初一直线射线线段知识点

合集下载

初中数学知识点精讲精析 线段

初中数学知识点精讲精析 线段
1 线段、射线、直线
学习目标
1.理解两点确定一条直线的事实。
2.掌握直线、射线、线段的表示方法。
3.理解直线、射线、线段的联系与区别。
知识详解
1.线段、射线、直线的概念
(1)线段
概念:铅笔、人行横道线和路旁的电线杆都可以近似地看做线段,下图就是一条线段。
线段的特征:①线段是直的;②线段有2个 端点;③线段的长度是有限的,可度量。
【答案】三
【解析】设三个点分别为A、B、C,则有AB、AC、BC三种直线组合.
【误区警示】
易错点1:射线
1.如图,点A、B、C在一直线上,则图中共有射线( )
A.1条
B.2条
C.4条
D.6条
【答案】D
【解析】根据射线的定义,这条直线上的每个点可以有两条射线,故图中共有射线6条.
易错点2:直线
2.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为
概念:直线可以看做由线段向两个方向无限延长形成的。
直线的特征:①直线是直的;②直线没有端点;③向两个方向无限延长,没有长短,不可测量。
因为直线是线段向两个方向无限延长形成的,所以我们不能说延长某条直线,即直线不能延长。
2.线段、射线、直线的表示方法
(1)线段的表示方法
①用两个表示端点的大写字母来表示.如图,以A,B为端点的线段,可记作“线段AB”或“线段BA”。
【答案】6
【解析】根据平面内不同的两点确定一条直线,不同的三点最多确定三条直线找出规律,再把15代入所得关系式进行解答即可.
【综合提升】
针对训练
1. 经过任意三点中的两点共可以画出的直线条数是( )

直线、射线、线段(基础)知识点讲解

直线、射线、线段(基础)知识点讲解

直线、射线、线段(基础)知识讲解
【学习目标】
1.理解直线、射线、线段的概念,掌握它们的区别和联系;
2. 利用直线、线段的性质解决相关实际问题;
3.利用线段的和差倍分解决相关计算问题.
【要点梳理】
要点一、直线
1.概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始概念,直线常用“一根拉得紧的细线”、“一张纸的折痕”等实际事物进行形象描述.
2. 表示方法:(1)可以用直线上的表示两个点的大写英文字母表示,如图1所示,可表示为直线AB(或直线BA).
(2)也可以用一个小写英文字母表示,如图2所示,可以表示为直线l.
3.基本性质:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.要点诠释:
直线的特征:(1)直线没有长短,向两方无限延伸.
(2)直线没有粗细.
(3)两点确定一条直线.
(4)两条直线相交有唯一一个交点.
4.点与直线的位置关系:
(1)点在直线上,如图3所示,点A在直线m上,也可以说:直线m经过点A.
(2)点在直线外,如图4,点B在直线n外,也可以说:直线n不经过点B.
要点二、线段
1.概念:直线上两点和它们之间的部分叫做线段.
2.表示方法:
(1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作:线段AB或线段BA.
(2)线段也可用一个小写英文字母来表示,如图5所示,记作:线段a.
3. “作一条线段等于已知线段”的两种方法:
法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.
法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线。

直线、射线、线段(知识点总结、例题解析)

直线、射线、线段(知识点总结、例题解析)

第四章 几何图形初步4.2 直线、射线、线段一、知识考点知识点1【直线】1、直线:把线段向两端无限延伸形成的图形叫做直线。

2、特点:是直的;无粗细之分;无端点;不可以度量;不可以比较长短,无限长。

3、基本性质:经过两点有且只有一条直线(两点确定一条直线);4、直线有两种表示方法:(1)用直线上任意两点的大写字母,如:表示为直线AB 或直线BA 。

(2)也可以用一个小写字母表示,如:直线l5、直线和点的位置关系:(1)在直线上:点O 在直线l 上,或者说说直线l 经过点O(2)点在直线外:点P 在直线l 外,或者说说直线l 不经过点P6、交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做他们的交点。

O Pl知识点2【射线】1、射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。

2、特点:是直的,有一个端点,不可以度量,不可以比较长短,无限长。

3、射线有两种表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意的一点,端点写在前面。

(如图:可以记作射线OM,但不能记作射线MO) (2)可以用一个小写英文字母表示,比如:射线OM也可以记为射线l。

4、射线的画法:画射线一要画出射线端点,二要画出射线经过一点,并向一旁延伸的情况。

知识点3【线段】1、线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。

2、特点:线段是直的,它有两个端点,他的长度是有限的,可以度量的,可以比较长短。

3、基本性质:(1) 线段公理:两点之间的所有连线中,线段最短(两点之间,线段最短)(2) 两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

注意:两点间的距离是指线段的长度,是一个数值,而不是指线段本身。

(3) 线段的中点到两端点的距离相等。

(4) 线段的大小关系和它们的长度的大小关系是一致的4、线段有两种表示方法:(1)可以用它的两个端点的大写英文字母来表示,如线段AB(或线段BA)(2)可以用一个小写字母来表示,如线段a5、线段的画法:用直尺和尺规作图(尺规作图)已知:线段a(如图所示),用直尺和圆规画一条线段,使它等于已知线段a第一步:任意画一条射线AC第二步:用圆规量取已知线段a的长度。

