透射电子显微镜的原理
TEM(透射电子显微镜)
细胞结构解析
细胞膜结构
透射电镜图像可以清晰地展示细胞膜的精细结构,如细胞膜的厚度、 细胞器的分布等。
细胞器结构
透射电镜能够观察到细胞内的各种细胞器,如线粒体、内质网、高 尔基体等,有助于了解细胞器的形态和功能。
细胞骨架结构
透射电镜能够观察到细胞骨架的超微结构,如微管、微丝和中间纤维 等,有助于了解细胞骨架在细胞运动、分裂和分化中的作用。
TEM应用领域
01
02
03
04
生物学
研究细胞、组织和器官的超微 结构,如细胞器、细胞膜、染
色体等。
医学
用于诊断疾病,如癌症、传染 病等,以及药物研发和疫苗制
备过程中的结构分析。
地质学
观察岩石、矿物和矿物的微观 结构,研究地球科学中的各种
地质现象。
材料科学
研究金属、陶瓷、高分子等材 料的微观结构和性能,以及材
控制切片的厚度,通常在50~70纳米之间,以确 保电子束能够穿透并观察到样品的内部结构。
切片收集与处理
将切好的超薄切片收集到支持膜上,并进行染色、 染色脱水和空气干燥等处理。
染色
染色剂选择
选择适当的染色剂,如铅、铀或 铜盐,以增强样品的电子密度并
突出其结构特征。
染色时间与温度
控制染色时间和温度,以确保染色 剂与样品充分反应并达到最佳染色 效果。
清洁样品室
定期清洁样品室,保持清洁度 。
检查电子束系统
定期检查电子束系统,确保聚 焦和稳定性。
更新软件和驱动程序
及时更新TEM相关软件和驱动 程序,确保兼容性和稳定性。
定期校准
按照厂家建议,定期对TEM进 行校准,确保观察结果的准确
性。
06 TEM未来发展
透射电子显微镜--原理
• • • • Brightness Lifetime Pressure (vacuum) = related to the price Maintenance
Zhengmin Li
16
各种电子枪的比较
Brightness (Candela)
Life time 40hr >2000Hr >7000Hr
Zhengmin Li 30
物镜极靴
(OL Polepiece)
Zhengmin Li 31
真空系统
电子显微镜镜筒必须具有很高的真空度,这是因 为:若电子枪中存在气体,会产生气体电离和放 电,炽热的阴极灯丝受到氧化或腐蚀而烧断;高 速电子受到气体分子的随机散射而降低成像衬 度以及污染样品。一般电子显微镜镜筒的真空 要求在10-4~10-6 Torr。真空系统就是用来把镜 筒中的气体抽掉,它由二级真空泵组成,前级为 机械泵,将镜筒预抽至10-3 Torr,第二级为油扩散 泵,将镜筒抽空至10-4~10-6 Torr的真空度后,电镜 才可以开始工作。
Zhengmin Li 3
德国EM-902
Zhengmin Li 4
日本电子株式会社 (JEOL) JEM-1230
Zhengmin Li 5
Philips EM400T
Zhengmin Li 6
Philips TECNAI-20
Zhengmin Li 7
TEM 的基本工作原理
电子枪产生的电子束经1~2级聚 光镜会聚后均匀照射到试样上的 某一待观察微小区域上,入射电 子与试样物质相互作用,由于试 样很薄,绝大部分电子穿透试样, 其强度分布与所观察试样区的形 貌、组织、结构一一对应。 在观察图形的荧光屏上,透射出 试样的放大投影像,荧光屏把电 子强度分布转变为人眼可见的光 强分布,于是在荧光屏上显出与 试样形貌、组织、结构相对应的 图像。
透射电子显微镜下的生物大分子结构解析
透射电子显微镜下的生物大分子结构解析一、透射电子显微镜技术概述透射电子显微镜(Transmission Electron Microscope, TEM)是一种利用电子束穿透样品的高分辨率显微镜技术。
与传统的光学显微镜相比,透射电子显微镜能够提供纳米级别的分辨率,这使得它在生物大分子结构解析领域具有独特的优势。
本文将探讨透射电子显微镜在生物大分子结构解析中的应用,分析其原理、技术特点以及在生物科学领域的重要作用。
1.1 透射电子显微镜的基本原理透射电子显微镜的工作原理基于电子光学原理,电子束通过电磁透镜聚焦,穿透样品后,由检测器接收并转换成图像。
由于电子波长远小于可见光,因此TEM能够达到比光学显微镜更高的分辨率。
1.2 透射电子显微镜的技术特点透射电子显微镜具有以下技术特点:- 高分辨率:能够达到原子级别的分辨率,适合观察生物大分子的精细结构。
- 多模式成像:除了传统的透射成像外,还可以进行扫描透射成像(STEM)和电子衍射等。
- 样品制备要求:需要将生物样品制备成极薄的切片,以确保电子束的有效穿透。
- 环境控制:需要在高真空环境下操作,以避免电子束与空气分子的相互作用。
1.3 透射电子显微镜在生物大分子结构解析中的应用透射电子显微镜在生物大分子结构解析中的应用非常广泛,包括蛋白质、核酸、病毒等生物大分子的形态学研究和结构分析。
二、生物大分子结构解析的技术和方法生物大分子结构解析是一个复杂的过程,涉及多种技术和方法。
透射电子显微镜技术在这一过程中扮演着重要角色,但也需要与其他技术相结合,以获得更全面和准确的结构信息。
2.1 样品制备技术生物大分子的样品制备是结构解析的第一步,也是关键步骤之一。
透射电子显微镜要求样品必须足够薄,通常需要使用超微切割、冷冻断裂或聚焦离子束等技术来制备样品。
2.2 高分辨率成像技术高分辨率成像是获取生物大分子结构信息的基础。
透射电子显微镜通过优化电子束的聚焦、样品的放置和成像条件,可以获得高质量的图像。
透射电子显微镜的成像原理
很多),同一亮线或暗线所对应的样品位置,晶面
具有相同的位向(s相同),所以这种衬度特征也叫
做等倾条纹.如果倾动样品面,样品上相应于s=0
的位置将发生变化,消光条纹的位置将跟着改变,
可编辑版
32
在荧光屏上大幅度扫动.等厚消光条纹则不随晶 体样品倾转面扫动,这是区分等厚条纹与等倾条 纹的简单方法(参看照片).
