离散数学代数结构

合集下载

离散数学课件 第五章 代数结构_2

离散数学课件 第五章 代数结构_2

aHbH,同理bHaH
aH=bH
拉格朗日定理
定理5-7.1(拉格朗日定理) 设<H,>为有限群<G, >的子群,|G|=n, |H|=m, 那么|G|/|H| = n/m是 整数,即m|n 。
拉格朗日定理的推论
推论1 任何质数阶的群不可能有非平凡子群。 推论2 设<G,>为n阶有限群,那么对于任意aG,a 的阶必是n的因子且必有an=e,这里e是群<G,>的幺 元。如果n为质数,则<G,>必是循环群。
陪集举例
例1.求出<N6,+6>关于子群<{[0],[3]},+6>的所有左 陪集,右陪集。 解:令H={[0],[3]}, 则左陪集: 右陪集: [0]H={[0],[3]}=[3]H H[0]={[0],[3]}=H[3] [1]H={[1],[4]}=[4]H H[1]={[1],[4]}=H[4] [2]H={[2],[5]}=[5]H H[2]={[2],[5]}=H[5] 从中可以看出:{[0]H,[1]H,[2]H}是G的一个划分。
补充:元素的阶(a的阶,记为|a| )
1.元素a的幂的定义
定义:给定群<G, * >,aG,若nN,则定义:
a0 = e,
an+1 = an * a,
a-n = a-1 * a-1 * * a-1= (a-1)n =(an)-1
对m用归纳法可证:am * an = am+n (m,nI),
5-5 阿贝尔群和循环群
定义 5-5.1 设 <G,>为一群,若 运算满足交 换律,则称G为交换群或阿贝尔群(Abel group)。 例:由于加法运算“+”满足交换律,因此群 <Z,+ >,<R, +>,<Q, +>,<C, +>都是交换群。

自考离散数学第4章

自考离散数学第4章

例:设集合A={a,b,c,d},在A上定义两个运算*和
,如表所示: 解:b,d是A中关于*运算的左幺元,而a是A中关于运算的右幺元。
a d a a a b a b b b c b c c c d c d c d a b c
* a b c d

a a b c
b b a d
c d c a
定义4.3.7 设<G,*>为群,若在G中存在一个元素a,使得G中的任意元素都由a
例:设A={a,b,c,d},*为A上的二元运算,
* a b c d
a a b c d
b b d a a
c c a b c
d d c b d
可以看出a为单位元。由a*a=a,b*c=a,c*b=a,d*b=a, 故a有逆元a;b有左逆元c,d;c有左逆元b;b有右逆元c;c有右逆元b;d有
定义4.3.2 设<G,*> 为一个群,如果G是有限集合,则称<G,*> 是有限群。G中
元素的个数通常称为有限群的阶数,记为|G|。
定义4.3.3 若群G中,只含有一个元素,即G={e},|G|=1,则称G为平凡群。 例:设G={e,a,b,c},运算*如表所示:
* e a b c
e e a b c
4.2 半群与独异点
4.3 群与子群
定义4.3.1 设<G,*>为一个代数系统,其中G是非空集合,*是G上一个二元运算,
① 如果*是封闭的; ② 运算*是可结合的; ③ 存在幺元e; ④ 对于每一个元素x G,存在它的逆元x-1; 则称<G,*>是一个群。
4.3 群与子群

4.3 群与子群
4.1 代数系统

离散数学中的代数结构和置换群

离散数学中的代数结构和置换群

离散数学是数学中的一个重要分支,它研究离散的、非连续的数学对象和结构。

在离散数学中,代数结构是其中一个重要的概念,而置换群是代数结构的一个重要例子。

代数结构是研究对象间关系的一种数学工具。

它包括集合,运算和运算性质。

集合是代数结构的基础,是一个由元素组成的不重复的集合。

运算指的是将集合中两个元素映射到集合中的另一个元素的操作,常见的运算有加法、乘法等。

运算性质是指运算在代数结构中具有的性质,如结合律、交换律、单位元等。

在代数结构中,置换群是一种重要的结构。

置换是一种改变事物次序的方法,它可以是将事物重新排列,也可以是将某个事物替换为另一个事物。

置换群是一组置换构成的集合,并且具有封闭性,结合律和单位元等性质。

置换群可以描述物体的旋转、对称和变换等操作,也可以用于密码学和密码破解等领域。

置换群的运算是指将两个置换进行合成,可以通过将第一个置换的作用结果作为第二个置换的作用对象来实现。

例如,设置换π1表示将物体的位置1和位置2进行交换,置换π2表示将物体的位置2和位置3进行交换,那么置换π1和置换π2的合成操作即为将物体的位置1和位置3进行交换。

