220kV变电站电气设备选择
220KV降压变电所电气一次部分初步设计
目录课程设计任务书 (3)1 电气主接线设计 (6)1.1 主接线设计要求 (6)1.2 主接线基本接线方式 (7)1.3 主接线的接线方案确定 (12)2 主变压器选择 (16)2.1 主变压器的选择原则 (16)2.2 主变压器台数的选择 (16)2.3 主变压器容量的选择 (17)3 短路电流计算 (20)3.1 概述 (20)3.2 短路电流计算目的 (20)3.3 短路电流计算基本假设 (20)3.4 各元件电抗标么值计算 (21)3.4.1 各电气元件标幺值的计算 (21)3.4.2 线路标幺电抗总图及化简图 (21)3.5 系统最大运行方式下短路电流计算 (23)3.5.1最大最小运行方式的含义 (23)3.5.2 220KV侧短路计算 (23)3.5.3 110KV侧短路计算 (25)3.5.4 10KV侧短路计算 (27)4 主要电气设备选择 (30)4.1 概述 (30)4.1.1 按正常工作条件选电气设备 (30)4.1.2 按短路状态进行校验 (31)4.2 高压断路器的选择 (32)4.2.1 220KV侧断路器的选择 (33)4.2.1 110KV侧断路器的选择 (34)4.2.2 10KV侧断路器的选择 (35)4.3 隔离开关的选择 (36)4.3.1 220KV侧隔离开关的选择 (37)4.3.1 110KV侧隔离开关的选择 (38)4.3.2 10KV侧隔离开关的选择 (39)4.4 母线的选择 (40)4.4.1 220KV侧母线的选择 (41)4.4.1 110KV侧母线的选择 (42)4.4.2 10KV侧母线的选择 (43)4.5 互感器的选择 (49)4.5.1 电流互感器选择依据 (50)4.5.2 电流互感器的选择 (51)4.5.3电压互感器的选择依据 (54)4.5.4电压互感器选择 (55)5 防雷及接地体设计 (57)5.1 概述 (57)5.2防雷保护的设计 (57)5.3 接地装置的设计 (58)5.4 主变压器中性点间隙保护 (58)5.5 变电所防雷设计 (59)6. 设计总结 (60)参考文献 (61)附录1 主要设备选择汇总表 (62)成绩评定表 (63)课程设计任务书表二 10KV 用户负荷统计资料序号 用户名称 最大负荷 (kW) cos φ 回路数重要负荷百分数 (%) 1矿机厂 1800 0.95 2 622机械厂 1900 0.95 2 3汽车厂 1700 0.95 2 4电机厂 2000 0.95 2 5炼油厂 2200 0.95 2 6 饲料厂 800 0.95 2 3、待设计变电所与电力系统的连接情况待设计变电所与电力系统的连接情况如图所示。
220kv变电站电气设计
第二节防雷保护的设计21
第三节主变中性点放电间隙保护22
第八章主接线比较选择22
方案一23
方案二23
方案三24
第九章主变容量的确定计算25
第十章短路计算26
第十一章电气设备选择计算30
第一节断路器选择计算30
第二节隔离开关选择计算33
第三节220kV、110kV主母线及主变低压侧母线桥导体选择计算35
第四节10kV最大一回负荷出线电缆37
第五节支持绝缘子及穿墙套管的选择38
第六节限流电抗器39
第七节10kv出线电流互感器选择计算40
第八节10KV电压互感器选择41
第十二章继电保护规划设计41
第Байду номын сангаас节变电所主变保护的配置41
第二节220KV、110KV、10KV线路保护部分42
第十三章避雷器参数计算与选择42
1、单母线接线
单母线接线虽然接线简单清晰、设备少、操作方便,便于扩建和采用成套配电装置等优点,但是不够灵活可靠,任一元件(母线及母线隔离开关)等故障或检修时,均需使整个配电装置停电。单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需短时停电,在用隔离开关将故障的母线段分开后,才能恢复非故障段的供电,并且电压等级越高,所接的回路数越少,一般只适用于一台主变压器。
110KV~220KV配电装置的出线回路数为3~4回,35~63KV配电装置的出线回路数为4~8回,6~10KV配电装置出线为6回及以上,则采用单母分段接线。
3、单母分段带旁路母线
这种接线方式:适用于进出线不多、容量不大的中小型电压等级为35~110KV的变电所较为实用,具有足够的可靠性和灵活性。
4、桥形接线
所以,桥式接线,可靠性较差,虽然它有:使用断路器少、布置简单、造价低等优点,但是一般系统把具有良好的可靠性放在首位,故不选用桥式接线。
220kV等级变电站设备配置清单
用途
1
变压器直流电阻测试仪
MS-550
1台
量程: 40μΩ~400mΩ (50A)
100μΩ~1Ω (20A)
500μΩ~2Ω (10A)
1mΩ~4Ω (5A)
2
回路电阻测试仪
HLY-IIA
1台
断路器导电回路接触电阻测量
测量范围:0—1999.9μΩ
测量电流:直流≥100A
3
大地网接地电阻测试仪
4
PH测定仪
PH335
1台
绝缘油酸碱度测量
测量范围pH 0.00至14.00pH
温度 0.0至99.9℃(选配) (精度±1%F.S)
5
绝缘油介电强度测试仪
YJJ-II
1套
全自动绝缘油击穿、耐压试验
自动静止,搅拌,升压,击穿,降压( 输出电压0~80kV;测量精度2.0%)
6
油介损测试仪
MS-101Y
行程:量程 600MM
9
避雷器特性测试仪
MSBL-IV
1台
测量氧化锌避雷器的全电流、阻性电流及其谐波、工频电压、有功功率和相位差(电流测量范围:0 ~ 10mA
电压输入范围:10 ~ 200V
精度:±3% )
10
微机继电保护测试仪
MS-702
1台
综保检测:电压保护、电流保护、差动保护、低周保护、整组试验等,
精确定点误差:±0.2m
测试误差: 系统误差小于±1%
MS-602
1台
二次负荷测量
5Байду номын сангаас
接地棒,验电器
EC-II
1套
安全保护,验电测量
适用于110kV变电站
220KV变电站
摘要变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用,拟在某区域新建一座220KV变电站。
本设计书主要介绍了220kv区域变电站电气一次部分的设计内容和设计方法。
设计的内容有220kv区域变电站的电气主接线选择,主变压器,站用变压器的选择,母线,断路器和隔离刀闸的选择,互感器的配置,220kv,110kv,10kv线路的选择和短路电流的计算。
设计中还对主要高压电气设备进行了选择与计算,如断路器,隔离开关,电压互感器,电流互感器等,此外还进行了防雷保护的设计,电气总平面布置及配电装置的选择,继电保护的设备等,提高了整个变电站的安全性。