可编辑版
4
① 质厚衬度
由于试样的质量和厚度不同,各部分对入射电 子发生相互作用,产生的吸收与散射程度不同, 而使得透射电子束的强度分布不同,形成反差, 称为质-厚衬度。
② 衍射衬度
衍射衬度主要是由于晶体试样满足布拉格反射 条件程度差异以及结构振幅不同而形成电子图 象反差。它仅属于晶体结构物质,对于非晶体 试样是不存在的。
可编辑版
16
布拉格反射条件下与反射球相交而形成衍射斑 点。
③由于强衍射束比入射束弱得多,因此认为 这一衍射束不是完全处于准确得布拉格反射位 置,而存在一个偏离矢量S,S表示倒易点偏离 反射球的程度,或反映偏离布拉格角2θ的程度。
2. 入射束与衍射束不存在相互作用,二者之间无 能量交换。
3. 假设电子束在晶体试样内多次反射与吸收可以 忽略不计。
基本假设包括下列四点:
可编辑版
15
1.采用双束近似处理方法,即所谓的“双光束条 件”
① 除透射束外,只有一束较强的衍射束参与 成象,忽略其它衍射束,故称双光成象。
② 这一强衍射束相对于入射束而言仍然是很 弱的。这在入射电子束波长较弱以及晶体试样 较薄的情况下是合适的。因为波长短,球面半 径1/λ大,垂直于入射束方向的反射球面可看作 平面。加上薄晶的“倒易杆”效应,因此,试 样虽然处于任意方位,仍然可以在不严格满足
透射电子显微镜的工作原理
透射电子显微镜的工作原理
透射电子显微镜是一种利用电子束来观察样品内部结构的仪器。
它的工作原理基于电子的波粒二象性和探测电子与样品的相互作用。
1. 电子源:透射电子显微镜的关键部件是电子源,通常使用热阴极电子枪作为电子源。
热阴极通过加热产生的电子被电场加速形成电子束。
2. 电子加速:电子束通过一系列电场透镜和加速电场,以加速电子的速度。
通常,加速电压可达到数十至数百千伏,使电子的动能足够高,以达到穿透样品的要求。
3. 样品制备:为了观察样品的内部结构,需要将样品制备成非晶质薄片,通常使用切片机或离心切片法将样品切割成纳米至微米厚度的薄片。
然后,将薄片置于透射电子显微镜的样品台上。
4. 电子束透射:加速的电子束通过样品时,会与样品内的原子发生相互作用。
其中,部分电子会被散射,部分会被吸收。
透射电子会穿过样品并保持其原有的信息。
5. 透射电子检测:透射电子进入具有电磁透镜功能的物镜透镜,物镜透镜根据透射电子的波动性将其聚焦。
透射电子经过物镜透镜后进入投影平面,通过透射电子探测器的探测,最终形成透射电子显微图像。
6. 图像处理与观察:通过对透射电子显微图像进行图像增强,噪声滤波等处理,可以进一步恢复样品的细节信息。
最后,通过观察透射电子显微图像,可以获得关于样品内部结构和原子排列的信息。
总之,透射电子显微镜利用电子的波粒二象性以及电子与样品的相互作用,通过探测透射电子形成样品内部结构的显微图像。
这种显微镜技术在材料科学、纳米科学等领域有着重要的应用价值。
透射电子显微镜的成像原理
SAD pattern corresponding to (OR1). The rectangle corresponds to the range of (b).
