(整理)11种滤波方法+范例代码.

合集下载

滤波算法举例word精品文档19页

滤波算法举例word精品文档19页

滤波算法十一种通用滤波算法1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

几种滤波算法

几种滤波算法

一.十一种通用滤波算法(转)1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

(整理)几种滤波的经典算法

(整理)几种滤波的经典算法
连续采样N个数据,去掉一个最大值和一个最小值
然后计算N-2个数据的算术平均值
N值的选取:3~14
B、优点:
融合了两种滤波法的优点
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
C、缺点:
测量速度较慢,和算术平均滤波法一样
比较浪费RAM
6、限幅平均滤波法
A、方法:
相当于“限幅滤波法”+“递推平均滤波法”
适用于波动频率较高的场合
C、缺点:
相位滞后,灵敏度低
滞后程度取决于a值大小
不能消除滤波频率高于采样频率的1/2的干扰信号
8、加权递推平均滤波法
A、方法:
是对递推平均滤波法的改进,即不同时刻的数据加以不同的权
通常是,越接近现时刻的数据,权取得越大。
给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低
几种经典的滤波算法(转)
1、限幅滤波法(又称程序判断滤波法)
A、方法:
根据经验判断,确定两次采样允许的最大偏差值(设为A)
每次检测到新值时判断:
如果本次值与上次值之差<=A,则本次值有效
如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值
B、优点:
能有效克服因偶然因素引起的脉冲干扰
N值较大时:信号平滑度较高,但灵敏度较低
N值较小时:信号平滑度较低,但灵敏度较高
N值的选取:一般流量,N=12;压力:N=4
B、优点:
适用于对一般具有随机干扰的信号进行滤波
这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动
C、缺点:
对于测量速度较慢或要求数据计算速度较快的实时控制不适用
比较浪费RAM

10种软件滤波方法及示例程序

10种软件滤波方法及示例程序

10种软件滤波方法及示例程序滤波是数字信号处理中常用的一种方法,用于去除信号中的噪声或者改变信号的频率响应。

软件滤波是指使用计算机软件来实现滤波功能。

本文将介绍10种常用的软件滤波方法,并附上相应的示例程序。

1.均值滤波:将信号中的每个样本点都替换为其邻近样本点的平均值。

这种方法适用于去除高频噪声,但会导致信号的模糊化。

示例程序:```pythonimport numpy as npdef mean_filter(signal, window_size):filtered_signal = []for i in range(len(signal)):start = max(0, i - window_size//2)end = min(len(signal), i + window_size//2)filtered_signal.append(np.mean(signal[start:end]))return filtered_signal#使用示例signal = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]window_size = 3filtered_signal = mean_filter(signal, window_size)print(filtered_signal)```2.中值滤波:将信号中每个样本点都替换为邻近样本点的中值。

这种方法适用于去除椒盐噪声等随机噪声,但不适用于平滑信号。

示例程序:```pythonimport numpy as npdef median_filter(signal, window_size):filtered_signal = []for i in range(len(signal)):start = max(0, i - window_size//2)end = min(len(signal), i + window_size//2)filtered_signal.append(np.median(signal[start:end]))return filtered_signal#使用示例signal = [1, 3, 5, 7, 9, 8, 6, 4, 2]window_size = 3filtered_signal = median_filter(signal, window_size)print(filtered_signal)```3.高斯滤波:使用一维/二维高斯函数作为滤波器,加权平均信号的邻近样本点。