关键词:变电站;主接线;变压器AbstractSubstation is an important part of the power system, which directly affects the entire power system security and economic operation of power plants and the user is to contact the middle part, plays the role of transformation and distribution of electric energy,intends to build a 220 kv substation of a regional.The design of the book introduces the regional 220kv electrical substation design a part of the content and design. The design of the contents of the electrical substation 220kv main regional cable choice, the main transformer, the transformer used in the choice of bus, circuit breakers and isolation switch option,the configuration of transformer,220kv,110kv,10kv line choice and short-circuit current calculations.The design of the main high pressure also had a choice of electrical equipment and computing, such as circuit breakers,isolating switches,voltage transformers,current transformers and so on.In addition,a lighting protection design and computing,general layout of electrical the choice of power distribution unit and the protection equipments and so on.,increased the safety of the entire substation.Keywords:substation; main connection; transformer目录1 引言 (1)1.1选题的目的和意义 (1)1.2国内外研究现状 (1)1.3本设计的主要研究内容 (2)2 电气主接线的方案设计 (3)2.1电气主接线概述 (3)2.2电气主接线的方案选择 (4)2.2.1 主接线方式介绍 (4)2.2.2主接线的方案选择 (4)3 主变压器的选择 (8)3.1 主变压器的选择原则 (8)3.1.1 主变压器台数的选择 (8)3.1.2 主变压器容量的选择 (8)3.1.3 主变压器型式的选择 (9)3.1.4 绕组数量和连接形式的选择 (9)3.2 主变压器选择结果 (10)4 220KV变电站电气部分短路计算 (11)4.1 概述 (11)4.2 变压器的各绕组电抗标幺值计算 (11)4.3 10KV侧短路计算 (12)4.4 220KV侧短路计算 (15)4.5 110KV侧短路计算 (17)5 导体和电气设备的选择 (19)5.1 断路器和隔离开关的选择 (20)5.1.1 220KV出线、主变侧的选择 (21)5.1.2 110KV出线、主变侧的选择 (25)5.1.3 10KV限流电抗器、断路器、隔离开关的选择 (28)5.2 电流互感器的选择 (33)5.2.1 220KV侧电流互感器的选择 (34)5.2.2 110KV侧的电流互感器的选择 (35)5.2.3 10KV侧电流互感器的选择 (36)5.3 电压互感器的选择 (38)5.3.1 220KV侧母线电压互感器的选择 (39)5.3.2 110KV侧母线电压互感器的选择 (39)5.3.3 10KV母线电压互感器的选择 (39)5.4 导体的选择与校验 (40)5.4.1 220KV母线的选择 (40)5.4.2 110KV母线的选择 (41)5.4.3 10KV母线的选择 (42)5.4.4 变压器220KV侧引接线的选择与校验 (43)5.4.5 变压器110KV侧引接线的选择与校验 (45)5.4.6 变压器10KV侧引接线的选择与校验 (46)6 站用电设计 (48)6.1站用变压器选择 (48)6.2 站用电接线图 (48)总结 (50)致谢 (51)参考文献 (52)附录 (53)1 引言1.1选题的目的和意义变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。
kV变电站电气设备选择
目录摘要 (2)关键字 (2)第一章引言 (2)第二章电气主接线设计 (3)2.1电气主接线的概念及其重要性 (3)2.2 电气主接线的基本形式 (3)第三章主变压器的选择 (5)3.1主变压器的台数和容量选择 (6)3.2主变压器形式的选择 (6)3.3连接方式 (7)3.4选择原则 (7)3.5主变压器选择的结果 (7)第四章 220kV电气部分短路电流计算 (8)4.1变压器的各绕组电抗标么值计算 (10)4.2 10kV侧短路电流计算 (11)4.3 220kV侧短路电流计算 (14)4.4 110kV侧短路电流计算 (15)第五章导体和电气设备的选择 (17)5.1电气设备选择的要求 (17)5.2 220kV侧设备的选择和校验 (18)5.3 110kV侧设备的选择和校验 (21)5.4 10kV侧设备的选择和校验 (23)小结 (26)参考文献 (27)附录 (28)220kV变电站电气设备选择张洋洋摘要:随着我国科学技术的发展,电力系统对变电站的要求也越来越高,本设计讨论的220KV 变电站电气设备的选择设计,首先对原始资料进行分析,然后选择合适的主变压器,在此基础上进行主接线设计,短路电流计算等一系列相关工作。
关键字:变电站短路电流计算设备选择第一章引言毕业设计是我们在校期间最后一次综合训练,它从思维,理论以及动手能力方面给予我们严格的要求,使我们的综合能力有了进一步的提高。
能源是社会生产力的重要组成部分,随着社会生产的不断发展,人类对使用能源质量要求也越来越高。
电力是工业的基础,在国家建设和国民经济发展中占据十分重要的地位,是实现国家现代化的战略重点。
电能也是发展国民经济的基础,是一种无形的,不能大量存储的二次能源。
如果要满足国民经济发展的要求,电力工业必须超前发展,这是世界发展的规律。
因此,做好电力规划,加强电网建设,就很尤为重要。