位错衍衬像
Dislocations in Ni-base superalloy
The micrograph shows the dislocation structure following creep, with dislocations looping around the particles
在完整晶体中引入缺陷的普遍效应,是使原 来规则排列的周期点阵受到破坏,点阵发生了短 程或长程畸变。
四、不完整晶体中衍衬像运动学理论
处理畸变晶体方法:
1、把畸变晶体看成是局部倒易点阵矢量、或局部晶面间
距发生变化: g g g
2、把畸变晶体看成是完整晶体的晶胞位置矢量发生变化,
位置矢量由理想晶体
(s=常数,t变化)
等厚条纹
(s=常数,t变化)
试样斜面和锥形孔产生等厚条纹示意图
等厚条纹
(s=常数,t变化)
等厚条纹
(s=常数,t变化)
等倾干涉
( t =常数, s 变化)
四、不完整晶体中衍衬像运动学理论
1、不完整晶体衍射强度公式
所谓不完成晶体是指在完整晶体中引入诸如位 错、层错、空位集聚引起的点阵崩塌、第二相和 晶粒边界等缺陷。
位错运动的动态电子显微镜观察
左:具有最大衬度的刃位错像 g∥b 右:位错衬度趋于零 g⊥b
多相合金的衍射和衬度效应
透射电子显微镜的原理
透射电子显微镜的原理透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种利用电子束来观察和研究物质的光学仪器。
与光学显微镜相比,透射电子显微镜具有更高的分辨率,能够观察到更小尺寸的物体和更细微的结构。
1.电子源:透射电子显微镜使用热阴极或冷场发射阴极作为电子源。
热阴极通过电子加热产生热电子,冷阴极则利用材料的特殊电子发射特性产生电子束。
2.透镜系统:透射电子显微镜使用一系列电磁透镜来控制和聚焦电子束。
其中包括准直透镜、对焦透镜、物镜透镜和投影透镜。
这些透镜通过调节电流和电压来控制电子束的聚焦和成像。
3.样品台:样品台是支撑和处理样品的平台。
它通常具有位置调节和倾斜功能,以使得样品的成像角度和位置能够被调整。
4.探测器:透射电子显微镜使用不同的探测器来测量透射电子的强度和散射电子的角度。
最常用的探测器是透射电子探测器和散射电子探测器。
5.图像显示系统:透射电子显微镜的图像显示系统通常由CCD摄像机和显示器组成。
CCD摄像机将透射电子的信号转化为电信号,并通过计算机处理后在显示器上显示。
透射电子显微镜的分辨率取决于电子波长。
与可见光相比,电子具有更短的波长,能够给出更高的分辨率。
透射电子的波长约为0.004纳米到0.1纳米,比可见光的波长小3个数量级。
因此,透射电子显微镜能够观察到比光学显微镜更小的物体和更细微的结构。
透射电子显微镜的应用广泛,包括材料科学、生物学、纳米技术等领域。
在材料科学中,透射电子显微镜可以用来观察和研究材料的晶体结构、晶格缺陷以及元素分布等。
在生物学中,透射电子显微镜可以用来观察和研究生物分子的结构和细胞的超微结构。
在纳米技术中,透射电子显微镜可以用来观察和研究纳米材料和纳米器件的性质和性能。
总而言之,透射电子显微镜通过利用电子束来观察和研究物质的原理,具有较高的分辨率和广泛的应用领域。
它在科学研究和工业生产中发挥着重要的作用,为我们提供了深入认识和理解微观世界的工具。
透射电子显微镜 原理
透射电子显微镜原理透射电子显微镜(Transmission Electron Microscope, 简称TEM)是一种利用电子束传递样品来获得细微结构的高分辨率显微镜。
它的原理是通过在真空中加速电子,将电子束通过光学透镜系统聚焦到样品上,并通过样品的透射情况来形成图像。
TEM的关键组件包括电子源、电子透镜系统、样品台、探测器和成像系统。
电子源产生的电子束经过一系列透镜系统(包括准直透镜、磁场透镜、投影透镜等),被聚焦到样品上。
样品位于一个特殊的样品台上,可以微调样品的位置和角度。
透射电子束通过样品后,部分电子被散射、散射和吸收。
散射电子和透射电子被探测器捕捉,并转化为电信号。
TEM的成像原理基于透射电子束与样品交互作用的差异。
样品内不同的区域对电子束有不同的散射、吸收和透射能力,导致不同的强度对比。
探测器会测量透射电子的能量和强度变化,并将其转换为光学图像。
最终,通过调节透射电子束的聚焦和探测参数,可以得到具有高分辨率的样品图像。
TEM具有极高的分辨率和能够观察样品内部结构的能力。
与光学显微镜相比,TEM利用电子束的波长远小于光的波长,可以克服光学显微镜的衍射极限。
因此,TEM可以观察更小的结构和更高的放大倍数。
此外,TEM还可以通过选定区域电子衍射(Selected Area Electron Diffraction, SAED)技术来研究晶体的晶格结构和材料的晶体学性质。
综上所述,透射电子显微镜通过控制电子束的聚焦和探测参数,利用透射电子与样品相互作用的差异,获得高分辨率的样品图像。
它是研究材料科学和纳米技术的重要工具。
透射电镜(TEM)
应用及特点
一:应用:透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物 体吸收,故穿透力低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更 薄的超薄切片,通常为50~100nm。所以用透射电子显微镜观察时的样品需要处理得 很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。 对于液体样品,通常是挂预处理过的铜网上进行观察。图为超薄切片的制备
