历年中考数学经典考题及考试策略
中考数学典型试题解题思路点拨
中考数学典型试题解题思路点拨中考数学试题作为考生们的重要考试内容,涉及到广泛的数学知识和解题思维方法。
在解题过程中,考生除了要掌握基础知识外,还需要具备一定的解题技巧和思维灵活度。
本文将从几个典型数学试题入手,给出解题思路的点拨。
典型试题一:巧用因式分解法题目:已知\(a^3 + 2a^2 + a = 120\),求\(a\)的值。
解题思路:1. 根据已知条件,将方程的等式两边合并,并令方程等于零,得到\(a^3 + 2a^2 + a - 120 = 0\)。
2. 这是一个三次方程,常规的方法是尝试因式分解。
观察方程可以发现,\(120\)可以因式分解为\(8 \times 15\),然后进一步分解为\(8\times 3 \times 5\)。
3. 进一步观察方程,可以发现\(a^3 + 2a^2 + a - 120\)中的\(a^3\)、\(2a^2\)和\(a\)三项恰好可以分别因式分解为\(a \times a^2\)、\(2 \times a^2\)和\(a\)。
4. 因此,原方程可以重写为\((a \times a^2) + (2 \times a^2) + a - (8 \times 3 \times 5) = 0\),进一步合并得到\((a + 8)(a^2 + 15) = 0\)。
5. 解方程组得\(a = -8\)或\(a^2 = -15\)。
显然,\(a^2 = -15\)没有实数解。
6. 最终,\(a = -8\)。
典型试题二:巧用图形几何法题目:如图,在平行四边形ABCD中,两个相邻的边长之比是7:3,若AD=15cm,求BC的长度。
解题思路:1. 根据题目给出的信息,画出平行四边形ABCD的示意图。
2. 由于平行四边形的对边平行且相等,根据题目给出的边长之比是7:3,可以推导得到AB与CD的边长之比也是7:3。
3. 令BC的长度为\(x\),则根据比例关系可以得到\(\frac{x}{15} = \frac{7}{3}\)。
初三数学解题技巧题集附答案
初三数学解题技巧题集附答案1. 解方程 x + 3 = 5。
解答:根据题目,我们要解的方程是 x + 3 = 5。
首先,我们可以将等式两边减去3,得到 x = 2。
所以,方程的解为 x = 2。
2. 求一个整数 x,使得 x 的两倍加上5等于17。
解答:我们可以表示这个题目为方程 2x + 5 = 17。
首先,我们可以将等式两边减去5,得到 2x = 12。
然后,再将等式两边除以2,得到 x = 6。
所以,这个整数 x 的值为 6。
3. 某物品原价为 120 元,现在打8折出售,求打折后的价格。
解答:首先,我们可以求出打折的数值,即 120 × 0.8 = 96 元。
打折后的价格为 96 元。
4. 三个数相加等于30,第一个数是第二个数的四倍,第三个数比第二个数多5,求这三个数分别是多少?解答:设第二个数为 x,则第一个数为 4x,第三个数为 x + 5。
根据题意,我们可以得到方程 4x + x + (x + 5) = 30。
整理得到 6x + 5 = 30。
然后,将等式两边减去5,得到 6x = 25。
最后,将等式两边除以6,得到 x = 25/6。
所以,第一个数为 4 * (25/6),第二个数为 25/6,第三个数为 25/6 + 5。
5. 两个数的比是2:3,它们的和为50,求这两个数分别是多少?解答:设两个数的比为 2x:3x,其中 x 为比例尺。
根据题意,我们可以得到方程 2x + 3x = 50。
整理得到 5x = 50。
将等式两边除以5,得到 x = 10。
所以,两个数分别为 2 * 10 和 3 * 10,即 20 和 30。
6. 某数的三分之一是 12,求这个数。
解答:设这个数为 x。
根据题意,我们可以得到方程 x/3 = 12。
将等式两边乘以 3,得到 x = 36。
所以,这个数为 36。
7. 一辆汽车以每小时 60 公里的速度行驶,行驶了多少小时可以行驶 600 公里?解答:设行驶的小时数为 x。
九年级数学必考题型与技巧题
九年级数学的必考题型与技巧题主要包括以下几类:
1. 代数题:主要考察一元二次方程、不等式、分式方程等知识。
解决这类题目的关键是掌握好代数的基本运算法则,如合并同类项、消元法等。
2. 几何题:主要考察三角形、四边形、圆等几何图形的性质与计算。
解决这类题目的关键是灵活运用几何定理和公式,如勾股定理、面积公式等,并注意图形的变换,如平移、旋转等。
3. 统计与概率题:主要考察数据的处理、分析及概率计算。
解决这类题目的关键是理解统计与概率的基本概念,如平均数、中位数、众数、概率等,并能运用这些知识解决实际问题。
4. 方程与不等式题:主要考察一元一次方程、一元二次方程、分式方程以及不等式的解法。
解决这类题目的关键是掌握各种方程与不等式的解法,如公式法、因式分解法、图像法等。
5. 函数题:主要考察一次函数、二次函数、反比例函数等函数的性质与计算。
解决这类题目的关键是理解函数的概念,掌握各种函数的性质和图像,并能运用这些知识解决实际问题。
在解题过程中,可以运用以下技巧:
1. 理解题意:认真阅读题目,理解题目所考察的知识点,明确解题思路。
2. 善于画图:对于几何题和函数题,画出图形有助于直观地理解问题,找到解题的关键点。
3. 运用公式和定理:熟练掌握数学公式和定理,能快速解题。
4. 分类讨论:对于一些题目,需要进行分类讨论,不遗漏任何一种情况。
5. 整理与检查:解题过程中注意整理步骤,解完后进行检查,确保答案正确。
中考数学常见规律题的题型分类及解题策略分析
中考数学常见规律题的题型分类及解题策略分析
1. 数列类题目:这类题目主要考察学生对数列的理解和推理能力。
常见的题型有找规律、写出下一个数等。
解题策略可以通过观察数列的前几个数,找出数列的变化规律。
然后根据规律进行推理,找出符合题目要求的数。
4. 空间类题目:这类题目主要考察学生对空间的认知和思维能力。
常见的题型有立体图形展开、盒子折叠等。
解题策略可以将立体图形展开成平面图形进行分析,或者通过折叠操作将平面图形还原成立体图形。
5. 排列组合类题目:这类题目主要考察学生对排列组合的理解和计算能力。
常见的题型有小球颜色排列、奶牛问题等。
解题策略可以通过分析问题,运用排列组合的计算方法,计算出符合题目要求的结果。
解决规律题的关键是观察和分析。
要善于观察题目给出的条件和已知信息,找出其中的共性和规律。
然后根据找到的规律,运用数学知识解决问题。
在解题过程中,可以进行反复尝试和推理,培养自己的逻辑思维和数学思维能力。
要注重问题的整体把握,避免过度纠结于细节,从而影响整体解题的思路和效果。
中考数学必考题型及解题技巧
中考数学必考题型及解题技巧
1. 嘿,中考数学里函数题可是必考的呀!比如说一次函数,那简直就是常客。
就像走路,你得知道往哪儿走、走多快呀!遇到一次函数的应用题,咱不慌,先把关键信息找出来,设好未知数,列好方程,这不就解决啦?
2. 哇塞,几何图形的证明题那也是必须拿下的!你看那些三角形、四边形,就像一个个神秘的小城堡等你去探索。
比如证明两个三角形全等,把条件一对,思路不就来了嘛,就跟开锁一样顺利!
3. 还有方程和不等式呢!这就像是你手里的武器,用来解决各种实际问题。
像那种购物优惠的题目,不就是用方程或不等式来算算怎么最划算嘛,多有意思呀!
4. 统计与概率也不能小瞧哦!这不就是生活中的各种可能性嘛。
比如抽奖,你就可以用概率知识算算自己中奖的机会大不大,是不是很神奇?
5. 动点问题可刺激啦!就像一场刺激的追逐赛。
看着那个点跑来跑去,你要赶紧抓住它的规律呀。
比如在图形上运动的点,要仔细分析它的轨迹,找到解题关键,别让它跑啦!
