最新六级图形问题综合(奥数)含答案教学提纲

合集下载

六年级图形问题综合(奥数)含答案

六年级图形问题综合(奥数)含答案

六年级图形问题综合(奥数)含答案例3. AKF 与三角形ADG 面积之和等于5平方厘米,DC=CE=3厘米。

求三角形BEK 的面积。

D例4. 如图,三角形ABC 的AB 和AC 两条边分别被分成5等分。

三角形ABC 面积是500,求图中阴影部分的面积?例5. 如图,设正方形ABCD 的面积为120,E 、F 分别为边AB 、AD 的中点,FC=3GC ,则阴影部分的面积是多少?A B C DF EG例6. 在如图所示的三角形AGH 中,三角形ABC ,BCD ,CDE ,DEF,EFG ,FGH 的面积分别是1,2,3,4,5,6平方厘米,那么三角形EFH 的面积是多少平方厘米?A B DEF G H例7. 如图,在平行四边形ABCD 中,AC 为对角线,EF 平行于AC ,如果三角形AED 的面积为12平方厘米,,求三角形DCF 的面积。

D CA B E F练习:1. 已知正方形ABCD 的边长是5cm ,又EF=FG ,FD=DG ,求三角形ECG 的面积。

E B CGDAF2. 正三角形ABC 的边长为12厘米,BD ,DE ,EF ,FG 四条线段把它的面积5等分,求AF ,FD ,DC ,AG ,GE ,EB 的长。

A B G E CDF3. 如图所示是某个六边形公园ABCDEF ,M 为AB 中点,N 为CD 中点,,P 为DE 中点,Q 为FA 中点,其中游览区APEQ 与BNDM 的面积之和为900平方米。

中间的湖泊面积为361平方米,其余的部分是草地,问草地面积共有多少平方米?A B C DEFQPN M4. 如图,AE=EC ,BD=2DC ,AF=3BF ,若三角形ABC 的面积为270平方厘米,求图中阴影部分的面积。

5. 如下图,正方形ABCD 的边长为12, P 是边AB 上的任意一点,M 、N 、I 、H 分别是边BC 、AD 上的三等分点,E 、F 、G 是边CD 上的四等分点,图中阴影部分的面积是______.6. 如图正方形ABCD 的边长是4厘米,CG 是3厘米,长方形DEFG 的长DG 是5厘米,那么它的宽DE 是______厘米.7. 如图,CE=4EA , BD=3CD ,AF=5BF 。

小学六年级奥数系列讲座几何综合(含答案解析)

小学六年级奥数系列讲座几何综合(含答案解析)

