最优控制课程介绍

合集下载

最优控制全部PPT课件

最优控制全部PPT课件

J
(x(t f ),t f)
tf t0
F(x(t),u(t),t)dt
为最小。
这就是最优控制问题。
如果问题有解,记为u*(t), t∈ [t0,tf],则u*(t)叫做最优控制(极值控制),相应的轨 线X*(t)称为最优轨线(极值轨线),而性能指标J*=J(u*(·))则称为最优性能指标。
第11页/共184页
目标质心的位置矢量和速度矢量为: xM xM
F(t)为拦截器的推力
x xL xM v xL xM
则拦截器与目标的相对运动方程为:
x v v a(t) F (t)
m(t)
m F (t) c
其中a(t)是除控制加速度外的固有相对加速度,是已知的。
初始条件为: x(t0 ) x0 v(t0 ) v0 m(t0 ) m0 终端条件为: x(t f ) 0 v(t f )任意 m(t f ) me
至于末态时刻,可以事先规定,也可以是未知的。 有时初态也没有完全给定,这时,初态集合可以类似地用初态约束来表示。
第9页/共184页
3:容许控制 在实际控制问题中,大多数控制量受客观条件的限制,只能在一定范围内取 值,这种限制通常可以用如下不等式约束来表示:
0 u(t) umax 或ui i 1,2p
给定一个线性系统,其平衡状态X(0)=0,设计的目的是保持系统处于平衡状态,即 这个系统应能从任何初始状态返回平衡状态。这种系统称为线性调节器。
线性调节器的性能指标为:
J
tf t0
n
xi 2 (t)dt
i 1
加权后的性能指标为:
J
tf t0
n
qi xi 2 (t)dt
i1
对u(t)有约束的性能指标为: J t f 1 [ X T (t)QX (t) uT (t)Ru(t)]dt

《最优控制》课程大纲

《最优控制》课程大纲

最优控制教课纲领课程基本信息( Course Information )课程代码 MA4125 * 学时 * 学分 3( Course Code ) MA424(Credit Hours )48( Credits )* 课程名称 (中文)最优控制( Course Name )(英文) Optimal Control Methods 课程性质 专业方向选修 B 组(Course Type)讲课对象 理工科各专业本科生( Audience )讲课语言中文(Language of Instruction)* 开课院系 数学系( School )先修课程 《高等数学》、《线性代数》( Prerequisite )讲课教师周 钢课程网址 无(Instructor )(Course Webpage)* 课程简介( Description )* 课程简介( Description )从数学的角度,最优控制问题是最优化问题中拥有特别构造的一类问题。

就问题的根源看,它又是控制问题。

最优控制研究动向系统在各样拘束条件下追求使目标泛函取极值的最优控制函数和最优状态轨线的数学理论和方法。

最优控制问题波及范围广跨度大,几乎理工医农,管理军事以致人文经法领域,都存在着大批此类问题。

最优化就是追求最优系统和构造,发掘系统潜力的有力武器,学会求解最优控制问题,是应用数学工作者的最基本修养之一。

本课程的主要任务是,从各个教课环节指引学生认识不一样数学识题的特色和相应数学模型的构造,自己学会剖析实质问题,成立各样数目之间的联系,写出正确的合理的最优控制的模型;领悟求解最优控制问题解法是怎样提出的数学思想,并学会怎样依据这些思想来组成相应方法的技巧;学会能正确地解说计算结果的物理意义的能力。