正如前所述,置换群具有封闭性、结合律和单位元等性质。

封闭性指的是任意两个置换的合成结果仍然是一个置换。

结合律是指对于置换群中的任意三个置换a、b和c,有(a * b) * c = a * (b * c),即合成的顺序不影响结果。

单位元是指存在一个特殊的置换,它与任意置换进行合成后结果仍然是原置换。

在置换群中,还有一个重要的概念是逆元。

对于每个置换a,都存在一个逆置换a',使得a * a' = a' * a = e,其中e是置换群的单位元。

逆元表示将一个置换的操作逆向执行,可以将置换还原为原来的状态。

置换群不仅在离散数学中有重要应用,还在计算机科学、物理学和化学等领域中得到广泛应用。

在计算机科学中,置换群可以用于密码学中的置换密码,用于保护数据的安全性。

离散数学形考任务3代数结构部分概念及性质

离散数学形考任务3代数结构部分概念及性质

离散数学形考任务3代数结构部分概念及性质一、概念介绍代数结构是离散数学中的一个重要概念。

它描述了在特定集合上定义的运算规则和性质。

常见的代数结构主要包括:1. 群(Group):群是一种具有封闭性、结合律、单位元和逆元的代数结构。

它是一种基本的抽象代数结构,并具有丰富的性质和应用。

2. 环(Ring):环是一种具有加法和乘法两种运算的代数结构。

它具有封闭性、结合律、单位元、交换律和分配律等性质。

3. 域(Field):域是一种具有加法、乘法、减法和除法四种运算的代数结构。

它是一种高级的代数结构,并满足多种性质,如交换性、维数等。

二、性质探讨不同的代数结构具有不同的性质,下面我们分别探讨一下群、环和域的性质:1. 群的性质:- 封闭性:对于群G中的任意元素a和b,它们的运算结果ab 也属于G。

- 结合律:对于群G中的任意元素a、b和c,(ab)c = a(bc),即运算顺序不影响结果。

- 单位元:群G中存在一个元素e,使得对于任意元素a,ae = ea = a。

- 逆元:对于群G中的任意元素a,存在一个元素b,使得ab = ba = e。

2. 环的性质:- 封闭性:对于环R中的任意元素a和b,它们的加法运算结果a+b和乘法运算结果ab都属于R。

- 结合律:对于环R中的任意元素a、b和c,(a+b)+c = a+(b+c)和(ab)c = a(bc),即运算顺序不影响结果。

- 单位元:环R中存在一个元素0,使得对于任意元素a,a+0 = 0+a = a。

- 交换律:对于环R中的任意元素a和b,a+b = b+a和ab = ba。

- 分配律:对于环R中的任意元素a、b和c,a(b+c) = ab+ac和(a+b)c = ac+bc。

3. 域的性质:- 封闭性:对于域F中的任意非零元素a和b,它们的加法运算结果a+b和乘法运算结果ab都属于F。

- 结合律、单位元和逆元:与群和环的性质类似,域也具有结合律、单位元和逆元的性质。

离散数学代数结构

离散数学代数结构

第一节 代数结构的定义
2020年11月5日星期四
代数结构的定义 一个代数结构< S, f1, f2, …, fm >通常由两个部分组成:
一个集合S ,叫做代数的载体; 定义在载体上的运算(operator) f1, f2, …, fm
代数结构
2020年11月5日星期四
一个集合,叫做代数的载体 载体,是我们将要处理的数学目标的集合 如整数集合、实数集合、符号集合等 一般不讨论载体是空集合的代数结构
例5.1.2: 代数结构 < N, ×>与< Z, - > 具有相同的构成成分 因为它们都有一个二元运算 代数结构 < {F, T}, ∧, ∨> 与 < P(S), , >具有相同 的构成成分,它们都具有两个二元运算
子代数
2020年11月5日星期四
子代数 设< S, f1, f2, …, fm >是一个代数结构
⊙0 1 000 101
这种表称为运算表或复合表,它由 运算符、行表头元素、列表头元素 和复合元素组成。
运算⊙具有封闭性:运算表中的每个元素都属于S
结合律
2020年11月5日星期四
一、结合律
设有代数结构< S, ⊙ >,若 (x)(y)(z)(x,y,z S (x⊙y)⊙z=x⊙(y⊙z)) 则称运算⊙满足结合律,或⊙是可结合的
代数结构
2020年11月5日星期四
代数结构 有时还在代数结构的表示中加入特异元素k,记做 < S, f1, f2, …, fm , k > 载体中的特异元素,也叫做代数常数 有些运算存在么元和零元,它们在运算中起着特殊的作用
代数结构示例
2020年11月5日星期四

离散数学_第06章代数结构概念及性质

离散数学_第06章代数结构概念及性质

【例】(1)以实数集 R 为基集,加法运算" +"为二元,运算组成一代数系统,记为〈R, +〉。 (2)以全体n×n实数矩阵组成的集合 M为基集,矩阵加"+"为二元运算,组成一代 数系统,记为〈M,+〉。 (3)设 S A { | 是集合A上的关系}, “ ” 是求复合关系的运算。它们构成代数 系统S A , 。
有了集合上运算的概念后,便可定义代数结
构了。
定义6.1.2 设S是个非空集合且fi是S上的 ni元运算,其中i=1,2,…,m。由S及f1, f2,…,fm组成的结构,称为代数结构,记 作<S,f1,f2,…,fm>。
此外,集合S的基数即|S|定义代数结构 的基数。如果S是有限集合,则说代数结构 是有限代数结构;否则便说是无穷代数结构。
分配律,或者⊙对于○是可左分配的,即
(x)(y)(z)
(x,y,z∈S→x⊙(y○z))=(x⊙y)○(x⊙z))。
运算⊙对于○满足右分配律或⊙对于○是可 右分配的,即(x)(y)(z) (x,y,z∈S→(y○z)⊙x=(y⊙x)○(z⊙x)) 类似地可定义○对于⊙是满足左或右分配律。 若⊙对于○既满足左分配律又满足右分配律, 则称⊙对于○满足分配律或是可分配的。同样可 定义○对于⊙满足分配律。
x为关于⊙的右逆元:=(y)(y∈S∧y⊙x=e);
x为关于⊙可逆的:=(y)(y∈S∧y⊙x=x⊙y=e)
给定<S,⊙>及幺元e;x,y∈S,则 y为x的左逆元:=y⊙x=e
y为x的右逆元:=x⊙y=e
y为x的逆元:=y⊙x=x⊙y=e
显然,若y是x的逆元,则x也是y的逆元,
因此称x与y互为逆元。通常x的逆元表为x-1。