显微镜原理对比图
应用举例
1.元素分布分析 利用微束技术对在光学显微镜下所选区域进行扫描分析,可 获得元素的分布图(线分布、面分布、深度分布和断层), 来比较研究元素的区域(或相)分布特征。这类分析称为元 素分布分析。
合金元素在γ和γ’中的分布
应用举例
2.微观形貌观察
镍基高温合金蠕变后的位错形貌
应用举例
JEM2010-透射电子显微镜
原理
透射电子显微镜的成像原理可分为三种情况:
1.吸收像:当电子射到质量、密密度大的样品时,主要的成相作用是散射作用。样品 上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透 射电子显微镜都是基于这种原理 2.衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体 各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同, 从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。 3.相位像:当样品薄至100A以下时,电子可以穿过样品,波的振幅变化可以忽略, 成像来自于相位的变化。
TEM组件
电子枪:发射电子,由阴极、栅极、阳极
组成。阴极管发射的电子通过栅极上的小孔 形成射线束,经阳极电压加速后射向聚光镜, 起到对电子束加速、加压的作用。 聚光镜:将电子束聚集,可用于控制照明强 度和孔径角。 样品室:放置待观察的样品,并装有倾转 台,用以改变试样的角度,还有装配加热、 冷却等设备。 物镜:为放大率很高的短距透镜,作用是 放大电子像。物镜是决定透射电子显微镜分 辨能力和成像质量的关键。 中间镜:为可变倍的弱透镜,作用是对电 子像进行二次放大。通过调节中间镜的电流, 可选择物体的像或电子衍射图来进行放大。 透射镜:为高倍的强透镜,用来放大中间 像后在荧光屏上成像。 此外还有二级真空 泵来对样品室抽真空、照相装置用以记录影 像
透射电镜工作原理
透射电镜工作原理透射电镜是一种高级显微镜,它利用电子束来观察样品的内部结构。
与光学显微镜不同,透射电镜使用电子而不是光线,因此可以获得更高的分辨率和更大的放大倍数。
透射电镜的工作原理主要包括电子发射、电子透镜系统、样品和显微镜成像系统等几个方面。
首先,透射电镜的工作原理涉及电子发射。
电子是通过热发射或场发射的方式从阴极发射出来的。
这些电子被加速并聚焦成一束,然后通过一系列的透镜系统来聚焦到样品上。
透射电镜中的透镜系统包括电子透镜和物镜,它们可以控制电子束的聚焦和定位,使得电子束能够准确地照射到样品表面并穿透样品进入内部。
其次,样品是透射电镜工作原理中的关键部分。
样品需要制备成极薄的切片,以便电子束可以穿透并在显微镜中形成清晰的影像。
样品的制备过程非常复杂,需要经过化学处理、切割、磨薄等多个步骤,以确保样品的透明度和平整度。
只有这样,才能获得高质量的透射电镜图像。
最后,透射电镜的成像系统是工作原理的最后一环。
成像系统包括投影镜、物镜和接收器,它们可以将电子束透过样品后的信号转换成图像。
通过对图像的处理和放大,可以观察到样品的微观结构和成分分布情况。
透射电镜的成像系统在保证分辨率和对比度的同时,还需要考虑到电子束的损失和样品的辐射损伤等问题,以获得清晰而真实的图像。
总的来说,透射电镜的工作原理是基于电子束与样品相互作用的原理,通过对电子束的控制和样品的制备,最终实现对样品内部微观结构的高分辨率成像。
透射电镜在材料科学、生物学、纳米技术等领域有着广泛的应用,对于研究微观世界起着至关重要的作用。
通过对透射电镜工作原理的深入理解,可以更好地利用透射电镜进行科学研究和工程应用。
电子显微镜
分散聚四氟乙烯粉粒的超薄切片像
③ 蚀刻
蚀刻的目的是除去一部分结构,从而可以突出需 要的结构。蚀刻方法主要有三种:溶剂蚀刻、酸 蚀刻和等离子蚀刻。溶剂蚀刻是靠溶剂的溶解除 去易溶性分子;酸蚀刻是用强酸选择性氧化某一 相,使高分子断裂为碎片而被除去;等离子或离 子蚀刻是用等离子或离子带电体攻击聚合物表面, 除去表面的原子或分子,由于除去速度的差异而 产生相之间的反差。
(1)电子束与固体样品相互作用时产生的信号 具有高能量的入射电子束与固体样品表面的原子
核及核外电子发生作用,产生如下物理信号。
入射电子束轰击样品产生的信息
① 背散射电子(backscattering electron)— 背散射电子是指被固体样品中的原子核或 核外电子反弹回来的一部分入射电子。
③ 吸收电子(absorption electron)—入射电子进入 样品后,经多次非弹性散射,能量损失殆尽,最后 被样品吸收。
④ 透射电子(transmission electron)—如样品足够薄, 则会有一部分入射电子穿过样品而成透射电子。
⑤ 俄歇电子(Auger electron)—如果原子内层电子 在能级跃迁过程中释放出来的能量ΔE并不以X射线 的形式发射出去,而是用这部分能量把空位层的另 一个电子发射出去(或空位层的外层电子发射出 去),这一个被电离的电子称为俄歇电子。 每种原子都有自己的特定壳层能量,所以它们 的俄歇电子能量也各有特征值。
② 二次电子(secondary electron)—在入射电 子作用下被轰击出来并离开样品表面的样 品原子的核外电子。它是一种真空自由电 子 。 由于原子核和外层价电子间的结合能 很小,因此,外层的电子较容易和原子脱 离,使原子电离。