最基本的是学会和培育系统地、动向地、综合地考虑,认识和办理问题的思想方法和着手能力。

这样,经过本课程的各个教课环节,提升学生的数学素质,增强学生展开科研工作和解决实质问题的能力。

《最优控制》教学大纲-hyq

《最优控制》教学大纲-hyq
3.3有约束条件的泛函极值——动态系统的最优控制问题(2学时)
第四章极小值原理及其应用(6学时)
4.1连续系统的极小值原理(2学时)
4.2最短时间控制问题(1学时)
4.3最少燃料控制问题(1学时)
4.4离散系统的极小值原理(2学时)
第五章线性系统二次型指标的最优控制——线性二次型问题(6学时)
5.1引言
最优控制教学大纲
(Optimal Control
课程代码
17004120
编写时间
2012.9
课程名称
最优控制
英文名称
Optimal Control
学分数
2
周学时
4
任课教师
黄毅卿
开课院系
自动化学院
预修课程
高数、泛函分析、控制理论基础
课程性质:
本科程是自动化方向的选修课程之一。
基本要求和教学目的:
介绍最优控制理论的基本知识和研究方法。学生通过本课程的学习,应该对最优控制理论的三个重要基础:Pontryagin最大值原理、LQ理论和动态规划方法有一个初步的了解。并能够利用它们解决一些最优控制问题。
Applied Optimal Control(应用最优控制——最优化·估计·控制)
Blaisdell P ublishing Company
1975(1982)
L.D.Berkovitz著,贺建勋等译
最优控制理论
上海科学技术出版社
1985
Dorald E. Kirk
Optimal ControlTheory - An Introduction
5.2终端时间有限时连续系统的状态调节器问题(2学时)
5.3稳态时连续系统的状态调节器问题(2学时)

清华大学最优控制--课程概述

清华大学最优控制--课程概述
3/4
1. 2. 3. 4. 5. 6.

因材施教:个别讨论、email答疑等
4/4
1
2/4
教学安排

教学安排

教材:最优控制,清华大学出版社
教学管理:作业30% + 开卷笔试70% (课程论文可代替部分或全部笔试) 提交作业要求: 1周内提交

参考书
解学书:最优控制—理论与应用,清华大学出版社 胡中楫等:最优控制原理及应用,浙大出版社 吴受章等:应用最优控制,西交大出版社 王朝珠等:最优控制原理,科学出版社 B.D.O.Anderson and J.B. Moore: Linear Optimal Control, Prentice-Hall F.L. Lewis and V.L. Syrmos: Optimal Control, John Wiley & Sons, INC.
教 学 安 排

最优控制
授课教师:钟宜生

总ห้องสมุดไป่ตู้时 32学时 主要教学内容
第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 第9章 最优控制问题的提出和数学描述 函数极值的基本理论 最优控制中的变分法 极大值原理 动态规划 时间最短和燃料最省控制 线性二次型最优调节系统设计 最优状态调节系统的鲁棒稳定性 最优控制系统的渐近特性和加权矩阵的选择

最优控制介绍课件

最优控制介绍课件
01
状态方程可以表 示为微分方程或 差分方程的形式
03
02
04
状态方程通常包 括系统的状态变 量、输入变量和 输出变量
状态方程在最优 控制问题中用于 描述系统的动态 特性,为控制器 的设计提供依据
控制方程
状态方程: 描述系统 状态的变 化规律
控制方程: 描述控制 输入与系 统状态的 关系
性能指标 方程:描 述系统的 性能指标
02
状态转移方程: 描述状态之间的
递推关系
03
边界条件:定义 初始状态和终止
状态
04
求解过程:从初 始状态开始,逐 步求解子问题, 直至得到最优解
最优控制理论
01
最优控制理论是研究如何找到最优控制策
略,使得系统在特定条件下达到最优性能。
02
最优控制理论包括动态规划、极大值原
理、变分法等方法。
03
最优控制理论广泛应用于工程、经济、
04
间接法:通过求解最优控制问 题的辅助问题来获得最优控制 策略
06
数值解法优缺点:优点是计算 简单、易于实现;缺点是计算 精度较低、收敛速度较慢
机器人控制
1
机器人运动控 制:通过最优 控制算法,实 现机器人的精 确运动控制
2
机器人路径规 划:通过最优 控制算法,规 划机器人的最 优路径
3
机器人抓取控 制:通过最优 控制算法,实 现机器人的精 确抓取控制
交通控制
STEP1
STEP2
STEP3
STEP4
交通信号灯控制: 根据实时交通状况, 自动调整信号灯时 间,提高道路通行 效率
公共交通调度:根 据客流量、车辆位 置等信息,优化公 交线路和发车频率, 降低乘客等待时间

最优控制课程介绍

最优控制课程介绍

最优控制先修课程:常微分方程,最优化方法最优控制问题是具有特殊数学结构的一类最优化问题,在科学、工程和管理乃至人文领域都存在大量的最优控制问题。

最优控制研究动态系统在各种约束条件下,寻求目标泛函取极值的最优控制函数与最优状态轨线的数学理论和方法,它是静态最优化在无穷维空间的扩展。

希望学生通过本课程的学习,能够结合实际背景,建立最优控制的模型,理解求解最优控制的三大类基本方法的数学思想,灵活地掌握这些方法的基本过程,并能解释计算结果的意义。