几何综合(一)几何图形的设计与构造.涉及比例与整数分解,需要添加辅助线、寻找规律或利用对称性解的较为复杂的直线形和圆的周长与面积计算问题.1.今有9盆花要在平地上摆成9行,其中每盆花都有3行通过,而且每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示,我们给出四种不同的排法.2.已知如图12-1,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5厘米.求这个六边形的周长.【分析与解】如下图所示,将六边形的六条边分别延长,相交至三点,并将其标上字母,因为∠BAF=120°,而么∠IAF=180°-∠BAF=60°.又∠EFA=120°,而∠IFA=180°-∠EFA:60°,则△IAF为等边三角形.同理△BCG、△EHD、△IGH均为等边三角形.在△IAF中,有IA=IF=AF=9(厘米),在△BGC中,有BG=GC=BC=1(厘米),有IA+AB+BG=IG=9+9+1=19,即为大正三角形的边长,所以有IG=IH=GH=19(厘米).则EH=IH-IF-FE=19-9-5=5(厘米),在△EDH中,DH=EH=5(厘米),所以CD=GH-GC-DH=19-1-5=13(厘米).于是,原图中六边形的周长为1+9+9+5+5+13=42(厘米).3.图12-2中共有16条线段,每两条相邻的线段都是互相垂直的.为了计算出这个图形的周长,最少要量出多少条线段的长度?【分析与解】如下图所示,我们想像某只昆虫绕图形爬行一周,回到原出发点,那么往右的路程等于往左的路程,往上的路程等于往下的路程.于是只用量出往右的路程,往下的路程,再将它们的和乘以2即为所求的周长.所以,最少的量出下列6段即可.4.将图12-3中的三角形纸片沿虚线折叠得到图12-4,其中的粗实线图形面积与原三角形面积之比为2:3.已知图12-4中3个画阴影的三角形面积之和为1,那么重叠部分的面积为多少?【分析与解】设重叠部分的面积为x,则原三角形面积为1+2x,粗实线的面棚为1+x.因此(1+2x):(1+x)=3:2,解得x=1,即重叠部分面积为1.5.如图12-5,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形的面积是多少平方厘米?【分析与解】 如下图所示,在正六边形ABCDEF 中,与面积相等,12个组成小正六角星形,那么由6个及12个组成的正六边形的面积为16÷12×(12+6)=24(平方厘米).而通过下图,我们知道,正六边形ABCDEF 可以分成6个小正三角形,并且它们面积相等,且与六个角的面积相等,所以大正六角星形的积为24÷6×12=48(平方厘米).6.如图12-6所示,在三角形ABC 中,DC=3BD ,DE=EA .若三角形ABC 的面积是1.则阴影部分的面积是多少?【分析与解】 △ABC 、△ADC 同高,所以底的比等于面积比,那么有33.44ADC ABC ABC DC S S S BC ∆∆∆=⨯=⨯=而E 为AD 中点,所以13.28DEC ADC S S ∆∆== 连接FD ,△DFE 、△FAE 面积相等,设,FEA S x ∆=则.FDE S ∆的面积也为x ,11.44ABD ABC S S ∆∆==12,4BDF ABD FEA FDE S S S S x ∆∆∆∆=--=-而3.8FDC FDE DEC S S S x ∆∆∆=+=+ 13:(2);()1:348BDF FDC S S x x ∆∆=-+=,解得356x =.所以,阴影部分面积为333.8567DEC FEA S S ∆∆+=+=7.如图12-7,P 是三角形ABC 内一点,DE 平行于AB ,FG 平行于BC ,HI 平行于CA ,四边形AIPD 的面积是12,四边形PGCH 的面积是15,四边形BEPF 的面积是20.那么三角形ABC 的面积是多少?【分析与解】 有平行四边形AIPD 与平行四边形PGCH 的面积比为IP 与PH 的比,即为12:15=4:5.同理有FP:PG=20:15=4:3, DP:PE=12:20=3:5.如图12-7(a),连接PC 、HD ,有△PHC 的面积为152△DPH 与△PHC 同底PH ,同高,所以面积相等,即152DPH S ∆=,而△DPH 与△EP H 的高相等,所以底的比即为面积的比,有::3:5DPH EPH S S DP PE ∆∆==,所以551525.3322EPH DPH S S ∆∆=⨯=⨯⨯如图12-7(b)所示,连接FH 、BP ,4108;5IFP EPH FBP IP IP S S S PH PH ∆∆∆===⨯=如图12-7(c)所示,连接FD 、AP ,396.42DPG DFP APD PG PG S S S FP FP ∆∆∆===⨯=有925122015872.22ABC AIPD BEPFCGPHIFP DGP EHP S SSSS S S ∆∆∆∆=+++++=+++++=8.