离散数学-近世代数-代数结构

离散数学-近世代数-代数结构
添加标题
例:代数系统(N,+,×)。其中+,×分别代表通常数的加法和乘法。
添加标题
是否满足交换律?
添加标题
单位元( 幺元)
一个代数系统(S,*), 若存在一个元素eU,使得对 xS,有:e * x =x * e = x,则称 e 为对于运算“ * ”的单位元,也称幺元 。 注意: 单位元是跟运算有关系的,不同的运算可能单位元是不一样的。
解: 作双射 f:A1A2,f(1)=b, f(2)=d, f(3)=c, f(4)=a
a
b
c
d
a
b
b
b
d
b
a
a
d
b
c
c
b
c
a
d
a
a
c
d
*
1
2
3
4
1
4
1
2
4
2
4
2
3
4
3
1
4
3
3
4
1
2
1
1
设代数系统V1=(A1,*),V2=(A2,º), 其中A1={1,2,3,4}, A2={a,b,c,d}, * 和 º 的运算分别如下表,V1 和 V2 是否同构?
等幂律
设 * 是定义在集合A上的一个二元运算,如果对于任意的xA,都有x * x = x,则称 * 运算是等幂的。 例: S={1,2,4},在集合 p(S) 定义两个二元运算,∩,∪,分别表示集合的“并”运算和集合的“交”运算,∩,∪是等幂的? 解:对于任意的A p(S) ,有A∩A=A;A∪A=A 因此运算∩,∪都满足等幂律。
性质、定理
定理 一个代数系统,其零元若存在,则唯一。 定理 一个代数系统(S,),若集合 A 中元素的个数大于1,且该代数系统存在幺元 e 和零元θ,则θe。 证明:用反证法,设θ=e,则对于任意的xA,必有 x = ex = θx =θ= e, 即对于A中所有元素都是相同的,这与A中含有多个元素相矛盾。

离散数学的基础知识点总结

离散数学的基础知识点总结

离散数学的基础知识点总结离散数学是研究离散结构和离散对象的数学分支。

它以集合论、图论和逻辑等为基础,涉及了许多重要的基础知识点。

下面是对离散数学的基础知识点进行的总结。

1. 集合论(Set theory):集合论是离散数学的基础,涉及了集合的概念、运算和恒等关系,以及集合的分类、子集、幂集和笛卡尔积等基本概念和性质。

2. 逻辑(Logic):逻辑是离散数学的重要组成部分,涉及了命题逻辑和谓词逻辑的基本概念和推理规则,包括命题的真值表、谓词的量化、逻辑等价和逻辑蕴含等概念。

3. 函数(Functions):函数是离散数学中的核心概念之一,涉及了函数的定义、域和值域、函数的性质、特殊的函数(如恒等函数、常值函数、单射函数和满射函数等)以及函数的复合和逆函数等。

4. 关系(Relations):关系是离散数学中的另一个核心概念,涉及了关系的定义、关系的特性(如自反性、对称性、传递性和等价关系等)、关系的闭包和自反闭包、关系的图示表示和矩阵表示、等价关系和偏序关系等。

5. 图论(Graph theory):图论是离散数学的重要分支,涉及了图的基本概念(如顶点、边、路径和圈等)、图的表示方法(如邻接矩阵和邻接表等)、图的遍历算法(如深度优先和广度优先等)、图的连通性和可达性、最小生成树和最短路径等基础知识。

7. 代数结构(Algebraic structures):代数结构是离散数学的一个重要方向,涉及了群、环、域和格等基本代数结构的定义、性质和分类,以及同态映射和同构等概念。

8. 数论(Number theory):数论是离散数学的一个重要分支,涉及了自然数的性质和结构,包括质数和素数、最大公因数和最小公倍数、同余和模运算、欧几里得算法和扩展欧几里得算法、费马小定理和欧拉函数等。

9. 排序和选择(Sorting and selection):排序和选择是离散数学中的一类重要问题,涉及了各种排序算法(如冒泡排序、插入排序、快速排序和归并排序等)和选择算法(如选择排序和堆排序等),以及它们的复杂度分析和应用。

离散数学第5章 代数结构

离散数学第5章 代数结构
1

代数的概念与方法是研究计算机工程与科学的主要工具之 一.例如,要构作一个现象或过程的数学模型,就需要某种数 学结构,而代数结构就是最常用的数学结构之一;又如描述 机器可计算的函数,研究算术计算的复杂性,刻划抽象数据 结构,以及作为程序设计语言的语义学基础和编码理论等等, 也都需要代数结构的知识.因此,我们有必要掌握它的重要 概念和基本方法. 本章提供了代数结构的基础知识, 它们在组合计数、编码 理论、形式语言与自动机理论等学科中都发挥了重要作用.
所以*不满足交换律.
9
(a, b) (c, d ) (ac, ad b)
(4)设单位元为 e ( a , b ) ,则对x , y Q ,应满足
( a , b ) ( x , y ) ( ax , ay b ) ( x , y ) ,
( a , b ) (1,0 ) , 即 (1,0) 为左单位元; 可以验证 (1,0 ) 也是右单位元, 故单位元为e (1,0 ) ;
例 (*, ◦, ) 是独异点, 而(+, ◦)不是.
13