主要内容如下:最优控制问题及其建模;数学基础;变分法及其在最优控制的应用;极小值原理及其应用;动态规划方法及其应用;应用。

最优控制一、课程基本信息 1.先修课程:数学系本科包括到大三的全部课程 2.面向对象:理学院数学系各专业 3.推荐教学参考书:吴沧浦,《最优控制的理论与方法》,国防工业出版社,2000 王朝珠等,《最优控制理论》,科学出版社,2003 邢继祥等,《最优控制应用基础》,科学出版社,2003 W. L. Brogan, Modern C ontrol Theor y, (3th eidition), Prentice-Hall, Englew ood C liffs,1991 二、课程的性质和任务本课程是数学与应用数学专业本科生高年级选修课程之一。

从数学的角度,最优控制问题是最优化问题中具有特殊结构的一类问题。

就问题的来源看,它又是控制问题。

最优控制研究动态系统在各种约束条件下寻求使目标泛函取极值的最优控制函数和最优状态轨线的数学理论和方法。

最优控制问题涉及范围广跨度大,几乎理工医农,管理军事乃至人文经法领域,都存在着大量此类问题。

最优化已是寻求最优系统和结构,挖掘系统潜力的有力武器,学会求解最优控制问题,是应用数学工作者的最基本素养之一。

通过本课程的主要任务是,从各个教学环节引导学生认识不同数学问题的特点和相应数学模型的结构,自己学会分析实际问题,建立各种数量之间的联系,写出正确的合理的最优控制的模型;领会求解最优控制问题解法是如何提出的数学思想,并学会如何根据这些思想来构成相应方法的技巧;学会能正确地解释计算结果的物理意义的能力。

最优控制 李国勇

最优控制 李国勇

最优控制一、课程基本情况二、课程内容简介主要内容包括为:最优化问题的基本概念、最优控制中的变分法、极大值原理、动态规划和线性二次型最优控制问题。

为了培养学生现代化的分析与设计能力,在每一部分都涉及利用MATLAB对其实现的方法,让学生在有限的时间内,掌握最优控制的基本原理与应用技术。

三、课程教学大纲第1章绪论(4学时)1. 教学内容及基本要求本章的基本要求是使学生了解最优控制理论的基本知识和基本方法。

主要内容包括:最优控制的发展;最优控制问题;最优控制的提法;最优控制的求解方法。

2. 重点、难点最优控制的提法、最优控制的求解方法等。

第2章最优控制中的变分法(14学时)1. 教学内容及基本要求本章的基本要求是使学生掌握利用变分法求解最优控制的方法。

主要内容包括:静态最优控制的解;变分法;应用变分法求解最优控制问题;角点条件。

2. 重点、难点无约束情况下的角点条件和内点约束情况下的角点条件下最优控制的求解等。

第3章极大值原理(12学时)1. 教学内容及基本要求本章的基本要求是使学生掌握利用极大值原理求解最优控制的方法。

主要内容包括:连续系统的极大值原理;离散系统的极大值原理;极大值原理的应用。

2. 重点、难点极大值原理的应用等。

第4章动态规划(12学时)1. 教学内容及基本要求本章的基本要求是使学生掌握利用动态规划求解最优控制的方法。

主要内容包括:动态规划的基本原理;离散系统的动态规划;连续系统的动态规划;动态规划与变分法和极大值原理的关系。

2. 重点、难点动态规划在微分对策问题中的应用等。

第5章线性二次型最优控制问题(12学时)1. 教学内容及基本要求本章的基本要求是使学生掌握线性二次型最优控制问题的求解方法。

主要内容包括:线性二次型问题;状态调节器;输出调节器;输出跟踪器;离散系统的线性二次型最优控制;利用MATLAB求解二次型最优控制问题。

2. 重点、难点线性二次型的微分对策问题等。

四、课程知识单元与知识点1. 论述●最优控制理论基本概念●最优控制理论常用的求解方法2. 变分法●普通函数的极值问题●变分法的基本概念●变分法在动态最优控制中的应用3. 极大值原理●极大值原理的基本概念●离散系统的动态规划和连续系统的动态规划;●极大值原理的应用4. 动态规划●动态规划的基本概念●基于动态规划的微分对策问题●动态规划与变分法和极大值原理的关系5. 线性二次型最优控制●线性二次型问题●状态调节器●输出调节器●跟踪器各部分都列举了大量的应用实例及利用MATLAB对其实现的方法,便于读者掌握和巩固所学知识。