透射电子显微镜在纳米材料合成中的应用
透射电子显微镜在纳米材料合成中的应用一、透射电子显微镜技术概述透射电子显微镜(Transmission Electron Microscope, TEM)是一种利用电子束作为照明源,通过样品的透射电子成像的高分辨率显微镜。
它在纳米材料的合成与研究中扮演着至关重要的角色。
透射电子显微镜通过电子束的高穿透力,能够观察到纳米尺度的材料结构,从而为纳米材料的合成提供了强有力的技术支持。
1.1 透射电子显微镜的基本原理透射电子显微镜的基本原理是利用电子束照射样品,电子束通过样品后,部分电子被样品吸收,部分电子透过样品并被探测器接收。
通过分析透过电子的强度和分布,可以获得样品的形貌和结构信息。
透射电子显微镜的分辨率可以达到原子级别,是研究纳米材料的理想工具。
1.2 透射电子显微镜的应用领域透射电子显微镜的应用领域非常广泛,包括但不限于材料科学、纳米技术、生物医学、化学等领域。
在纳米材料的合成中,透射电子显微镜不仅可以观察材料的形貌,还可以分析材料的晶体结构、缺陷、界面等微观特征。
二、透射电子显微镜在纳米材料合成中的应用2.1 纳米材料的形貌观察透射电子显微镜在纳米材料的形貌观察中发挥着重要作用。
通过TEM,可以直观地观察到纳米材料的形状、尺寸和分布。
例如,纳米颗粒、纳米线、纳米管等不同形态的纳米材料都可以通过TEM进行观察。
这种观察对于理解材料的合成机制和优化合成条件具有重要意义。
2.2 纳米材料的晶体结构分析纳米材料的晶体结构对其性能有着决定性的影响。
透射电子显微镜可以通过高分辨电子衍射(High-Resolution Electron Diffraction, HRED)技术,对纳米材料的晶体结构进行精确分析。
通过分析电子衍射图谱,可以获得材料的晶格参数、晶体取向等信息,从而为材料的合成和应用提供理论基础。
2.3 纳米材料的缺陷与界面研究纳米材料的缺陷和界面是影响其性能的关键因素。
透射电子显微镜可以通过高角环形暗场成像(High-Angle Annular Dark Field Imaging, HAADF)技术,对纳米材料的缺陷和界面进行高分辨率成像。
TEM实验原理
透射电子显微镜原理及结构介绍透射电子显微镜透射电子显微镜(英文:Transmission electron microscopy,缩写TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。
散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。
通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2µm、光学显微镜下无法看清的结构,又称“亚显微结构”。
成像原理透射电子显微镜的成像原理可分为三种情况:吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。
样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。
早期的透射电子显微镜都是基于这种原理。
衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。
相位像:当样品薄至100Å以下时,电子可以传过样品,波的振幅变化可以忽略,成像来自于相位的变化。
组件电子枪:发射电子,由阴极、栅极、阳极组成。
阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速、加压的作用。
聚光镜:将电子束聚集,可用已控制照明强度和孔径角。
样品室:放置待观察的样品,并装有倾转台,用以改变试样的角度,还有装配加热、冷却等设备。
物镜:为放大率很高的短距透镜,作用是放大电子像。
物镜是决定透射电子显微镜分辨能力和成像质量的关键。
中间镜:为可变倍的弱透镜,作用是对电子像进行二次放大。
通过调节中间镜的电流,可选择物体的像或电子衍射图来进行放大。
透射镜:为高倍的强透镜,用来放大中间像后在荧光屏上成像。
此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。
透射电子显微镜原理
透射电子显微镜原理透射电子显微镜(transmission electron microscope, TEM)是利用透射电子成像,因而要求样品极薄(加速电压100kV时,样品厚度不能超过100nm)。
其结构包括三大部分:电子学系统、真空系统和电子光学系统。
电子光学系统提供电子束,在高真空条件下照射到样品上,经过成像系统中的物镜成像,再经过中间镜和投影镜的进一步放大,获得的图像记录在CCD上。
TEM使用油扩散泵(Diffuse Pump)来实现高真空。
由于油扩散泵的启动和关闭都需要30分钟,导致TEM开机和关机都至少需要30分钟。
TEM发射出的高能电子束轰击到光路元器件上以及样品上,会产生以X-ray为主的等等其他射线辐射,因此建议孕妇等过敏性体质者尽量避免接触TEM。
由于平台现有TEM的加速电压为100kV,是一台生物电镜,因此无法满足材料科学上要求的高放大倍数(30万倍以上)、高分辨、衍射花样等实验要求,有这方面需求的科研人员请与武大、地大等单位联系。
TEM是研究结构生物学的有力工具。