备注 ◦ , )中的称为代数常数. 代数结构 中的代数常数可以不止一个, 也可以没有代数 常数. (2) (*, ◦)是半群, (*, ◦ , )是独异点, 它们是 两个不同的代数结构. 我们可以将代数常数看作是0元运算,(*, ◦, ) 有1个0元运算(及1个二元运算).
8
(3)结合律: [( a , b ) ( c , d )] ( e , f ) (ac, ad b) (e, f )
(a, b) (c, d ) (ac, ad b)
(ace, acf ad b) ,
(a , b) [(c, d ) (e, f )] ( a , b ) ( ce , cf d ) (ace, acf ad b) ,

离散数学导论第十章代数结构通论-

离散数学导论第十章代数结构通论-

第十章 代数结构通论
2. 同态、同构及同余
1. 同态与同构
➢ 定义10.9
设< S,Δ, >及< S’,Δ’, ’ >均为代数结构,称函
数 h: S→S’为(代数结构S到S’的)同态映射,或同态
(homomorphism),如果对S中任何元素a,b,
h(Δa)= Δ’(h(a))
(10-3)
h(a b)= h(a) ’ h(b)
第十章 代数结构通论
第十章 代数结构通论
1. 代数结构 2. 同态、同构及同余
Δ10.3 商代数与积代数
第十章 代数结构通论
1. 代数结构
1. 代数结构的意义
2.
代数结构的特殊元素
3.
子代数结构
第十章 代数结构通论
2. 同态、同构及同余
1. 同态与同构
2.
同余关系
第十章 代数结构通论
Δ 10.3商代数与积代数
√ 定理10.2
任何含有关于 运算么元的代数结构 <S, >,其所含么元是唯一的。
第十章 代数结构通论
10.1 代数结构
10.1.2 代数结构的特殊元素
➢定义10.4
元素O称为代数结构<S, >( 关于 运 算) 的零元(zero),如果0 S且对任意x S有
x 0= O x= O 元素0r S (0l S)称为左零元(右零元).如 果Or(Ol)满足: 对一切x S,
第十章 代数结构通论
2. 同态、同构及同余
1. 同态与同构
√ 定理10.9
设h是代数结构< S, 1, 2 > 到 < S’, 1’, 2’>的同态, 态象为< h(S), 1’, 2’>(这里 1, 2, 1’, 2’ 均为二元 那么 (1)当运算 1( 2)满足结合律、交换律时,同态象中运算

离散数学第十二章代数结构基本概念及性质

离散数学第十二章代数结构基本概念及性质

5.等幂律与等幂元 给定<S,⊙>,则
“⊙”是等幂的或“⊙”满足等幂律:=( x)(x∈S→x⊙x=x)
给定<S,⊙>且x∈S,则 x是关于“⊙”的等幂元:=x⊙x=x 于是,不难证明下面定理: 定理12.2.2 若x是<S,⊙>中关于⊙的等幂元, 对于任意正整数n,则xn=x。
例12.2.5 给定<P(S),∪,∩>,其中P(S)是 集合S的幂集,∪和∩分别为集合的并和交运算。 验证:∪和∩是等幂的。
有了集合上运算的概念后,便可定义代数 结构了。
定义12.1.2 设S是个非空集合且fi是S上的ni 元运算,其中i=1,2,…,m。由S及f1,f2,…, fm组成的结构,称为代数结构,记作<S,f1, f2 ,…,fm>。
例:设Z是整数集, “+”是Z上的普通加 法运算,则<Z,+>是一个代数结构。
10 1 00
4.吸收律 给定<S,⊙,○>,则 ⊙对于○满足左吸收律 :=( x)( y)(x,y∈S→x⊙(x○y)=x) ⊙对于○满足右吸收律 :=( x)( y)(x,y∈S→(x○y)⊙x=x)
若⊙对于○既满足左吸收律又满足右吸收律, 则称⊙对于○满足吸收律或可吸收的。
○对于和吸收律类似地定义。 若⊙对于○是可吸收的且○对于⊙也是可吸收 的,则⊙和○是互为吸收的或⊙和○同时满足吸收 律。
同样,并不是所有代数结构上运算均满 足交换律,如矩阵的乘法就不满足交换律。
易见,如果一代数结构中的运算⊙是可结 合和可交换的,那么,在计算a1⊙a2⊙···⊙am时 可按任意次序计算其值。
特别当a1=a2=···=am=a时,则a1⊙a2⊙· am。称am为a的m次幂,m称a的指数。

