法,以及补角和余角的概念。
讲解角的比较的原理,展示如何通过几何画板或者实物模型,来直观地比较角的大小。
3.操练(10分钟)学生分组,每组提供一个角,其他组找出这个角的补(余)角。
通过实际操作,让学生加深对补(余)角概念的理解。
4.巩固(10分钟)学生独立完成一些有关角的比较和补(余)角的练习题。
沪科版数学七年级上册《4.5角的比较与补(余)角》教学设计
沪科版数学七年级上册《4.5 角的比较与补(余)角》教学设计一. 教材分析《角的比较与补(余)角》这一节的内容,主要让学生理解角的概念,掌握角的分类,以及学会求补角和余角的方法。
这部分内容是初中学段几何学习的基础,对于学生来说,既熟悉又陌生。
熟悉是因为在日常生活中,我们会接触到各种角,如直角、锐角、钝角等;陌生是因为系统的学习角的分类和求补角、余角的方法还是第一次。
因此,在这一节课中,我将以学生的生活经验为切入点,引导学生探究角的分类和补角、余角的关系,从而达到理解并掌握这部分知识的目的。
二. 学情分析面对七年级的学生,他们对几何知识有了一定的了解,如能识别一些基本的图形,知道一些基本的图形性质。
但是,对于角的概念,角的分类,以及补角和余角的概念,他们的认知可能还比较模糊。
因此,在教学过程中,我将以引导为主,让学生通过观察、思考、讨论等方式,自主地探究角的分类和补角、余角的关系。
三. 说教学目标根据课程标准和学生的实际情况,我制定了以下教学目标:1.让学生理解角的概念,掌握角的分类;2.让学生学会求补角和余角的方法;3.培养学生的观察能力、思考能力和合作能力。
四. 说教学重难点1.教学重点:让学生理解角的概念,掌握角的分类,以及学会求补角和余角的方法。
2.教学难点:让学生理解并掌握补角和余角的概念,以及如何求一个角的补角和余角。
五. 说教学方法与手段为了达到教学目标,突破教学重点和难点,我将采用以下教学方法和手段:1.引导法:在教学过程中,我将引导学生观察、思考、讨论,让学生自主地探究角的分类和补角、余角的关系。
2.实例分析法:通过分析生活中的实例,让学生更好地理解角的概念,角的分类,以及补角和余角的关系。
3.多媒体辅助教学:利用多媒体课件,生动、形象地展示角的概念,角的分类,以及补角和余角的求法,提高学生的学习兴趣。
六. 说教学过程1.导入:通过展示一些生活中的实例,如房屋的角落、钟表的指针等,引导学生观察并思考这些实例中角的特点,从而引出角的概念。
沪科版数学七年级上册《4.5 角的比较与补(余)角》教学设计1
沪科版数学七年级上册《4.5 角的比较与补(余)角》教学设计1一. 教材分析《4.5 角的比较与补(余)角》是沪科版数学七年级上册的重要内容,这部分内容主要让学生了解角的补角和余角的概念,学会用补角和余角来解决实际问题。
教材通过丰富的实例,引导学生探究、发现并证明补角和余角的关系,进而提高学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了角的基本概念,如锐角、直角、钝角等。
同时,他们对平行线的性质、同位角、内错角等也有了一定的了解。
因此,在学习本节课时,学生可以借助已有的知识体系来更好地理解和掌握补角和余角的概念。
三. 教学目标1.让学生掌握补角和余角的概念,理解它们之间的联系和区别。
2.培养学生运用补角和余角解决实际问题的能力。
3.提高学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.重点:补角和余角的概念及其应用。
2.难点:补角和余角的证明及其在实际问题中的运用。
五. 教学方法1.采用问题驱动法,引导学生主动探究补角和余角的概念。
2.使用多媒体辅助教学,展示丰富的实例,让学生更直观地理解补角和余角。
3.小组讨论,培养学生团队合作精神,提高解决问题的能力。
4.利用课后习题,巩固所学知识。
六. 教学准备1.准备多媒体课件,包括角的补角和余角的实例。
2.准备相关习题,用于课后巩固和拓展。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如篮球比赛中的犯规,引出补角和余角的概念。
提问:“请问同学们知道什么是补角和余角吗?”让学生回顾已学的知识,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过多媒体课件,展示一系列关于补角和余角的实例,如两个角互为补角、互为余角等。
在展示过程中,教师引导学生关注补角和余角的特征,让学生直观地理解补角和余角的概念。
3.操练(10分钟)教师学生进行小组讨论,要求每个小组找出一些互为补角或互为余角的例子,并说明它们的性质。
七年级数学上册 第4章 直线与角 4.5 角的比较与补(余)角教案2 (新版)沪科版
CBA4.5 角的比较与补(余)角教学目标:1、知识与技能:⑴、在具体的现实情境中,运用类比的方法,学会比较两个角的大小,认识一个角的余角和补角,掌握余角和补角的性质。
⑵、通过动手操作,学会借助三角板拼出不同度数的角,•认识角的平分线.了解方位角,能确定具体物体的方位。