初一直线、射线、线段知识点

初一直线、射线、线段知识点

直线、射线、线段1.直线:直,向两边无限延伸,无宽窄。

2.直线的性质(公理):经过两点能够做一条直线,且只有一条直线。

两点确定一条直线。

.........3.关系【同一平面内】1)相交(垂直) 2)平行相交:如果两条直线有一个..公共点,则两条直线相交。

平行:两条直线没有公共点。

关系【不在同一平面内】1)相交(垂直) 2)平行 3)异面直线1.射线:直线上一点和它一旁的部分。

2.射线直线关系:射线是直线的一部分。

3.规律若直线上有N个点,则有2N条射线。

射线只能..反向延伸。

1.线段:直线上两点和它们之间的的部分。

2.线段的性质(公理):连接两点的所有线中,线段最短。

两点之间线段最短........。

3.两点间的距离叫连结两点间的线段的长度..。

距离不是线段,线段是一个几何图形,而距离是一个数值,它反映的是线段长短。

重要规律当一条直线有N个点时射线 2N条线段 N(N-1)÷2(射线和线段都是直线上的一部分:将射线反向延伸就可得到直线;将线段一方延伸就得到射线,两方延伸就得到直线。

)线段的比较一、线段的比较大小【长度】1.度量法2.叠合法:a.两条线段一个端点重合。

b.共线c.看另一端位置二.线段和、差、倍、分倍、分1.线段的中点线段上一点把这条线段分成两条相等的线段。

若三条线段中满足两条线段之和等于第三线段,则三点共线。

角1.角的定义:(1)有公共端点的两条射线所组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边.(2)角也可看成是由一条射线绕着它的端点旋转而成的图形.(3)角定义包含两层含义:①有公共端点;②两条射线.2. 1周角=2平角=4直角 【度、分、秒的转换计算】160160''''︒==(1)平角是指射线旋转到与起始位置成一直线时所成的角.(2)周角是指射线旋转回到起始位置所成的角.注意:平角的特点是两边成一条直线,但直线与平角的意义是不同的,不要误认为直线就是平角.同样,周角的特点是两边重合成一条射线,不要误说射线就是周角,射线和周角的意义也是不一样的.3.角的平分线一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线4.余角:如果两个角的和等于90︒(直角),就说这两个角互为余角.5.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.90,αβαβ+=︒⇔互余180,αβαβ+=︒⇔互补6.方向表示(应用题)(1)东北方向(即北偏东45︒或东偏北45︒)————射线OA(2)北偏西60︒方向(或西偏北30︒方向) ————射线OB7.时钟上的时针与分针的角度注意半点的时候时针的位置5:30时,时针与分针的夹角的度数为:8.角的个数数角的个数必须不重不漏,从一点引出n (n ≥2)条射线组成的角有n (n-1)÷2个。

七年级数学上册1.3线段、射线和直线

七年级数学上册1.3线段、射线和直线

C
练习:作出符合下列要求的图形 (1)直线AB经过点C . (4)直线m,n,l相交于点P
(2)点D不在直线EF上
( 3)直线a,b都过点G
课堂小结 1、线段、射线都是直线的一部分
3、平面上的两条直线有相交和不相交 (平行)两种位置关系
l
A
B
直线AB或线直BA或 者直线l
例1 如图 A,B,C是直线L上的3个点.
(1)图中共有几条线段?这些线段怎样表示?
(2)图中共有几条射线?以点B为端点的射线如何表示?
(3)直线L还可以怎样表示?
C B
A
解 (1)图中共有3条线段,分别是线段AB (或线段BA)、 线段AC (或线段CA)、线段BC(或线段CB). (2)由于每一个点都把直线分成了两题射线,所以图中 共有6条射线.以点B为端点 的射线是射线BA与射线BC. (3)直线L还可以表示为直线AB(或直线BA)、直线AC(或 直线CA)、直线BC(或直线CB).
练习;1.射线OA与射线AO相同吗?区别在哪里?
O
A
端点与方向不同
2.用直尺画图:延长线段AB,得到射线AB.
A
B
A
B
3.如图,看图填空:
O
C
(1)图中以点O为端点的射线有____射__线_O__A_射__线__O_B__射_ 线OC
(2)图中以点B为端点的线段有___线__段__B_A__线_段___B_O__线_ 段BC
(3)图中共有_6__条线段,它们分别是_____________
_线_段___O_A__线_段___O_B__线__段__O_C__线__段_A__B_线__段__A_C__线__段__B_C___.
知识点3:点与直线位置关系、直线的性质

第6章平面图形的认识(一)—线段、射线、直线、平行线、垂直

第6章平面图形的认识(一)—线段、射线、直线、平行线、垂直

初一数学期末复习讲义复习内容:第6章平面图形的认识(一)—线段、射线、直线、平行线、垂直 一、知识点复习及例题选讲 1、知识点1 :(1)线段、射线、直线的异同点:(2)线段的统计方法:看线上端点的个数为n 个,则有n(n-1)/2条线段。

射线的统计方法:直线上端点的个数为n 个,则有2n 条射线;其中有2条不好用图中字母表示。

射线上端点的个数为n 个,则有n 条射线;其中有1条不好用图中字母表示。

例 1、已知点A 、点B 、点C 是直线上的三个点,则下图中有_____条线段,它们是 ,有____射线,能用图中字母表示的有 ,有_________条直线,它们是 ,。

ABC例 2、判断题:射线AB 与射线BA 表示同一条直线. ( )例 3、根据图形,下列说法:①直线AC 和直线BD 是不同的直线;②直线AD=AB+BC+CD ;③射线DC 和射线DB 不是同一条射线;④射线AB 和射线BD 不是同一条射线;⑤线段AB 和线段BA 是同一条线段。

其中正确..的是 ( ) A 、1个 B 、2个 C 、3个 D 、4个2、知识点2 :(1)两点之间的所有连线中,线段最短。

(2)两点之间线段的长度叫做这两点之间的距离。

(3)直线外一点与直线上各点连接的所有线段中,垂线段最短。

直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离。

例 1、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设④把弯曲的道路改直,就能缩短路程。

其中可用“两点之间,线段最短.........”的道理来解释的现象有__________.例 2、判断题:连结两点的线段叫做两点之间的距离.( )例 3、 如图,从A 地到B 地有①、②、③三条路可以走,每条路长分别为n m l 、、(图中、表示直角),则第_________条路最短,另两条路的长短关系为__________________。