《离散数学》第六章代数结构

《离散数学》第六章代数结构

返回本章首页
5 2020/2/14
第四节 子群
与集合的子集、向量空间的子空间一样. 群也有子群的概念.子群作为群的一部分. 它的结构对群的结构有重要影响.
主要概念有:平凡 元素的周期.
讨论了一个群的非空子集构成子群的条 件;在某个元素生成的子群的基础上定义 循环群,把循环群的结构研究清楚了.
返回本章首页
2 2020/2/14
第二节 置换(1)
群论的研究始于置换群.置换群在群论里 有重要的地位.例如,五次以上方程不能 用根号求解的问题的证明就用到置换群. 置换概念本身在计算机科学中也起作重 要作用.同时置换群的记法简单,运算方 便.
本节的概念有:置换、循环置换、不相交 置换、对换、奇置换、偶置换等;
返回首页
1 2020/2/14
第一节 代数结构概述
我们在前面已经研究过集合,那时没有 过多地考虑一个集合内部元素之间的联 系.现在我们要在一个集合的内部引入运 算,并研究其运算规律,主要内容为:
1.代数系统的定义,然后用例子说明代数 系统的丰富性;
2.代数系统的运算的常用记法和运算表 的概念.
第六章 代数结构
代数结构的主要研究对象是各种各样的代数系 统,即具有一些元运算的集合,本章介绍的群就 是具有一个二元运算的代数系统.
本章以群为例讨论代数结构,它的思想和方 法已经渗透到现代科学的许多分支、它的结果 已应用到计算机的不少方面,因此计算机科学 工作者应初步掌握其基本的理论和方法. 读者通过对群的学习应初步掌握对代数系统研 究的一般方法,从简单到复杂、从具体到一般, 从而发现代数系统的一般规律.本章的内容较为 抽象、难学.可根据具体情况删减一些内容.
返回本章首页
3 2020/2/14

离散数学代数结构部分

离散数学代数结构部分

离散数学代数结构部分离散数学是数学的一个分支,主要研究离散的、分离的、离散化的对象和结构。

其中代数结构是离散数学的一个重要部分,涉及到一些常见的代数结构,如群、环和域等。

下面将从群、环和域三个方面展开,对离散数学中的代数结构进行详细介绍。

一、群群是离散数学中的一个基本代数结构,它由三个主要部分组成:集合、运算和满足一定性质的公理。

具体地,一个群G是一个非空集合,也即G={a,b,c,...},其中的元素a、b、c等叫做群的元素。

除此之外,群还具有一个二元运算,记作"·",满足以下四个公理:1.封闭性公理:对于群的任意两个元素a、b,它们的乘积c=a·b仍然属于G,即c∈G。

2.结合律公理:对于群的任意三个元素a、b、c,(a·b)·c=a·(b·c)。

3.单位元公理:群中存在一个特殊的元素e,称为单位元,满足对于任意元素a,有a·e=e·a=a。

4.逆元公理:对于群中任意元素a,存在一个元素b,使得a·b=b·a=e,其中e是群的单位元。

群结构的研究对于解决各类数学问题具有重要意义。

例如,在密码学中,通信双方使用群的运算来实现加密和解密的功能。

二、环环是另一个重要的代数结构,在离散数学中有广泛的应用。

一个环R由一个非空集合以及两个满足一定条件的二元运算分别组成。

对于一个环R={G,+,·},其中G是一个非空集合,"+"和"·"分别是R上的两个二元运算,满足以下四个公理:1.集合G关于"+"构成一个阿贝尔群,即对于任意的a、b、c∈G,满足以下性质:(a+b)+c=a+(b+c),存在单位元0,对于任意元素a,有a+0=0+a=a,对于任意元素a,存在一个元素-b,使得a+(-b)=-b+a=0,且满足交换律性质:a+b=b+a。

离散数学 代数结构-代数系统

离散数学 代数结构-代数系统
离散数学
代数系统
9.2 代数系统
代数或叫代数系统,应用抽象的方法,研究要处理的数学对 象集合上的关系或运算。 事物中的关系就是事物的结构,所以,代数系统又称代数 结构。 代数通常由三部分组成; 1.一个集合,叫做代数的载体。 载体是要处理的数学目标的集合,如整数,实数集合等。 代数载体一般是非空集合,不讨论载体是空集的代数。 2.定义在集合上的运算 定义在载体S上的运算是从Sm到S的一个映射,自然数m的值 叫做运算的元数。 3.特异元素,叫做代数常数 如幺元、零元、等幂元等 代数通常用由集合、运算和特殊元素组成的n元组表示
代数系统
1、定义12 非空集合S和S上k个一元或二元运算fl,f2,…,fk组 成的系统称为一个代数系统,简称代数, 记作: < S ,f1,f2,…,fk > . 例如 < N,+ > ,< Z,+,·> ,< R,+,· > 都是代数系统, < M(R),+, * > 其中 + 和 * 表示n阶实矩阵的加法和乘法 < Zn ,+n ,*n > 是代数系统,其中 Zn={ 0,1,2 ,… n-1 } ,+n 和 *n 分别表示模n的加法和乘法:
例:设B={0,a,b,1},S1={a,1} S2={0,1} S3={a,b} 二元运算+和*由表给出,则: 1)<B,*,+,0,1>是代数系统吗? 2)<S1,*,+>是代数系统吗? 是<B,*,+,0,1>的子代数吗? 3)<S2,*,+,0,1>是<B,*,+,0,1>的子代数吗? 4)<S3,*,+>是代数系统吗?