同时,电气设备的选择在改变或调整电压等方面在电力系统中起着重要的作用。
220KV变电站
绪论我国目前所使用的交流电能主要是由交流发电机提供的。
由于受绝缘水平的限制,发电机输出端发出的电压一般低于30 kV。
用这样低的电压将电能进行远距离输送事实上是不可能的。
为此,需要利用升压变压器将电压升高后,再将电能进行远距离输送,到用电负荷所在地区以后,用电设备多是低压设备,所以用高电压将电能输送到用电地区后,还必须利用降压变压器降低电压,才能供给用户使用。
因此,变电站在电力生产过程中是一个重要的环节。
在电力系统中,变电站主要担负着电压变换这一重要任务,其作用主要有提高输电电压,减少电能损失。
电能在输送的过程中,由于电流的热效应,就要产生电能损失,且电能转化为热能的损失与电流的平方成正比。
因此,当输送功率一定时,提高输电电压就可减小电流,电网就会相应减少电能损失。
降低电压,分配电能。
电能经过升压输送到用电地区后,用户很难使用高电压的电气设备,因此,需要降压变电站把电压降低再分配到用户供用户使用。
集中电能、控制电力流向。
一个电网多数由多个电源点提供电能,这些电能的集中必须通过枢纽升压变电站来实现。
在用电地区,根据负荷情况,再由降压变电站来控制电力的流向。
调整电压,提高电压质量,满足用户的要求。
通过变电站的变压器调压装置和无功补偿设备,既可使用户得到稳定的电压,也可以提高线路的输电功率。
此次设计的220KV变电站,对该地区的电网优化配置资源的能力将显著增强。
该站的建成,可以满足市区生产及生活的供电要求,在设计过程中考虑到该市工业生产和人民生活的发展,并可满足5-10年的远景供电需求。
作为新建站,除了能够满足用电的需求的基本条件外,还必须考虑到自身的建站经济性、调度的灵活性和可靠性,并易于扩建和升级改进成微机综合自动化。
关于此课程,目前国内外较先进的是变电站综合自动化。
其一般为无人值班,有人职守,四谣设计,采用综合自动化实现控制、保护、测量和远动等功能。
微机控制,通过“远方”“就地”转换开关实现就地(就地单元控制)、远方(站内控制室微机及调度中心)两种控制方式,用微机实现模拟操作,待确认后再执行控制命令。
220kv变电站电气部分设计说明书
220kv变电站电气部分设计说明书第1章原始资料分析1、建设规模:该电力系统需建一座220kv降压变电站,建成后与110kv和220kv电网相连,规划装设两台容量为120MVA主变压器。
该所有220kv、110kv和10kv三个电压等级,220kv侧出线6回,110kv侧出线8回,10kv侧出线12回。
根据建厂规模,对本电所的电气主接线进行设计,确定2~3种方案,进行技术和经济比较,确定最佳方案。
2、该地区负荷情况:110kv有两回出线供给远方大型冶铁厂,其容量为40MVA,10kv侧总负荷为30MVA。
根据负荷情况,确定主变压器台数及容量。
3、各级电压侧功率因数和最大负荷利用小时数为:220kv侧 T=3800小时/年110kv侧 T=4200小时/年10kv侧 T=4500小时/年根据最大负荷利用小时,可查表得出导体经济电流密度,进而按经济电流密度进行母线截面的选择。
4、系统阻抗:220kv侧电源近似为无穷大容量系统,归算至本所220kv母线为0.16(S=100MVA),110kv侧电源侧容量为1000MVA,归算至本所110kv母线侧阻抗0.32(S=100MVA),10kv侧无电源。
计算短路电流,对主要电气设备和导体进行选择。
5、该地区最热平均温度为28度,年平均气温16度,绝对最高温度为40度,土壤温度为18度海拔153米。
根据以上数据对导体及母线进行选择。
6、该变电所位于市郊荒土地上,地势平坦,交通便利,环境污染小。
根据变电所配电系统和配电装置的设计原则,对配电所进行高压配电系统设计,接近负荷中心,则要求供电的可靠性,调度的灵活性更高,有10kv电压送电,该负荷侧可采用双回路供电。
第2章电气主接线的设计电气主接线又称为一次接线或电气主系统,代表了发电厂和变电所电气部分的主体结构,直接影响着配电装置的布置、继电保护配置、自动装置和控制方式的选择,对运行的可靠性、灵活性和经济性起决定性的作用。
电气设备的选择
电气设备的选择(总25页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March5 电气设备的选择电气设备的选择是发电厂和变电所电气设计的主要内容之一。
正确选择电气设备是电气主接线和配电装置达到安全、可靠、经济运行的重要条件。
在进行电器选择时,应根据工程实际情况,在保证安全、可靠的前提下,积极而稳妥地采用新技术,并注意节省投资,选择合适的电气设备。
尽管电力系统中各种电器的作用和工作条件并不一样,具体选择方法也不完全相同,但对它们的基本要求确是一致的。
电气设备要可靠地工作,必须按正常工作条件进行选择,并按短路状态来校验动、热稳定性。
本设计,电气设备的选择包括:断路器和隔离开关的选择,电流、电压互感器的选择、导线的选择。
电气设备选择的一般原则在变电所中,电气设备的种类很多,它们的工作条件和运行要求各不相同,但选择这些电气设备的基本要求确实一致的。
选择电气设备的一般条件是:保证电气设备在正常工作条件不能可靠工作,而在短路情况下不被破坏。
即按长期工作条件进行选择,按短路情况进行校验。
1.按正常工作条件选择电气设备按正常工作条件选择,主要包括以下几个方面:(1)使用环境条件:主要包括设备的安装地点、环境温度、海拔、相对湿度等,还要考虑防尘、防腐、防爆、防火等要求。
即根据安装地点的坏境不同,可以分为室内型和室外型两种。
(2)额定电压:电气设备的额定电压应要不小于设备安装地点电网的最高工作电压,即:(3)额定电流:电气设备的额定电流应不小于设备正常工作时的最大负荷电流,即:目前,我国生产的电气设备是按环境温度设计的,如果安装地点的实际环境温度,则额定电流应乘以温度校正系数式中,为电气设备长期工作时的最高允许温度;为设备安装地点的实际环境温度。
电气设备的最大长期工作电流,取线路的计算电流或变压器的额定电流。
2.按短路情况进行校验(1)动稳定校验:动稳定是指电气设备承受短路电流力效应的能力,满足动稳定的条件是:或式中,、分别为电气设备允许通过的最大电流峰值和有效值;、分别为设备安装地点短路冲击电流的峰值和有效值。
220KV变电站电气部分初步设计方案
c.要能限制短路电流,以便于选择价廉的电气设备或轻型电器。
d.如能满足系统安全运行及继电保护要求,110KV及以下终端或分支变电所可采用简易电器。
(2)占地面积小
主接线设计要为配电装置创造条件,尽量使占地面积减少。
(3)电能损失小
经济合理的选择主变压器的种类、容量和数量,要避免因两次变压而增加电能损失。
3.3.2 第二种方案主接线图(如图3.2):
3.2第二种方案主接线图
一次侧(220KV侧)采用双母线接线形式
二次侧(0KV侧)采用双母线接线形式图
此种方案的特点:
双母线接线形式的特点上面已经介绍。