初一线段、射线、直线的知识点及提高

初一线段、射线、直线的知识点及提高

线段、射线、直线【知识要点】1.线段的三个特征:直的、有长短、没有粗细.2.线段的表示方法:①一条线段可以用它的两个端点字母表示(如线段AB或者BA)。

②一条线段可以用一个小写字母表示(如线段a).A B a3。

射线:将线段向一个方向无限延长就形成了射线,射线有一个端点。

4.射线的表示方法:①以O表示射线的端点,M表示射线上的除O点外的任意一点,这条射线就可以表示为射线OM,表示端点的字母一定要写在前面(如OM).②用一个小写字母表示(射线l)。

lO M5.直线:将线段向两方无限延长就形成直线。

6.直线的表示方法:①在直线上任取两点,用表示这两点的大写字母表示这条直线(如直线AB或者直线BA)。

②用一个小写字母代表一条直线(如直线l)。

lA B7.直线的性质:①直线公理:过两点有且只有一条直线(两点之间直线最短)。

②直线是向两方无限延长的,无端点,不可度量,不能比较大小.③直线上有无穷多个点.♍经过一点的直线有无穷多条。

♎两条不同直线至多有一个公共点。

8.线段、射线、直线的区别与联系:①联系:射线、线段都是直线的一部分,线段是射线的一部分.②区别:名称图形区别和联系性质直线无端点无长短(1)直线向两个方向无限延伸(2)过两点有且只有一条直线(直线公理)(3)两条直线相交,有且只有一个交点射线有1个端点,无长短,射线是直的一部分射线向一个方向无限延伸.线段有两个端点,有长短,它是射线、直线的一部分在所有连接两点的线中,线段最短9.直线上有两个点,就有1条线段,有三个点,就有1+2=3条线段....。

有n个点,就有2)1()1(54321-=-++++++n nn条线段.一点把直线分成两条射线,两点分直线为4条射线,三点分直线为6条射线..。

..。

,n个点就将直线分为2n条射线。

【例题巧解点拨】例1.平面上有四个点,过其中每两点画直线,可以画多少条?例2。

如图,A,B,C,D是直线L上顺次四点,且线段AC=5, BD=4,则线段AB—CD 等于 ___________.例3。

(完整版)线段和角知识点

(完整版)线段和角知识点

线段、射线、直线线段 射线 直线端点个数 两个一个 没有 延伸情况 没有延伸向一个方向延伸 向两个方向延伸 长度 有长度可以测量 没有长度不能测量 没有长度不能测量 表示方法 ①用表示两个端点的大写字母(无序) ②用一个小写字母 用两个大写字母,其中表示端点的字母写在前面(有序) ①用直线上表示任意两个点的大写字母(无序)②用一个小写字母表示1、线段的性质:两点之间,线段最短。

2、两点间的距离:连接两点之间的线段的长度。

三、直线的基本性质:经过两点有一条直线,并且只有一条直线,即两点确定一条直线。

四、线段的长短比较方法:度量法和叠合法五、画一条线段等于已知线段:1、画一条线段等于已知线段是用直尺和圆规的第一个基本作图,直尺的作用是画直线、射线或线段,圆规的作用是画弧、截取等长的线段。