10种简单的数字滤波算法

10种简单的数字滤波算法

10种简单的数字滤波算法(C语言源程序) 假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();1、限副滤波/* A值可根据实际情况调整value为有效值,new_value为当前采样值滤波程序返回有效的实际值*/#define A 10char value;char filter(){char new_value;new_value = get_ad();if ( ( new_value - value > A ) || ( value - new_value > A )return value;return new_value;}2、中位值滤波法/* N值可根据实际情况调整排序采用冒泡法*/#define N 11char filter(){char value_buf[N];char count,i,j,temp;for ( count=0;count<N;count++){value_buf[count] = get_ad();delay();}for (j=0;j<N-1;j++){for (i=0;i<N-j;i++){if ( value_buf[i]>value_buf[i+1] ){temp = value_buf[i];value_buf[i] = value_buf[i+1];value_buf[i+1] = temp;}}}return value_buf[(N-1)/2];}3、算术平均滤波法/**/#define N 12char filter(){int sum = 0;for ( count=0;count<N;count++){sum + = get_ad();delay();}return (char)(sum/N);}4、递推平均滤波法(又称滑动平均滤波法)/**/#define N 12char value_buf[N];char i=0;char filter(){char count;int sum=0;value_buf[i++] = get_ad();if ( i == N ) i = 0;for ( count=0;count<N,count++)sum = value_buf[count];return (char)(sum/N);}5、中位值平均滤波法(又称防脉冲干扰平均滤波法)/**/#define N 12char filter(){char count,i,j;char value_buf[N];int sum=0;for (count=0;count<N;count++){value_buf[count] = get_ad();delay();}for (j=0;j<N-1;j++){for (i=0;i<N-j;i++){if ( value_buf[i]>value_buf[i+1] ){temp = value_buf[i];value_buf[i] = value_buf[i+1];value_buf[i+1] = temp;}}}for(count=1;count<N-1;count++)sum += value[count];return (char)(sum/(N-2));}6、限幅平均滤波法/**/略参考子程序1、37、一阶滞后滤波法/* 为加快程序处理速度假定基数为100,a=0~100 */#define a 50char value;char filter(){char new_value;new_value = get_ad();return (100-a)*value + a*new_value;}8、加权递推平均滤波法/* coe数组为加权系数表,存在程序存储区。

常用滤波方法

常用滤波方法

1、限幅滤波法(又称程序判断滤波法)2、A、方法:3、根据经验判断,确定两次采样允许的最大偏差值(设为A)4、每次检测到新值时判断:5、如果本次值与上次值之差<=A,则本次值有效6、如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值7、B、优点:8、能有效克服因偶然因素引起的脉冲干扰9、C、缺点10、无法抑制那种周期性的干扰11、平滑度差12、13、2、中位值滤波法14、A、方法:15、连续采样N次(N取奇数)16、把N次采样值按大小排列17、取中间值为本次有效值18、B、优点:19、能有效克服因偶然因素引起的波动干扰20、对温度、液位的变化缓慢的被测参数有良好的滤波效果21、C、缺点:22、对流量、速度等快速变化的参数不宜23、24、25、26、3、算术平均滤波法27、A、方法:28、连续取N个采样值进行算术平均运算29、N值较大时:信号平滑度较高,但灵敏度较低30、N值较小时:信号平滑度较低,但灵敏度较高31、N值的选取:一般流量,N=12;压力:N=432、B、优点:33、适用于对一般具有随机干扰的信号进行滤波34、这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动35、C、缺点:36、对于测量速度较慢或要求数据计算速度较快的实时控制不适用37、比较浪费RAM38、39、4、递推平均滤波法(又称滑动平均滤波法)40、A、方法:41、把连续取N个采样值看成一个队列42、队列的长度固定为N43、每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)44、把队列中的N个数据进行算术平均运算,就可获得新的滤波结果45、N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~446、B、优点:47、对周期性干扰有良好的抑制作用,平滑度高48、适用于高频振荡的系统49、C、缺点:50、灵敏度低51、对偶然出现的脉冲性干扰的抑制作用较差52、不易消除由于脉冲干扰所引起的采样值偏差53、不适用于脉冲干扰比较严重的场合54、比较浪费RAM55、56、5、中位值平均滤波法(又称防脉冲干扰平均滤波法)57、A、方法:58、相当于“中位值滤波法”+“算术平均滤波法”59、连续采样N个数据,去掉一个最大值和一个最小值60、然后计算N-2个数据的算术平均值61、N值的选取:3~1462、B、优点:63、融合了两种滤波法的优点64、对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差65、C、缺点:66、测量速度较慢,和算术平均滤波法一样67、比较浪费RAM68、69、70、71、72、6、限幅平均滤波法73、A、方法:74、相当于“限幅滤波法”+“递推平均滤波法”75、每次采样到的新数据先进行限幅处理,76、再送入队列进行递推平均滤波处理77、B、优点:78、融合了两种滤波法的优点79、对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差80、C、缺点:81、比较浪费RAM82、83、84、85、7、一阶滞后滤波法86、A、方法:87、取a=0~188、本次滤波结果=(1-a)*本次采样值+a*上次滤波结果89、B、优点:90、对周期性干扰具有良好的抑制作用91、适用于波动频率较高的场合92、C、缺点:93、相位滞后,灵敏度低94、滞后程度取决于a值大小95、不能消除滤波频率高于采样频率的1/2的干扰信号96、97、8、加权递推平均滤波法98、A、方法:99、是对递推平均滤波法的改进,即不同时刻的数据加以不同的权100、通常是,越接近现时刻的数据,权取得越大。