2、过程与方法:进一步培养和提高学生的识图能力和动手操作的能力,认识类比的数学思想方法.进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
3、情感态度与价值观:体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。
重、难点及关键:1、重点:比较角的大小,认识角平分线认识角的互余、互补关系及其性质,确定方位是本节课的重点。
2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。
3、关键:比较两个角的大小,了解推理的意义和推理过程是掌握性质的关键。
教学过程:一、 引入新课:教师活动:在黑板上画出一个三角形.(如右图所示) 1.提出问题:比较图中线段AB 、BC 、CD 的长短.学生活动:回顾线段长短的比较方法.小组交流,得出适当的比较线段长短的方法. 教师活动:归纳学生的讨论结果,并演示用圆规比较AB 、BC 、CD 三条线段长短的过程,并写出结论:AB>AC>BC .2.提出问题:怎样比较图中∠A、∠B、∠C的大小?学生活动:小组交流比较方法,得出结论:可用量角器先量出角的度数,然后比较它们的大小.教师活动:(1)肯定评价学生提出的方法,并动手测量度数,•比较它们的大小,板书结论:∠C>∠B>∠A.(2)启发引导学生,类比线段长短的比较方法,•也可以把它们叠合在一起比较大小.3.让学生观察意大利著名建筑比萨斜塔。
比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。
沪科版七年级数学上册优秀教学案例:4.5角的比较与补(余)角(2课时)
一、案例背景
本案例背景以沪科版七年级数学上册第四章第五节“角的比较与补(余)角”为主题,结合第二课时进行教学。本节课的主要内容是让学生掌握补角和余角的概念,理解它们之间的相互关系,并能够运用这一知识解决实际问题。在教学过程中,我充分运用了启发式教学法、小组合作学习法等教学方法,注重培养学生的数学思维能力和合作意识,提高他们的数学素养。
(二)问题导向
1.设置一系列具有层次性的问题,引导学生自主探究,激发他们的思维。
2.鼓励学生提出问题,培养他们的问题意识。
3.引导学生通过小组讨论、交流,共同解决问题。
在问题导向环节,我设置了一系列具有层次性的问题,引导学生自主探究。例如,我提出了以下问题:(1)补角和余角的概念是什么?(2)补角和余角之间有什么关系?(3)如何用度量工具测量角的大小?这些问题激发了学生的思维,他们通过自主探究和小组讨论,共同找到了问题的答案。
2.启发式教学与小组合作相结合:在教学过程中,我运用启发式教学法,引导学生自主探究、小组合作,培养学生的问题解决能力和团队合作意识,提高他们的数学思维能力和合作意识。
3.多元化的教学评价:在教学评价方面,我采用多元化的评价方式,既注重学生的知识掌握程度,也关注他们的学习过程和方法,以及学生在小组合作中的表现,使评价更加全面、客观。
3.培养学生动手操作和实践能力,提高他们的数学素养。
为了实现以上目标,我在教学过程中采用了以下方法:
首先,我运用启发式教学法,通过设置一系列具有层次性的问题,引导学生自主探究,激发他们的思维。同时,我鼓励学生提出问题,培养他们的问题意识。
其次,我采用小组合作学习法,让学生在小组内进行讨论、交流,共同解决问题。在此过程中,我注重培养学生的合作意识,提高他们的沟通能力和团队协作能力。
沪科版七年级数学上第四章直线与角4.5角的比较与补(余)角教学设计
1.培养学生严谨、细致的学习态度,使学生认识到数学知识的严密性和逻辑性。
2.培养学生的空间观念,提高学生对几何图形的认识,激发学生对数学学科的兴趣。
3.使学生感受到数学与生活的紧密联系,认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
在课堂教学中,教师要关注学生的个体差异,充分调动学生的积极性,鼓励学生主动探究、勇于质疑,培养学生的创新精神和实践能力。同时,注重情感教育,引导学生形成正确的价值观,使学生在掌握知识的同时,养成良好的学习习惯和品质。
(3)结合学生的生活经验,设置实际问题,让学生在实际情境中运用所学知识,提高学生的应用能力。
3.教学过程:
(1)导入:通过提问方式引导学生回顾角的度量单位及性质,为新课的学习做好铺垫。
(2)新授:讲解角的大小比较、补角与余角的概念及性质,结合实例进行解释,使学生理解并掌握。
(3)巩固:设计课堂练习,让学生运用所学知识解决问题,并及时给予反馈,巩固所学。
(3)个性化评价:针对学生的个体差异,给予针对性的评价和指导,激发学生的学习潜能。
四、教学内容与过程
(一)导入新课
1.教学活动:教师出示一张校园图片,图片中有两个角度明显不同的三角形,并提出问题:“同学们,你们能分辨出这两个三角形中哪个角度更大吗?我们可以使用什么方法来比较角的大小呢?”