6. 最后啊,别忘了那些基础的计算!这可是根基呀!像简单的加减乘除,要是错了那可就太可惜啦!做题的时候认认真真,别小瞧这些小细节哟!
总之,中考数学的这些必考题型都别怕,掌握了技巧就都能拿下,相信自己,加油呀!。
历年中考数学试题题库(含解析)
历年中考数学试题题库(含解析)一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列四个实数中,无理数是()A.2 B.C.0 D.﹣1【考点】26:无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、2是有理数,故A错误;B、是无理数,故B正确;C、0是有理数,故C正确;D、﹣1是有理数,故D正确;故选:B.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.(3分)如图所示的几何体是由4个小正方体搭成,则它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:从正面看第一层两个小正方形,第二层左边一个小正方形.故选:C.【点评】本题考查了简单组合体的三视图,主视图是从正面看得到的图形.3.(3分)下列运算正确的是()A.a3+a3=a6B.a3•a3=a9C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b2【考点】35:合并同类项;46:同底数幂的乘法;4C:完全平方公式;4F:平方差公式.【分析】直接利用合并同类项法则以及完全平方公式和平方差公式分别判断得出即可.【解答】解:A、a3+a3=2a3,故此选项错误;B、a3•a3=a6,故此选项错误;C、(a+b)2=a2+2ab+b2,故此选项错误;D、(a+b)(a﹣b)=a2﹣b2,正确.故选:D.【点评】此题主要考查了完全平方公式/合并同类项、平方差公式等知识,正确应用乘法公式是解题关键.4.(3分)下列选项中能由左图平移得到的是()A.B.C.D.【考点】Q1:生活中的平移现象.【分析】根据平移的性质,图形只是位置变化,其形状与方向不发生变化进而得出即可.【解答】解:能由左图平移得到的是:选项C.故选:C.【点评】此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.5.(3分)如图,点A、B、C是⊙O上,∠AOB=80°,则∠ACB的度数为()A.40°B.80°C.120°D.160°【考点】M5:圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=80°.∴∠ACB=∠AOB=40°.故选:A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.6.(3分)下列说法正确的是()A.哥哥的身高比弟弟高是必然事件B.今年中秋节有雨是不确定事件C.随机抛一枚均匀的硬币两次,都是正面朝上是不可能事件D.“彩票中奖的概率为”表示买5张彩票肯定会中奖【考点】X1:随机事件;X3:概率的意义.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、哥哥的身高比弟弟高是随机事件,故A错误;B、今年中秋节有雨是不确定事件,故B正确;C、随机抛一枚均匀的硬币两次,都是正面朝上是随机事件,故C错误;D、“彩票中奖的概率为”表示买5张彩票可能中奖,可能不中奖,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(3分)甲、乙两个同学在四次模拟试中,数学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,则成绩比较稳定的是()A.甲B.乙C.甲和乙一样D.无法确定【考点】W7:方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S 乙2=12.∴S甲2<S乙2.∴成绩比较稳定的是甲;故选:A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.(3分)如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点【考点】KG:线段垂直平分线的性质.【专题】12:应用题.【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等.∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选:A.【点评】此题考查了三角形的外心的概念和性质.熟知三角形三边垂直平分线的交点到三个顶点的距离相等,是解题的关键.9.(3分)一次函数y=x+2的图象不经过的象限是()A.一B.二C.三D.四【考点】F7:一次函数图象与系数的关系.【分析】根据k,b的符号确定一次函数y=x+2的图象经过的象限.【解答】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限.∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.【点评】本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1,难度不大.10.(3分)如图,设他们中有x个成人,y个儿童根据图中的对话可得方程组()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】题目中的等量关系为:1、大人数+儿童数=8;2、大人票钱数+儿童票钱数=195,据此求解.【解答】解:设他们中有x个成人,y个儿童,根据题意得:.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系并根据等量关系列出方程.二、填空题(共5小题,每小题3分,满分15分)11.(3分)a的相反数是﹣9,则a=9.【考点】14:相反数.【分析】根据相反数定义解答即可.【解答】解:∵a的相反数是﹣9.∴a=9.故答案为:9.【点评】此题考查了相反数的定义,只有符号不同的两个数,称为互为相反数,其中的一个数是另一个的相反数.12.(3分)如图,直线a∥b,∠1=70°,则∠2=70°.【考点】JA:平行线的性质.【分析】根据两直线平行同位角相等可得∠1=∠2=70°.【解答】解:∵a∥b.∴∠1=∠2.∵∠1=70°.∴∠2=70°.故答案为:70°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.13.(3分)茂名滨海新区成立以来,发展势头良好,重点项目投入已超过2000亿元,2000亿元用科学记数法表示为2×103亿元.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2000=2×103.故答案为:2×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为0.5米.【考点】KQ:勾股定理;M3:垂径定理的应用.【分析】由题意知,秋千摆至最低点时,点C为弧AB的中点,由垂径定理知AB ⊥OC,AD=BD=AB=1.5米.再根据勾股定理求得OD即可.【解答】解:∵点C为弧AB的中点,O为圆心由垂径定理知:AB⊥OC,AD=BD=AB=1.5米.在Rt△OAD中,根据勾股定理,OD==2(米).∴CD=OC﹣OD=2.5﹣2=0.5(米);故答案为0.5.【点评】本题考查了垂径定理的应用,勾股定理的应用,将实际问题抽象为几何问题是解题的关键.15.(3分)用边长为1的小正方形摆成如图所示的塔状图形,按此规律,第4次所摆成的周长是16,第n次所摆图形的周长是4n(用关于n的代数式表示)【考点】38:规律型:图形的变化类.【分析】由题意可知:第一次1个小正方形的时候,周长等于1个正方形的周长,是1×4=4;第二次3个小正方形的时候,一共有4条边被遮挡,相当于少了1个小正方形的周长,所搭图形的周长为2个小正方形的周长,是2×4=8;第三次6个小正方形的时候,一共有12条边被遮挡,相当于少了3个小正方形的周长,所搭图形的周长为3个小正方形的周长,是3×4=12;…由此得出第几次搭建的图形的周长就相当于几个小正方形的周长是4n,由此规律解决问题.【解答】解:第一次所摆图形周长是1×4=4;第二次所摆图形的周长是2×4=8;第三次所摆图形的周长是3×4=12;…第n次所摆图形的周长是n×4=4n.第4次所摆成的周长是4×4=16.故答案为:16,4n.【点评】此题考查图形的变化规律可,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律,解决问题.