2、常见的作图语言:①作射线××;②在射线××上截取××=××;③在线段××上截取××=××;则××就是所要求作的××。

说明:作图时用的直尺是没有刻度的,因此作图的痕迹要保留。

六、线段的中点:把一条线段分成两条相等的线段的点,叫做这条线段的中点。

如图所示点C 是线段AB 的中点,则有①AB=2AC=2BC ,②AC=BC=21AB 。

七、线段的和、差、倍、分的计算:1、逐段计算:求线段的长度,主要围绕线段的和差倍分展开。

若每一条线段的长度均已确定,所求问题可迎刃而解。

2、整体转化:巧妙转化是解题的关键,首先将所求的线段转化为两条线段的和或差,然后再通过线段的中点的等量关系进行替换,将未知线段转化为已知线段。

3、构造方程:利用各段线段的比值及中点关系建立起方程,求出未知数的值。

注意:有关线段长度的计算如果没有图形,题中又没有明确的点的位置,应该全面考虑,注意条件中的图形的多样性,防止漏解。

射线 直线线段知识点总结

射线 直线线段知识点总结

射线直线线段知识点总结一、射线的概念与性质1.1 射线的定义射线是一条由一个端点开始,另一端无限延伸的直线。

用一个点标记射线的起始位置,用另一个点或箭头标记射线的延伸方向。

一般来说,射线的起点叫做端点,另一端叫做射线的延伸方向。

1.2 射线的表示方法射线通常用字母表示,如AB→表示从点A出发的射线,方向为→。

1.3 射线的性质(1)射线的长度是无限的,无法用具体的数字表示。

(2)任意两条射线相交于端点,且它们有且只有一个公共端点。

(3)射线可以延伸到无限远,也可以在某一点截断。

二、直线的概念与性质2.1 直线的定义直线是由无数个点连在一起形成的,没有起点和终点,也没有弯曲的部分,一直延伸到无穷远。

直线是最基本的几何图形之一。

2.2 直线的特征(1)直线上的任意两点可以连成一条射线。

(2)直线是无限长的,没有终点。

(3)直线是唯一的,两点确定一条直线。

2.3 直线的表示方法直线符号是两个一样的大写字母,比如AB表示直线上的点A和点B。

三、线段的概念与性质3.1 线段的定义线段是由两个端点和连接这两个端点的线段组成。

线段有一个确定的长度,可以通过测量得到。

3.2 线段的特征(1)线段的长度是有限的。

(2)线段的两个端点是确定的。

(3)连接两个端点的线段是唯一的。

3.3 线段的表示方法线段一般用字母表示,如AB表示连接点A和点B的线段。

四、射线、直线、线段间的关系4.1 射线与直线的关系射线与直线都是无限延伸的,但直线没有端点,射线有一个端点。

4.2 射线与线段的关系射线和线段的不同之处在于,射线是无限长的延伸出去的,而线段是有限长的。

4.3 直线与线段的关系直线与线段的不同之处在于,直线没有始点和终点,而线段有始点和终点。

五、射线、直线、线段的应用5.1 射线、直线、线段在图形和证明中的应用在证明几何问题时,射线、直线、线段可以帮助我们建立几何图形,从而解决问题。

5.2 射线、直线、线段在生活中的应用在日常生活中,射线、直线、线段广泛应用于建筑、设计、数学等领域,如建筑设计中的平行线、垂直线的应用等。

初一数学线段_射线_直线教案

初一数学线段_射线_直线教案

线段,射线,直线【知识要点】线段、射线、直线1.理解线段的概念要掌握它的三个特征:;;;2.射线:将线段向方向就形成了射线,射线有端点。

3.直线:将线段向方向就形成了直线。

4.直线的性质:①直线是向,无,不可,不能;②直线上有点;③经过一点的直线有条;④两条不同直线至多有公共点。

【典型例题】例1 〔1〕以下说法正确的有:①一条线段上只有两个点②线段AB与线段BA是同一条线段③经过两点的直线只有一条④射线AB与射线BA是同一条射线⑤线段AB是直线AB的一局部⑥两点之间,线段最短⑦端点不同的射线一定不是同一条射线⑧端点一样的射线一定是同一条射线〔2〕以下说法正确的选项是( )A.过A、B两点直线的长度是A、B两点间的距离B.线段A、B就是A、B两点间的距离C.在连结A、B两点的所有线中,其中最短线的长度是A、B两点间的距离D.乘火车从上海到北京要走1462千米,所以上海站与北京站之间的距离是 1462千米〔3〕点M 在线段AB 上,在①AB=2AM;②BM=21AB;③AM=BM;④AM+BM=AB 四个式子中,能说明M 是线段AB 的中点的式子有〔 〕 A .1个 B. 2个 C. 3个 D. 4个〔4〕在直线上顺次取A 、B 、C 三点,使得AB=9cm ,BC=4cm ,如果点O 是线段AC 的中点,那么线段OB 为〔 〕cmA .2.5 B. 3.5 C. 1.5 D. 5(5) 如果线段AB=13 cm ,MA+MB=17 cm ,那么下面说法正确的选项是〔 〕 A .M 点在线段AB 上 B .M 点在直线AB 上 C .M 点在直线AB 外D .M 点在直线AB 上,也可能在AB 直线外〔6〕如图,3个机器人,A 、B 、C 排成一直线做流水作业,它们都要不断地从一个固定的零件箱中拿零件,那么零件箱放在处最好. 〔使得各机器人所走的路程总和最小〕例2.如图,在线段AC 上取一点B 时,共有几条线段?在线段AD 上取两点B 、C 时,共有几条线段?在AB 上取三个点C 、D 、E 时,共有几条线段?一条直线上有n 个点时,共有多少条线段?···AB C例3.线段MN,在MN 的延长线上取一点P,使MP=2NP;再在MN 的反延长线上取一点Q,使MQ=2MN,那么MP 是PQ 的( )A. 3B. 32 C. 21 D. 23例4. 如图,A 、B 、C 、D 是直线l 上顺次四点,M 、N 分别是AB 、CD 的中点,假设MN=a ,BC=b ,求AD 的长.例5. 往返于A 、B 两地的火车,中途经过三个站点,(假设该车只有硬座,且各站距离不等)问:〔1〕有多少种不同的票价? 〔2〕要有多少种不同的车票? 〔3〕如果中途有n 个站点呢?例6. 如图,CB=13AB ,AC=13AD ,假设CB=2cm ,求CD 的长.AB MC N lDA B C D E例7. 线段AB=6cm,在直线AB上画线段BC=4cm,假设M、N分别是AB、BC中点(1)求M、N间的距离.(2)假设AB=acm,BC=bcm,其它条件不变,此时M、N间的距离是多少"(3)分析(1)(2)的解答过程,从中你发现了什么规律" 在同伴间交流你得到的启迪"例8、如下列图,B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点.求MN:PQ的值.A Q P M NB CB 例9.如图,B 、C 两点把线段AD 分成2:4:3三局部,M 是AD 的中点,CD=6, 求:线段MC 的长.【初试锋芒】1.把线段向一个方向无限延伸就形成了,向两个方向无限延伸就形成了. 2.以下写法中正确的选项是〔 〕 A .直线AB 、CD 相交于点nB. 直线ab 、cd 相交于点NC .直线ab 、cd 相交于点nD. 直线AB 、CD 相交于点N3.以下表达正确的选项是〔 〕①线段AB 可表示为线段BA ②射线AB 可表示为射线BA ③直线AB 可表示为直线BAA .①② B. ①③ C. ②③ D. ①②③4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明;用两个钉子把细木条钉在木板上,就能固定细木条,这说明.5.如图,A 、B 、C 、D 是直线l 上顺次四点, 且线段AC=5,BD=4,那么线段AB-CD 等于______.6.如图,AB=CD,那么AC 与BD 的大小关系是( ) A.AC>BD B.AC<BD C.AC=BD D.不能确定ADBCMEAB7.连结两点的____________________________________________,叫做两点间的距离.8.观察以下列图形,并阅读图形下面的相关文字:像这样,10条直线相交,最多交点的个数是( ) A.40个 B.45个 C.50个 D.55个9.北宋末南宋初,中国象棋根本定型,象棋开场风行全国,中国象棋规定:马走字,现定义:在中国象棋盘上,如图,从点A 到点B,马走的最小步数称为A 与B 的马步距离,记作│AB │m,在图中画出了中国象棋的一局部,上面标有A 、B 、C 、D 、E 五个点,那么在│AB │m,│AC │m,│AD │m,│AE │m 中最大的是_______,最小的是______.10.过平面上四点中任意两点作直线,甲说有一条,乙说有四条,丙说有六条, 丁说他们说的都不对,应该是一条或四条,或六条,谁说的对"请画图来说明你的看法.11.如图,AB=16cm,C 是AB 上的一点,且AC=10cm,D 是AC 的中点,E 是BC 的中点, 求线段DE 的长.四条直线相交,最多有6个交点.三条直线相交,最多有3个交点.两条直线相交,最多有1个交点.A321A B12.线段AB=10cm,直线AB 上有一点C,且BC=4cm,M 是线段AC 的中点,求AM 的长.【大展身手】1.数轴的原点为O,如图,点A 表示2,点B 表示-12.(1) 数轴是什么图形"(2) 数轴在原点O 左边的局部(包括原点)是什么图形,怎样表示" (3) 数轴上不小于-12,且不大于2的局部是什么图形,怎样表示"2. 如图,P 为直线l 外一点,A 、B 为直线l 上两点,把P 和A 、B 连起来, 一共可以得到多少个三角形"假设在直线l 上增加一个点C,一共可以得到多少个三角形"假设直线l 上有n 个点时,一共可以得到多少个三角形"P lCA3.假设A,B两点间的距离是20cm,现有一点C,假设AC﹢BC=20cm,那么点C与线段AB的关系是什么?假设AC﹢BC=30cm,那么点C与线段AB的关系是什么?假设AC﹢BC=10cm,那么这样的点C存在吗?4.根据题意填空:在同一平面内的两条相交直线,它们有1个交点,如果在这个平面内再画第三条直线,那么这三条直线最多可有___________个交点;如果在这个平面内再画第四条直线,那么这四条直线最多可有__________个交点,由此我们可以猜想,在同一平面内,六条直线最多可有__________个交点,n(n为大于1的整数)条直线最多可有_____________个交点.(用含n的代数式表示)5.假设线段aAB ,C是线段AB上任意一点,M,N分别是AC和BC的中点,那么MN=__________.6.如图,C,D分别是线段AB的三等分点,E,F分别是AC,DB的中点.求证: (1)•EF=2AB;(2)EF=BC.37.线段MN,延长MN至Q,使QN=2MN,反向延长MN至P,使PN=2MN.求证: (1)M•是PN的中点;(2)N是PQ的中点.8.A、B、C是一条公路上三个村庄,C在AB之间,A、B间路程为100千米,A、C间路程为40千米,现在A、B之间设一车站P,设P、C之间路程为x千米. 〔1〕用含x的代数式表示车站到三个村庄的路程之和〔2〕假设车站到三个村庄路程之和为102千米,车站应设在何处〔3〕假设要使车站到三个村庄路程总和最小,那么车站应设在何处9.B、C、D依次是线段AE上的三点,AE=8.9cm,BD=3cm,那么图中以A、B、C、D、E这5个点为端点的所有线段之和等于多少厘米?CA EB D。