除了电镜之外,现在尚没有一种仪器能使人们用肉眼直接观察到亚细胞结构、蛋白大分子(直径20nm以上)的排列结构形态。
利用电镜观察超微结构的形态和位置,可以研究解决部分形态和功能的问题。
TEM是研究超微结构必须的工具之一,但它存在一些缺点:(1)TEM的价格昂贵,维护费用及其配件、耗材都在几百甚至上千美元以上。
(2)TEM的维护和使用均要求较高的技术,也是一个精细、繁琐的过程。
TEM每3天要做一次维护和电子光路调整,每次调整和维护至少需要2个小时。
(3)TEM不能像光镜那样随时可用,受到很多限制。
TEM放大倍数有很多,再加上切片的限制,因此无法实现始终同一放大倍数的拍摄。
(4)TEM样品必须置于真空中,因此对活体标本的观察是不可能的。
(5)TEM样品取材及制备存在局限性。
TEM取材要求只有1mm3大小块状,而且观察面更小,如果把一个厚6µm的细胞核切成60nm的超薄切片,可以且100张,而一般光镜的石蜡切片厚度即为6µm。
透射电子显微镜的原理
透射电子显微镜的原理
透射电子显微镜是一种利用电子束代替可见光进行成像的显微镜。
其原理基于电子的波粒二象性及电子与物质中原子的相互作用。
透射电子显微镜的工作原理可以简要分为以下几个步骤:
1. 电子源产生电子束:透射电子显微镜中通常使用热阴极或冷阴极发射电子,通过加速电场使电子获得足够的动能,形成电子束。
2. 电子束的集束:经过加速后,电子束通过一系列的电磁透镜,如准直孔光阑、聚焦透镜等,来进行集束,使电子束尽可能的细致聚焦。
3. 电子束与样品的相互作用:电子束进入样品后,会与样品中的原子发生相互作用。
电子束与样品中的原子核和电子云之间相互散射,发生透射、散射、吸收等过程。
4. 透射电子的形成:部分电子束透过样品,形成透射电子。
透射电子的强度和分布情况受样品的厚度、结构以及样品内部的原子数密度等因素的影响。
5. 透射电子的探测与成像:透射电子通过射出样品的透射电子探测器进行探测,并转换成电信号。
利用这些信号,通过电子透射的强度和分布,可以形成对样品内部结构的显微图像。
透射电子显微镜相较于光学显微镜具有更高的分辨率,因为电子的波长比光的波长要短得多。
透射电子显微镜广泛应用于材料科学、生物学、纳米技术等领域的研究中,可以观察并研究到原子尺度的结构和细节。
透射电子显微镜
•电子束倾斜与平移装置
利用电子束原位倾斜可以进行中心暗场成像操作
•消像散器
用来消除或减小透镜磁场的非轴对称性,把固 有的椭圆形磁场校正成旋转对称磁场的装置。 消像散器可以是机械式的,可 以是电磁式的。机械式的是在 电磁透镜的磁场周围放置几块 位置可以调节的导磁体,用它 们来吸引一部分磁场,把固有 的椭圆形磁场校正成接近旋转 对称的磁场。电磁式的是通过 电磁极间的吸引和排斥来校正 椭圆形磁场的
图9-3 双聚光镜原理图 聚光镜的作用是以最小的损失, 减小和调节束斑尺寸、调节照明 强度和照明孔径半角
•成像系统
由物镜、物镜光栏、选区光栏、中间镜(1、2)和投影镜组成 1.物镜
•
•
电镜的最关键的部分,其作用是将来自试样的弹性散射 束会聚于其后焦面上,构成含有试样结构信息的衍射花 样;将来自透过试样的电子束会聚于其像平面上,构成 与试样组织相对应的显微图像。 物镜是用来形成第一幅高分辨率电子显微图像或电子衍 射花样的透镜,透射电子显微镜分辨本领的高低主要取 决于物镜。因为物镜的任何缺陷都被成像系统中其它透 镜进一步放大。欲获得物镜的高分辨率,必须尽可能降 低像差(主要取决于极靴的形状和加工精度)。
很大,虽然荧光屏和底片之间有一些的间距,仍能得到清 晰的图像 .现代电镜已开始装有电子数码照相装置,即 CCD相机。
第二节
主要部件结构与工作原理
•样品台
电镜样品小而薄,通常用外径3mm的 样品铜网支持,网孔或方或园,约 0.075mm,见图。
样品台的作用是承载样品,并使样 品能作平移、倾斜、旋转,以选择 感兴趣的样品区域或位向进行观察 分析。透射电镜的样品是放置在物 镜的上下极靴之间,由于这里的空 间很小,所以透射电镜的样品也很 小,通常是直径3mm的薄片。
1.tem 的原理 -回复
1.tem 的原理-回复TEM的原理是透射电子显微镜(Transmission Electron Microscopy)的简称。
透射电子显微镜是一种高分辨率的显微镜,可以观察材料的微观结构并对其进行分析。
它使用電子束代替光束,通过材料内部的透射和散射来获得显微图像。
下面将一步一步回答TEM的原理。
首先,透射电子显微镜使用的主要成分是电子枪、透镜系统、样品台、投影屏幕和检测器等。
其中,电子枪用于产生电子束,透镜系统起到控制和聚焦电子束的作用,样品台用于支撑样品并将其放置在透射电子束的路径上。
投影屏幕用于显示样品的显微图像,检测器则用于捕捉和记录电子信号。
接下来,通过电子枪产生的高能电子束照射到样品上。
电子束与样品相互作用后,经过透射和散射的过程进入透镜系统。
在透过样品的过程中,电子束与样品的原子和电子相互作用,发生散射、弹性散射和非弹性散射等现象。
然后,透射电子束通过透镜系统进行聚焦。
透镜系统由一系列电磁透镜、电场透镜和孔径透明的金属膜等组成。
这些透镜和金属膜的组合可以调节电子束的聚焦和激发,以获得高分辨率的图像。
透射电子束经过聚焦后,进入到投影屏幕上,形成样品的显微图像。
最后,通过检测器捕捉透射电子的信号。
透射电子束通过样品时,与样品相互作用后,其强度和能量分布会发生变化。
检测器可以对透射电子束的强度、散射角度和能量进行测量和记录。