三、解答题(共10小题,满分75分)16.(7分)计算:|﹣2|﹣()0+(﹣1)2014.【考点】2C:实数的运算;6E:零指数幂.【专题】11:计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,最后一项利用乘方的意义计算即可得到结果.【解答】解:原式=2﹣1+1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.(7分)解不等式组:.【考点】CB:解一元一次不等式组.【分析】首先计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:由①得:x>1.由②得:x<2.不等式组的解集为:1<x<2.【点评】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)如图,在正方形ABCD中,点E在AB边上,点F在BC边的延长线上,且AE=CF(1)求证:△AED≌△CFD;(2)将△AED按逆时针方向至少旋转多少度才能与△CFD重合,旋转中心是什么?【考点】KD:全等三角形的判定与性质;LE:正方形的性质;R2:旋转的性质.【分析】(1)由正方形的性质就可以得出AD=CD,∠A=∠DCF=90°,再由SAS就可以得出结论;(2)由∠ADC=90°就可以得出△AED按逆时针方向至少旋转90度才能与△CFD 重合,旋转中心是点D.【解答】解:(1)∵四边形ABCD是正方形.∴AD=CD,∠A=∠DCB=∠ADC=90°.∴∠A=∠DCF=90°.在△AED和△CFD中..∴△AED≌△CFD(SAS);(2)∵∠ADC=90°.∴△AED按逆时针方向至少旋转90度才能与△CFD重合,旋转中心是点D.【点评】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用,旋转的旋转的运用,解答时证明三角形全等是关键.19.(7分)2014年3月31日是全国中小学生安全教育日,某校全体学生参加了“珍爱生命,预防溺水”专题活动,学习了游泳“五不准”,为了了解学生对“五不准”的知晓情况,随机抽取了200名学生作调查,请根据下面两个不完整的统计图解答问题:(1)求在这次调查中,“能答5条”人数的百分比和“仅能答3条”的人数;(2)若该校共有2000名学生,估计该校能答3条不准以上(含3条)的人数.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)能答5条的人数除以总人数得出能答5条”人数的百分比;用总人数乘以“仅能答3条”的人数所占的百分比即可求出“仅能答3条”的人数;(2)用该校的总人数乘以能答3条不准以上(含3条)的人数所占的百分比即可.【解答】解:(1)“能答5条”人数的百分比是×100%=20%.“仅能答3条”的人数是200×40%=80(人);(2)根据题意得:2000×(1﹣5%﹣10%)=1700(人).答:该校能答3条不准以上(含3条)的人数是1700人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7分)小聪计划中考后参加“我的中国梦”夏令营活动,需要一名家长陪同,爸爸、妈妈用猜拳的方式确定由谁陪同,即爸爸、妈妈都随机作出“石头”、“剪刀”、“布”三种手势(如图)中的一种,规定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,手势相同,不分胜负(1)爸爸一次出“石头”的概率是多少?(2)妈妈一次获胜的概率是多少?请用列表或画树状图的方法加以说明.【考点】X4:概率公式;X6:列表法与树状图法.【分析】(1)由随机作出“石头”、“剪刀”、“布”三种手势,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与妈妈一次获胜的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:爸爸一次出“石头”的概率是:;(2)画树状图得:∵共有9种等可能的结果,妈妈一次获胜的有3种情况.∴妈妈一次获胜的概率是:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)如图,某水上乐园有一个滑梯AB,高度AC为6米,倾斜角为60°,暑期将至,为改善滑梯AB的安全性能,把倾斜角由60°减至30°(1)求调整后的滑梯AD的长度;(2)调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:≈1.41,,≈2.45)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】本题中两个直角三角形有公共的边,那么可利用这条公共直角边进行求解.(1)求AD长的时候,可在直角三角形ADC内,根据30°的角所对的直角边是斜边的一半求解.(2)在直角三角形ABC中求得AB的长后用AD﹣AB即可求得增加的长度.【解答】解:(1)Rt△ABD中.∵∠ADB=30°,AC=6米.∴AD=2AC=12(m)∴AD的长度为12米;(2)∵Rt△ABC中,AB=AC÷sin60°=4(m).∴AD﹣AB=12﹣4≈5.1(m).∴改善后的滑梯会加长5.1m.【点评】本题主要考查了解直角三角形的应用,利用这两个直角三角形有公共的直角边求解是解决此类题目的基本出发点.22.(8分)如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2,将矩形OABC向上平移4个单位得到矩形O1A1B1C1.(1)若反比例函数y=和y=的图象分别经过点B、B1,求k1和k2的值;(2)将矩形O1A1B1C1向左平移得到O2A2B2C2,当点O2、B2在反比例函数y=的图象上时,求平移的距离和k3的值.【考点】G5:反比例函数系数k的几何意义;Q2:平移的性质.【分析】(1)将B(3,2)代入y=,即可求出k1的值;将B1(3,6)代入y=,即可求出k2的值;(2)设将矩形O1A1B1C1向左平移a个单位得到O2A2B2C2,根据向左平移,横坐标相减,纵坐标不变得到点O2(﹣a,4),B2(3﹣a,6),由点O2、B2在反比例函数y=的图象上,得出k3=﹣4a=6(3﹣a),解方程即可求出a与k3的值.【解答】解:(1)∵矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2.∴B(3,2).∵反比例函数y=的图象分别经过点B.∴k1=3×2=6;∵将矩形OABC向上平移4个单位得到矩形O1A1B1C1.∴B1(3,6).∵反比例函数y=的图象经过点B1.∴k2=3×6=18;(2)设将矩形O1A1B1C1向左平移a个单位得到O2A2B2C2,则O2(﹣a,4),B2(3﹣a,6).∵点O2、B2在反比例函数y=的图象上.∴k3=﹣4a=6(3﹣a).解得a=9,k3=﹣36.【点评】本题考查了反比例函数比例系数k的几何意义,反比例函数图象上点的坐标特征,平移的性质,难度适中.利用数形结合与方程思想是解题的关键.23.(8分)网络购物越来越方便快捷,远方的朋友通过网购就可以迅速品尝到茂名的新鲜荔枝,同时也增加了种植户的收入,种植户老张去年将全部荔枝按批发价卖给水果商,收入6万元,今年的荔枝产量比去年增加2000千克,计划全部采用互联网销售,网上销售比去年的批发价高50%,若按此价格售完,今年的收入将达到10.8万元.(1)去年的批发价和今年网上售价分别是多少?(2)若今年老张按(1)中的网上售价销售,则每天的销量相同,20天恰好可将荔枝售完,经调查发现,当网上售价每上升0.1元/千克,每日销量将减少5千克,将网上售价定为多少,才能使日销量收入最大?【考点】HE:二次函数的应用.【分析】(1)设去年的售价为x元,则今年的售价为(1+50%)x元,去年的产量为y千克,则今年的产量为(y+2000)千克,根据条件建立方程组求出其解即可;(2)由(1)的结论可以求出今年的产量,就可以求出日销售量,设日销售利润为W元,网上售价为a元,由利润问题的数量关系表示出W与a的数量关系,由二次函数的性质就可以求出结论.【解答】解:(1)设去年的售价为x元,则今年的售价为(1+50%)x元,去年的产量为y千克,则今年的产量为(y+2000)千克,由题意,得.解得:.则今年的售价为(1+50%)x=9元.答:去年的售价为6元,则今年的售价为9元;(2)由题意,得今年的产量为:10000+2000=12000千克.则网上日销售量为:12000÷20=600千克.设日销售收入为W元,网上售价为a元,由题意,得W=a(600﹣).W=﹣50a2+1050aW=﹣50(a﹣)2+.