4.2直线、射线、线段

4.2直线、射线、线段

4.2 直线、射线、线段
栏目索引
例4 已知,如图4-2-4,B、C两点把线段AD分成2∶4∶3的三部分,M是 AD的中点,CD=6,求线段MC的长. 图4-2-4
解析 设AB=2k,则BC=4k,CD=3k, AD=2k+3k+4k=9k. 因为CD=6,即3k=6,所以k=2, 所以AB=4,BC=8,AD=18. 因为M为AD的中点,
4.2 直线、射线、线段
例1 根据图4-2-1填空:
栏目索引
图4-2-1 (1)点B在直线AD (2)点E是直线 直线CD的交点; (3)过A点的直线有
;点C在直线AD
,直线CD过点
;
与直线
的交点,点
是直线AD与
条,分别是 .
解析 根据图形进行分析,即可完成各题,同一直线的表示方法不唯一.
答案 (1)上;外;E (2)AE;CD;D (3)3;直线AD、直线AE、直线AC
知识点三 线段
定义
表示 方法 线段的 中点
4.2 直线、射线、线段
栏目索引
内容
图例
直线上两点及两点间的部分
(1)用表示端点的两个大写字母表示; (2)用一个小写字母表示
线段AB或线段BA或线段a
把一条线段分成两条相等线段的点,叫做这条
线段的中点
点M是线段AB的中点,
AM=BM= 1 AB,即AB=2AM=2BM
重要 解读
(1)对直线的基本事实的理解,应抓住其中的“有”“只有”两个关键词,“有”表示存在,“只有”表示唯一,即 过两点一定能画出一条直线,并且这样的直线只有一条. (2)用两个大写字母表示直线时,这两个字母的位置可以交换,如直线AB和直线BA表示的是同一条直线;用小写字 母表示直线时,只能用一个小写字母表示,如“直线a”或“直线b”. (3)两条不同的直线不能有两个或两个以上的公共点,如果有两个公共点,那么这两条直线重合. (4)直线没有长短,不能说直线AB长为5 cm,直线也没有粗细