双母线带旁路接线:
除了具有双母线接线的优点外,双母线带旁路接线还具有许多其它的优点:
当进出线检修时,可由专用旁路断路器代替,通过旁路母线供电。但当设置了专用旁路断路器后,设备的投资和配电装置的占地面积都有所增加。
3.变电所的主变压器一般采用三相变压器,因制造或运输条件限制及初期只装一台主变压器的220KV枢纽变电所中,一般采用相变压器组,当装设一组单相变压器时,应设有备用相,当主变压器超过一台,且各台容量满足上述要求时,单相变压器组可不装设备用相。
4.变电所中的变压器在系统调压有要求时,一般采用带负荷调压变压器,如受设备制造限制时,可采用独立的调压变压器预留位置。
3.3.1第一种方案主接线图(如图3.1):
图3.1第一种方案主接线图
此种方案的特点:
一次侧(220KV侧)采用单母分段接线形式
优点:单母分段按可进行分段检修,对于重要负荷可以从不同段引出两个回路,使重要负荷有两个电源供电,在这种情况下,当一段母线发生故障时,由于分段断路器在继电保护装置的作用下能自动将故障切除,因而保证了正常段母线不间断供电和不致使重要负荷停电。
220kv变电站电气一次部分初步设计 论文--本科毕业设计
华北电力大学毕业设计(论文)220KV变电站电气一次部分初步设计摘要随着经济的发展和现代工业建设的迅速崛起,供电系统的设计越来越全面、系统,工厂用电量迅速增长,对电能质量、技术经济状况、供电的可靠性指标也日益提高,因此对供电设计也有了更高、更完善的要求。
变电站对电力的生产和分配起到了举足轻重的作用,是电力系统中变换电压、接受和分配电能、控制电力的流向和调整电压的电力设施,作为电能输送与控制的枢纽,设计是否合理,不仅直接影响了基建投资、运行费用和有色金属的消耗量,也会反映在供电的可靠性和安全生产方面,它和企业的经济效益、设备人身安全密切相关。
本设计主要介绍了220KV变电站电气部分的设计。
首先对原始资料进行分析,设计主接线形式,选择主变压器的台数及容量,综合比较各种接线方式的特点、优缺点,根据技术要求选择两种较其它方案可靠的主接线方案;再对两种方案进行全面的技术、经济比较,确定最优的主接线方案;然后进行短路电流计算,为设计中需要的高压电气设备的选择、整定、校验等方面做准备;继而进行主要电气设备的选择与校验,最后进行配电装臵设计,防雷保护设计。
关键词:变电站、主变压器、短路计算、设备选择、配电装臵。
目录摘要 (I)前言 (1)第一章电气主接线设计 (2)1.1 主接线设计要求 (2)1.2 主接线接线方式概述 (3)1.3 主接线设计 (6)第二章主变压器选择 (10)2.1 主变压器的选择原则 (10)2.2 主变压器台数的选择 (10)2.3 主变压器容量的选择 (10)2.4 主变压器型式的选择 (11)2.5 绕组数量和连接形式的选择 (11)2.6 主变压器选择结果 (12)第三章方案最终确定 (13)3.1 主接线初步确定 (13)3.2 主接线方案的最终确定 (13)第四章短路电流计算 (15)4.1 概述 (15)4.2 短路电流计算目的 (15)4.3 短路电流计算基本假设 (15)4.4 各元件电抗标么值计算 (16)4.5 短路电流计算过程 (16)4.5.1 220KV侧短路计算 (17)4.5.2 110KV侧短路计算 (18)4.5.3 10KV侧短路计算 (18)第五章主要电气设备选择与校验 (22)5.1 概述 (22)5.2 各回路持续工作电流计算 (23)5.3 断路器和隔离开关的选择与校验 (24)5.3.1 电抗器的选择与校验 (25)5.3.2 断路器的选择与校验 (26)5.3.3 隔离开关的选择与校验 (28)5.4 电流互感器选择与校验 (29)5.4.1 电流互感器的选择 (30)5.4.2 电流互感器的校验 (31)5.5 电压互感器选择 (32)5.6 导体的选择与校验 (33)5.6.1 导体的选择 (35)5.6.2 导体的校验 (36)5.7 避雷器的选择与校验 (38)5.7.1 避雷器的选择 (39)5.7.2 避雷器的校验 (39)第六章电气总平面布臵及配电装臵的选择 (41)6.1 概述 (41)6.1.1 配电装臵特点 (41)6.1.2 配电装臵类型及应用 (41)6.2 配电装臵的确定 (42)6.3 电气总平面布臵 (42)6.3.1 电气总平面布臵的要求 (42)6.3.2 电气总平面布臵 (43)第七章防雷装臵保护 (44)7.1 防雷保护的必要性 (44)7.2 变电站防雷保护内容 (44)7.3 避雷针的配臵 (44)7.3.1 避雷针的配臵原则 (44)7.3.2 避雷针位臵的确定 (44)7.4 避雷针保护范围计算 (45)7.4.1 避雷针定位及定距 (45)7.4.2 单根避雷针的保护范围计算 (46)7.4.3 多根避雷针的保护范围计算 (46)第八章结束语 (48)致谢 (49)参考文献 (50)附录 (51)前言本次毕业设计的主要内容是变电站电气部分设计,是电气工程及自动化专业的学生在校期间的最后一次综合性训练,它将从思维、理论以及动手能力方面给予我们严格的要求,使我们的综合能力有一个整体的提高。
220kV变电站主要电气设备的选择
220kV变电站主要电气设备的选择发表时间:2017-12-06T09:43:14.130Z 来源:《电力设备》2017年第23期作者:胡明东[导读] 摘要:结合多年变电站工程技术管理经验,以某市区 220KV变电站电气设备安装工程为例,简析电气设备安装工程施工安装方法,对工程中电气设备安装技术及相关问题进行了分析流程,施工技术要求,具有一定的实际意义。
(国网河北省电力公司沧州供电分公司河北省沧州市 061000)摘要:结合多年变电站工程技术管理经验,以某市区 220KV变电站电气设备安装工程为例,简析电气设备安装工程施工安装方法,对工程中电气设备安装技术及相关问题进行了分析流程,施工技术要求,具有一定的实际意义。
变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。
变电站是电力系统中变换电压、接受和分配电能、控制电力的流向和调整电压的电力设施,它通过其变压器将各级电压的电网联系起来。
我国电力系统的变电站大致分为四大类:升压变电站,主网变电站,二次变电站,配电站。
我国电力工业的技术水平和管理水平正在逐步提高,对变电所的设计提出了更高的要求,更需要我们提高知识理解应用水平,认真对待。
关键词:220KV变电站;电气设备;安装技术科技的不断发展使得变电站的建设也在不断发生着变化,电气设备是变电站构成中的重要组成部分,电气设备的安装质量直接关系到变电站的安全与稳定,但是安装质量的关键部分则是安装技术的合理性。
从目前来看,国内在变电站工程建设上,现场工作的相关技术和管理安装人员由于在经验上缺乏和专业技能上不足,而使得在电气设备的安装过程中出现非常多的问题。