几种滤波算法

几种滤波算法

一.十一种通用滤波算法(转)1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

十一种滤波方法及C语言程序

十一种滤波方法及C语言程序

一.十一种通用滤波算法(转)1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

10种简单的数字滤波算法(C++源程序)

10种简单的数字滤波算法(C++源程序)

10种简单的数字滤波算法(C++源程序)以下是10种简单的数字滤波算法C++实现示例:1. 均值滤波均值滤波是数字滤波算法的一种常见形式,它可以通过计算一定范围内像素值的平均值来平滑图像。

其C++实现如下:#include <iostream>#include <opencv2/opencv.hpp>using namespace std;using namespace cv;// Function to implement mean filtervoid meanBlur(Mat& img, Mat& result, int k_size){int img_rows = img.rows;int img_cols = img.cols;// Create a same sized blank imageresult.create(img_rows, img_cols, img.type());for(int r=0; r<img_rows; r++){for(int c=0; c<img_cols; c++){// Define the window of radius k_sizeint r_min = max(0, r-k_size/2);int r_max = min(img_rows-1, r+k_size/2);int c_min = max(0, c-k_size/2);int c_max = min(img_cols-1, c+k_size/2);// Calculate the mean valueint sum = 0;int count = 0;for (int i=r_min; i<=r_max; i++){for (int j=c_min; j<=c_max; j++){sum += img.at<uchar>(i,j);count++;}}result.at<uchar>(r,c) = (uchar) (sum/count);}}}int main(int argc, char** argv){// Load the imageMat img = imread("image.jpg", 0);// Check if image is loaded properlyif(!img.data){cout << "Failed to load image" << endl;return -1;}// Define the kernel sizeint k_size = 3;// Apply mean filterMat result;meanBlur(img, result, k_size);// Display the resultnamedWindow("Original Image", WINDOW_NORMAL);namedWindow("Mean Filtered Image", WINDOW_NORMAL);imshow("Original Image", img);imshow("Mean Filtered Image", result);waitKey(0);return 0;}在上述代码中,`meanBlur()` 函数接收一个输入图像`img` 和一个输出图像`result`,以及一个整数参数`k_size`,该参数指定滤波器的大小,即窗口的半径。

十一种滤波方法及C语言程序

十一种滤波方法及C语言程序

一. 十一种通用滤波算法(转)1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A, 则本次值有效如果本次值与上次值之差>A, 则本次值无效, 放弃本次值, 用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N 次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N 个采样值进行算术平均运算N 值较大时:信号平滑度较高,但灵敏度较低N 值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N 每次采样到一个新数据放入队尾, 并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4〜12;温度,N=1〜4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法” +“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2 个数据的算术平均值N 值的选取:3〜14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法” +“递推平均滤波法” 每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0〜1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C缺点:相位滞后,灵敏度低滞后程度取决于 a 值大小不能消除滤波频率高于采样频率的1/2 的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

10种简单的数字滤波C语言源程序算法

10种简单的数字滤波C语言源程序算法

10种简单的数字滤波C语言源程序算法(2009-11-09 10:25:08)假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

滤波算法程序(详述十种滤波方法,附源代码)

滤波算法程序(详述十种滤波方法,附源代码)