∴a=﹣50<0.∴a=时,W=.最大∴网上售价定为10.5元,才能使日销量收入最大为元.【点评】本题考查了列二元二次方程组解实际问题的运用,二元二次方程组的解法的运用,二次函数的运用,二次函数的性质的运用,解答时求出二次函数的解析式是关键.24.(8分)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB,OA交⊙O于点E.(1)证明:直线AB与⊙O相切;(2)若AE=a,AB=b,求⊙O的半径;(结果用a,b表示)(3)过点C作弦CD⊥OA于点H,试探究⊙O的直径与OH、OB之间的数量关系,并加以证明.【考点】MR:圆的综合题.【分析】(1)利用段垂直平分线的性质得出OC⊥AB,进而得出答案即可;(2)利用勾股定理得出OC2+AC2=OA2,进而得出⊙O的半径;(3)首先得出△HOC∽△COA,进而得出OC2=OH×OA,即可得出⊙O的直径与OH、OB之间的数量关系.【解答】(1)证明:如图所示:连接CO.∵OA=OB,AC=BC.∴OC⊥AB.∵OC为⊙O的半径.∴直线AB与⊙O相切;(2)解:在直角三角形OAC中用勾股定理就可以了.设半径为r,则OC=r,OA=a+r.AC=AB= b.在Rt△AOC中.OC2+AC2=OA2.则r2+b2=(a+r)2.解得:r=﹣;(3)d2=4OH×OB.理由:∵OA⊥CD,OC⊥AC.∴∠OCA=∠OHC.∵∠HOC=∠COA.∴△HOC∽△COA.∴=.即OC2=OH×OA.∵OC垂直平分AB.∴OA=OB.设直径为d,则OC=.∴()2=OH×OB.即d2=4OH×OB.【点评】此题主要考查了圆的综合以及相似三角形的判定与性质,得出△HOC∽△COA是解题关键.25.(8分)如图,在△ABC中,AB=AC,且点A的坐标为(﹣3,0),点C坐标为(0,),点B在y轴的负半轴上,抛物线y=﹣x2+bx+c经过点A和点C(1)求b,c的值;(2)在抛物线的对称轴上是否存在点Q,使得△ACQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由(3)点P是线段AO上的一个动点,过点P作y轴的平行线交抛物线于点M,交AB于点E,探究:当点P在什么位置时,四边形MEBC是平行四边形,此时,请判断四边形AECM的形状,并说明理由.【考点】HF:二次函数综合题.【分析】(1)直接利用待定系数法求出抛物线解析式得出即可;(2)利用当AQ=QC,以及当AC=Q1C时,当AC=CQ2=2时,当AQ3=AC=2时,分别得出符合题意的答案即可;(3)利用平行四边形的性质首先得出BC的长,进而表示出线段ME的长,进而求出答案,再利用梯形的判定得出答案.【解答】解:(1)∵点A的坐标为(﹣3,0),点C坐标为(0,),点B在y 轴的负半轴上,抛物线y=﹣x2+bx+c经过点A和点C.∴.解得:;(2)在抛物线的对称轴上存在点Q,使得△ACQ为等腰三角形.当AQ=QC,如图1.由(1)得:y=﹣x2﹣x+=﹣(x+1)2+.即抛物线对称轴为:直线x=﹣1,则QO=1,AQ=2.∵CO=,QO=1.∴QC=2.∴AQ=QC.∴Q(﹣1,0);当AC=Q1C时,过点C作CF⊥直线x=﹣1,于一点F.则FC=1.∵AO=3,CO=.∴AC=2.∴Q1C=2.∴FQ1=,故Q1的坐标为:(﹣1,+);当AC=CQ2=2时,由Q1的坐标可得;Q2(﹣1,﹣+);当AQ3=AC=2时,则QQ3=2,故Q3(﹣1,﹣2),根据对称性可知Q4(﹣1,2)(Q4和Q3关于x轴对称)也符合题意.综上所述:符合题意的Q点的坐标为:(﹣1,0);(﹣1,+);(﹣1,﹣+);(﹣1,﹣2),(﹣1,2);(3)如图2所示,当四边形MEBC是平行四边形,则ME=BC.∵AB=AC,且点A的坐标为(﹣3,0),点C坐标为(0,).∴B(0,﹣).则BC=2.设直线AB的解析式为:y=kx+e.故.解得:.故直线AB的解析式为:y=﹣x﹣.设E(x,﹣x﹣),M(x,﹣x2﹣x+).故ME=﹣x2﹣x++x+=﹣x2﹣x+2=2.解得:x1=0(不合题意舍去),x2=﹣1.故P点在(﹣1,0),此时四边形MEBC是平行四边形;四边形AECM是梯形.理由:∵四边形MEBC是平行四边形.∴MC∥AB.∵CO=,AO=3.∴∠CAO=30°.∵AC=AB,AO⊥BC.∴∠BAO=30°.∴∠BAC=60°.∴△ABC是等边三角形.∵AC=BC,ME=BC,所以AC=ME.∴四边形AECM是等腰梯形.【点评】此题主要考查了二次函数综合应用以及平行四边形的性质和梯形的判定、等腰三角形的判定等知识,利用分类讨论以及数形结合得出是解题关键.。
中考数学试题经典大题
中考数学经典大题1.已知在△ABC中,∠ABC=90°,AB=6,BC=8.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ△ACB;(2)当△PQB是等腰三角形时,求AP的长.2.如图,对称轴为的抛物线与轴相交于A、B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;(2)已知,C为抛物线与轴的交点.①若点P是抛物线上第三象限的点,是否存在点P,使得S△POC=4S△BOC,若存在,求点P的坐标;若不存在,请说明理由.②设点Q是线段AC上的动点,作QD轴交抛物线于点D,求线段QD长度的最大值.③若M是轴上方抛物线上的点,过点M作MN轴于点N,若△MNO与△OBC相似,求M点的坐标.3.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径.4.如图,已知函数与坐标轴分别交于A、D、B三点,顶点为C.(1)求△BAD的面积;(2)点P是抛物线上一动点,是否存在点P,使S△ABP=S△ABC?若存在,求出点P的坐标;若不存在,请说明理由;(3)在轴上是否存在一点Q,使得△DOQ与△ABC相似,如果存在,求出点P的坐标,如果不存在,请说明理由.5.如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的接四边形,点A、B在轴上,△MBC是边长为2的等边三角形。
过点M作直线与轴垂直,交⊙M于点E,垂足为点M,且点D平分.(1)求过A、B、E三点的抛物线的解析式;(2)求证:四边形AMCD是菱形;(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.6.如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC于点D,取CB的中点E,DE的延长线与AB的延长线交于点P.(1)求证:PD是⊙O的切线;(2)若OB=BP,AD=6,求BC的长;(3)如图2,连接OD,AE相交于点F,若,求的值.7.已知抛物线经过点A(3,2),B(0,1)和点C(-1,).(1)求抛物线的解析式;(2)如图,若抛物线的顶点为P,点A关于对称轴的对称点为M,过M的直线交抛物线于另一点N(N在对称轴右边),交对称轴于F,若S△PFN=4S△PFM,求点F的坐标;(3)在(2)的条件下,在轴上是否存在点G,使△BMA与△MBG相似?若存在,求点G的坐标;若不存在,请说明理由.8.如图,PB切⊙O于B点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO交⊙O于点C,连结BC,AF.(1)直线PA是否为⊙O的切线,并证明你的结论;(2)若BC=16,⊙O的半径的长为17,求的值;(3)若OD:DP=1:3,且OA=3,则图中阴影部分的面积为?9.将抛物线C1:平移后的抛物线C2与轴交于A、B两点(点A在点B的左边)与轴负半轴交于C点,已知A(-1,0),.(1)求抛物线C2的解析式;(2)若点P是抛物线C2上的一点,连接PB,PC.求S△BPC=S△CAB时点P的坐标;(3)D为抛物线C2的顶点,Q是线段BD上一动点,连接CQ,点B,D到直线CQ的距离记为d1,d2,试求出d1+d2的最大值,并求出此时Q点坐标.10.如图1,AB为⊙O的直径,TA为⊙O的切线,BT交⊙O于点D,TO交⊙O于点C、E.(1)若BD=TD,求证:AB=AT;(2)在(1)的条件下,求的值;(3)如图2,若,且⊙O的半径r=,则图中阴影部分的面积为?11.如图,过A(1,0),B(3,0)作轴的垂线,分别交直线于C、D两点.抛物线经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若点P为抛物线上的一点,连接PD,PC.求S△PCD=S△CDB时点P的坐标.