人教版直线射线线段知识点

人教版直线射线线段知识点

人教版直线射线线段知识点
人教版直线、射线、线段知识点如下:
1.直线的性质:经过两点有一条直线,并且只有一条直线。

2.线段的性质:两点之间,线段最短。

3.画一条线段等于已知线段的方法:度量法和尺规作图法。

4.线段的中点、三等分点、四等分点等定义:把一条线段平均
分成两条相等线段的点。

5.两点间的距离定义:连接两点的线段的长度叫做两点的距离
(距离是线段的长度,而不是线段本身)。

6.点与直线的位置关系有:点在直线上(或者直线经过点)和
点在直线外(或者直线不经过点)。

7.角的定义:有公共端点的两条射线所组成的图形叫做角。

8.角的比较方法:度量法和叠合法。

9.角的四则运算:角的和、差、倍、分及其近似值。

10.画一个角等于已知角的方法:借助三角尺能画出15°的倍数的
角,在0~180°之间共能画出11个角;借助量角器能画出给定度数的角;用尺规作图法。

此外,还有一些关于线段和角的计算法则和统计知识,如计算法则中的相同数位对齐,按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐;竖式计算以及验算;整数的四则运算顺序和运算定律在小数中同样适用等。

在统计知识
中,条形统计图和折线统计图的特点和作用,以及折线统计图中变化趋势的含义等也需要掌握。

如需更多关于人教版直线、射线、线段的知识点总结,建议查询教辅练习资料或咨询数学老师获取更全面的信息。

直线射线线段知识点讲解以及例题解析

直线射线线段知识点讲解以及例题解析
点的个数
直线条数
2
1=S2=
3
3=S3=
4
6=S4=
5
10=S5=
……
……
n
Sn=
从表中我们可以推断出,平面上有n个点(n≥2),且任意三个点不在同一直线上,这些点一共可作出条直线。
解:平面上有n个点(n≥2),且任意三个点不在同一直线上,这些点一共可作出条直线。
评析:归纳猜想是这类题型的解决思路,多看几种情况,要善于发现规律并正确地进行归纳猜想。
分析:我们可以从简单的入手,当有两个点时,可作出1条直线;当有3个点时,可以作出3条直线;当有4个点时(如图所示)过其中任何一点都有3条直线,共有4×3=12条,但是因为直线AB与BA、AC与CA、AD与DA……分别是同一条直线,说明每一条直线重复一次,所以实际只能画出直线共×4×3=6条;考查点的个数n和可作的直线条数Sn,它们之间的关系如下表:
(1)延长直线AB()
(2)直线AB与直线BA不是同一条直线()
(3)直线AB上有A点()
(4)直线AB与直线l不可能是同一条直线()
分析:(1)直线本身是向两方无限延伸的,因此不用延长。
(2)用两个大写字母表示直线时与字母的顺序无关。
(3)直线AB上一定有点A,即点A在直线AB上。
(4)直线既可用大写字母AB表示又可用小写字母l表示。
例3.如图所示,平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画出确定蓄水池H点的位置,使它与四个村庄的距离之和最小。
分析:根据两点之间线段最短,所求点必在线段AD上,也必在线段BC上,即为AD、BC的交点。
解:根据两点之间线段最短,可连结AD、BC且交于一点H,则点H即为所求。

直线、射线、线段知识点总结(含例题)

直线、射线、线段知识点总结(含例题)

直线、射线、线段知识点1.直线(1)定义:一点在空间沿着一个方向及它的相反方向运动,所形成的图形就是直线.(2)直线公理:经过两点___________直线,并且___________直线.简单说成:___________.(3)表示方法:直线AB或直线a.(4)当两条不同的直线有一个公共点时,我们就称这两条直线___________,这个公共点叫做它们的___________.2.射线(1)定义:直线上的一点和它一旁的部分叫做射线.(2)特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长.(3)表示方法:射线AB或射线a.3.线段(1)定义:直线上两个点和它们之间的部分叫做线段.(2)特征:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.(3)表示方法:线段AB或线段a.(4)两点的所有连线中,___________最短.简单说成:两点之间,___________.(5)连接两点间的___________,叫做这两点的距离.4.方法归纳:(1)过一点的直线有___________;直线是是向___________方向无限延伸的,无端点,不可度量,不能比较大小;(2)要注意区别直线公理与线段的性质:直线公理是指___________,线段的性质是指两点之间线段最短;在线段的计算过程中,经常涉及线段的性质、线段的中点以及方程思想.(3)延伸与延长是不同的,线段不能___________,但可以___________,直线和射线能___________,但是不能___________;(4)直线和线段用两个大写字母表示时,与字母的前后顺序___________,但射线必须是表示端点的字母写在前面,不能互换;(5)直线中“有且只有”中的“有”的含义是___________,“只有”的含义是,“有且只有”与“确定”的意义相同;(6)射线:一要确定___________,二要确定___________,二者缺一不可.K知识参考答案:1.(2)有一条,只有一条,两点确定一条直线;(4)相交,交点3.(4)线段,线段最短;(5)线段的长度4.(1)无数条,两个(2)两点确定一条直线(3)延伸,延长,延伸,延长(4)无关(5)存在性,唯一性(6)端点,延伸方向K—重点(1)直线公理;(2)线段的性质K—难点直线、射线、线段的概念K—易错直线、射线、线段的联系和区别一、直线、射线、线段【例1】下列说法中正确的个数为①射线OP和射线PO是同一条射线;②连接两点的线段叫两点间的距离;③两点确定一条直线;④若AC=BC,则C是线段AB的中点.A.1个B.2个C.3个D.4个【答案】A【解析】①射线OP端点是O,从O向P无限延伸,射线PO端点是P,从P向O无限延伸,所以不是同一条射线,故①错误;【名师点睛】(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外.二、直线的性质(1)直线公理:经过两点有且只有一条直线.简称:两点确定一条直线.(2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.【例2】平面上有四点,过其中每两点画出一条直线,可以画直线的条数为A.1或4 B.1或6C.4或6 D.1或4或6【答案】D【解析】如图所示:分别根据四点在同一直线上、三点在同一条直线上、任意三点均不在同一条直线上描出各点,再根据两点确定一条直线画出各直线可知:平面上有四点,过其中每两点画出一条直线,可以画直线的条数为1或4或6.故选D.三、线段的性质线段公理:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.简单说成:两点之间,线段最短.【例3】把一条弯曲的公路改为直路,可以缩短路程,其理由是A.两点之间,线段最短B.两点确定一条直线C.线段有两个端点D.线段可以比较大小【答案】A【解析】把一条弯曲的公路改为直路,其理由是:两点之间,线段最短.故选A.四、两点之间的距离(1)两点间的距离连接两点间的线段的长度叫两点间的距离.(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.【例4】已知线段AB=8cm,在线段AB的延长线上取一点C,使线段AC=12cm,那么线段AB和AC中点的距离为A.2cm B.3cm C.4cm D.5cm【答案】A五、比较线段的长短(1)比较两条线段长短的方法有两种:度量比较法、重合比较法.就结果而言有三种结果:AB>CD、AB=CD、AB<CD.(2)线段的中点:把一条线段分成两条相等的线段的点.(3)线段的和、差、倍、分及计算做一条线段等于已知线段,可以通过度量的方法,先量出已知线段的长度,再利用刻度尺画条等于这个长度的线段,也可以利用圆规在射线上截取一条线段等于已知线段.【例5】如图,四条线段中,最短和最长的一条分别是A.ac B.bdC.ad D.bc【答案】B【解析】通过观察测量比较可得:d线段长度最长,b线段最短.故选B.。