1、限幅滤波法/****************************************************函数名称:AmplitudeLimiterFilter()-限幅滤波法*优点:能有效克服因偶然因素引起的脉冲干扰*缺点:无法抑制那种周期性的干扰,且平滑度差*说明:1、调用函数GetAD(),该函数用来取得当前值2、变量说明Value:最近一次有效采样的值,该变量为全局变量NewValue:当前采样的值ReturnValue:返回值3、常量说明A:两次采样的最大误差值,该值需要使用者根据实际情况设置*入口:Value,上一次有效的采样值,在主程序里赋值*出口:ReturnValue,返回值,本次滤波结果****************************************************/#define A 10unsigned char Valueunsigned char AmplitudeLimiterFilter(){unsigned char NewValue;unsigned char ReturnValue;NewValue=GatAD();if(((NewValue-Value)>A))||((Value-NewValue)>A)))ReturnValue=Value;else ReturnValue=NewValue;return(ReturnValue);}2、中位值滤波法/*****************************************************函数名称:MiddlevalueFilter()-中位值滤波法*优点:能有效克服因偶然因素引起的波动干扰;对温度、液位等变化缓慢的被测参数有良好的滤波效果*缺点:对流量,速度等快速变化的参数不宜*说明:1、调用函数GetAD(),该函数用来取得当前值Delay(),基本延时函数2、变量说明ArrDataBuffer[N]:用来存放一次性采集的N组数据Temp:完成冒泡法试用的临时寄存器i,j,k:循环试用的参数值3、常量说明N:数组长度*入口:*出口:value_buf[(N-1)/2],返回值,本次滤波结果*****************************************************/#define N 11unsigned char MiddlevalueFilter(){unsigned char value_buf[N];unsigned char i,j,k,temp;for(i=0;i<N;i++){value_buf[i] = get_ad();delay();}for (j=0;j<N-1;j++){for (k=0;k<N-j;k++){if(value_buf[k]>value_buf[k+1]){temp = value_buf[k];value_buf[k] = value_buf[k+1];value_buf[k+1] = temp;}}}return value_buf[(N-1)/2];}3、算术平均滤波法/*********************************************************说明:连续取N个采样值进行算术平均运算优点:试用于对一般具有随机干扰的信号进行滤波。

十一种通用软件滤波算法

十一种通用软件滤波算法

十一种通用软件滤波算法滤波算法是一种常用的信号处理算法,用于去除信号中的噪声、干扰或者其他不需要的成分,以提高信号质量。

通用软件滤波算法主要用于数字信号处理,以下是十一种常见的通用软件滤波算法:1. 均值滤波算法(Mean Filtering):将输入信号的每个采样值替换为其周围邻域内所有样本的平均值。

它适用于消除高频噪声。

2. 中值滤波算法(Median Filtering):将输入信号的每个采样值替换为其周围邻域内所有样本的中值。

它适用于去除椒盐噪声。

3. 加权平均滤波算法(Weighted Mean Filtering):在均值滤波算法基础上,引入权值对周围样本进行加权平均,以便更好地保留原始信号的特征。

4. 自适应均值滤波算法(Adaptive Mean Filtering):根据信号的每个采样与周围样本的灰度差异,调整均值滤波算法的滤波参数,以提高滤波效果。

5. 高斯滤波算法(Gaussian Filtering):通过计算输入信号的每个采样与其周围邻域内各个样本之间的高斯核函数权重的加权平均来滤波信号。

6. 卡尔曼滤波算法(Kalman Filtering):根据系统状态特性和测量信息,结合时间和测量的线性状态方程,通过最小化预测误差方差来估计和滤波信号。

7. 二阶无限脉冲响应滤波器算法(IIR Filtering):基于差分方程和递归方式运算的滤波算法,具有较好的频率响应,但容易产生数值不稳定和计算复杂度高的问题。

8. 有限脉冲响应滤波器算法(FIR Filtering):基于加权线性组合的方式来滤波信号,具有稳定性好、易于实现的特点。

9. 最小均方滤波算法(Least Mean Square Filtering):通过最小化滤波器的均方误差来更新滤波器权值,以逼近滤波器的最优解。

10. 快速傅里叶变换滤波算法(FFT Filtering):利用快速傅里叶变换将信号从时域转换为频域,并利用频域上的特性进行滤波。

种滤波算法程序大全(含源代码分享)

种滤波算法程序大全(含源代码分享)

种滤波算法程序大全(含源代码分享)一、均值滤波1.1包络滤波其原理是将每个像素值替换为周围像素点的加权平均值,即取该点的邻域像素点的均值作为替换像素点的值,通过提高平均灰度和减少椒盐噪声作用。