如图12-8,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的512,②号正方形的边长是长方形宽的18.那么,图中阴影部分的面积是多少?【分析与解】 有①号正方形的边长为长方形长的512,则图中未标号的正方形的边长为长方形长的712. 而②号正方形的边长为宽的18,所以未标号的正方形的边长为长方形宽的78. 所以在长方形中有:712长=78宽,则长:宽=12:8,不妨设长的为12k ,宽为8k ,则①号正方形的边长为5k ,又是整数,所以k 为整数,有长方形的面积为962k ,不大于100.所以k 只能为1,即长方形的长为12,宽为8.于是,图中①号正方形的边长为5,②号正方形的边长为1,则未标号的正方形的边长为7,所以剩余的阴影部分的面积为: 22212851721.⨯---=9.如图12-9,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形重叠部分,C,D,E是空出的部分,这些部分都是长方形,它们的面积比是A:B:C:D:E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?【分析与解】以下用E横表示E部分横向的长度,E坚竖表示E部分竖向的长度,其他下标意义类似.有E横:D横=5:4,A横:B横=l:2.而E横+A横=D横+B横,所以有E横:D横:A横:B横=5:4:1:2.而A横+B横+C横=E横+A横对应为5+1=6,那么C横对应为3.而A面积:B面积:C面积=1:2:3,所以A坚=B坚=C坚.有A坚+C坚竖对应为6,所以A坚=C坚对应为3.那么长方形的竖边为6+C坚对应为9,长方形横边为E横+6+D横对应为5+6+4=15.所以长方形的长与宽的比为15:9=5:3.10.如图12-10,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是lO.那么,正方形盒子的底面积是多少?【分析与解】如下图所示,我们将黄色的正方形纸片向左推向纸盒的过缘,有露在外面的部分,黄色减少的面积等于绿色增加的面积,也就是说黄色、绿色部分露在外面部分的面积和不变.并且有变化后,黄色露出面积+红色部分面积,绿色露出面积+红色部分面积,都是小正方形纸片边长乘以大正方形盒子边长的积.所以,黄色露出面积+红色部分面积=绿色露出面积+红色部分面积,于是.黄色露出面积=绿色露出面积,而它们的和为14+10=24,即黄色露出面积=绿色露出面积=12.有黄:空白=红:绿,12:空白=20:12,解得空白=7.2,所以整个正方形纸盒的底面积为12+7.2+20+12=51.2.11.如图12-11,在长260厘米,宽150厘米的台球桌上,有6个球袋A,B,C,D,E,F,其中AB=EF=130厘米.现在从4处沿45°方向打出一球,碰到桌边后又沿45°方向弹出,当再碰到桌边时,仍沿45°方向弹出,如此继续下去.假如球可以一直运动,直至落入某个球袋中为止,那么它将落人哪个袋中?【分析与解】将每个点的位置用一组数来表示,前一个数是这个点到FA的距离,后一个数是点到FD的距离,于是A的位置为(0,150),球经过的路线为:(0,150)→(150,0) →(260,110) →(220,150) →(70,0) →(0,70) →(80,150) →(230,0) →(260,30) →(140,150) →(0,10) →(10,0) →(160,150) →(260,50) →(210,0) →(60,150) →(0,90) →(90,0) →(240,150) →(260,130) →(130,0).因此,该球最后落入E袋.12.长方形ABCD是一个弹子盘,四角有洞.弹子从A出发,路线与边成45度角,撞到边界即反弹,并一直按此规律运动,直到落人一个洞内为止.如图12-12.当AB=4,AD=3时,弹子最后落入B洞.问:若AB=1995,AD=1994时,弹子最后落入哪个洞?在落入洞之前,撞击BC边多少次?【分析与解】撞击AD边的点,每次由A向D移动2;撞击BC边的点,每次由C向B移动2.因为第一次撞击BC边的点距C点1,第一次撞击AB边的点距A点为2,1994÷2=997.所以最后落人D洞,在此之前撞击BC边997次.13.10个一样大的圆摆成如图12-13所示的形状.过图中所示两个圆心A,B作直线,那么直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是多少?