最优控制 第一章 概述

最优控制 第一章 概述
第一章 概述
(1-1)
i = 1,2,…,m
(1-2)
(1-3)
10
那么,最优化任务,是要在式 那么,最优化任务,是要在式(1-2)、式(1-3) 、 的约束条件下,寻求x,使式(1-1)的目标函数取 的约束条件下,寻求 ,使式 的目标函数取 最优(最小或最大 值 最优 最小或最大)值。 最小或最大 上述问题的最优化,由于变量 与时间 与时间t无 上述问题的最优化,由于变量x与时间 无 或在所讨论的时间区间内t为常量 为常量, 关,或在所讨论的时间区间内 为常量,因此属 静态最优化问题。 于静态最优化问题。
第一章 概述 3
有甲、乙两个仓库,分别存有水泥1500包 例:有甲、乙两个仓库,分别存有水泥 包 三个工地, 和1800包。有A、B、C三个工地,分别需要水泥 包 、 、 三个工地 900包、600包和 包 包和1200包。 包和 包 已知从甲库送到A、B、C三个工地,每包水泥 三个工地, 已知从甲库送到 、 、 三个工地 的运费分别为1元 元和4元 从乙库送到A、 、 的运费分别为 元、2元和 元;从乙库送到 、B、C 元和 三个工地的运费分别为4元 元和9元 三个工地的运费分别为 元、5元和 元。 元和 应怎样发送这些水泥,才能使运费最省呢? 应怎样发送这些水泥,才能使运费最省呢?
第一章 概述 6
本例中,目标函数 本例中,目标函数f(x)和约束条件都是自变 和约束条件都是自变 的一次函数, 量x的一次函数,称为线性最优化问题。又因约 的一次函数 称为线性最优化问题。 束条件中存在不等式,故属具有不等式约束条 束条件中存在不等式, 件的线性最优化问题。 件的线性最优化问题。
第一章 概述
古典变分法 极小(大 值原理 极小 大)值原理 动态规划法