2.学生活动:学生通过观察、思考,尝试回答教师提出的问题,部分学生可能会提到使用量角器等工具进行比较。
沪科版七年级数学上第四章直线与角4.5角的比较与补(余)角教学设计
一、教学目标
(一)知识与技能
1.理解角的大小比较的方法,学会使用量角器、直尺等工具比较两个角的大小。
2.掌握角的补角与余角的概念,能够准确找出角的补角与余角,并能够运用补角与余角的性质解决问题。
【沪教版】七年级数学上册4.5《角的比较与补(余)角 》教案
4.5角的比较与补(余)角
【教学目标】
1.在现实情境中,进一步丰富锐角、钝角、直角及大小的认识.
2.学会比较角的大小,能估计一个角的大小.
3.在操作活动中认识角平分线,能画出一个角的平分线.
4.在具体情境中了解余角与补角,懂得等角的余角相等,等角的补角相等,并能运用这些性质解决一些简单的实际问题.
【重点难点】
重点:角的大小的比较方法,从图形中观察角的和、差关系.
难点:余角与补角的性质.
【教学过程设计】
【教学小结】
【板书设计】
4.5 角的比较与补(余)角
1.比较方法:叠合法、度量法
2.角的平分线:在角的内部,以角的顶点为端点的一条射线把这个角分成两个相等的角,这条射线叫做角的平分线.
3.角的关系⎩
⎪⎨⎪⎧互补:两个角的和是180°互余:两个角的和是90°
4.性质:同角(或等角)的补(余)角相等.
【教学反思】
本节课主要采用“复习导入——学生自主探索与小组合作交流——概括明晰”的教学思路,把探索知识的主动权完全交给学生.合作学习的方式,使得全体学生都能在横向交流中各尽所能,取长补短,各有所获,共同发展.。
沪科版七年级数学上册4.5.2角的比较与角的补(余)角说课稿
一、教材分析
(一)内容概述
本节课选自沪科版七年级数学上册第四章第五节第二部分,主要教学内容为角的比较与角的补(余)角。这一节内容在整个课程体系中具有承上启下的作用,既是对前面所学角的度量知识的巩固,也为后续学习相似三角形、圆等相关知识打下基础。本节课的主要知识点包括:角的比较、补角与余角的定义及其性质、应用补角与余角解决实际问题。
(四)总结反馈
在总结反馈阶段,我将采取以下措施:
1.自我评价:引导学生回顾本节课所学内容,对自己的学习情况进行自我评价。
2.同伴互评:组织学生相互评价,发现他人的优点和不足,相互学习、共同进步。
3.教师评价:针对学生的表现,给予针对性的反馈和建议,鼓励学生继续努力。
(五)作业布置
课后作业布置如下:
1.巩固练习题:布置一定数量的练习题,目的是让学生巩固所学知识,提高解题能力。
过程与方法目标:培养学生观察、分析、归纳的能力,通过自主探究、合作交流的方式,让学生掌握角的比较与补角、余角的概念及其应用。
情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的空间观念和解决问题的能力,使他们体会数学在生活中的广泛应用,提高学生的数学素养。
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重点和难点如下:
在课程体系中,本节课的内容是连接基本角度概念与实际应用的桥梁,有助于培养学生的空间观念和解决问题的能力。主要知识点如下:
1.角的比较:学会比较两个角的大小,掌握角的分类(锐角、直角、钝角)。
2.补角与余角:理解补角和余角的定义,掌握补角和余角的性质,并能运用这些性质解决相关问题。
(二)教学目标
知识与技能目标:通过本节课的学习,使学生掌握角的比较方法,理解并掌握补角与余角的定义及其性质,能够运用相关知识解决实际问题。
沪科版七年级数学上册:4.5角的比较与补(余)角教学设计
3.教学评价:
-采用形成性评价,关注学生的学习过程,鼓励学生提问、表达观点,及时了解学生的学习情况。
-采取多元化评价方式,包括课堂问答、课后作业、小组讨论、单元测试等,全面评估学生的学习效果。
4.教学策略:
沪科版七年级数学上册:4.5角的比较与补(余)角教学设计
一、教学目标
(一)知识与技能