【分析与解】直线AB的右上方的有2个完整的圆,2个半圆,1个1个而1个1个正好组成一个完整的圆,即共有4个完整的圆.那么直线AB的左下方有10-4=6个完整的圆,每个圆的面积相等,所以直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是4:6=2:3.14.在图12-14中,一个圆的圆心是0,半径r=9厘米,∠1=∠2=15°.那么阴影部分的面积是多少平方厘米?( 取3.14)【分析与解】有AO=OB,所以△A OB 为等腰三角形,AO=OC,所以△A OC为等腰三角形.∠ABO=∠1=15°,∠AOB=180°-∠1-∠ABO=150°. ∠ACO=∠2=15°,∠AOC=180°-∠2-∠ACO=150°. 所以 ∠BOC=360°-∠AOB-∠AOC=60°,所以扇形BOC 的面积为260942.39360π⨯⨯≈(平方厘米).15.图12-15是由正方形和半圆形组成的图形.其中P 点为半圆周的中点,Q 点为正方形一边的中点.已知正方形的边长为10,那么阴影部分的面积是多少?(π取3.14)【分析与解】 过P 做AD 平行线,交AB 于O 点,P 为半圆周的中点,所以0为AB 中点.有2ABCD DPC 101S 1010100S 12.522ππ=⨯==⨯⨯=半圆,(). AOP OPQB 101101S 510+37.5S 105550.2222∆⎡⎤⎛⎫=⨯⨯==++⨯⨯= ⎪⎢⎥⎝⎭⎣⎦梯形(), 阴影部分面积为ABCD AOP DPC OPQB S S S S 10012.537.55012.512.551.75.ππ∆+-=+--=+≈半圆梯形-几何综合(二)内容概述勾股定理,多边形的内角和,两直线平行的判别准则,由平行线形成的相似三角形中对应线段和面积所满足的比例关系.与上述知识相关的几何计算问题.各种具有相当难度的几何综合题.典型问题2.如图30-2,已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?【分析与解】 方法一:因为CEFG 的边长题中未给出,显然阴影部分的面积与其有关.设正方形CEFG 的边长为x ,有:=1010=100,ABCD S ⨯正方形2=x ,S 正方形CEFG 21110x-x =DG GF=(10-x)x=,222DGF S ∆⨯又1=1010=50,2ABD S ∆⨯⨯2110x+x =(10+x)x=.22BEF S ∆ 阴影部分的面积为:DGF ABD BEF ABCD CEFG S S S S S ∆∆∆++--正方形正方形2221010100505022x x x x x -+=++--=(平方厘米).方法二:连接FC ,有FC 平行与DB ,则四边形BCFD 为梯形.有△DFB 、△DBC 共底DB ,等高,所以这两个三角形的面积相等,显然,△DBC 的面积11010502⨯⨯=(平方厘米).阴影部分△DFB的面积为50平方厘米.4.如图30-4,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I等于多少度?【分析与解】为了方便所述,如下图所示,标上数字,有∠I=1800-(∠1+∠2),而∠1=1800-∠3,∠2=1800-∠4,有∠I=∠3+∠4-1800同理,∠H=∠4+∠5-1800,∠G=∠5+∠6-1800,∠F=∠6+∠7-1800,∠E=∠7+∠8-1800, ∠D=∠8+∠9-1800,∠C=∠9+∠10-1800,∠B=∠10+∠11-1800,∠A=∠11+∠3-1800则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×(∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11)-9×1800而∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11正是9边形的内角和为(9-2)×1800=12600.所以∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×12600-9×1800=90006.长边和短边的比例是2:1的长方形称为基本长方形.考虑用短边互不相同的基本长方形拼图,要求任意两个基本长方形之间既没有重叠,也没有空隙.现在要用短边互不相同且最小短边长为1的5个基本长方形拼接成一个更大的长方形.例如,短边长分别是1,2,5,6,12的基本长方形能拼接成大长方形,具体案如图30-6所示.请给出这5个基本长方形所有可能的选择方式.