(4)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.12.如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若=,求的值.13.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长交CD于F点.(1)求证:四边形AECF为平行四边形;(2)若△AEP是等边三角形,连结BP,求证:△APB△EPC;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.14.如图,在平面直角坐标系中,抛物线与轴交于A、B两点(点A在点B的左侧),经过点A的直线l:与轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求出直线l的函数表达式(其中k、b用含的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.15.如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.(1)求证:PA·BC=AB·CD.(2)若PA=10,=,求PE的长.16.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,求证:OE=OF;(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时.①若转到如图2的位置,线段CF、AE、OE之间有一个不变的相等关系式,请写出这个关系式.(不用证明)②若转到图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请予以证明.17.已知如图,在平面直角坐标系中,点A、B、C分别为坐标轴上的三个点,且OA=1,OB=2,OC=4.(1)求经过A、B、C三点的抛物线的解析式;(2)在平面直角坐标系中是否存在一点P,使得以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM-AM|为最大值时,点M 的坐标,并直接写出|PM-AM|的最大值.18.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,DE BD交AB于E,⊙O是△BDE的外接圆,交BC于点F.(1)求证:AC是⊙O的切线;(2)连接EF,若BC=9,CA=12,求的值.19.如图,在正方形ABCD中,AB=5,P是BC边上任意一点,E是BC延长线上一点,连接AP,作PF AP,使PF=PA,连接CF、AF,AF交CD边于点G,连接PG.(1)求证:∠GCF=∠FCE;(2)判断线段PG,PB与DG之间的数量关系,并证明你的结论;(3)若BP=2,在直线AB上是否存在一点M,使四边形DMPF是平行四边形,若存在,求出BM的长度,若不存在,请说明理由.20.已知抛物线与轴交于点C,与轴的两个交点分别为A(-4,0),B(1,0).(1)求抛物线的解析式;(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P 的坐标;(3)已知点E在轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.21.如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC于点D,取CB的中点E,DE的延长线与AB的延长线交于点P.(1)求证:PD是⊙O的切线;(2)如图2,连接OD,AE相交于点F,若=2,求的值.22.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.23.如图,抛物线的开口向下,与轴交于点A(-3,0)和点B(1,0).与轴交于点C,顶点为D.(1)求顶点D的坐标(用含的代数式表示);(2)若△ACD的面积为3.①求抛物线的解析式;②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.。
中考数学必考题型分析及解题策略总结
中考数学必考题型分析及解题策略总结一、必考题型分析1、线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2、图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3、动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4、一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
5、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。
中考数学常考题型与解题技巧
中考数学常考题型与解题技巧数学作为中考必考科目之一,占据了学生综合素质评价的重要位置。
掌握中考数学常考题型以及相应的解题技巧,对于学生的考试成绩至关重要。
本文将介绍中考数学常考题型及解题技巧,并为学生提供一些实用的学习方法。
一、选择题选择题是中考数学考试的常见题型,也是学生们备考中的重点之一。
在解答选择题时,学生需要注意以下几个技巧:1. 仔细阅读题目:选择题往往在问题描述中隐藏了一些关键信息,学生需要仔细阅读题目,理解问题的要求。
2. 排除法:当遇到选择题时,如果不确定答案,可以先排除一些明显错误的选项,然后再从剩下的选项中选择正确答案。
3. 插入法:有些选择题可以使用插入法来解答,即将选项依次代入问题,直到找到满足条件的选项。
二、填空题填空题在中考数学中也是常见的一种题型。
解答填空题的技巧如下:1. 代入法:对于一些简单的填空题,可以通过将选项代入等式或不等式中,验证是否符合题目要求。
2. 观察法:填空题有时会给出一些特殊条件,学生可以通过观察这些条件以及题目的整体结构,找到填空的规律。
三、解答题解答题在中考数学中占据很大的比重,解答题要求学生具备一定的思维能力和解题技巧。
1. 分析题目:在解答题目之前,学生需要仔细阅读并理解题目,分析问题所给条件和要求,明确解题思路。
2. 列式解法:对于一些需要运用多个步骤解题的问题,学生可以运用列式解法,将问题按步骤进行拆解和计算。
3. 逆向思维:有些解答题可以通过逆向思考来解答,即从结果出发,反推过程。
这种思维方式可以帮助学生更好地理解问题,找到问题的本质,提高解题效率。
四、实用学习方法为了提高中考数学的成绩,除了掌握常考题型和解题技巧外,学生还可以尝试以下学习方法:1. 阅读理解题:数学中的阅读理解题常常需要将文字描述转化为数学表达式,学生可以通过多读题目,理解问题中的数学意义,提高解题能力。
2. 刷题并总结:学生可以通过刷题的方式,熟悉各种题型,并总结题目中常见的解题思路和方法,形成自己的解题经验。
初二数学考点剖析中考常见型及解策略
初二数学考点剖析中考常见型及解策略初二是初中数学学习的关键阶段,这个时期的知识不仅是对初一的深化,更是为初三的冲刺打下坚实基础。
在中考中,初二数学的考点占据了相当重要的地位。
下面我们就来详细剖析一下初二数学中考常见题型及解题策略。
一、函数函数是初二数学的重点和难点,其中一次函数是中考的常见考点。
1、一次函数的图像和性质一次函数的表达式为 y = kx + b(k、b 为常数,k ≠ 0)。
当 k > 0 时,函数图像从左到右上升,y 随 x 的增大而增大;当 k < 0 时,函数图像从左到右下降,y 随 x 的增大而减小。
b 决定了函数图像与 y 轴的交点,当 b > 0 时,交点在 y 轴正半轴;当 b < 0 时,交点在 y 轴负半轴;当 b = 0 时,函数为正比例函数 y = kx。
例如:已知一次函数 y = 2x 3,因为 k = 2 > 0,所以函数图像从左到右上升,y 随 x 的增大而增大。
又因为 b =-3 < 0,所以函数图像与 y 轴的交点在负半轴。
解题策略:要熟练掌握一次函数的性质,通过分析 k 和 b 的值来判断函数的增减性和与 y 轴的交点位置。
2、一次函数的应用在实际问题中,常常会涉及到一次函数的应用,如行程问题、销售问题等。
例如:某商店销售一种商品,进价为 30 元/件,售价为 40 元/件,每天能卖出 50 件。
经调查发现,售价每提高 1 元,销售量就减少 2 件。
设售价为 x 元/件,每天的利润为 y 元,求 y 与 x 的函数关系式。
解题策略:首先根据利润=(售价进价)×销售量,列出关系式。
售价为 x 元时,销售量为 50 2(x 40) 件,所以 y =(x 30)50 2(x 40),然后化简即可。
二、三角形三角形是几何部分的重要内容,包括三角形的性质、全等三角形和相似三角形。