最优化方法与最优控制课程设计

最优化方法与最优控制课程设计

最优化方法与最优控制课程设计一、设计背景随着现代科技的迅猛发展和社会竞争的加剧,各领域都需要越来越高效、精确、优化的设计方法和控制策略。

其中,最优化方法和最优控制技术是目前工程和科学领域中广泛应用的重要工具。

为了培养具有创新、实际和实践能力的工科人才,本次课程设计旨在通过对最优化方法和最优控制的讲解和实践,让学生更好地掌握和应用相关知识和技能。

二、设计目标通过本次课程设计,学生将会达到以下目标:1.掌握最优化方法和最优控制技术的基本理论和基本方法。

2.学会使用常见的数学建模软件,如Matlab等进行系统建模和仿真分析。

3.能够独立和团队完成一个小型的最优化或最优控制项目,提高实践能力和工程实践能力。

三、设计内容本次课程设计包含以下主要内容:1. 最优化方法最优化问题是在已知约束和目标函数的情况下,寻找能够使目标函数达到最大值或最小值的决策变量。

本部分主要包括以下内容:1.1. 常见最优化方法:线性规划、非线性规划、整数规划等。

1.2. 最优化算法:梯度下降法、共轭梯度法、拟牛顿法、遗传算法等。

1.3. 最优化软件:Matlab、Gurobi、CPLEX等。

2. 最优控制方法最优控制是指将控制问题描述为寻求使性能指标最优的动态过程。

本部分主要包括以下内容:2.1. 常见最优控制方法:最优控制基本原理、极小值原理与动态规划、Pontryagin最小值原理、最优控制的数值方法等。

2.2. 最优控制软件:Matlab、Simulink、LabVIEW等。

3. 课程设计环节选做题目:利用所学知识设计一个最优化或最优控制的小型项目,完成以下步骤:3.1. 对所选项目进行问题陈述和问题定义,明确项目的目标和指标。

3.2. 采用合适的数学建模方法,将该项目建立为数学模型。

3.3. 选择相应的最优化或最优控制方法,探究寻找最优解的过程。

3.4. 采用合适的软件工具,在计算机上进行仿真分析和可视化呈现。

3.5. 编写实验报告,总结和分析实验结果,分享并展示项目成果。

最优控制-理论方法与应用课程设计

最优控制-理论方法与应用课程设计

最优控制-理论方法与应用课程设计1. 概述最优控制是控制科学中的重要领域,它的主要研究目标是在特定控制系统条件下寻求最优的控制策略和状态序列。

最优控制理论涉及的数学和工程学科范畴广泛,如微积分、微分方程、优化理论、控制理论、动力学等。

在科技领域,最优控制已经应用于航空、航天、导航、水利、自动化、电力等许多领域。

2. 学习内容2.1 最优控制的基本概念在本门课中,我们将首先讲述最优控制理论中的基本概念,包括状态空间、状态矢量、控制输入、性能荷重、性能指标等概念。

我们将学习如何根据所给控制系统的数学模型建立最优控制问题的数学表达式。

2.2 最优控制方法在本门课的第二部分中,我们将介绍最优控制理论的主要方法,包括动态规划、线性二次型控制、最小时间控制、最大原则控制等。

我们将学习如何选择最适合控制问题的方法,并根据具体问题进行模型求解。

2.3 最优控制的应用在最后一个部分中,我们将重点介绍最优控制在工程中的应用。

我们将以航空航天和导航为例,学习如何用最优控制解决机动问题,如轨道控制、制导、自动驾驶器的设计等。

3. 课程设计本门课程旨在培养学生的最优控制理论和实践应用能力。

为了达到这一目标,我们设计了以下课程设计项目:3.1 最优控制数学建模在这个项目中,学生将根据所给的控制系统模型,利用所学的最优控制理论,构建最优控制问题的数学模型,并选择适当的最优控制方法求解问题。

3.2 最优控制仿真实验在这个项目中,学生将使用Matlab等数学仿真软件,模拟控制系统的动态过程,并通过设计多种控制策略,比较不同策略的性能指标,最终确定最优控制策略。

3.3 工程最优控制应用设计在这个项目中,学生可以自主选择一个最优控制应用方向,如航空、航天、水利、导航等,根据实际需求,设计最优控制系统,并结合仿真软件进行仿真验证。