设a1=1<a2<a3<a4<a5分别为5条短边的长度,则我们将这种选择方式记为(a1,a2,a3,a4,a5),这里无需考虑5个基本长方形的拼图方案是否惟一.【分析与解】我们以几个不同的基本长方形作为分类依据,并按边长递增的方式一一列出.第一类情况:以为特征的有7组:第二类情况:以为特征的有6组:第三类情况有如下三组:共有16组解,它们是:(1,2,2.5,5,7.25),(1,2,2.5,5,14.5).(1,2,2.25,2.5,3.625),(1,2,2.25,2.5,7.25).(1,2,5,5.5,6),(1,2,5,6,11),(1,2,2.5,4.5,7),(1,2,2.5,4.5,14),(1,2,5,12,14.5),(1,2,5,12,29),(1,2,2.25,2.5,4.5),(1,2,5,6,12). 1020251,,2,,,999⎛⎫ ⎪⎝⎭(1,2,2.4,4.8,5), 131025147813101,,,,,1,,,,636333313⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.8.如图30-8,ABCD 是平行四边形,面积为72平方厘米,E ,F 分别为边AB,BC 的中点.则图形中阴影部分的面积为多少平方厘米?【分析与解】 如下图所示,连接EC ,并在某些点处标上字母,因为AE 平行于DC ,所以四边形AECD 为梯形,有AE:DC=1:2,所以:1:4AEG DCG S S ∆∆=, AGD ECG AEG DCG S S S S ∆∆∆∆⨯=⨯,且有AGD ECG S S ∆∆=,所以:1:2AEG ADG S S ∆∆=,而这两个三角形高相同,面积比为底的比,即EG :GD=1:2,同理FH :HD=1:2.有AED AEG AGD S S S ∆∆∆=+,而111822AED ABCD S S ∆=⨯⨯=(平方厘米) 有EG:GD=:AEG AGB S S ∆∆,所以1612AEG AED S S ∆∆=⨯=+(平方厘米) 21212AGD AED S S ∆∆=⨯=+(平方厘米) 同理可得6HFC S ∆=(平方厘米), 12DCH S ∆=(平方厘米),44624DCG AEG S S ∆∆==⨯=(平方厘米)又GHD DCG DCH S S S ∆∆∆=-=24-12=12(平方厘米)所以原题平行四边形中空白部分的面积为6+6+12=24(平方厘米),所以剩下的阴影部分面积为72-24=48(平方厘米).10.图30-10是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?【分析与解】 如下图所示,为了方便所叙,将某些点标上字母,并连接BG .设△AEG 的面积为x ,显然△EBG 、△BFG 、△FCG 的面积均为x ,则△ABF 的面积为3x ,120101002ABF S ∆=⨯⨯=即1003x =,那么正方形内空白部分的面积为40043x =. 所以原题中阴影部分面积为400800202033⨯-= (平方厘米).12.如图30-12,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径长都是1.求阴影部分的面积.【分析与解】 如下图所示,左图中的3个阴影部分面积相等,右图中的3个阴影部分的面积也相等.我们把左下图中的每一部分阴影称为A ,右下图中的每一部分阴影称为B .大半圆的面积为13332A B ++小圆的面积219322ππ=⨯⨯=而小圆的面积为π,则9133223A B πππ⎛⎫+=-÷= ⎪⎝⎭, 原题图中的阴影部分面积为小半圆面积与阴影A 、B 的面积和,即为5236πππ+=14.如图30-14,将长方形ABCD 绕顶点C 顺时针旋转90度,若AB=4,BC=3,AC=5,求AD 边扫过部分的面积.(π取3.14)【分析与解】 如下图所示,如下图所示,端点A 扫过的轨迹为AA A ''',端点D 扫过轨迹为DD D ''',而AD 之间的点,扫过的轨迹在以A 、D 轨迹,AD ,A D ''所形成的封闭图形内,且这个封闭图形的每一点都有线段AD 上某点扫过,所以AD 边扫过的图形为阴影部分.显然有阴影部分面积为A D C ACA ACD S S S S ''''∆∆+--直角扇形直角扇形CD D ,而直角三角形A D C ''、ACD 面积相等.所以=A D C ACA ACD ACA S S S S S S ''''''∆∆+---直角扇形直角扇形CD D 扇形扇形CD D222290909=(54)7.065()36036044AC CD ππππ-=-==平方厘米即AD 边扫过部分的面积为7.065平方厘米.。

