最优控制课程介绍
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优控制
先修课程:常微分方程,最优化方法最优控制问题是具有特殊数学结构的一类最优化问题,在科学、工程和管理乃至人文领域都存在大量的最优控制问题。最优控制研究动态系统在各种约束条件下,寻求目标泛函取极值的最优控制函数与最优状态轨线的数学理论和方法,它是静态最优化在无穷维空间的扩展。希望学生通过本课程的学习,能够结合实际背景,建立最优控制的模型,理解求解最优控制的三大类基本方法的数学思想,灵活地掌握这些方法的基本过程,并能解释计算结果的意义。主要内容如下:最优控制问题及其建模;数学基础;变分法及其在最优控制的应用;极小值原理及其应用;动态规划方法及其应用;应用。
最优控制
一、课程基本信息 1.先修课程:数学系本科包括到大三的全部课程 2.面向对象:理学院数学系各专业 3.推荐教学参考书:吴沧浦,《最优控制的理论与方法》,国防工业出版社,2000 王朝珠等,《最优控制理论》,科学出版社,2003 邢继祥等,《最优控制应用基础》,科学出版社,2003 W. L. Brogan, Modern C ontrol Theor y, (3th eidition), Prentice-Hall, Englew ood C liffs,1991 二、课程的性质和任务本课程是数学与应用数学专业本科生高年级选修课程之一。从数学的角度,最优控制问题是最优化问题中具有特殊结构的一类问题。就问题的来源看,它又是控制问题。最优控制研究动态系统在各种约束条件下寻求使目标泛函取极值的最优控制函数和最优状态轨线的数学理论和方法。最优控制问题涉及范围广跨度大,几乎理工医农,管理军事乃至人文经法领域,都存在着大量此类问题。最优化已是寻求最优系统和结构,挖掘系统潜力的有力武器,学会求解最优控制问题,是应用数学工作者的最基本素养之一。通过本课程的主要任务是,从各个教学环节引导学生认识不同数学问题的特点和相应数学模型的结构,自己学会分析实际问题,建立各种数量之间的联系,写出正确的合理的最优控制的模型;领会求解最优控制问题解法是如何提出的数学思想,并学会如何根据这些思想来构成相应方法的技巧;学会能正确地解释计算结果的物理意义的能力。最根本的是学会和培养系统地、动态地、综合地考虑,认识和处理问题的思想方法和动手能力。这样,通过本课程的各个教学环节,提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。三、教学内容和要求基本要求:期望学生能够结合工程背景认识最优控制问题的数学结构的特点,从而能灵活地建立实际问题的数学模型,深刻领会求解它们的三大类方法的数学思想,熟练地掌握这些方法的运用步骤,能正确地解释求解结果的意义,并学会最优控制问题的数值解法。第一章最优控制与最优化问题 1.1 最优化问题的源和流 1.2 最优控制问题的例子和数学描述 1.3 最优控制问题求解的基本思想第二章数学基础 2.1 向量与矩阵的求导法则 2.2 函数极值的几个条件 2.3 线性微分方程的解第三章变分法 3.1 泛函的变分与极值 3.2 Euler方程 3.3 等式约束条件下泛函极值问题的必要条件 3.4 几类可用变分方法求解的最优控制问题 3.5 应用实例第四章极小值原理 4.1 极值曲线场与充分条件 4.2 有控制变量不等式约束的极小值原
理 4.3 含有状态变量不等式的极小值原理 *4.4 极小值原理的证明 4.5 极小值原理的应用实例 4.6 离散极小值原理第五章极小值原理的几类应用 5.1 时间最短最优控制问题 5.2 燃料最省最优控制问题 5.3 线性二次型最优控制问题第六章动态规划 6.1 多阶段决策问题与动态规划思想 6.2 用动态规划思想解最优化问题 6.3 离散系统最优控制问题的动态规划解法 6.4 离散线性二次型问题的动态规划解 6.5 连续系统做优控制问题的动态规划解和HJB方程 6.6 连续二次型问题的动态规划解 6.7 Riccatti方程的求解第七章最优控制的新发展 7.1 对策论和微分对策 7.2 随机最优控制四.实验(上机)内容和基本要求本课程无实验和上机的教学安排,但要求学生结合本专业的特点和所研究的课题,选择部分算法自己上机实现。要求学生熟悉至少一门数学软件平台(Mathematica/ matleb/Maple)和至少一种编程语言。教学实验就是编程解决实际问题。至少做有求解
足够规模的问题的大作业3-4次大作业。五.对学生能力培养的要求本课程采用“引出问题,启发思路,重点分析,课堂讨论,课外探索,自行归纳”的教学方式,使学生在掌握最优控制基本知识的基础上,力求活跃其数学思想,从而培养学生运用较高层次的数学观点和数学知识,能对实际问题进行分析、归纳、提炼和建立数学模型,选择适当的算法,能够编写计算机程序实际求解,并且能对计算结果进行分析和解释。另一方面,希望在教师引导下,学生逐步学会自己从前人研究的问题、分析问题的过程、演绎推导的结果中,体会和领悟这些人类高级心智文明的成果,使学生自己真正学懂数学,而不是被“教会”数学;同时希望学生通过研究式的钻研、探索乃至犯错误的过程中,培养从错纵复杂的现象事理中和繁杂无序的结果数据中,寻找与总结内在关系和规律的能力,并且体会科学研究的艰辛和乐趣,培养在科学研究和事理处理上百折不挠、持之以恒的毅力和意志。提高他们的数学素质和数学修养,提高他们开展科技活动和社会实践的能力以及开展科研工作的能力。尽管本课程的重点放在运用算法解决问题上,但是仍然鼓励和希望学有余力的同学,对于问题建立模型、算法的性态分析和算法实际运行性质的分析,有实质性的研究和提高。