4. 总结最优控制理论和应用是现代控制工程中不可或缺的领域,它不仅拓展了学科的范围,也推动了科技的进步和社会的发展。

最优控制理论简明教程教学设计

最优控制理论简明教程教学设计

最优控制理论简明教程教学设计1. 前言最优控制理论是现代控制学领域的一种重要理论,广泛应用于电力、交通、工业等领域。

随着自主科学研究能力的提升,越来越多的大学生正在接触和学习这一领域的知识。

本篇文章旨在通过简明的教程介绍最优控制理论的基本概念和方法,并提供相关教学设计供教师参考。

2. 最优控制理论基本概念最优控制是指在一定约束条件下,使系统的某一性能指标达到最优的控制过程。

最优控制理论是一种以最小化某种指标(如能量消耗、时间等)为目标的控制系统设计方案。

最优控制问题的一般形式是:已知系统的状态方程和控制方程,以及某种指标函数,求最优控制律,使指标函数取最小值。

最优控制理论主要包括动态规划、变分法等内容。

动态规划是指通过列举所有可能的控制状态(即可能的控制量和被控制量的取值),从中选取最优控制状态。

变分法则是利用守恒原理对系统进行分析,通过求解欧拉-拉格朗日方程确定最优控制状态。

3. 最优控制理论基本方法最优控制分为离散时间和连续时间两种形式。

离散时间最优控制是指以离散时间点上的状态和控制量为变量,求解使目标函数最小化的最优控制量序列。

连续时间最优控制是指利用微积分理论描述系统状态和控制量的变化,从而求解最优控制策略。

最优控制方法的基本步骤如下:1.构造系统动态方程和控制方程。

2.定义目标函数,选择性能指标。

3.制定控制策略,求解最优控制量。

4.根据控制量和动态方程计算系统状态。

在最优控制中,控制量的选取和控制策略的设计是最关键的部分。

设计控制量需要考虑系统模型、控制目标和控制器类型等因素。

4. 最优控制理论教学设计最优控制理论在数字信号处理、电力控制、自动化控制等领域有广泛的应用,是控制工程学科中必须掌握的核心知识之一。

以下是一些教学设计供教师参考:4.1 课堂讲解最优控制理论的教学可以从实际案例入手,介绍最优控制理论的基本概念和方法,以及离散时间和连续时间最优控制方法。

可以使用PPT或黑板演示进行讲解,搭配简单的实例演示,让学生更好地理解。

《最优控制》教学大纲

《最优控制》教学大纲

《最优控制》教学大纲一、课程名称最优控制Theory of Optimal Control二、课程编码0700371三、学时与学分40/2.5四、先修课程数学分析、概率论与数理统计、随机过程五、教学目标最有控制理论广泛地应用于经济和金融中,通过本门课程的学习使学生系统地掌握优化理论中的变分方法、最优化原理及动态规划方法等。

六、教学内容和学时安排:1.Calculus of Variation变分方法(18课时)1.1.I ntroduction引论1.2.E xample Solved某些具体的例1.3.E uler Equation欧拉方程1.4.S olving the Euler Equation in Special Case s某些特殊情形的欧拉方程求解1.5.S econd Order Conditions二阶条件1.6.I soperimetric Problem等周长问题1.7.F ree End Value Problem自由终端值问题1.8.E quality Constrained Endpoint Problem等式约束端点问题1.9.S alvage Value Problem残值问题1.10.Inequality Constrained Endpoints Problem不等式约束端点问题1.11.Corner Problem 角解1.12.Most Rapid Approach Paths快速路径方法1.13.Diagrammatic Analysis图示分析2.Optimal Control最优控制(12课时)2.1 Introduction引论2.2 Necessary Condition最优控制必要条件2.3 Interpretations最优控制的直观含意2.4 Fixed Endpoint Problems最优控制固定端点问题2.5 Various Endpoint Conditions最优控制的不同端点问题2.6 Discounting, Current Value, Comparative Dynamics折扣、现值与比较动态分析2.7 The Pontryagin Maximum Principle, Existence最优控制的最大化原理2.8 Optimal Control with Integral State Equations积分状态方程的最优控制3. Dynamic Programming动态规划问题(8课时)3.1 Deterministic Dynamic Programming确定性动态规划3.2 Stochastic Dynamic Programming随机动态规划七、教材Kamien, M. I., and N. L. Schwartz. Optimal Optimization. Elsevier Science, 1991. 八、考核方式书面考试+作业+课堂表现。

《最优控制》课程教学大纲

《最优控制》课程教学大纲

《最优控制》课程教学⼤纲《最优控制》课程教学⼤纲课程代码:060142002课程英⽂名称:Optimal Control课程总学时:32 讲课:32 实验:0 上机:0适⽤专业:⾃动化专业⼤纲编写(修订)时间:2017.11⼀、⼤纲使⽤说明(⼀)课程的地位及教学⽬标《最优控制》是现代控制理论的重要组成部分,它已⼴泛应⽤于军事和⼯业及经济领域中,例如空间技术、系统⼯程、⼈⼝理论、经济管理、决策及⼯业过程控制等等。

并在各个领域取得了显著的成果。

本课程是⾃动化专业的⼀门选修课,其基本任务和教学⽬标是要求⾃动化专业学⽣掌握最优控制理论及应⽤的基础知识及解最优控制问题的常⽤⽅法,了解最优控制的发展⽅向,为将来的专业发展打下⼀定的基础。

(⼆)知识、能⼒及技能⽅⾯的基本要求1.基本知识:初步掌握最优控制的基础理论,如最优控制问题的概念、最优控制的数学描述、解决最优控制问题⽅法及⼆次型性能指标最优控制问题。