通过分析这些信号,可以获得关于样品的结构、成分和性质等信息。
综上所述,透射电子显微镜的原理是利用电子束的透射和散射过程,通过透镜系统的控制和聚焦,将电子束投射到投影屏幕上,并通过检测器对透射电子的信号进行捕捉和分析。
这些信号可以提供有关样品微观结构和性质的重要信息,使得透射电子显微镜成为一种重要的材料表征分析工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
透射电子显微镜的原理XXX(大庆师范学院物理与电气信息工程学院2008级物理学200801071293黑龙江大庆163712)摘要:透射电子显微镜在成像原理上与光学显微镜类似。
它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。
在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。
由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。
关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。
0引言:工业多相催化剂是极其复杂的物理化学体系。
长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。
为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。
在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。
为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。
1透射电子显微镜的定义/组成1.1定义在一个高真空系统中,由电子枪发射电子束,穿过被研究的样品,经电子透镜聚焦放大,在荧光屏上显示出高度放大的物像,还可作摄片记录的一类最常见的电子显微镜称为透射电子显微镜。
[1]1.2组成透射电子显微镜由照明系统、成像系统、记录系统、真空系统和电器系统组成。
(如图1)2透射电子显微镜的照明系统照明系统的作用是提供亮度高、相干性好、束流稳定的照明电子束。
它主要由发射并使电子加速的电子枪和会聚电子束的聚光镜组成。
图1透射电子显微镜结电子显微镜使用的电子源有两类:一类为热电子源,即在加热时产生电子;另一类为场发射源,即在强电场作用下产生电子。
为了控制由电子源产生的电子束,并将其导人照明系统,须将电子源安装在称为电子枪的特定装置内。
对热电子源和场发射源,电子枪的设计不同。
目前绝大多数透射电镜仍使用热电子发射源。
为改善阴极发射电子的稳定性,通常采用自偏压方法,即在栅极上施加比阴极负几百至近千伏的偏压,限制阴极尖端发射电子的区域。
三极电子枪本身对电子束还有一定聚焦作用。
阴极发射的电子被阳极电位加速,穿过栅极孔,在电极间的电场作用下,在栅极和阳极间会聚为尺寸为d0的交叉点。
样品上需要照明的区域大小与放大倍数有关。
放大倍数愈高,照明区域愈小,相应地要求以更细的电子束照明样品。
由电子枪直接发射出的电子束的束斑尺寸较大,相干性也较差。
为了更有效地利用这些电子,获得亮度高、相干性好的照明电子束以满足透射电镜在不同放大倍数下的需要,由电子枪发射出来的电子束还需要进一步会聚,提供束斑尺寸不同、近似平行的照明束。
这个任务通常由两个被叫做聚光镜的电磁透镜完成。
第一聚光镜通常保持不变,其作用是将电子枪的交叉点成一缩小的像,使其尺寸缩小一个数量级以上。
照明电子束的束斑尺寸及相干性的调整是通过改变第二聚光镜的激磁电流和第二聚光镜光栏孔径实现的。
为获得尽可能平行的电子束,通常要适当地减弱第二聚光镜的激磁电流。
例如拍摄衍射谱时,总是要适当减弱第二聚光镜的激磁电流,以使衍射斑更为明锐。
采用小孔径聚光镜光栏,可降低电子束的会聚角度,即增强其相干性或平行度,但同时却使得电子束流减小,图像亮度降低。
通过第一聚光镜、第二聚光镜可获得直径几个肿的近似平行电子束,相应的放大倍数范围为几千至十万倍。
此外,在照明系统中还安装有束倾斜装置,可以很方便地使电子束在2~3度的范围内倾斜,以便以某些特定的倾斜角度照明样品[例如以后将要提到的中心暗场成像时要将照明束(入射束)倾斜,使一个特定的衍射束平行于光轴]。
3成像系统透射电子显微镜的成像系统由物镜、中间镜(1、2个)和投影镜(1、2个)组成。
成像系统的两个基本操作是将衍射花样或图像投影到荧光屏上。
照明系统提供了一束相干性很好的照明电子束,这些电子穿越样品后便携带样品的结构信息,沿各自不同的方向传播(比如,当存在满足布拉格方程的晶面组时,可能在与入射束交成2q角的方向上产生衍射束)。
物镜将来自样品不同部位、传播方向相同的电子在其背焦面上会聚为一个斑点,沿不同方向传播的电子相应地形成不同的斑点,其中散射角为零的直射束被会聚于物镜的焦点,形成中心斑点。
这样,在物镜的背焦面上便形成了衍射花样。
而在物镜的像平面上,这些电子束重新组合相干成像。
通过调整中间镜的透镜电流,使中间镜的物平面与物镜的背焦面重合,可在荧光屏上得到衍射花样。
若使中间镜的物平面与物镜的像平面重合则得到显微像。
通过两个中间镜相互配合,可实现在较大范围内调整相机长度和放大倍数。
由衍射状态变换到成像状态,是通过改变中间镜的激磁强度(即改变其焦距)实现的。
在这个过程中,物镜和投影镜的焦距不变,中间镜以上的光路保持恒定。