1、三角形的性质三角形的内角和为180°,三角形的外角等于不相邻的两个内角之和。
初中数学考点剖析中考常见型及解策略
初中数学考点剖析中考常见型及解策略初中数学考点剖析:中考常见题型及解题策略初中数学是一门重要的基础学科,对于中考来说,掌握好数学考点以及常见题型的解题策略至关重要。
本文将对初中数学中考的常见考点进行详细剖析,并提供相应的解题策略,帮助同学们更好地应对中考数学。
一、数与代数1、实数实数是中考的基础考点,包括有理数、无理数、数轴、相反数、绝对值等概念。
在解题时,要注意理解这些概念的本质,例如绝对值的非负性,相反数的和为零等。
对于实数的运算,要熟练掌握运算法则,尤其是混合运算的顺序。
常见题型:实数的分类、比较大小、化简计算等。
解题策略:先确定每个数的性质,再按照运算法则进行计算。
对于比较大小,可以利用数轴或者作差法。
2、代数式代数式包括整式、分式和二次根式。
整式的运算要熟练掌握幂的运算性质、乘法公式等。
分式要注意分母不为零的条件,以及分式的化简和求值。
二次根式要掌握其性质和运算规则。
常见题型:整式的化简求值、分式的化简求值、二次根式的计算等。
解题策略:整式化简时,要正确运用乘法公式;分式化简要先通分,再约分;二次根式计算要注意化简被开方数。
3、方程与不等式方程包括一元一次方程、二元一次方程组、一元二次方程。
不等式主要是一元一次不等式和一元二次不等式。
在解方程和不等式时,要掌握解题的步骤和方法,注意方程的根的情况以及不等式的解集。
常见题型:解方程(组)、解不等式(组)、应用方程(不等式)解决实际问题。
解题策略:根据方程(不等式)的特点选择合适的解法,实际问题中要找出等量关系(不等关系),设出未知数,列出方程(不等式)求解。
二、图形与几何1、三角形三角形是几何中的重要图形,包括三角形的性质、全等三角形、相似三角形等。
要掌握三角形的内角和、外角性质,全等三角形和相似三角形的判定和性质。
常见题型:证明三角形全等或相似、求三角形的边长和角度、三角形的综合应用。
解题策略:证明全等或相似时,要找准对应边和对应角,根据判定条件进行推理;求边长和角度可以利用三角形的性质和定理,综合应用时要善于转化和构造。
中考数学常见题型及解题技巧
中考数学常见题型及解题技巧
很多初中生在学习数学时感到非常的困难,而且数学成绩也一直不好,其实数学的解题是有技巧的,那么中考数学的答题技巧有什么? 中考数学常见题型解题技巧
函数型综合题
此类中考数学解答题是将定直角坐标系和几何图形直接给中考考生,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题
此类中考数学解答题是先给中考考生规定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
中考数学选择题的解题技巧
中考数学试题主要是为了凸现能力,小题一般要小做,除了直接法解答外,还要注意巧解,各位同学在做中考数学选择题时善于使用数形结合、特值、排除、验证、转化、分析、估算等方法,一旦思路清晰,就迅速作答。
不要在一两个小题上纠缠,如果确实没有思路,可先蒙一个,并做标记,即使是“蒙”也有25%的胜率,后面有剩余时间可以选择重新做。
中考数学常见填空题的解法
由于中考数学填空题和选择题有相似之处,所以有些解题方法、策略可以共用。
中考数学填空题要认真运算,表达结果必须数值准确、形式规范,否则将前功尽弃,因为填空题无过程分。
初三数学常考题型及解题技巧
初三数学常考题型及解题技巧初三数学的常考题型及解题技巧,是学生们备战中考时需要重点掌握的内容。
这些题型不仅考察了学生的基础知识,还检验了他们的解题思维和能力。
了解这些题型及相应的解题技巧,有助于提高考试成绩,打下坚实的数学基础。
接下来,我们将通过几个常见题型的分析,帮助学生们理清思路,掌握解题方法。
在初三数学中,常见的题型可以归纳为以下几种:代数题型、几何题型、应用题型、函数题型等。
每一种题型都有其特定的解题方法和技巧。
首先,代数题型通常涉及方程、代数式、因式分解等内容。
这类题型的解题技巧主要包括以下几个方面。
首先是理解题目中的代数关系,明确变量之间的关系和约束条件。
例如,在解方程时,首先要将方程变形,使未知数尽可能集中在方程的一边。
其次,对于复杂的代数式,可以通过因式分解或配方法简化计算,这样能够更清晰地看到问题的核心。
对于有理数的应用题,分数的运算和简化也尤为重要,掌握分数的加减乘除法则是解题的基础。
接着是几何题型。
几何题目一般涉及角度、三角形、四边形、圆等基本图形。
解题时需要熟悉几何图形的性质和定理。
例如,三角形的内角和为180度,圆的切线与半径垂直等。
这些基本性质可以帮助学生在解题时快速找到关键线索。
在处理几何题目时,绘制准确的图形非常重要,图形可以帮助学生更直观地理解题目。
对于一些复杂的几何问题,可以尝试使用辅助线、面积分割等方法,使问题变得更加简洁。
应用题型是初三数学中的另一个重要部分,通常涉及实际生活中的数学问题,如行程问题、工作问题等。
解决应用题时,首先需要仔细阅读题目,找出已知条件和要求解的内容。
然后,通过建立方程或不等式来表示题目中的数学关系。
解这类题目时,合理设置变量、列出方程是关键步骤。
需要注意的是,实际问题往往涉及多个步骤,因此在解题过程中要保持严谨的思路,逐步解决每一个小问题。
函数题型在初三数学中也占据了重要地位。
这类题目主要考察学生对函数概念的理解及其应用能力。
函数题型通常包括函数图像、函数性质、函数值的求解等内容。
中考数学10道经典题型分析
中考数学10道经典题型分析跟大家分享一下近期初三数学总复习的一些好的题目,相信总有一款题目你会感兴趣。
第1题、第2题:阿氏圆的经典题目。
这是最值经常见的题目,确定动点的运动轨迹,构造母子相似三角形解决线段的系数,三点共线时距离最短。
具体技巧请参加题目解答与分析。
经典题目1:阿氏圆经典题目。
经典题目2:阿氏圆问题。
第3题:费马点问题。
费马点问题也是最值问题最常见的题型,三线线段之和最短,通过旋转构造全等三角形,实现线段的转换(移到同一直线上),四点共圆时,线段之和最短。
经典题目3:胡不归问题。
第4题:胡不归问题。
胡不归问题同样的线段最值常见问题,AB+kCD的最值问题,首先要解决其中一条线段的K值,阿氏圆通常采用构造母子相似三角形来解决这个问题,而胡不归通常采用三角函数来解决这个问题。
这道综合题还是很不错的,值得练一练。
经典题目4:胡不归问题。
第5,6题:二次函数中的a,b,c问题。
在选择题中,这也算是比较有点难度的问题了,而且考试的频率往往非常高,需要熟练掌握。
基本的技巧我已经在下面列出了。
经典题目5:二次函数多结论问题。
经典题目7:二次函数多结论问题。
第7题:相似三角形综合题目。
这是一次模拟测验的倒数第2题,三角形综合题。
这道题比较好,是因为它不只一种解法,尤其是在第3问中,有不同的作辅助线的方法,有点意思。
经典题目7:三角形综合题。
第8题:中考压轴题模拟题。
这是深圳南山区联考模拟卷的压轴题,最后一问其实并不难,根据题意不难理解,动点的运动轨迹是某个圆的一段弧,在同一个圆中,同弧(弦)所对的圆周角相等,从而可以确定动点的运动轨迹,三点共线时,由距离最短。
具本思路和过程可参照下面答案。
经典题目8:中考压轴题目。
第9题:平行四边形的存在性问题。
这道题目真的很不错,弄懂这道题目,平行四边形的存在性问题就基本弄懂了。
我在参考答案中列举了三种常见的方法,其中包括点的坐标平移法,中点坐标(平行四边形对角顶点坐标之间的关系要熟练掌握)等。
中考数学常见规律题的题型分类及解题策略分析
中考数学常见规律题的题型分类及解题策略分析
中考数学中常见的规律题主要包括数字规律题和图形规律题两大类。
下面将分别对这两类题型及解题策略进行分析。
一、数字规律题
1. 数列题
数列题是中考数学中常见的数字规律题的一种形式。
解题策略一般包括找出数列的规律,确定递推公式,求出数列中的第n项或前n项和。
对于相对简单的等差数列,可以直接使用公式an=a1+(n-1)d进行求解,其中an表示第n项,a1表示首项,d表示公差。
2. 叠加题
叠加题是指给出一串数字,要求对其进行特定运算后得到结果的题型。
解题策略一般包括找出运算规律,并计算出运算结果。
常见的叠加题有数字之和、数字替换等。
3. 逻辑推理题
逻辑推理题是指给出一部分数字,要求根据一定的逻辑规则推理出另外一部分数字。
解题策略一般包括观察数字间的关系,找出规律,并根据规律进行推理。
常见的逻辑推理题有数字填空、数字排列等。
二、图形规律题
1. 图形填空题
图形填空题是指给出一部分图形,要求根据一定的规律填入正确的图形。
解题策略一般包括观察图形间的关系,找出规律,并根据规律填入正确的图形。
常见的图形填空题有图案填空、菱形填空等。