2.基本理论和⽅法:初步掌握解决最优控制问题的⼀些基本⽅法,如古典变分原理,庞德⾥亚⾦极⼤(⼩)值原理和贝尔曼动态规划⽅法。

3.基本技能:利⽤最优控制理论和⽅法能够解决的实际最优控制问题。

(三)实施说明1.教学⽅法:从基本教育出发,站在培养⼈才的⾼度上,来看待本课程所应承担的责任。

在讲授具体内容时,要分清每⼀部分内容在本课程中所处的地位,这样才能在⼤纲实施过程中得⼼应⼿。

要提⾼学⽣的基本素质,要求学⽣化被动吸收为主动索取知识。

2.教学⼿段:本课程属于技术基础课,在教学中采⽤电⼦教案、CAI课件及多媒体教学系统等先进教学⼿段,以确保在有限的学时内,全⾯、⾼质量地完成课程教学任务。

为了提⾼教学效果,可采⽤多环节教学⽅式,如课程讲授、课堂提问及课前预习和课后阅读。

对于每次课堂讲授,原则上采⽤两个层次讲解,即⼀是提出研究的问题;⼆是介绍解决问题的各种⽅法及其存在的优缺点,培养学⽣创新思维意识。

通过课堂提问,在课堂上调动学⽣积极性,促进其思考,提⾼教与学互动性。

最优控制概述

最优控制概述

最优控制课程概述最优控制理论的形成和发展和整个现代自动控制理论的形成和发展十分不开的。

在20世纪50年代初期,就有人开始发表从工程观点研究最短时间控制问题的文章,尽管其最优性的证明多半借助于几何图形,仅带有启发性质,但毕竟为发展现代控制理论提供了第一批实际模型。

由于最优控制问题引人注目的严格表述形式,特别是空间技术的迫切需求,从而吸引了大批科学家的密切注意。

经典变分理论只能解决一类简单的最优控制问题,因为它只对无约束或开集性约束是有效的。

而实际上碰到的更多的是容许控制属于闭集的一类最优控制问题,这就要求人们去探索、求解最优控制问题的新途径。

在种种新方法中,有俩种方法最富成效:一种是苏联学者庞特里亚金(Л.С.Понтрягин)的“极大值原理”;另一类是美国学者贝尔曼(R.E.Bellman)的“动态规划”[2]。

受力学中哈密顿(Hamilton)原理的启发,庞特里亚金等人把“极大值原理”作为一种推测首先推测出来,随后不久又提供了一种严格的证明,并于1958年在爱丁堡召开的国际数学会议上首先宣读。

“动态规划”是贝尔曼在1953-1957年逐步创立的,他依旧最优性原理发展了变分学中的哈密顿—雅可比理论,构成了“动态规划”。

它是一种适用于计算机计算,处理问题范围更广的方法。

在现代控制理论的形成和发展中,极大值原理、动态规划和卡尔曼(R.E.Kalman)的最优估计理论都起过重要的推动作用[3]。

现代控制理论的形成和发展和数字计算机的飞速发展和广约应用密不可分。

由于计算机的“在线”参与控制,这样,既不要求把控制器归结为简单的校正网络,也不一定要求有封闭形式的解析解,因此,使得最优控制的工程实现了可能。

反过来又提出了许多新的理论问题,导致最优控制的直接和间接计算方法的大批研究成果的出现,进一步推动了控制理论的发展。

最优控制的含义最优控制,就是将通常的最优控制问题抽象成一个数学问题,并且用数学语言严格的表示出来,最优控制可分为静态最有和动态最有两类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最优控制
先修课程:常微分方程,最优化方法最优控制问题是具有特殊数学结构的一类最优化问题,在科学、工程和管理乃至人文领域都存在大量的最优控制问题。

最优控制研究动态系统在各种约束条件下,寻求目标泛函取极值的最优控制函数与最优状态轨线的数学理论和方法,它是静态最优化在无穷维空间的扩展。

希望学生通过本课程的学习,能够结合实际背景,建立最优控制的模型,理解求解最优控制的三大类基本方法的数学思想,灵活地掌握这些方法的基本过程,并能解释计算结果的意义。

主要内容如下:最优控制问题及其建模;数学基础;变分法及其在最优控制的应用;极小值原理及其应用;动态规划方法及其应用;应用。

最优控制
一、课程基本信息 1.先修课程:数学系本科包括到大三的全部课程 2.面向对象:理学院数学系各专业 3.推荐教学参考书:吴沧浦,《最优控制的理论与方法》,国防工业出版社,2000 王朝珠等,《最优控制理论》,科学出版社,2003 邢继祥等,《最优控制应用基础》,科学出版社,2003 W. L. Brogan, Modern C ontrol Theor y, (3th eidition), Prentice-Hall, Englew ood C liffs,1991 二、课程的性质和任务本课程是数学与应用数学专业本科生高年级选修课程之一。