对于现在的这种状况,笔者根据自身多年来积累的对工程技术管理方面的经验,以某220KV变电站为例,对工程中电气设备安装技术及相关问题进行分析,以供同行参考和借鉴。
1 工程概况与施工准备在220KV变电站建设工程之中,主要配有2000KVA变压器3台,1600KVA变压器2台,十五台高压柜,五十一台低压柜以及七台直流屏。
220kv一次变电站电气设计说明书
第1篇说明书部分第1章主变压器的选择1.1 主变压器选择的相关原则1.1.1 DJ2-88规程中关于变电所主变压器选择的规定(1)主变压器容量和台数的选择,应根据《电力系统设计技术规程》SDJ161-85有关规定和审批的电力系统规划设计决定进行。
凡装有两台(组)及以上主变压器的变电所,其中一台(组)事故停运后,其余主变压器的容量应保证该所全部负荷的70%,在计及过负荷能力后的允许时间内,应保证用户的一级和二级负荷。
(2)与电力系统连接的220~330kV变压器,若不受运输条件的限制,应选用三相变压器。
500kV主变压器选用三相或单相,应根据变电所在系统中的地位、作用、可靠性要求和制造条件、运输条件等,经经济技术比较确定。
当选用单相变压器组时,可根据系统和设备情况确定是否装备用相;此时,也可以根据变压器的参数、运输条件和系统情况,在一个地区设置备用相。
(3)对深入市区的城市电力网变电所,结合城市供电规划,为简化变压器层次和接线,也可采用双绕组变压器。
(4)主变压器的调压方式的选择,应符合《电力系统设计技术规程》SDJ161的有关技术规定。
1.1.2 主变压器选择的一般原则1. 主变压器台数的确定为保证供电的可靠性,避免一台主变压器故障或检修时影响供电,变电所一般装设两台主变压器,但一般不超过两台变压器。
当只有一个电源或变电所的一级负荷另有备用电源保障供电时,可装设一台主变压器。
当变电所装设两台以及以上主变压器时,每台容量的选择应按照其中任意一台主变压器停运时,其余变压器容量至少能保证所供的一级负荷或为变电所全部负荷的60%~75%。
通常一次变电所采用75%,二次变电所采用60%。
2.变压器型式的选用⑴变电所的主变压器一般采用三相变压器,如因制造和运输条件限制,在220KV的枢纽变电所中,一般采用单相变压器组。
当装设一组单相变压器时,应考虑装设备用相。
当主变压器超过一组,且各组容量满足全所负荷的75%要求时,可不装备用相。
220kV降压变电站主变压器选型与参数计算
长沙电力职业技术学院2014届毕业论文(设计)题目:220kV降压变电站主变压器选型与参数计算专业:发电厂及电力系统姓名:纪翰林学号:201101013811班级:电气1138班指导老师:王芳媛2013年 11 月长沙电力职业技术学院毕业设计(论文)课题任务书( 2013 年下学期)长沙电力职业技术学院毕业设计(论文)评阅表前言电力已成为人类历史发展的主要动力资源,要科学合理地驾驭电力,必须从电力工程的设计原则和方法上来理解和掌握其精髓,提高电力系统的安全可靠性和运行效率,从而达到降低生产成本、提高经济效益的目的。
通过本次的电力系统课程设计,便可以很好的体现上述观点。
本课题要为一个电压等级为220/110/35KV的变电站选择主变压器型号,并对主变压器进行参数计算。
本次设计的变电站的类型为降压变电站,要求根据老师给出的设计资料和要求,并结合所学的基础知识和文献资料完成设计和计算。
通过本设计,使我加强对所学知识的理解和掌握,并掌握变电站主变压器的选型方法,为以后从事电力工作打下一定的基础。
电力系统专业的毕业设计是一次比较综合的训练,它是我们将在校期间所学的专业知识进行理论与实践的很好结合,运用理论知识和所学到的专业技能进行工程设计和科学研究,提高分析问题和解决问题的能力。
在完成此设计过程中,我们可以学习电力工程设计、技术问题研究的程序和方法,获得搜集资料、查阅文献、调查研究、方案比较、设计制图等多方面训练,并进一步补充新知识和技能。
目录摘要 (I)第1章主变压器的选择 (1)1.1原始材料 (1)1.2变电所与系统联系情况 (1)1.3变电所在系统中的地位分析 (1)1.4主变压器选择的相关原则 (2)1.5三相三绕组电力变压器的绕组顺序 (5)1.6主变压器的选定 (6)1.6.1主变压器容量的确定 (6)1.6.2主变压器型号的确定 (6)第2章变压器损耗 (8)2.1变压器损耗 (8)2.1.1杂散损耗 (8)2.1.2变压器损耗的特征 (8)2.2变损电量的计算 (8)2.2.1铁损电量的计算 (9)2.2.2铜损电量的计算 (9)2.3变压器空载损耗 (10)2.4变压器负载损耗、阻抗电压的计算 (11)第3章变压器的参数计算 (14)3.1电阻的计算 (14)3.2电抗的计算 (14)3.3导纳的计算 (15)参考文献 (16)致谢 (17)摘要本毕业设计论文是220kV降压变电站主变压器选型与参数计算。
220kV变电站电气部分初步设计
摘要本设计书主要介绍了220kV地区性变电站的设计内容和设计方法,论述了电力系统工程中变电站的部分电气设计(一次设备部分)的全过程。
通过对变电站的主变压器的选择,主接线设计,站用电设计,短路电流计算,电气设备动稳定、热稳定的校验,主要电气设备型号及参数的确定,防雷保护的设计,配电装置的设计及继电保护的配置,较为详细地完成了电力系统中变电站设计。
本设计书是针对变电站电气设备的一次部分的理论设计,未涉及二次部分。
SummaryThe design sheet introduces the project contents and design methods of 220kV regional converting station mainly and expounds the overall process of segmental electrical appliance designing (primary equipment part) of converting station during the course of electrical power system. Through choosing the main transformer of converting station, designing the main wiring, devising the electricity for station, reckoning short-circuit current, checking out the dynamic stability and thermal arrest of electrical equipment, ensuring the model and parameter of main electrical equipment, designing the lightning production, devising the power distribution unit and collocating the productive relaying, I finished the design of converting station in electrical power system in details. The design sheet is a design theoretically direct at primary equipment part of electrical equipment in converting station, not involve second section.