离散数学代数结构-第九章 代数系统

离散数学代数结构-第九章 代数系统
2个代数常数. V1, V2是同种的代数系统,V1, V2与V3不是同种的代数系统
27
运算性质比较
V1
V2
+ 可交换、可结合 + 可交换、可结合
·可交换、可结合 ·可交换、可结合
+ 满足消去律
+ 满足消去律
· 满足消去律
· 不满足消去律
·对 + 可分配
·对 + 可分配
+ 对 ·不可分配 + 对 ·不可分配
代数系统的定义
代数系统的定义: 一个代数系统< S, f1, f2, …, fm >通常由两个部分组成: • 一个集合S ,叫做代数的载体; • 定义在载体上的运算f1, f2, …, fm
代数系统
一个集合,叫做代数的载体 – 载体,是我们将要处理的数学目标的集合 如整数集合、实数集合、符号集合等 – 一般不讨论载体是空集合的代数结构
z◦(x∗y)=(z◦x)∗(z◦y), 则称◦运算对∗运算满足分配律. (2) 若和∗都可交换,且对任意x,y∈S有 x◦(x∗y)=x,x∗(x◦y)=x,
则称◦和∗运算满足吸收律.
15
实例
Z, Q, R分别为整数、有理数、实数集;Mn(R)为n阶实 矩阵集合, n2;P(B)为幂集;AA为从A到A的函数集,|A|2
+ 与 ·没有吸收律 + 与 ·没有吸收律
V3
∪可交换、可结合
∩可交换、可结合 ∪不满足消去律
∩不满足消去律 ∩对∪可分配 ∪对∩可分配 ∪与∩满足吸收律
28
子代数系统
定义9.8 设V=<S, f1, f2, …, fk>是代数系统,B是S的非空子 集,如果B对f1, f2, …, fk 都是封闭的,且B和S含有相同的代 数常数,则称<B, f1, f2, …, fk>是V的子代数系统,简称子代 数. 有时将子代数系统简记为B.

数学中的离散数学与代数结构

数学中的离散数学与代数结构

数学中的离散数学与代数结构数学是一门充满魅力和智慧的学科,它涵盖了广泛的领域和概念。

其中,离散数学和代数结构是数学中两个重要且紧密相关的分支。

本文将探讨离散数学和代数结构的概念、应用以及它们在现实生活中的意义。

离散数学是研究离散对象的数学分支,与连续数学形成鲜明对比。

它关注的是离散的、不连续的数学结构,如集合、图论、逻辑、组合数学等。

离散数学的研究对象不仅包括整数、有理数等,还包括离散的结构和算法。

离散数学在计算机科学、信息技术、网络安全等领域有广泛的应用。

离散数学中的一个重要概念是图论。

图论研究的是由节点和边构成的图形结构。

图论在计算机科学中有着广泛的应用,比如网络拓扑结构的分析、路由算法的设计等。

通过图论,我们可以研究和解决许多实际问题,如社交网络中的关系分析、电力网络中的最优供电方案等。

另一个重要的离散数学概念是逻辑。

逻辑是研究推理和证明的学科,它关注的是命题之间的逻辑关系。

逻辑在数学证明中起着重要的作用,它帮助我们理清思路,推导出正确的结论。

逻辑的应用不仅局限于数学领域,它还在计算机科学、人工智能等领域发挥着重要作用。

除了离散数学,代数结构也是数学中一个重要的分支。

代数结构研究的是数学对象之间的运算规则和关系。

它包括群论、环论、域论等多个分支。

代数结构在数学中有着广泛的应用,它帮助我们研究和解决各种数学问题,如线性代数中的矩阵运算、数论中的整数运算等。

群论是代数结构中的一个重要分支,它研究的是满足一定运算规则的集合。

群论在物理学、化学等自然科学中有着广泛的应用。

比如,对称群在几何学中起着重要作用,它帮助我们研究和理解对称性。

另外,群论还在密码学中发挥着重要作用,它帮助我们设计和分析密码算法,保护信息的安全。

环论是代数结构中的另一个重要分支,它研究的是满足一定运算规则的环。

环论在代数几何学、代数拓扑学等领域有广泛的应用。

环论中的概念和理论帮助我们研究和理解各种数学结构,如代数曲线、代数流形等。

离散数学第十二章 代数结构基本概念及性质

离散数学第十二章 代数结构基本概念及性质
第十二章

代数结构概念及性质
12.1 代数结构的定义与例 12.2 代数结构的基本性质


12.3 同态与同构
12.4 同余关系 12.5 商代数 12.6 积代数
12.1 代数结构的定义与例
在正式给出代数结构的定义之前,先来说 明什么是在一个集合上的运算,因为运算这个 概念是代数结构中不可缺少的基本概念。 定 义 12.1.1 设 S 是 个 非 空 集 合 且 函 数 s n 或 f : Sn →S,则称 f 为一个n元运算。 f S 其中n是自然数,称为运算的元数或阶。当n=1 时,称f为一元运算,当n=2时,称f为二元运算, 等等。
否定是谓词集合上的一元运算,合取和析取是
谓词集合上的二元运算;在集合论中,并与交
是集合上的二元运算;在整数算术中,加、减、
乘运算是二元运算,而除运算便不是二元运算,
因为它不满足封闭性。
在下面讨论的代数结构中,主要限于一元 和二元运算,将用'、┐或ˉ等符号表示一元运算 符;用、、⊙、○、∧、∨、∩、∪等表示 二元运算符,一元运算符常常习惯于前置、顶
如果令∑+= ∑*-{},则<∑+,//>也是一 个代数结构。 这两种代数结构都是计算机科学 中经常 要用到的代数结构。
例:设有一计算机它的字长是32位,它
以定点加、减、乘、除及逻辑加、逻辑乘为
运算指令,并分别用01,02,…,06表示之。 则在该计算机中由232有限个不同的数字所组 成的集合S以及计算机的运算型机器指令就构 成了一个代数结构<S,01,02,…,06>。
2.交换律 给定<S,⊙>,则运算“⊙”满足交换律或 “⊙”是可交换的,即 (x)(y)(x,y∈S→x⊙y=y⊙x)。