1.理解角的大小比较的概念,能够准确比较两个角的大小,并运用到实际问题中。
2.掌握余角和补角的概念,能够找出一个角的余角和补角,并运用到几何证明和计算中。
3.学会使用量角器、直尺等工具,准确地画出指定度数的角。
4.能够运用角的性质和定理,解决一些简单的几何问题,如角的和差、倍角等。
(三)情感态度与价值观
1.培养学生勇于探究、积极思考的学习态度,激发学生对数学学科的兴趣。
2.培养学生严谨、细致的学习习惯,使学生认识到数学知识在实际生活中的重要作用。
3.增强学生的团队合作意识,培养学生互相帮助、共同进步的品质。
4.引导学生树立正确的价值观,认识到学习数学不仅是为了应付考试,更是为了解决实际问题,为国家和个人发展做出贡献。
2.理解并运用余角和补角的概念,解决实际问题。
3.能够在实际问题中灵活运用角的性质和定理,如角的和差、倍角等。
4.培养学生的空间想象能力和逻辑思维能力。
(二)教学设想
1.教学方法:
-采用情境教学法,设计与学生生活密切相关的问题情境,让学生在实际问题中感受角的大小比较和余角、补角的应用。
-运用直观演示法,借助教具、多媒体等手段,让学生直观地认识角的大小、余角和补角。
沪科版七年级数学上册:4.5 角的比较与补(余)角教学设计-精选学习文档
教学流程设计
1.比较下列各题中两个角的大小。
(1)
(2)
课
A
1
前
2
α
β
第1题
B
预
C
2.已知∠ABC 是 Rt∠,你可以用哪些方法画出∠ABC 的平分线?
习
教师活动
学生活动
一、新课教学 1.比较角的大小的方法: 如图 1,两块三角尺的顶点分别记为 A、B、 C 和 P、Q、O。你认为∠P 与∠A 哪个角较大? 说说你是怎样比较的? 由学生探讨出角的大小比较的两种方法: ①叠合法:如图 2,把一个角放在另一个 A 角上,使它们的顶点重合,其中的一边 ②度量法:比较角的大小,我们也可以用 量角器分别量出角的度数,然后加以比较。
∠AOC ∠AOD,∠BOD ∠BOC。
(3)如果∠1=32°15′56″,∠2=32.259°,那么∠1
∠2。
课
2.3∶30 时,时针与分针所成的角是( ) (A)锐角 (B)直角 (C)钝角 (D)平角
堂
3.看图 2 填空: (1)∠BOD=∠BOC+
,∠AOB=
++
,
练
(2)若∠AOC=Rt∠,∠BOC=30°,则∠AOB= °, (3)∠ =∠BOD-∠BOC,∠COD=∠BOD+∠AOC-∠ 。
Q B
P
C
O
图 1Q
B
2.例 1:学生仔细阅读书本 P148 例 1 的 解法
3.角平分线 做一做:下面请大家各自在纸上任意画一
第1页
A(P)
OC
图2
个∠BOA,再完成书上 P148 的做一做。 你们发现了什么?(∠AOC=∠BOC) 角平分线的概念: 从一个角的顶点引出的一条射线,把这个
沪科版-数学-七年级上册-4.5 角的比较与补(余)角第2课时 教案
4.5 角的比较与补(余)角第2课时教学目标1.知识与技能(1)在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质.(2)了解方位角,能确定具体物体的方位.2.过程与方法进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想.3.情感态度与价值观体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益.重、难点与关键1.重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点.2.难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点.3.关键:了解推理的意义和推理过程,是掌握性质的关键.教学过程一、引入新课1.提出问题:(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?学生活动:独立思考,小组交流,得出结论:都是90°.2.提出问题.