人教版七年级上数学《 直线,射线,线段》课堂笔记

人教版七年级上数学《 直线,射线,线段》课堂笔记

《直线,射线,线段》课堂笔记一、知识点梳理1.直线的性质:直线没有端点,无法度量,不能在直线上取点。

2.射线的性质:射线只有一个端点,可以向一侧无限延伸,不能在射线上取点。

3.线段的性质:线段有两个端点,可以度量,可以在线段上取点。

4.直线、射线、线段的表示方法:用直线上任意两点的大写字母表示(如直线AB或直线BA);射线用端点和射线上任意一点的大写字母表示(如射线OA或射线AO);线段用端点的大写字母表示,并在其上方或下方标出该点到另两个端点的距离。

5.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

平行线的性质包括:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

6.垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,两条直线互相垂直。

其中一条直线叫做另一条直线的垂线。

7.点到直线的距离:从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。

二、重点难点解析1.直线、射线、线段的表示方法及特性:直线、射线、线段是基本的几何图形,需要掌握它们的表示方法及特性,以便进行后续的学习和运用。

2.平行线的定义和性质:平行线是几何中非常重要的概念之一,需要深刻理解其定义和性质,以便解决相关问题。

3.垂线的定义和点到直线的距离:垂线和点到直线的距离是后续学习平面几何的基础,需要熟练掌握其定义和计算方法。

三、例题解析例1:下列说法正确的是()A. 直线AB和直线BA是不同的直线B. 射线AB和射线BA是不同的射线C. 线段AB和线段BA是不同的线段D. 直线、射线、线段都有两个端点【分析】根据直线的表示方法、射线的表示方法、线段的表示方法进行判断即可.【解答】解:A、直线AB和直线BA是同一条直线,故本选项错误;B、射线AB 和射线BA是不同的射线,故本选项正确;C、线段AB和线段BA是同一条线段,故本选项错误;D、直线没有端点,故本选项错误;故选B.。

人教版初一数学上册 直线、射线、线段 讲义

人教版初一数学上册 直线、射线、线段 讲义

直线、射线与线段知识点一、直线、射线、线段的概念1、直线:由无数个点构成,没有端点,向两端无限延长,长度是无穷的,无法测量2、射线:由无数个点构成,有一个端点,从这个端点开始向另一端无限延长,长度是无穷的,无法测量3、线段:由无数个点构成,有两个端点,从一个端点连向另一个端点,长度是有限的,可以测量1、下列说法正确的有_____________①直线比射线长②线段由无数个点构成③过三点一定能作一条直线④线段的长度是无穷的⑤直线有两个端点⑥射线有两个端点⑦线段有两个端点2、下列关于直线、射线、线段的说法正确的是()A、直线最长,线段最短B、射线是直线长度的一半C、直线没有端点D、直线、射线和线段的长度都不确定3、下列说法正确的是()A、线段不能延长B、延长直线AB到CC、延长射线AB到CD、直线上两个点和它们之间的部分是线段A、线段AB的长度是A、B两点间的距离B、若点P使PA=PB,则点P是AB中点C、画一条10厘米的直线D、画一条3厘米的射线知识点二、直线、射线、线段的表示方法1、直线用一个小写字母或两个大写字母表示,例如直线a或直线AB。

注意:直线AB和直线BA是同一条直线2、射线用一个小写字母或两个大写字母表示,例如射线a或射线AB注意:射线AB指从A射向B,射线BA指从B射向A,是不同的两条射线3、线段用一个小写字母或两个大写字母表示,例如线段a或线段AB注意:线段AB和线段BA是同一条线段思考:(1)直线AB和直线BA一样吗?_______(2)射线AB和射线BA一样吗?_______(3)线段AB和线段BA一样吗?_______1、下列说法正确的是()A、直线AB和直线BA是两条直线B、射线AB和射线BA是两条射线C、线段AB和线段BA是两条线段D、直线AB和直线a不能是同一条直线A、线段AB和线段a可以代表同一条线段B、直线AB和直线BA是同一条直线C、线段AB和线段BA是同一条线段D、射线AB和射线BA是同一条射线3、下列叙述正确的是()A、直线AB、线段ABC、射线abD、直线Ab4、下列叙述不正确的是()A、线段aB、射线bC、直线CDD、射线Ca知识点三、数学原理1、两点确定一条直线2、两点之间线段最短1、下列说法正确的有_______________①经过两点有且只有一条直线②两点之间线段最短③两点确定一条直线④到线段两个端点距离相等的点叫做线段的中点⑤线段的中点到线段两个端点的距离相等2、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,体现的原理是________________________3、小明是神枪手,他打靶时眼睛总要与枪上的准星、靶心在同一条直线上,这体现了什么道理_______________________4、从A到B有多条路,但是聪明的人都知道走走中间的直路比较近,这体现的数学原理是_____________________5、把弯曲的河流改成直的,可以缩小航程,这体现的原理是_____________________6、要把一根木条在墙上钉牢,至少需要______枚钉子,原理是_________________7、开学整理教室时,老师总是先把每一列最前和最后的课桌整理好,然后再依次摆中间的课桌,一会儿一列课桌就摆在一条线上,整整齐齐。