解决数字规律题和图形规律题的关键在于观察和找出规律。
在解题过程中,可以通过列出数列、运算、排列等方式来梳理思路,找出规律,并应用到具体问题中。
多做一些类似的练习题可以提高解题能力和速度,培养对数字和图形的敏感性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学应试策略一、选择题(本大题共10小题,每小题3分,共30分)果如下表所示:(C)30人 (D)1020人它们是按一定规律排列,依照此规律,6个图形“★”的个数是( ).(A)24 (B)19 (C)21(D)16( ).为AM上一点,AB=4,二、填空题(本大题共6小题,每小题3分,共18分)D,若D为OC的中点,= .ABCD中,E、F分别是AB、CD相交于点G,CE与BF相交于点如图,矩形ABCD中,AD=32厘米,AB=24米,点P是线段AD上一动点,O为BD于Q.若P从点A秒的速度向D运动(不与D重合)秒,则t=________、C、D中的两个点为顶三、 解答题(本大题共9小题,共72分) 17.考察知识点:解分式方程解题方法及注意事项:1.注意解题步骤的完整;2.方法关键:去分母化为整式方程,再求解.注意:①不要漏乘整式项;②相反因式、移项、去括号的符号处理....;③步骤中的“形式验根”;④结果代入原方程中的“实质验根”. 另外对于例2这样的分式方程可采用交叉相乘的形式去理解去分母. 例1.52333x x =---; 例2.425x x x x -=--.18.考察知识点:一次函数与不等式解题方法及注意事项:1.代入已知点的坐标求一次函数解析式中的k 或b ;2.求简单不等式的解集.注意:①代坐标时横、纵坐标不要代反了;②解方程或不等式时注意移项的符号处理....;③解不等式系数化“1”时注意不等号的处理......(特别注意0k <时要改变不等号的方向). 直线6y kx =-经过点A (-2,2),求关于x 的不等式60kx -≥的解集.19.考察知识点:全等三角形证明解题方法及注意事项:要求证明过程完整,书写规范. 如图,已知BE ⊥AD ,CF ⊥AD ,且BE=CF .请你判断AD 是△ABC 的中线还是角平分线?请说明你判断的理由.20.考察知识点:图形变换中的画图与计算解题方法及注意事项:1.图形经平移、旋转、轴对称后的画图,重点要注意:①平移中的左右、上下;②旋转90°的顺逆;2.注意转化命题方式:通过对应点的位置或坐标确定:①平移中的方向和平移量;②轴对称中的对称轴;③旋转中的旋转中心点;3.根据画图写出特征点的坐标,注意正负、横纵;4.注意计算:①点经过的路径;②线段扫过的面积;5.特殊的命题方式:①图象经过两种变换后得到的两个图形之间存在的变换关系;②设计第四个图形,使四个图形成某种变换. 例1.如图,在平面直角坐标系中,已知C 点坐标是(-1,1),M 点坐标是(1,1).(1)把△ABC 沿某条直线翻折得到△A 1B 1M ,使得C 点经过翻折后的对应点为点M ,请画出翻折得到的△A 1B 1M ;(2)把△ABC 绕某点逆时针旋转90°得到△A 2B 2M ,使得C 点经过旋转后的对应点为点M ,请画出旋转得到的△A 2B 2M ;(3)在上述两次图象变换后得到的△A 1B 1M 和△A 2B 2M 关于直线 对称.例2.如图所示,每一个小方格都是边长为1的单位正方形.△ABC的三个顶点都在格点上,以点O为坐标原点建立平面直角坐标系.(1)点P(m,n)为AB边上一点,平移△ABC得到△A1B1C1,使得点P的对应点P1的坐标为(m-5,n+1),请在图中画出△A1B1C1,并写出A点的对应点A1的坐标为;(2)请在图中画出将△ABC绕点O顺时针旋转90°后的△A2B2C2,并写出A点的对应点A2的坐标为;(3)在(2)的条件下,求线段BC在旋转过程中扫过的面积.21.考察知识点:1.统计图表中的信息,进行统计运算;2.求概率.解题方法及注意事项:1.统计问题的解法同第8题,结合统计图表中给出的数据信息,补全条形图,并进行简单的统计运算.注意各统计图表之间的关系,尤其是样本容量、个体数量、百分比之间的关系;2.合理选择列表法或画树形图法表示所有结果,求简单的概率概率,注意概率语言的规范,如“可能性相等”等关键词.育才中学的张老师为了了解所教班级学生数学自学能力的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别强;B:强;C:一般;D:较弱;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22.考察知识点:圆的证明与计算解题方法及注意事项:1.切线的性质与判定;2.与圆有关的基本性质:①圆周角、圆心角、圆内接四边形的外角的转化;②切线长定理;3.计算:①垂径定理结合勾股定理;②相似;③三角函数(线段比值).例1.在Rt△ABC中,∠BAC=90°,AB=6,AC=8,D、E分别在边AB、AC上,且DE∥BC,以DE为直径作⊙O.∠的值;(1)如图1,若D为AB的中点,⊙O与BC交于M、N两点,求sin MDN∠的值.(2)如图2,若⊙O与BC相切于P点,试求tan BCD图 1图 2B C图 1MEA B图 3A B图 2图 1BA例3.在Rt△ABC中,∠ABC=90°,点O是BC边的中点,以O为圆心,OB为半径作⊙O.(1)如图1,⊙O与AC相交于点D,E为AB的中点,试判断DE与⊙O的位置关系,并证明你的结论;(2)如图2,在(1)的条件下,将⊙O固定不动,Rt△ABC沿BC所在的直线向右平移,使点B与⊙O的半径OM的中点重合,若⊙O与AC相切于点D,求tan A∠的值.例4.如图1,∠PAQ=60°,AB平分∠AO=4AP于点M.(1)求证:AQ为⊙O的切线;(2)如图2,将图1中的⊙O向左平移,使得AP交⊙O于C、D两点,若CD=3,求⊙O向左平移的距离;(3)如图3,将射线AP绕A点顺时针旋转一个角度,旋转后的射线AP交⊙O于E、F两点,若∠BOE=60°,求sin PAB∠的值.23.考察知识点:二次函数在实际生活中的应用解题方法及注意事项:1.抛物线形建模问题:(1)恰当建立平面直角坐标系(以顶点为原点,对称轴为y轴最佳);(2)将已知条件转化为特征点的坐标;(3)合理设抛物线的解析式(尽量减少未知数的个数,以顶点式为佳);(4)代入点的坐标求未知系数,从而得抛物线的解析式;(5)利用抛物线解析式求解特殊问题(实质研究其它探求点的坐标).例1.李明在进行投篮训练,他从距地面高1.55米处的O点向篮圈中心A点投出一球,球的飞行路线为抛物线,当球达到距地面最高点3.55米时,球移动的水平距离为2米.以O点为坐标原点,建立直角坐标系(如图所示),测得OA与水平方向OB的夹角为30°,A、B两点相距1.5米.(1)求篮球飞行路线所在抛物线的解析式;(2)判断李明这一投能否把球从O点直接投入篮圈A点(排除篮板球),如果能,请说明理由;如果不能,那么李明应向前或向后移动多少米,才能投入篮圈A点?(结果保留根号)2.经济类问题:(1)①单件利润与时间成一次函数关系;②销售量与时间成一次函数关系;③利用“总利润=单件利润×销售量”,建立总利润与时间之间的二次函数模型;(2)研究总利润的最值及最值条件;(3)注意分段函数的结合(分段求最值),要关注自变量的取值范围.例2.为控制H7N9病毒传播,某地关闭活禽交易,冷冻鸡肉销量上升. 某公司在春节期间采购冷冻鸡肉60箱销往城市和乡镇.已知冷冻鸡肉在城市销售平均每箱的利润1y (百元)与销售数量x (箱)的关系为115(020)1017.5(2060)40x x y x x ⎧+⎪⎪=⎨⎪-+⎪⎩<<≤≤,在乡镇销售平均每箱的利润2y (百元)与销售数量t (箱)的关系为26(030)18(3060)15t y t t ⎧⎪=⎨-+⎪⎩<<≤≤.(1)t 与x 的关系是 ;将2y 转换为以x 为自变量的函数,则2y = ;(2)设春节期间售完冷冻鸡肉获得的总利润W (百元),求W 与x 的关系式;(总利润=在城市销售利润+在乡镇销售利润)(3)求春节期间售完冷冻鸡肉获得的总利润W 的最大值,并求出此时x 的值.例3.红星公司生产的某种时令商品成本为20元,经过市场调查发现,这种商品在未来40天内的日销售量y 1(件)与时间t (天)的关系如图所示;未来40天内,每天的价格y 2(元/件)与时间t (天)的函数关系式为:212520)44040)t t y t t ⎧+⎪⎪=⎨⎪+⎪⎩1-(212(1≤≤≤≤(t 为整数).(1)求日销售量y 1(件)与时间t (天)的函数关系式;(2)请预测未来40天中哪一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定销售一件商品就捐赠a 元(a 为定值)利润给希望工程.