//源代码// 函数名:meanFilte//功能:均值滤波// 输入:srcImg:源图像; meanImg:均值flied后的图像// 返回:voidvoid meanFilter(Mat srcImg, Mat meanImg)int m=srcImg.rows;int n=srcImg.cols;//掩模矩阵int mask_i, mask_j;int i, j;int sum;int mask_size=3;//maskSize=3时,卷积核为3*3的矩阵,mask_i代表卷积核中行,mask_j代表列for (mask_i = -mask_size/2;mask_i<=mask_size/2;mask_i++)for (mask_j = -mask_size/2;mask_j<=mask_size/2;mask_j++)//遍历源图像的每个像素点for (i=0;i<m;i++)for (j=0;j<n;j++)if ((mask_i+i>=0) && (mask_i+i<m) &&(mask_j+j>=0) && (mask_j+j<n))sum+=srcImg.at<uchar>(mask_i+i,mask_j+j);meanImg.at<uchar>(i,j)=sum/9;}}}1.2高斯滤波其原理是将每个像素值替换为其周围像素点与其距离的加权平均值,通过减小噪声频率,降低噪声增强图像边缘的作用。

//源代码// 函数名:gaussianFilte//功能:高斯滤波// 输入:srcImg:源图像; gausImg:高斯滤波后的图像// 返回:voidvoid gaussianFilter(Mat srcImg, Mat gausImg)int m=srcImg.rows;int n=srcImg.cols;//掩模矩阵int mask_i, mask_j;int i, j;int sum;。

简单且实用的一些滤波算法

简单且实用的一些滤波算法

简单且实用的一些滤波算法[复制链接]ChocolateUni中级会员∙ 串个门∙ 加好友∙ 打招呼∙ 发消息 电梯直达 楼主 发表于 2011-11-4 21:27:13 |只看该作者|倒序浏览 10种滤波算法 及 例子c 代码(来自于互联网) 经常有朋友们提起传感器采样的时候数据会抖动,会跳动, 这时候需要一些滤波算法; 1、限幅滤波法(又称程序判断滤波法)2、中位值滤波法3、算术平均滤波法4、递推平均滤波法(又称滑动平均滤波法)5、中位值平均滤波法(又称防脉冲干扰平均滤波法)6、限幅平均滤波法7、一阶滞后滤波法8、加权递推平均滤波法9、消抖滤波法10、限幅消抖滤波法11、IIR 滤波???假定从8位AD 中读取数据(如果是更高位的AD 可定义数据类型为int),子程序为get_ad();1、限幅滤波法(又称程序判断滤波法)A 、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A ) 每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B 、优点:能有效克服因偶然因素引起的脉冲干扰C 、缺点无法抑制那种周期性的干扰平滑度差eg.#define A 10char filter(){char new_value;new_value = get_ad();if ((new_value - value > A) || (value - new_value > A)) return value;return new_value;}2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜eg./* N值可根据实际情况调整排序采用冒泡法*/#define N 11char filter(){char value_buf[N];char count,i,j,temp;for (count=0;count<N;count++){value_buf[count] = get_ad();delay();}for (j=0;j<=N;j++){for (i=0;i<=N-j;i++){if (value_buf > value_buf[i+1]){temp = value_buf;value_buf = value_buf[i+1];value_buf[i+1] = temp;}}return value_buf[(N-1)/2];}3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAMeg.#define N 12char filter(){int sum = 0;for(count=0;count<N;count++){sum + = get_ad();delay();}return (char)(sum/N);}4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM#define N 12char value_buf[N];char i=0;char filter(){char count;int sum=0;value_buf[i++] = get_ad();if (i == N)i = 0;for (count=0;count<N;count++)sum += value_buf[count];return (char)(sum/N);}5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAMeg.#define N 12char filter(){char count,i,j;int sum=0;for(count=0;count<N;count++){value_buf[count] = get_ad();delay();}for (j=0;j<=N;j++){for (i=0;i<=N-j;i++){if (value_buf > value_buf[i+1]){temp = value_buf;value_buf = value_buf[i+1];value_buf[i+1] = temp;}}}for(count=1;count<N-1;count++)sum += value[count];return (char)(sum/(N-2));}6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低不能消除滤波频率高于采样频率的1/2的干扰信号eg./* 为加快程序处理速度假定基数为100,a=0~100 */#define a 50char value;char filter(){char new_value;new_value = get_ad();return (100-a)*value + a*new_value;}8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

(整理)几种滤波的经典算法.