离散数学第5章 代数结构-why

离散数学第5章 代数结构-why
例: 1.<R, ·> 是半群。
2.<R,/>不是广群,不是半群 ∵x/0不存在,结果不在R中。 (x/y)/z ≠ x/(y/z)
3.< I+, ->不是广群,也不是半群。 ∵1-2= –1 I+
4.SK={x|x ∈ I∧x≥k} (k≥0),<Sk,+> 是半群。 若k<0,则 +是不封闭的。
5-2 代数系统的基本性质
9、逆元:
〈A,*〉, *是A上的二元运算,e是幺元,如对某个aA,b
A,使得b*a=e,则称b是a的左逆元【如<R,>,e=1,1 2 1, 1
是2的左逆元
2
2
如果a*b=e,则称b为a的右逆元【如<R,>,2
1 2
1,
1 2
是2的
右逆元】
如果b既是a的左逆元又是a的右逆元,则称b是a的一个逆元,
∴有逆元
右逆元为 右逆元为
5-2 代数系统的基本性质
定理:<A, >有e,若任意x ∈A,都有左逆元,且是可结 合的,则任一元素x的左逆元必是它的右逆元, 且x的逆元是唯一的。
定义逆元时先有幺元
5-2 代数系统的基本性质
❖ 例:构造代数系统,使其中只有一个元素有逆元。 解: T={x | x ∈ I, m≤x ≤ n, m ≤ n},则<T,max> 幺元是m, 仅有m 有逆元, max(m,m)=m. ( x,x ∈ T, max(x,m)=x)
5-4 群与子群
例:(1) <R, ·>:是独异点 e=1 —— 不是群,∵0无逆元。
(2)<R-{0}, ·>:是群,e=1 x‫־‬¹=1/x。 (3)<I, +>:是群,幺元为0 x‫־‬¹= –x。 (4)< (s),> :是群,幺元e= A∈(s) A‫־‬¹=A (5) <G, > G={e}是群,{e}和G称为平凡子群。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因此当x 1/2时,x/(1+2x)是x的逆元,1/2无逆元.
1
群的性质:消去律
设G = {a1, a2, … , an}是n阶群,令aiG = {ai aj | j=1,2,…,n} 证明 aiG = G. 证 由群中运算的封闭性有 aiGG. 假设aiGG,即 |aiG| < n. 必有aj , ak∈G使得 ai aj = ai ak (j ≠ k) 由消去律得 aj = ak , 与 |G| = n矛盾.
4
子群判定定理3
设G为群,H是G的非空有穷子集,则H是G的子群当且仅当
a,b∈H有ab∈H. 证 必要性显然. 为证充分性,只需证明 a∈H有a1∈H. 任取a∈H, 若a = e, 则a1 = e∈H. 若a≠e,令S={a,a2,…},则SH. 由于H是有穷集,必有ai = aj(i<j). 根据G中的消去律得 aji = e,由a ≠ e可知 ji>1,由此得 a ji1a = e 和 a a ji1 = e 从而证明了a1 = a ji1∈H.
图2
14
6
陪集的基本性质
设H是群G的子群,则a,b∈G有 a∈Hb Ha=Hb 证 充分性. 若Ha=Hb,由ea∈Hb 可知必有 a∈Hb. 必要性. 由 a∈Hb 可知存在 h∈H 使得 a =hb,即b =h1a 任取 h1a∈Ha,则有 h1a = h1(hb) = (h1h)b∈Hb 从而得到 Ha Hb. 反之,任取h1b∈Hb,则有 h1b = h1(h1a) = (h1h1)a∈Ha 从而得到Hb Ha. 综合上述,Ha=Hb得证.
3
子群判定定理2
G为群,H是G的非空子集. H是G的子群当且仅当a,b∈H 有ab1∈H. 证 必要性显然. 只证充分性. 因为H非空,必存在a∈H. 根据给定条件得aa1∈H,即e∈H. 任取a∈H, 由e,a∈H 得 ea1∈H,即a1∈H. 任取a,b∈H,由上步知b1∈H, 从而a(b1) 1∈H,即ab∈H. 综合上述,可知H是G的子群.
5
典型子群的实例:子群的交
设G是群,H,K是G的子群. 证明 H∪K是G的子群当且仅当 HK 或 KH 证 充分性显然,只证必要性. 用反证法. 假设 HK 且KH,那么存在 h 和 k 使得 h∈H∧hK, k∈K∧kH 推出 hk H. 否则由h1∈H 得 k=h1(hk)∈H,与假设矛盾. 同理可证 hk K. 从而得到 hk H∪K. 与H∪K是子群矛盾.
9
练习
判断下列集合和给定运算是否构成环、整环和域? 如果不构成, 简要说明其理由. (1) A = { a+bi | a,b∈Q }, 其中i2= 1, 运算为复数加法和乘法. (2) A={ 2z+1 | z∈Z}, 运算为实数加法和乘法 解 (1) 是环, 是整环, 也是域. (2) 不是环, 因为关于加法不封闭.
11
实例
下列偏序集是否构成格?并对(1)和(2)简要说明其理由. (1) <P(B), >,其中P(B)是集合B的幂集. (2) <Z, ≤>,其中Z是整数集,≤为小于或等于关系. (3) 偏序集的哈斯图分别在下图给出.