(1)观察方格如右图中的两个角,你能猜想∠1+∠2等于多少度?(2)如果∠1=144°,∠2=36°,那么∠1+∠2=?学生活动:观察思考,小组交流,得出结论:都是180°.教师活动:移动∠2,使∠1.∠2顶点和一边重合,引导学生观察∠1,∠2的另一条边,观察到两角的另一条边成一条直线,验证学生的结论.二、新授1.余角与补角.教师活动:指导学生阅读课本有关内容,并讲解余角与补角的定义.一般情况下,如果两个角的和等于一个直角,我们就称这两个角互为余角,即其中一个角是另一个角的余角.同样,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角).2.巩固反思.(1)如果∠1和∠2互为补角,且∠1>∠2,那∠2的余角为()A.() 11801 2-∠B.12∠1C.() 112 2∠+∠D.12(∠1﹣∠2)【解析】利用互余和互补的定义解答.解:∵12(∠1﹣∠2)+∠2=()1122∠+∠=90°,∴∠2的余角为12(∠1﹣∠2),故选D.【答案】D(2)若一个角的余角比这个角大30°,则这个角的补角是()A.30°B.150°C.60°D.155°【解析】和是90°的角互为余角,求一个角的余角就是用90°减去这个角,因而本题可以转化为一个方程问题,先求出这个角.解:设这个角是x°,则它的余角是(90﹣x)度.根据题意可得(90﹣x)﹣x=30解得x=30°因而这个角的补角是150°.故选B.【答案】B3.余角与补角的性质.(1)提出问题:观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?学生活动:观察图形,小组交流观察的结果:∠1=∠3,∠1+∠2=180°,∠3+∠4=180°.教师活动:移动图中各角,对学生观察的结果进行验证,进一步提出问题:∠2与∠4有什么关系?学生活动:观察思考后得出∠2=∠4.(2)说明理由:例1.如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?解:因为∠1与∠2互补,所以∠2=180°-∠1 .因为∠3与∠4互补,所以∠4=180°-∠3.又因为∠1=∠3,所以∠2=∠4余角、补角的性质.等角的补角相等.等角的余角相等.三、巩固练习如图,∠AOD=∠DOB=∠COE=90º,其中共有互余的角( )A.2对B.3对C.4对D.6对【解析】根据互余的两角之和为90°即可得到结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《角的比较与补(余)角》教案(课时一)
教学目标
1、会比较两个角的大小,能够结合图形实际将一个角写成两个角的和、差的形式;
2、了解角平分线的意义,并能够用符号语言表示.
教学过程与方法
1、通过学生熟悉的数学知识导入,互相交流探究,发现比较角的大小的三种方法,通过对探究的新知识尝试应用,进一步学习几何语言说理的数学方法;
2、了解简单的推理论证的思想:“问题-分析-说理”的分析几何问题的方法.情感、态度与价值观:在操作、观察、思考、发现的过程中,体会学习几何知识的思想方法,培养学生之间的合作意识与探究精神.
教学重点
两个角大小的比较方法.
教学难点
用几何语言进行简单的说理.
教学过程
(一)创设情境,引入新知
操作:请三个同学上黑板分别画一个任意大小锐角、一个直角和一个任意大小钝角的几何图形.
思考1:你能说明这三个角的大小关系吗?理由?
钝角大于直角,直角大于锐角.因为钝角度数大于900,直角度数等于900,锐角度数小于900,所以从角的度数大小可以比较这三个角的大小关系.
思考2:你还能用别的方法说明这三个角的大小关系吗?
演示:认真观察老师用叠合法比较每两个角,你能说出老师操作的动作要求吗?(二)合作交流,探索新知
观察:把∠DEF移动,使它的顶点E移到和∠ABC的顶点B重合,一边ED和BA重合,另一边EF和BC落在BA的同旁.(①顶点重合;②一边重合;③另一边在同旁),请认真观察下面的演示,分别说出角的大小.