初一数学第18讲:直线,射线,线段(学生版

初一数学第18讲:直线,射线,线段(学生版

第七讲直线,射线,线段点与直线的关系:点在直线上;点在直线外.两个重要公理:②经过两点有且只有一条直线,也称为“两点确定一条直线”.②两点之间的连线中,线段最短,简称“两点之间,线段最短”.两点之间的距离:两点确定的线段的长度.⑴点的表示方法:我们经常用一个大写的英文字母表示点:A,B,C,D,……⑵直线的表示方法:①用两个大写字母来表示,这两个大写字母表示直线上的点,不分先后顺序,如直线AB,如下图⑴也可以写作直线BA.l(1) (2)②用一个小写字母来表示,如直线l,如上图⑵.注意:在直线的表示前面必须加上“直线”二字;用两个大写字母表示时字母不分先后顺序.⑶ 射线的表示方法:① 用两个大写字母来表示.第一个大写字母表示射线的端点,第二个大写字母表示射线上的点.如射线OA ,如图⑶,但不能写作射线AO . ② 用一个小写字母来表示,如射线l ,如图⑷.注意:在射线的表示前面必须加上“射线”二字.用两个大写字母表示射线时字母有先后顺序,射线的端点在前.⑷ 线段的表示方法:① 用两个大写字母来表示,这两个大写字母表示线段的两个端点,无先后顺序之分,如线段AB ,如图⑸,也可以写作线段BA .② 也可以用一个小写字母来表示:如线段l ,如图⑹.注意:在线段的表示前面必须加上“线段”二字.用两个大写字母表示线段时字母不分先后顺序.直线、射线、线段的主要区别:中点:1.直线,射线,线段的符号表示方法2.培养学生学会一些几何语言,培养学生的空间观念(3) (4)lAO(5) (6)AB在一个美丽的小岛上,有一座数学城堡里住着线段、直线、射线三个家族,它们在一起经常因比长短,而争论不休,它们三家的关系也很紧张。

这天上午阳光明媚、天气暖和,线段8分米带着弟弟6厘米,在花园里的花丛中玩耍,这是只见直线和射线也大摇大摆的来到这里。

它们看到线段兄弟就嘲笑的说:“喂;你们这么矮能摘得漂亮的花吗?你们能捉到蝴蝶吗?”线段兄弟听了直线和射线的挑衅的话;不服气地来到它们身旁抬头看它们比自己高不了多少,就对它们说:“你们不比我们高多少,还那么高傲,我们的10米、80米、200米……哥哥们比你们高的多,一会儿,等我把它们叫来,让你们见识见识它们的高度,吓你们一跳。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何---初探定义
2010-11-29
物体的形状、大小、位置。

几何图形:从实物中抽象出来的各种图案。

立体图形:几何图形中各部分不都在同一平面内。

平面图形:几何图形中各部分都在同一平面内。

棱柱、棱锥
立体图形
几何图形圆柱、圆锥、球
平面图形
棱柱、棱锥:由平面图形围成。

圆柱、圆锥、球:由平面图形旋转。

几何---点线面体
2010-12-3
几何体由点、线、面构成体。

体:由面围成的。

平面

曲面
线:面与面相交成线。

直线
线
曲线
点:线与线相交成点。

点动成线
线动成面
面动成体
N棱柱
1.面 n+2
2. 棱 3n
3. 点 2n
几何---直线、射线、线段
2010-12-7
1.直线:直,向两边无限延伸,无宽窄。

2.表示法:
1.小写字母 a 直线a
2.大写字母 . . 直线AB
A B
3.直线的性质(公理):
经过两点可以做一条直线,且只有一条直线。

两点确定一条直线。

4.关系【同一平面内】
1)相交(垂直)
2)平行
相交:如果两条直线有一个公共点,则两条直线相交。

平行:两条直线没有公共点。

关系【不在同一平面内】
1)相交(垂直)
2)平行
3)异面直线
几何---直线、射线、线段
2010-12-8
射线:直线一点和它一旁的部分。

2.表示法:
3.小写字母 . a 射线a
4.大写字母 . . 射线AB
A B
3.射线直线关系:
射线是直线的一部分。

4.规律
若直线上有N个点,则有2N条射线。

射线只能反向延伸。

线段:直线两点和它们之间的的部分。

2.表示法:
5.小写字母 . . 线段a
6.大写字母 . . 线段AB
A B
3.线段的性质(公理):
连接两点的所有线中,线段最短。

两点之间线段最短。

4,两点间的距离叫连结两点间的线段的长度。

两边延伸线段
重要规律
1.当一条直线有N个点时
射线 2N条
线段 N(N-1)÷2
2.直线表示法无序
线段表示法无序
射线表示法有序【端点在前】
3. 端点数长度
直线 0 无限延伸
射线 1 无限延伸
线段 2 可测量
几何---直线、射线、线段
2010-12-8
线段的比较
线段的比较大小【长度】
1.度量法
2.叠合法
叠合法
1.两条线段一个端点重合。

2.共线
3.看另一端位置
二.线段和、差、倍、分
倍、分
1.线段的中点
线段上一点把这条线段分成两条相等的线段。

若三条线段中满足两条线段之和等于第三线段,则三点共线。

比例应用题(见比设k)。

相关文档
最新文档