解:(1) 构成格. x,y∈P(B),x∨y就是x∪y,x∧y就是x∩y. (2) 构成格. x,y∈Z,x∨y = max(x,y),x∧y = min(x,y), 图2 (3) 都不是格. 可以找到两个结点缺少最大下界或最小上界12
练习
设 ∘为Q上的二元运算,x, yQ, x ∘y = x+y+2xy, 求出 ∘运算的单位元、零元和所有可逆元素的逆元. 解:设∘运算的单位元和零元分别为 e 和 , 则对于任意 x 有 x ∘e = x 成立,即 x+e+2xe = x e = 0
容易验证0 是幺元.
对于任意 x 有x ∘ = 成立,即 x++2x = = 1/2 容易验证1/2是零元. 给定 x (x≠ 1/2 ),设 x 的逆元为 y, 则有 x ∘y = 0 成立,即 x+y+2xy = 0 y = x/(1+2x)
2
群的性质:元素的阶
设G为群,a∈G且 |a| = r, k是整数,证明ak = e当且仅当r | k 证:充分性. 由于r|k,必存在整数m使得k = mr,所以有 ak = amr = (ar)m = em = e. 必要性:根据除法,存在整数 m 和 i 使得 k = mr+i, 0≤i≤r1 从而有 e = ak = amr+i = (ar)mai = eai = ai 因为|a| = r,必有i = 0. 这就证明了r | k.
7
陪集的基本性质
设H是群G的子群,在G上定义二元关系R: a,b∈G, <a,b>∈R ab1∈H 则 R是G上的等价关系,且[a]R = Ha.
证 先证明R为G上的等价关系. 自反性. 任取a∈G,aa1 = e∈H <a,a>∈R 对称性. 任取a,b∈G,则 <a,b>∈Rab1∈H(ab1)1∈Hba1∈H<b,a>∈R 传递性. 任取a,b,c∈G,则 <a,b>∈R∧<b,c>∈R ab1∈H∧bc1∈H ac1∈H <a,c>∈R 下面证明:a∈G,[a]R = Ha. 事实上,任取b∈G,有 b∈[a]R <a,b>∈R <b,a>∈R ba1∈H b∈Ha 故[a]R = Ha.图213Fra bibliotek-1实例
设(G,*)是一群,a ∈G,定义函数f:G → G,xa*x*a-1 , 证明f是G的自同构。 证:f(x*y) =a * (x *y) * a-1 = a*x*a-1* a*y*a-1 = f(x) *f(y), 故f为自同态。 设x,y ∈G,,f(x) = f(y),则 x = a-1* a*x*a-1*a = a-1*f(x)* a = a-1*f(y)* a = a-1*( a*y*a-1) * a = y, 故为单同态。 y ∈G,y = a*( a-1*y* a) * a-1 = f(a-1*y*a), 故f为满同态。 因此f为自同构。
8
练习
在整数环中定义∗和◇两个运算, a,b∈Z 有 a∗b = a+b1, a◇b = a+bab. 证明<Z, ∗,◇>构成环 证 a,b∈Z有a∗b, a◇b∈Z, 两个运算封闭. 任取a,b,c∈Z (a∗b)∗c = (a+b1)∗c = (a+b1)+c1 = a+b+c2 a∗(b∗c) = a∗(b+c1) = a+(b+c1)1 = a+b+c2 (a◇b)◇c = (a+bab)◇c = a+b+c (ab+ac+bc)+abc a◇(b◇c) = a◇(b+cbc) = a+b+c (ab+ac+bc)+abc ∗与◇可结合,1为∗的幺元. 2a为a关于∗的逆元. Z关于∗构成交换群, 关于◇构成半群. a◇(b∗c) = a◇(b+c1) = 2a+b+cabac1 (a◇b)∗(a◇c) = 2a+b+cabac1 ◇关于∗满足分配律. <Z, ∗,◇>构成环.
10
练习
判断下列集合和给定运算是否构成环、整环和域? 如果不构成, 简要说明其理由. (1) A={ 2z | z∈Z}, 运算为实数加法和乘法 (2) A={ x | x≥0∧x∈Z}, 运算为实数加法和乘法. 解 (1) 是环, 不是整环和域, 因为乘法没有么元. (2) 不是环, 因为正整数关于加法的负元不存在.
实例
设H是群G的子群,在G中定义关系 R = {(a,b)| b · a∈H }. 试证明R是G上的一个等价关系。 证:a∈G,a-1· = e ∈H,故 (a,a) ∈R,R是自反的; a 设(a,b)∈R,则b-1· a∈H.记b-1· = h . a 因H为群,故a-1· =(b-1· -1 = h-1∈H,(b,a) ∈R, b a) R是对称的; 设(a,b),(b,c) ∈R,即b-1· -1· a,c b∈H, 则 c-1· = (c-1· · -1· ∈H,(a,c) ∈R , a b) (b a) R是传递的。 因此,R是G上的一个等价关系。
相关文档
最新文档