观察图形,你能得出什么结论?
(1)如果EF和BC重合,那么∠DEF=∠ABC;
(2)如果EF落在∠ABC内部,那么∠DEF﹤∠ABC;
(3)如果EF落在∠ABC外部,那么∠DEF﹥∠ABC.
观察:下面图形中有多少个角?请写出来、除了我们能比较它们的大小关系外,还发现
它们还有什么数量关系?
(三)合作交流,应用新知
例1:如图,求解下列问题:
(1)比较∠AOC与∠BOC,∠BOD与∠COD的大小;
(2)将∠AOC写成两个角的和与两个角的差的形式.
(四)合作交流,再探新知
操作:在角的内部,以角的顶点为端点的一条射线把这个角分成两个相等的角,这条射线叫做这个角的平分线、请尝试画出符合要求的几何图形、结合角平分线定义和图形,请尝试写成几何符号语言形式.
(五)小试牛刀,再用新知
例2:如图,已知OC平分∠BOD,∠AOD=1100,∠COD=350,求∠AOB,∠AOC 的度数、
例3:如图,∠COB=2∠AOC,OD平分
∠ AOB,且∠COD=190,求∠AOB的度数.
(教材151页第5题)
(六)随堂练习,巩固新知
1、教材149页第1题.
2、将第1题改为:
按下列要求画图,并解答问题:
(1)画∠AOB=900;
(2)再画∠BOC=300;
(3)求∠AOC的度数.
3、如图,∠AOB=∠BOC
=∠COD=∠DOE,请写出图中所有的角平分线.
(七)师生互动,小结新知
一、比较角的大小两种方法:叠合法(顶点重合;一边重合;另一边在同旁)和度量法;
二、角的和、差;
三、角平分线;
四、注意几何问题的表达方式:文字语言、几何图形和几何符号语言之间的联系与转化;
五、应用这些知识解答问题.
(八)布置作业,深化新知
教材150页习题4.5第1、2、3、4题.
《角的比较与补(余)角》教案(课时二)
知识与技能
(1)理解余角、补角的概念;
(2)理解掌握余角和补角的性质.
过程与方法
(1)经历观察、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和有条理的表达能力;
(2)求某角的度数,使学生初步会用简单的代数思想一方程来处理图形的数量关系.
教学重点
余角和补角的概念及其性质.
教学难点
余角和补角的性质应用,培养学生的推理能力和有条理的表达能力.
教学设计
一、余角教学
1、课程探究
比萨斜塔的底部是石块堆积而成,量角器无法伸入斜塔底部测量,如何得到斜塔偏离竖直方向的角度?
由于不能直接的测量∠1的度数,我们可以把∠2的度数测量出来,因为∠1+∠2=90°,所以∠1=90°-∠2.
2、实验操作
拿出一张用硬纸板做的直角,然后将其任意剪成两个角,分别标上∠1,∠2,问这两个角的和为多少度?(∠1+∠2=90°,我们把具有这种关系的∠1、∠2称为互余.)
3、互余的概念
如果两个锐角的和是一个直角,我们就说这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角.如右图中,∠1与∠2互为余角,∠1是∠2的余角,∠2也是∠1的余角.
互余的数量关系:∠1+∠2=90°∠1的余角=90°—∠1
4、注意要点:
(1)移动剪纸后的∠1和∠2,是这两个角处于不同的平面,提问:∠1和∠2还互余吗?(仍然互余,因为概念中没有对角的位置做要求)
(2)把∠2剪成∠2和∠3,那么我们可以说∠1,∠2和∠3互余吗?(不能,因为概念中互余是对相对两个角而言的,不能扩展到三个角)
二、补角教学
1、课程探究
水库大坝的底部是石块堆积而成,量角器无法伸入大坝底部测量,如何得到大坝的坡度?由于不能直接的测量∠1的度数,我们可以把∠2的度数测量出来,因为∠1+∠2=180°,所以∠1=180°-∠2.
2、实验探究
拿出一张用硬纸板做的平角,然后将其任意剪成两个角,分别标上∠1,∠2,问这两个角的和为多少度?(∠1+∠2=1800°,我们把具有这种关系的∠1、∠2称为互补)
3、自主探究
以同桌为一个小组,类比两角互余的概念,一起探讨两角互补的概念及特点.。