第一篇说明书 (1)第一章原始资料及分析 (1)第二章主变压器及所用变的选择 (3)第一节概述 (3)第二节主变压器台数的选择 (3)第三节主变压器容量的选择 (4)第四节变压器型式和结构的选择 (4)第五节所用变的选择 (6)第三章电气主接线设计 (8)第一节概述 (8)第二节主接线的接线方式选择 (9)第四章短路电流的计算 (14)第一节概述 (14)第二节短路电流计算的目的与假设 (14)第五章电气设备的选择 (17)第一节概述 (17)第二节断路器的选择 (19)第三节隔离开关的选择 (20)第四节互感器的选择 (21)第五节电力电缆的选择 (24)第六节母线的选择 (25)第六章配电装置的选择 (27)第一节概述 (27)第二节配电装置的选择 (29)第七章防雷保护的配置 (32)第一节概述 (32)第二节配置原则 (32)第八章继电保护的配置 (34)第一节概述 (34)第二节变压器保护配置 (34)第三节线路保护 (35)第二篇计算书 (37)第一章短路电流的计算 (37)第一节变压器参数的计算 (37)第二节短路电流的计算 (38)第三节回路最大持续工作电流的计算 (40)第二章电气设备的选择 (42)第一节断路器的选择 (42)第二节隔离开关的选择 (43)第三节互感器的选择 (44)第四节10KV电力电缆的选择 (47)第五节 10kV母线的选择 (49)第三章防雷设计的计算 (51)第一节避雷器的选择 (51)第二节避雷针的保护范围计算 (52)结束语 (54)参考资料: (55)附录:电气主接线图 (55)第一篇说明书第一章原始资料及分析一、原始资料及分析1.根据电力系统规划需新建一座220kV区域变电所。
220kV变电站短路计算与主要设备选择
220kV变电站短路计算与主要设备选择作者姓名(单位名称,省份城市邮政编码)摘要:变电站是对电压进行变换以及对电能集中和分配的场所。
本文对220kV变电所进行了设计,通过对原始资料的分析、主接线的选择及比较、短路电流的计算、主要电气设备的选择及校验等步骤、最终确定了220kV变电站所需的主要主接线、短路计算数据以及主要电气设备的型号。
关键词:220kV;短路计算;校验;选型;主接线为保证电能的质量以及设备的安全,在变电站中还需进行电压调整、潮流控制以及数配电线路和主要电工设备的保护。
而短路计算为进行上述工作提供数据和计算依据,在选择电气设备时,为了保证设备在正常运行和故障情况下都能安全、可靠地工作,同时又力求节约资金,这就需要进行全面的短路电流计算。
本文对220kv地区变电站进行一次设计,进行短路计算和主要设备的选择。
一、原始资料及电气主接线的设计(1)原始资料该变电所的原始资料如下:1) 变电所类型:220kV变电站;2) 电压等级:220/110/35 kV;3) 负荷情况:110kV侧:最大负荷:140MW ,cosφ=0.8;35kV侧:最大负荷,60MW ,cosφ=0.8 ;4) 出线回路:220kV侧6回,110kV侧8回,35kV侧8回;5) 环境条件:最高温度40℃,最低温度-20℃,年平均温度20℃。
(2)电气主接线的设计1)主接线类型及特点单母线接线其优点是简单清晰,设备少,投资小,运行操作方便且有利于扩建,但可靠性和灵活性差。
因此,不分段的单母接线一般只用在出线6~220kV系统中只有一台发电机或一台主变压器,且出线回路数又不多的中、小型发电厂和变电所。
具体适用范围如下:6~10kV配电装置,出线回路数不超过5回;35~63kV配电装置,出线回路数不超过3回;110~220kV配电装置,出线回路数不超过2回。
单母线接线如图1所示。
图1 单母线接线单母分段接线的优点是母线发生故障,仅故障段母线停止工作,非故障段母线可继续工作,缩小了母线故障的影响范围;双回路供电的重要用户,可将双回路接在不同分段上,保证对重要用户的供电。
变电站保护配置(220KV)
重合闸装置
• 按照重合闸作用于断路器的方式,可以分为三相重 合闸、单相重合闸、和综合重合闸。220kV线路一般 配有综合重合闸装置,通过切换开关可实现如下方式:
• (a)单相重合闸:单相故障跳单相,单相重合, 重合不成功跳三相;相间故障跳三相不重合。
• (b)三相重合闸:任何故障跳三相,三相重合, 重合不成功跳三相。
继电保护配置
继电保护
•继电保护的定义及作用 •变电站保护范围的划分及配置原则 •线路保护的配置及原理 •母线保护的配置及原理 •变压器保护的配置及原理 •以西万庄变电站为例说明保护的配置原 则及具体配置
继电保护的定义
继电保护装置:就是指能反应电力系统中电气元 件发生的故障或不正常运行状态,并动作于断 路器跳闸或发出信号的一种自动装置。
第一部分:线路保护的配置及原理
一、线路故障及特点 二、线路保护的分类及原理 三、线路保护配置原则
一、线路故障及特点
1、线路故障类型
(1)单相接地故障 (2)相间故障(两相
短路) (3)两相接地故 (4)三相短路 (5)各类性质的开路
2、故障时电气量的变化:
电流增大 电压降低 电流电压间相角发生变化 电流与电压的比值Z=U/I 电流和 正常I入=I出,短路I入≠I出 出现I2 、I0 序分量 接地故障必然产生零序分量;不对称故 障必然产生负序分量
7、重合闸后加速保护
重合闸后加速,是指当线路发生故障后,保护将 有选择性地跳开断路器,然后进行重合闸,若是瞬 时性故障,在线路断路器跳开后故障随即消失,重 合闸成功,线路将恢复送电。若是永久性故障,重 合闸后,保护装置的时间元件将被退出,保护将无 选择性地瞬时跳开断路器切除故障。
三、线路保护配置原则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (2)关键字 (2)第一章引言 (2)第二章电气主接线设计 (3)2.1电气主接线的概念及其重要性 (3)2.2 电气主接线的基本形式 (3)第三章主变压器的选择 (5)3.1主变压器的台数和容量选择 (6)3.2主变压器形式的选择 (6)3.3连接方式 (7)3.4选择原则 (7)3.5主变压器选择的结果 (7)第四章 220kV电气部分短路电流计算 (8)4.1变压器的各绕组电抗标么值计算 (10)4.2 10kV侧短路电流计算 (11)4.3 220kV侧短路电流计算 (14)4.4 110kV侧短路电流计算 (15)第五章导体和电气设备的选择 (17)5.1电气设备选择的要求 (17)5.2 220kV侧设备的选择和校验 (18)5.3 110kV侧设备的选择和校验 (21)5.4 10kV侧设备的选择和校验 (23)小结 (26)参考文献 (27)附录 (28)220kV变电站电气设备选择张洋洋摘要:随着我国科学技术的发展,电力系统对变电站的要求也越来越高,本设计讨论的220KV 变电站电气设备的选择设计,首先对原始资料进行分析,然后选择合适的主变压器,在此基础上进行主接线设计,短路电流计算等一系列相关工作。