从数学的角度,最优控制问题是最优化问题中具有特殊结构的一类问题。

就问题的来源看,它又是控制问题。

最优控制研究动态系统在各种约束条件下寻求使目标泛函取极值的最优控制函数和最优状态轨线的数学理论和方法。

最优控制问题涉及范围广跨度大,几乎理工医农,管理军事乃至人文经法领域,都存在着大量此类问题。

最优化已是寻求最优系统和结构,挖掘系统潜力的有力武器,学会求解最优控制问题,是应用数学工作者的最基本素养之一。

通过本课程的主要任务是,从各个教学环节引导学生认识不同数学问题的特点和相应数学模型的结构,自己学会分析实际问题,建立各种数量之间的联系,写出正确的合理的最优控制的模型;领会求解最优控制问题解法是如何提出的数学思想,并学会如何根据这些思想来构成相应方法的技巧;学会能正确地解释计算结果的物理意义的能力。

最根本的是学会和培养系统地、动态地、综合地考虑,认识和处理问题的思想方法和动手能力。

这样,通过本课程的各个教学环节,提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。

三、教学内容和要求基本要求:期望学生能够结合工程背景认识最优控制问题的数学结构的特点,从而能灵活地建立实际问题的数学模型,深刻领会求解它们的三大类方法的数学思想,熟练地掌握这些方法的运用步骤,能正确地解释求解结果的意义,并学会最优控制问题的数值解法。

第一章最优控制与最优化问题 1.1 最优化问题的源和流 1.2 最优控制问题的例子和数学描述 1.3 最优控制问题求解的基本思想第二章数学基础 2.1 向量与矩阵的求导法则 2.2 函数极值的几个条件 2.3 线性微分方程的解第三章变分法 3.1 泛函的变分与极值 3.2 Euler方程 3.3 等式约束条件下泛函极值问题的必要条件 3.4 几类可用变分方法求解的最优控制问题 3.5 应用实例第四章极小值原理 4.1 极值曲线场与充分条件 4.2 有控制变量不等式约束的极小值原
理 4.3 含有状态变量不等式的极小值原理 *4.4 极小值原理的证明 4.5 极小值原理的应用实例 4.6 离散极小值原理第五章极小值原理的几类应用 5.1 时间最短最优控制问题 5.2 燃料最省最优控制问题 5.3 线性二次型最优控制问题第六章动态规划 6.1 多阶段决策问题与动态规划思想 6.2 用动态规划思想解最优化问题 6.3 离散系统最优控制问题的动态规划解法 6.4 离散线性二次型问题的动态规划解 6.5 连续系统做优控制问题的动态规划解和HJB方程 6.6 连续二次型问题的动态规划解 6.7 Riccatti方程的求解第七章最优控制的新发展 7.1 对策论和微分对策 7.2 随机最优控制四.实验(上机)内容和基本要求本课程无实验和上机的教学安排,但要求学生结合本专业的特点和所研究的课题,选择部分算法自己上机实现。

要求学生熟悉至少一门数学软件平台(Mathematica/ matleb/Maple)和至少一种编程语言。

教学实验就是编程解决实际问题。

至少做有求解
足够规模的问题的大作业3-4次大作业。

五.对学生能力培养的要求本课程采用“引出问题,启发思路,重点分析,课堂讨论,课外探索,自行归纳”的教学方式,使学生在掌握最优控制基本知识的基础上,力求活跃其数学思想,从而培养学生运用较高层次的数学观点和数学知识,能对实际问题进行分析、归纳、提炼和建立数学模型,选择适当的算法,能够编写计算机程序实际求解,并且能对计算结果进行分析和解释。

另一方面,希望在教师引导下,学生逐步学会自己从前人研究的问题、分析问题的过程、演绎推导的结果中,体会和领悟这些人类高级心智文明的成果,使学生自己真正学懂数学,而不是被“教会”数学;同时希望学生通过研究式的钻研、探索乃至犯错误的过程中,培养从错纵复杂的现象事理中和繁杂无序的结果数据中,寻找与总结内在关系和规律的能力,并且体会科学研究的艰辛和乐趣,培养在科学研究和事理处理上百折不挠、持之以恒的毅力和意志。

提高他们的数学素质和数学修养,提高他们开展科技活动和社会实践的能力以及开展科研工作的能力。

尽管本课程的重点放在运用算法解决问题上,但是仍然鼓励和希望学有余力的同学,对于问题建立模型、算法的性态分析和算法实际运行性质的分析,有实质性的研究和提高。

相关文档
最新文档