(整理)几种滤波的经典算法.
(3)对环境影响很小、不需要进行环境影响评价的建设项目,填报环境影响登记表。
1、限副滤波
/* A值可根据实际情况调整
value为有效值,new_value为当前采样值
滤波程序返回有效的实际值*/
#define A 10
char value;
char filter()
{
char new_value;
new_value = get_ad();
if ( ( new_value - value > A ) || ( value - new_value > A )
{
temp = value_buf;
value_buf = value_buf[i+1];
value_buf[i+1] = temp;
}
}
}
for(count=1;count<N-1;COUNT++)
sum += value[count];
return (char)(sum/(N-2));
}
6、限幅平均滤波法
delay();
new_value = get_ad();
}
return value;
}
10、限幅消抖滤波法
/*
*/
略参考子程序1、9
11、IIR滤波例子
int BandpassFilter4(int InputAD4)
{
int ReturnValue;
int ii;
RESLO=0;
RESHI=0;
value_buf[i+1] = temp;
}
}
}
return value_buf[(N-1)/2];

11种常见的AD滤波算法

11种常见的AD滤波算法
char new_value; new_value = get_ad(); value = value + (new_value - value)/N; return value; }
这个程序的意思是把临近两个的变化减小至 1/N
value 为有效值,new_value 为当前采样值 滤波程序返回有效的实际值 */ #define A 10 char value; char filter() { char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A )
for (i=0;i<N-j;i++) {
if ( value_buf>value_buf[i+1] ) {
temp = value_buf; value_buf = value_buf[i+1];
value_buf[i+1] = temp; } } } return value_buf[(N-1)/2]; }
第 10 种方法 限幅消抖滤波法 A 方法 相当于“限幅滤波法”+“消抖滤波法”先限幅后消抖 B 优点 继承了“限幅”和“消抖”的优点改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统 C 缺点 对于快速变化的参数不宜 D 实例程序 略 参考子程序第 1 种方法 限幅滤波法(又称程序判断滤波法)和第 9 种方法 消抖滤波法
char filter() {
char count="0";
char new_value; new_value = get_ad(); while (value !=new_value); {
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

软件滤波算法(转载)这几天做一个流量检测的东西,其中用到了对数据的处理部分,试了很多种方法,从网上找到这些个滤波算法,贴出来记下需要注意的是如果用到求平均值的话,注意总和变量是否有溢出,程序没必要照搬,主要学习这些方法,相信做东西的时候都能用得上1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低B、优点:适用于有较大纯滞后时间常数的对象和采样周期较短的系统C、缺点:对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号不能迅速反应系统当前所受干扰的严重程度,滤波效果差9、消抖滤波法A、方法:设置一个滤波计数器将每次采样值与当前有效值比较:如果采样值=当前有效值,则计数器清零如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)如果计数器溢出,则将本次值替换当前有效值,并清计数器B、优点:对于变化缓慢的被测参数有较好的滤波效果,可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动C、缺点:对于快速变化的参数不宜如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统10、限幅消抖滤波法A、方法:相当于“限幅滤波法”+“消抖滤波法”先限幅,后消抖B、优点:继承了“限幅”和“消抖”的优点改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统C、缺点:对于快速变化的参数不宜第11种方法:IIR 数字滤波器A. 方法:确定信号带宽,滤之。

Y(n) = a1*Y(n-1) + a2*Y(n-2) + ... + ak*Y(n-k) + b0*X(n) + b1*X(n-1) + b2*X(n-2) + ... + bk*X(n-k)B. 优点:高通,低通,带通,带阻任意。