关键字:变电站短路电流计算设备选择第一章引言毕业设计是我们在校期间最后一次综合训练,它从思维,理论以及动手能力方面给予我们严格的要求,使我们的综合能力有了进一步的提高。
能源是社会生产力的重要组成部分,随着社会生产的不断发展,人类对使用能源质量要求也越来越高。
电力是工业的基础,在国家建设和国民经济发展中占据十分重要的地位,是实现国家现代化的战略重点。
电能也是发展国民经济的基础,是一种无形的,不能大量存储的二次能源。
如果要满足国民经济发展的要求,电力工业必须超前发展,这是世界发展的规律。
因此,做好电力规划,加强电网建设,就很尤为重要。
同时,电气设备的选择在改变或调整电压等方面在电力系统中起着重要的作用。
它承担着变换电压,接受和分配电能,控制电力流向和调整电压的责任。
220kV电气设备选择设计使其对边边站有了一个整体的了解。
该设计包括以下任务:1、主接线的设计 2、主变压器的选择 3、短路电流的计算 4、导体和电气设备的选择。
第二章电气主接线设计2.1电气主接线的概念及其重要性在发电厂和变电所中,发电机,变压器,断路器,隔离开关,电抗器,电容器等高压电气设备中,以及将它们连接在一起的高压电缆和母线,构成了电能生产、汇集和分配的电气回路,这个电气主回路被称为电气一次系统,又叫做电气主接线。
用规定的设备图形和文字符号,按照各电气设备实际的连接顺序而绘成的能够全面表示电气主接线的电路图,称为电气主接线图。
发电厂、变电所的电气主接线可有多种形式。
选择何种电气主接线,是发电厂、变电所电气部分设计中的最重要的问题,对各种电气设备的选择、配电装置的布置继电保护和控制方式的拟定等都有决定性影响,并将长期地影响电力系统运行的可靠性、灵活性和经济。
2.2 电气主接线的基本形式1、单母线接线这种主接线最简单,只有一组母线,所有进、出线回路均连接到这组母线上。
优点:接线简单清晰,设备少,投资低,操作方便,便于扩建,也便于采用成套配电装置。
另外,隔离开关仅仅用于检修,不作为操作电器,不易发生操做。
缺点:可靠性不高,不够灵活。
断路器检修时该回路需停电,母线或母线隔离开关故障或检修时则需全部停电。
适用范围:单母线接地不能作为惟一电源承担一类负荷,在此前提下可用以下情形:(1)6~10kV 配电装置的出现不超过5回时。
(2)35~60kV 配电装置的出线不超过3回时。
(3)110kV~220kV 配电装置的出线不超过2回时。
2、单母线分段接线与一般单母线接地相比,单母线分段接地增加了一台母线分段断路器以及两侧的隔离开关。
当负荷量较大且出线回路很多时,还可以用几台分段断路器将母线分成多段。
优点及适用范围优点:单母分段接地能提高供电的可靠性。
当任一段母线或某一台母线隔离开关故障及检修时,自动或手动跳开分段断路器,仅有一半线路停电,领一段母线上的各回路仍可正常运行。
重要负荷分别从两段母线上各引出一条供电线路,就保证了足够的供电可靠性。
范围:(1)6~10kV配电装置总出线回路数为6回及以上,每一分段所接容纳不宜超过25MW。
(2)35~60kV配电装置总出线回路数为4~8回时。
(3)110kV~220kV配电装置总出线回路数为3~4回时。
3、双母线带旁路母线接线双母线带旁路母线的几种接线形式母线联络断路器,又有专用旁路断路器,2回电源进线也参加旁路接线。
(1)母线断路器兼作旁路断路器的接线形式。
(2)旁路断路器兼作母联断路器的接线形式。
(3)适用范围:110kV~220kV配电装置的出线送电距离较长,输送功率较大,停电影响较大,且常用的少油断路器年均检修时间长达5~7天,因此较多设置旁路母线。
如果采用检修周期可以长达20年的SF6断路器,亦不必设置旁母。
220kV出线6回,而由于本回路为重要负荷对其影响很大,因而选用双母线带旁路接线方式。
第三章主变压器的选择发电厂中用来向电力系统或用户输送电能的变压器称为主变压器,其中用于沟通两个升高电压等级并可互相交换功率的变压器称为联络变压器;而只供发电厂本身用电的变压器则称为厂用变压器。
除发电机外,主变压器是发电厂中最为宝贵的大型电气设备。
主变压器台数、容量和形式的选择是否合理,对发电厂的安全经济运行至关重要。
3.1主变压器的台数和容量选择当采用扩大单元接线时,应采用低压分裂绕组变压器,其容量也与所连接的发电机容量相配套。
(1)、容量为200MW及以上的发电机与主变压器为单元连接时,该变压器的容量可按下列两种条件中的比较大者选择:①、按发电机的额定容量扣除本机组的厂用负荷,且变压器绕组的温升在标准环境温度或冷却温度下不超过55℃。
②、按发电机的最大联系输出容量扣除本机组的常用负荷,且变压器的绕组的温升不超过65℃。
(2)、发电机与主变压器为单位连接时,主变压器的容量可按下列条件的较大者选择:①、按发电机的额定容量扣除本机组的厂用负荷后,留有10%的欲度。
②、按发电机的最大连续输出容量扣除本机组的厂用负荷。
3.2主变压器形式的选择在容量相同的情况下,一台三相变压器比由三台单相变压器组成的变压器组便宜许多,且占地和运行损耗都小,因此,凡能够采用三相变压器时都应首先选择三相变压器。
当机组为125MW及以下容量的发电厂有两级升高电压时,一般优先考虑采用三绕组变压器。
但当两种升高电压德负荷相差很大,经常流过三绕组变压器某一侧德功率小于该变压器额定容量的15%时,则宜选两台双绕组变压器。
与同容量的普通变压器相比,自耦变压器消耗材料省,体积小。
重量轻,造价低,同时功率损耗也低,输电效率较高,可以扩大变压器的制造容量,便于运输和安装。
在220kV及以上降压变电所中应用很广泛。
3.3连接方式发电厂中大多数大容量主变压器都采用Y,d接线或者Y,y,d,接线,其低压侧绕组总是接成三角形。
3.4选择原则主变容量一般按变电所建成后5~10年的规划负荷来进行选择,并适当的考虑远期10~20年的负荷发展。
根据变电所所带负荷的性质和电网结构来确定主变容量。
对于有种要负荷的变电所,应考虑一台主变停运时,其余变压器容量在计及过负荷能力的允许时间内,应保证用户的一级和二级负荷;对于一般性变电所,当一台变压器停运时,其余变压器容量应能保证全部负荷的70%~80%。
S=80+100+35=215MV A同时率取0.85总S=0.7⨯0.85⨯215⨯25.0e=164.5MV A容量确定:n3.5主变压器选择的结果查阅《发电厂电气部分》,选定变压器的容量为180MV A由于升变压器有两个电压等级,所以选择三绕组变压器,选定主变压器的型号为:SFPS7-18000/220。