通常为了便于图像聚焦,物镜的焦距只需在很小的范围内变化。
从上述成像原理可以看出,物镜提供了第一幅衍射花样和第一幅显微像。
物镜所产生的任何缺陷都将被随后的中间镜和投影镜接力放大。
可见,透射电镜分辨率的高低主要取决于物镜,它在透射电镜成像系统中占有头等重要的位置。
为获得高分辨本领,通常采用强激磁、短焦距物镜。
中间镜属长焦距弱激磁透镜。
投影镜与物镜一样属强激磁透镜,它的特点是具有很大的景深和焦长。
这使得在改变中间镜电流以改变放大倍数时,无须调整投影镜电流,仍能得到清晰的图像,同时容易保证在离开荧光屏平面(投影镜像平面)一定距离处放置的感光片上所成的图像与荧光屏上的相同。
4记录系统[2]4.1观察室透射电镜的最终成像结果,显现在观察室内的荧光屏上,观察室处于投影镜下,空间较大,开有1~3个铅玻璃窗,可供操作者从外部观察分析用。
对铅玻璃的要求是既有良好的透光特性,又能阻断X线散射和其他有害射线的逸出,还要能可靠地耐受极高的压力差以隔离真空。
由于电子束的成像波长太短,不能被人的眼睛直接观察,电镜中采用了涂有荧光物质的荧光屏板把接收到的电子影像转换成可见光的影像。
观察者需要在荧光屏上对电子显微影像进行选区和聚焦等调整与观察分析,这要求荧光屏的发光效率高,光谱和余辉适当,分辨力好。
目前多采用能发黄绿色光的硫化锌-镉类荧光粉做为涂布材料,直径约在15~20cm。
荧光屏的中心部分为一直径约10cm的圆形活动荧光屏板,平放时与外周荧屏吻合,可以进行大面积观察。
使用外部操纵手柄可将活动荧屏拉起,斜放在45°角位置,此时可用电镜置配的双目放大镜,在观察室外部通过玻璃窗来精确聚焦或细致分析影像结构;而活动荧光屏完全直立竖起时能让电子影像通过,照射在下面的感光胶片上进行曝光。
4.2照相室在观察中电子束长时间轰击生物医学样品标本,必会使样品污染或损伤。
所以对有诊断分析价值的区域,若想长久地观察分析和反复使用电镜成像结果,应该尽快把它保留下来,将因为电子束轰击生物医学样品造成的污染或损伤降低到最小。
此外,荧光屏上的粉质颗粒的解像力还不够高,尚不能充分反映出电镜成像的分辨本领。
将影像记录存储在胶片上便解决了这些问题。
照相室处在镜筒的最下部,内有送片盒(用于储存未曝光底片)和接收盒(用于收存已曝光底片)及一套胶片传输机构。
电镜生产的厂家、机型不同,片盒的储片数目也不相同,一般在20~50片/盒左右,底片尺寸日本多采用82.5mm×118mm,美国常用82.5mm×101.6mm,而欧州则用90mm×120mm。
每张底片都由特制的一个不锈钢底片夹夹持,叠放在片盒内。
工作时由输片机构相继有序地推放底片夹到荧光屏下方电子束成像的位置上。
曝光控制有手控和自控两种方法,快门启动装置通常并联在活动荧光屏板的扳手柄上。
电子束流的大小可由探测器检测,给操作者以曝光指示;或者应用全自动曝光模式由计算机控制,按程序选择曝光亮度和最佳曝光时间完成影像的拍摄记录。
现代电镜都可以在底片上打印出每张照片拍摄时的工作参数,如:加速电压值、放大率、微米标尺、简要文字说明、成像日期、底片序列号及操作者注解等备查的记录参数。
观察室与照相室之间有真空隔离阀。
以便在更换底片时,只打开照相室而不影响整个镜筒的真空。
4.3阴极射线管(CRT)显示器电镜的操作面板上的CRT显示器主要用于电镜总体工作状态的显示、操作键盘的输入内容显示、计算机与操作者之间的人机对话交流提示以及电镜维修调整过程中的程序提示、故障警示等。
5真空系统电镜镜筒内的电子束通道对真空度要求很高,电镜工作必须保持在10-3~10-4Pa以上的真空度(高性能的电镜对真空度的要求更达10-7Pa以上),因为镜筒中的残留气体分子如果与高速电子碰撞,就会产生电离放电和散射电子,从而引起电子束不稳定,增加像差,污染样品,并且残留气体将加速高热灯丝的氧化,缩短灯丝寿命。
获得高真空是由各种真空泵来共同配合抽取的。
5.1机械泵(旋转泵)机械泵因在其他场合使用非常广泛而比较常见,它工作时是靠泵体内的旋转叶轮刮片将空气吸入、压缩、排放到外界的。
机械泵的抽气速度每分钟仅为160L左右,工作能力也只能达到0.1~0.01Pa,远不能满足电镜镜筒对真空度的要求,所以机械泵只做为真空系统的前级泵来使用。
5.2油扩散泵扩散泵的实物外形和内部结构见图4-23。
它的工作原理是用电炉将特种扩散泵油加热至蒸汽状态,高温油蒸汽膨涨向上升起,靠油蒸汽吸附电镜镜体内的气体,从喷嘴朝着扩散泵内壁射出,在环绕扩散泵外壁的冷却水的强制降温下,油蒸汽冷却成液体时析出气体排至泵外,由机械泵抽走气体,油蒸汽冷却成液体后靠重力回落到加热电炉上的油槽里循环使用,见图4-23(c)。
扩散泵的抽气速度很快,约为每秒钟570L左右,工作能力也较强,可达10-3~10-4Pa。
但它只能在气体分子较稀薄时使用,这是由于氧气成分较多时易使高温油蒸气燃烧,所以扩散泵通常与机械泵串联使用,在机械泵将镜筒真空度抽到一定程度时,才启动扩散泵。
近年来电镜厂商在制作中为实现超高压、超高分辨率,必须满足超高真空度的要求,为此在电镜的真空系统中又推出了离子泵和涡轮分子泵,把它们与前述的机械泵和油扩散泵联用可以达到10-7Pa的超高真空度水平。
5.3真空阀、真空规真空阀是用于启闭真空通道各部分的关卡,使各部分能独立放气、抽空而不影响整个系统的真空度。
真空规用于镜筒各部位真空度的检测,向真空表和真空控制电路提供信号,根据检测目标的真空度不同,真空规分为“皮拉尼规”和“潘宁规”2种。