设计简单(用matlab)C. 缺点:运算量大。

//---------------------------------------------------------------------软件滤波的C程序样例10种软件滤波方法的示例程序假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();1、限副滤波1./* A值可根据实际情况调整2. value为有效值,new_value为当前采样值3.滤波程序返回有效的实际值 */4.#define A 105.6.char value;7.8.char filter()9.{10. char new_value;11. new_value = get_ad();12. if ( ( new_value - value > A ) || ( value - new_value > A )13. return value;14. return new_value;15.16.}2、中位值滤波法1./* N值可根据实际情况调整2.排序采用冒泡法*/3.#define N 114.5.char filter()6.{7. char value_buf[N];8. char count,i,j,temp;9. for ( count=0;count<N;count++)10. {11. value_buf[count] = get_ad();12. delay();13. }14. for (j=0;j<N-1;j++)15. {16. for (i=0;i<N-j;i++)17. {18. if ( value_buf>value_buf[i+1] )19. {20. temp = value_buf;21. value_buf = value_buf[i+1];22. value_buf[i+1] = temp;23. }24. }25. }26. return value_buf[(N-1)/2];27.}3、算术平均滤波法1./*2.*/3.4.#define N 125.6.char filter()7.{8. int sum = 0;9. for ( count=0;count<N;count++)10. {11. sum + = get_ad();12. delay();13. }14. return (char)(sum/N);15.}4、递推平均滤波法(又称滑动平均滤波法)1./*2.*/3.#define N 124.5.char value_buf[N];6.char i=0;7.8.char filter()9.{10. char count;11. int sum=0;12. value_buf[i++] = get_ad();13. if ( i == N ) i = 0;14. for ( count=0;count<N,count++)15. sum = value_buf[count];16. return (char)(sum/N);17.}5、中位值平均滤波法(又称防脉冲干扰平均滤波法)1./*2.*/3.#define N 124.5.char filter()6.{7. char count,i,j;8. char value_buf[N];9. int sum=0;10. for (count=0;count<N;count++)11. {12. value_buf[count] = get_ad();13. delay();14. }15. for (j=0;j<N-1;j++)16. {17. for (i=0;i<N-j;i++)18. {19. if ( value_buf>value_buf[i+1] )20. {21. temp = value_buf;22. value_buf = value_buf[i+1];23. value_buf[i+1] = temp;24. }25. }26. }27. for(count=1;count<N-1;count++)28. sum += value[count];29. return (char)(sum/(N-2));30.}6、限幅平均滤波法1./*2.*/3.略参考子程序1、37、一阶滞后滤波法1./* 为加快程序处理速度假定基数为100,a=0~100 */2.3.#define a 504.5.char value;6.7.char filter()8.{9. char new_value;10. new_value = get_ad();11. return (100-a)*value + a*new_value;12.}8、加权递推平均滤波法1./* coe数组为加权系数表,存在程序存储区。

*/2.3.#define N 124.5.char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};6.char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;7.8.char filter()9.{10. char count;11. char value_buf[N];12. int sum=0;13. for (count=0,count<N;count++)14. {15. value_buf[count] = get_ad();16. delay();17. }18. for (count=0,count<N;count++)19. sum += value_buf[count]*coe[count];20. return (char)(sum/sum_coe);21.}9、消抖滤波法1.#define N 122.3.char filter()4.{5. char count=0;6. char new_value;7. new_value = get_ad();8. while (value !=new_value);9. {10. count++;11. if (count>=N) return new_value;12. delay();13. new_value = get_ad();14. }15. return value;16.}10、限幅消抖滤波法1./*2.*/3.略参考子程序1、911、IIR滤波例子1.int BandpassFilter4(int InputAD4)2.{3. int ReturnValue;4. int ii;5. RESLO=0;6. RESHI=0;7. MACS=*PdelIn;8. OP2=1068; //FilterCoeff4[4];9. MACS=*(PdelIn+1);10. OP2=8; //FilterCoeff4[3];11. MACS=*(PdelIn+2);12. OP2=-2001;//FilterCoeff4[2];13. MACS=*(PdelIn+3);14. OP2=8; //FilterCoeff4[1];15. MACS=InputAD4;16. OP2=1068; //FilterCoeff4[0];17. MACS=*PdelOu;18. OP2=-7190;//FilterCoeff4[8];19. MACS=*(PdelOu+1);20. OP2=-1973; //FilterCoeff4[7];21. MACS=*(PdelOu+2);22. OP2=-19578;//FilterCoeff4[6];23. MACS=*(PdelOu+3);24. OP2=-3047; //FilterCoeff4[5];25. *p=RESLO;26.27. *(p+1)=RESHI;28.29. mytestmul<<=2;30. ReturnValue=*(p+1);31.32. for (ii=0;ii<3;ii++)33.34. {35. DelayInput[ii]=DelayInput[ii+1];36.37. DelayOutput[ii]=DelayOutput[ii+1];38. }39.40. DelayInput[3]=InputAD4;41.42. DelayOutput[3]=ReturnValue;43.44.45. // if (ReturnValue<0)46. // {47.48. // ReturnValue=-ReturnValue;49.50. // }51. return ReturnValue;52.}。

相关文档
最新文档