主要技术参数如下:额定容量:18000kVA额定电压:高压—220±2×2.5% ;中压—121;低压—10.5(kV)连接组标号:YN/yn0/d11空载损耗:178(kW)阻抗电压(%):高中:14.0;中低:7.0;高低:23.0空载电流(%):0.7所以一次性选择两台SFPS7-18000/220型变压器为主。
第四章 220kV电气部分短路电流计算一、短路电流计算目的为了保证电力系统安全运行,在设计选择电气设备时,都要用可能流经该设备的最大短路电流进行热稳定校验和动稳定校验,以保证该设备在运行中能够经受住突发短路引起的发热和电动力的巨大冲击。
同时,为了尽快切断电源对短路点的供电,继电保护装置将自动地使有关断路器跳闸,继电保护装置的奠定和断路器的选择,也需要准确的短路电流数据。
二、短路电流计算的条件(1)短路类型。
通常按三相短路验算。
当单相短路电流比三相短路电流更大时可按短路单相短路检验。
(2)系统容量和接线。
为使选定设备在系统发展时仍能继续适用,可按5~10年远景规划。
(3)短路点计算。
使被选定设备通过最大短路电流的短路点称为设备的短路计算点。
三、短路电流计算的步骤(1) 画出以标么值电抗的等值电路图(取d S =100MV A ,d U =av U ),原始网络中所有的负荷均认为是断开的。
(2)进行等值的网路化简,最终要简化成各个电源与短路点之间都是只经过一个电抗直接相连。
这个直连电抗就称为该电源对短路点的“转移电抗”。
(3)将各个“转移电抗”分别换算成以各自的电源总容量为基准容量的新标么值,即为各电源到短路点的“计算电抗”ca X 。
(4)用各“转移电抗”在“运算曲线”上查出各电源供给的短路电流周期分量任意时刻的标么值。
(5)将各电源供给的短路电流标么值乘以各自的电流基准值,就得到短路点处由各电源供给的短路电流周期分量有名值。
(6)将各电源点供出的短路电流有名值相加,就得到了短路点总的三相短路电流有名值。
系统阻抗:在最大运行方式下,220kV 侧电源近似为无穷大A ,归算至本220kV 母线侧阻抗为0.015(S ₁=100MVA ),110kV 侧电源容量为500MVA ,归算至本所110kV 母线侧阻抗为0.36(S ₁=100MVA ),变压器型号为SFPS7—180000/220。
N S =180MVA,高中,高低,中低阻抗电压分别为14%,23%,7%,简化如图所示:4.1变压器的各绕组电抗标么值计算 1s U %=21()[])32(Us )%13(Us %21Us ---+-=()157231421=-+ Us ₂%=[])%13(Us )%32(Us )%21(Us 21---+-=)23714(21-+=-1Us ₃%=[])%21(Us )%32(Us )%13(Us ---+-=)14723(21-+=8设av B B U U ,MV A 100S ==*1T X =083.018010010015S S 100%U N B1s =⨯=⨯s2BT2*N U %S -1100X ===-0.006100S 100180⨯⨯s3BT3*N U%S 8100X ===0.044100S 100180⨯⨯114.2 10kV 侧短路计算f (3)-1短路时, 示意图如下X *'1=(21X *1T + X *2T +*3T *2T *1T X X X )=)044.0083.0006.0006.0083.0(21⨯-+-=0.033 T2*T3*2*T2*T3*T1*X X 1X'=(X +X +)2X1-0.0060.044=(-0.006+0.044+20.083⨯)=0.018 T1*T3*3*T1*T3*T2*X X 1X'=(X +X +)2X10.0830.044(0.083+0.044+)2-0.006⨯= =-0.241 三角形转变为星形:1*3*1*1*2*3*X'X'X =X'+X'+X'120.033(0.24)0.0330.0180.2410.042⨯-=+-= 2*3*2*1*2*3*X'X'X =X'+X'+X'0.018(0.241)0.0330.0180.2410.023⨯-=+-= 2*1*3*1*2*3*X'X'X =X'+X'+X'0.0180.0330.0330.0180.2410.003⨯=+-=-f (3)-1短路的等值电路图再次简化因为 X 1=0.042 015.0X As = BS X =036 所以 1As A X X X +==0.015+0.04213=0.057357.0003.036.0X X X 3BS B =-=+=示意图如下所示:做三角形变换:A*C*AF*A*C*B*X X X =X +X +X 0.0570.0230.0570.230.3570.084⨯=++=B*C*BF*B*C*A*X X 0.3570.023X =X +X +0.3570.0230.524X 0.057⨯=++= 示意图如下:计算电抗:14N Ni jsB BF*S 500X =X 0.524 2.62S 100=⨯= 汽轮发电机计算曲线,0s 时标么值为BO I =0.390因为A 电源为无穷大系统所以提供的短路电流为P*AF*11 I =11.90X 0.084== 所以短路电流有名值为+⨯⨯=5.103500390.0I FO 11.90154.765.103100=⨯⨯冲击电流193.194154.7655.2i sh =⨯=4.3 220kV 侧短路计算f (3)-2短路时,示意图如下:15短路等值电路为:X B*=X T*=X BS*=0.039+0.36=0.399A 电源的短路电流为:P*AS*11I == =66.667X 0.015jSB 500X = 0.399=2.00100⨯I B0=0.512所以短路电流有名值为:kA 376.172303100667.662303500512.0I 0f =⨯⨯+⨯⨯=冲击电流为:kA 309.44376.1755.2i sh =⨯=4.4 110kV 侧短路计算f (3)-3短路时16X A*=X T*+X AS*=0.039+0.015=0.054上图简化图如下:A 为无穷大系统所以有P*A*11I =18.519X 0.054== 而 jsB 500X =0.36=1.80100⨯查汽轮发电机的计算曲线得 I B0=0.570所以短路电流有名值为kA 107781153100519.181153500570.0I fo =⨯⨯+⨯⨯=冲击电流:kA 484.27778.1055.2i sh =⨯= 短路容量:MV A 825.2146778.101153S k =⨯⨯=短路电流计算列表如下:17第五章 导体和电气设备的选择5.1电气设备选择的要求一.选择的一般要求:(1)、应满足正常运行、检修、短路和过电压情况的要求,并考虑远景的发展。