公司通过销售记录发现,前20天中,第18天的时候,扣除捐赠后日销售利润为这20天中的最大值,求a 的值.DE F AC BDEF A CB BC AF 图1图2图3ED 24.考察知识点:几何探究解题方法及注意事项:(1)全等、相似(常规边、角相似或平行(A 形、x 形、双A 形、双x 形比例)的运用;注意简单形式结论证明的常规常法(平行、垂直、中点、等角、等长) (2)解决问题的常规方法:①思维的延续性(图形从特殊到一般):思维方法从全等到全等或从全等到相似; ②结论的延续性(条件的增加):运用已证明的简单结论求证新的结论或进行有关的计算; (3)注意基本图形条件的隐藏、转化;(4)结合勾股定理、相似、求证型结论进行几何的有关计算. (5)命题背景性质的分析与运用 (一)折叠背景问题例1.矩形ABCD ,M 是BC 的中点,E 在直线AB 上,将△BME 沿ME 折叠,使F 点刚好落在对角线BD 上,直线EF 交直线AD 于点N.(1)若AB=6,AE=34,求BC 的长; (2)延长EF 交CD 于点Q ,求证:点Q 是CD 的中点; (3)若AN=DN ,请直接写出:ABBC的值为 .(二)旋转背景问题例7.如图1,将Rt △ABC 绕A 点旋转角α,得到Rt △ADE ,CE 延长交BD 于点F.(1)求证:△ABD ∽△ACE ; (2)求证:F 为BD 的中点;(3)如图2,设AC=3,BC=4,旋转角α=90°时,则CF= ;EF= ; (4)如图2,设AC=3,BC=4,旋转角α=2∠ABC 时,求线段EF 的长.ADCBP图1A DCB HP E图2HO KD 备 用 图A B C FE EF C B A 图 2D K K D 图 1O H AB C F E (三)全等、相似构造问题例3.如图1,已知矩形ABCD 中,BC=2,AB=4,点E 从点A 出发沿AB 方向以每秒1个单位速度向点B 匀速运动,同时点F 从点C 出发沿BC 的延长线方向以每秒2单位的速度匀速运动,当E 点运动到点B 时,点F 停止运动,连接EF 交CD 于点K ,连接DE 、DF ,设运动时间为t 秒.(1)求证:△DAE ∽△DCF ; (2)当DF=KF 时,求t 的值;(3)如图2,连接AC 与EF 交于点O ,作EH ⊥AC 于点H.①探索在点E 、F 运动过程中,线段OH 的长度是否发生改变?若不变,请求出OH 的长度;若改变,请说明理由;②当点O 是线段EK 的三等分点时,请直接写出tan FOC ∠的值.(四)平行比例应用问题例4.已知在等腰△ABC 中,AB=AC ,AD∥BC,CD⊥AC,连接BD 交AC 于点P.(1)如图1,若AB=5,BC=6,求AP CP; (2)如图2,过点C 作CH⊥AB 于点H ,CH 、BD 交于点E ,求证:CE=HE. (3)在(2)的条件下:①当tan ABD ∠= 时,32AP CP =; ②当3tan 4ABD ∠=时,AP CP= .25.考察知识点:二次函数在平面直角坐标系中的综合运用解题方法及注意事项:(1)根据含未知系数的二次函数的解析式的字母个数,注意分析:①含两个字母系数(参数)抛物线,根据抛物线顶点在定线上移动,建立两个字母系数(参数)之间的函数关系,进而已知一个求另一个;②含一个字母系数(参数)抛物线,通过顶点坐标之间的固定形式隐藏顶点在定线上移动,或通过求解找出抛物线必过的定点;从而探索变化过程中存在的:①直线特殊位置关系;②三角形、四边形等特殊的形状,③线段的特殊的数量关系等;(3)运动中建立函数关系(抛物线变换后的特征动点或定抛物线上的动点):相似构造、线段长度、周长及面积等,注意结合最值问题;(4)探索动点的存在性问题(抛物线变换后的特征动点或定抛物线上的动点):Ⅰ、直角问题:注意转化为直角三角形的相似;Ⅱ、构成特殊图形:①等腰直角三角形、45°、正方形(全等或轴对称);②等腰三角形或等边三角形(中垂线或勾股定理、轴对称);③梯形(平行→角→正切值或平行直线解析式中的k 相等);④等腰梯形(勾股定理);⑤平行四边形(平移或中心对称);⑥矩形(90°+平行四边形);Ⅲ、平行、平移与比例线段(位似)问题:构造直角三角形相似,解方程组或利用根与系数的关系;Ⅳ、探索存在相似三角形的问题:注意分类讨论;Ⅴ、面积问题:注意面积的等积转化或转化为线段的比例关系; Ⅵ、角度关系问题:转化为求角的正切值,然后构造相似;二次函数探究类问题的常规思维方法:利用已有点的坐标,结合探索的几何条件,转化为探求点(未知点)的线段关系,用坐标转化线段,通过解方程(组)求点的坐标(或进而求线的解析式.一、图象变换问题例1.如图1,已知抛物线2y ax bx =+(0a >)的顶点为A(1,-1).(1)请直接写出:a = ,b = ;(2)若点P 在对称轴右侧的抛物线上运动,连结OP 交对称轴于点B ,点B 关于顶点A 的对称点为C 点,连接PC 、OC ,试证明:当P 点运动时,∠PCB=∠OCB 恒成立;(3)如图2,将抛物线沿直线OA 作n 次平移(n 为正整数,n ≤12),顶点分别为123n A A A A 、、、、,横坐标依次为1,2,…,n ,各抛物线的对称轴与x 轴的交点分别为123n D D D D 、、、、,以线段n n A D 为边向右作正方形n n n n A D E F ,是否存在点n F 恰好落在其中的一个抛物线上,若存在,求出所有满足二、根与系数的关系(研究直线与抛物线的两个交点问题)例2.如图,点P 是直线:22-=x y 上的一点,过点P 作直线m ,使直线m 与抛物线2x y =有两个交点,设这两个交点为A 、B.(1)如果直线m 的解析式为2+=x y ,直接写出A 、B 的坐标;(2)如果已知P 点的坐标为(2, 2),点A 、B 满足PA=AB ,试求直线m 的解析式; (3)设直线与y 轴的交点为C ,如果已知∠AOB=90°且∠BPC =∠OCP,求点P 的坐标.三、含参数的抛物线解析式(隐藏图象变换、抛物线簇)例3.已知等腰Rt △ABC 的顶点A 的坐标为(0,-1),顶点C 的坐标为(4,3),直角顶点B 在第四象限,抛物线212y x bx c =-++(b c 、为常数)的顶点为P .(1)如图1,若该抛物线经过A 、B 两点,试说明抛物线的顶点P 在斜边AC 上;(2)如图2,将(1)中的抛物线的顶点P 沿AC 边所在的直线平移,设平移后的抛物线与直线AC 交于另一点Q ,且P 、Q 两点都在AC 边上,取边BC 的中点N ,连接NP 、BQ .当四边形BNPQ 的面积等于5时,求平移后抛物线的解析式;(3)将(1)中的抛物线绕点(13n n ++,)旋转180°得到一条新抛物线,若新抛物线与直线132y x =+有两个交点且交点在其对称轴两侧,求n 的取值范围.四、含参数的抛物线解析式(阅读型问题)例4.已知:抛物线C 1:2111y a x b x c =++,顶点为P ,交y 轴于C.(1)若P(-1,4),C(0,3),求抛物线C 1;(2)将(1)中的抛物线C 1向下平移3个单位,在向右平移m 个单位,得到抛物线C 2,交x 轴于C ,D(C 左D 右),若PA ⊥AC ,求m 的值;(3)如图,抛物线C 2:2222y a x b x c =++的顶点E 在抛物线C 1上,且经过P 点,过E 作EF ∥x 轴交C 1于F ,PN ∥x 轴交C 2于N ,若PN=PF ,求12b b +.例5.如图1,点C 、B 分别为抛物线C 1:121+=x y ,抛物线C 2:22222c x b x a y ++=的顶点,点B 在抛物线C 1上,分别过点B 、C 作x 轴的平行线,交抛物线C 1、C 2于点A 、D ,且AB=BD . (1)求点A 的坐标;(2)如图2,若将抛物线C 1:“121+=x y ”改为抛物线“11212c x b x y ++=”.其他条件不变,求CD 的长和2a 的值.(3)如图2,若将抛物线C 1:“121+=x y ”改为抛物线“11211c x b x a y ++=”,其他条件不变,求21b b +的值.五、面积问题例6.已知二次函数y=ax2+bx+c(a>0)的图像与x轴的一个交点为A(1,0),另一个交点为B,与y轴的交点为C(0,-2).(1)b=,点B的坐标为(,);(均用含a的代数式表示)(2)若a<2,试证明二次函数图像的顶点一定在第三象限;(3)若a=1,点P是抛物线在x轴下方的一个动点(不与C重合),连结PB、PC,设所得△PBC的面积①试求S的取值范围.②问:是否存在一个S的值,使得相应的点P有且只有2个?若有,求出这个S 的值,并求此时点P的横坐标;若不存在,请说明理由;③若相应的点P恰好有3个,则满足条件的S的取值范围是;④若相应的点P恰好只有1个,则满足条件的S的取值范围是;⑤若相应的点P不存在,则满足条件的S的取值范围是 .。