六年级图形问题综合(奥数)含答案

六年级图形问题综合(奥数)含答案

平面图形计算(一) 经典图形:1 3 13 11.任意三角形 ABC 中,CD=-AC , EC= —BC ,则三角形CDE 的面积占总面积的=—(为什么?)343 4 42. 任意平行四边形中任意一点,分别连接四个顶点,构成的四个三角形中,上下两个三角形面积之和4.正方形的面积等于边长的平方,或者等于对角线的平方2,或者等于斜边的平方4.(为什么?)例题:例1 .如右图,三角形 ABC 的面积是10, BE=2AB , CD=3BC ,求三角形BDE 的面积。

例2.如图,已知三角形 ABC 的面积是1,延长AB 至D ,使BD=AB ,延长BC 至E ,使CE=2BC ,延 长CA 至F ,使AF=3AC ,求三角形 DEF 的面积。

FA B :C' DE等于左右两个三角形面积之和。

(为什么?) 3.任意梯形,连接对角线,构成四个三角形。

面积之积等于左右两个三角形面积之积。

(1)腰上的两个三角形面积相等; (2)上下两个三角形 (为什么?)2•等腰直角三角形面积等于直角边的平方例3.如图,三角形ABC的面积是180平方厘米,D是BC的中点,AE=ED , EF=2BF,求AEF的面积。

AKF与三角形ADG面积之和等于5平方厘米,DC=CE=3厘米。

求三角形BEK的面积。

例5.如图,三角形ABC的AB和AC两条边分别被分成5等分。

三角形ABC面积是500,求图中阴影部分的面积?4I%TTnnJkrn&^C例6.如图,设正方形ABCD的面积为120, E、F分别为边AB、AD的中点,FC=3GC,则阴影部分的面积是多少?例7.在如图所示的三角形AGH中,三角形ABC BCD CDE DEF,EFG FGH的面积分别是1 , 2, 3, 4, 5, 6平方厘米,那么三角形EFH的面积是多少平方厘米?例8.如图,在平行四边形ABCD中,AC为对角线,EF平行于AC如果三角形AED的面积为12平方厘米,,求三角形DCF的面积。

6年级奥数几何综合问题(中)例题解析

6年级奥数几何综合问题(中)例题解析

【内容概述】本讲将涉及到图形的对称、平移、旋转、割补及其他等积变换,下面我们就这些变换的预备知识及变换本身进行学习和探讨.反之,如果知道上面某种情况的成立,则那两条直线平行.3.两个相似三角形的面积比值为相似系数的平方.【例题】题1.如下图,六边形ABCDEF中,AB=ED,AF=CD,BC=EF,且有AB平行ED,AF平行CD,BC平行EF,对角线FD垂直与BD.已知FD=24厘米,BD=18厘米,试求六边形ABCDEF的面积是多少平方厘米?「分析与解」如图,我们将BCD平移使得CD与AF重合,DEF平移使得ED与AB 重合.这样就组成一个长方形,显然有面积为24×18=432平方厘米,即ABCDEF 的面积为432平方厘米.题2.四边形ABCD中,AB=30,AD=48,BC=14,CD=40.又已知∠ABD+∠BDC =90°,求四边形ABCD的面积.「分析与解」如下图,以BD的垂直平分线为对称轴,做△ABD关于l的对称图形△A′BD.连接A′C.因为∠ABD+∠BDC=90°,而∠ABD=∠A′DB=90°,所以有∠A′DB+∠BDC=90°.那么△A′CD为直角三角形,由勾股定理知A′C2=AB2+CD2=2500,所以A′C=50.而在△A′BC中,有A′B=AD=48,有482+142=2500,即A′B2+BC2=A′C2,即△A′BC为直角三角形.有S △A ′CD +S △A ′BC =30×40×+14×48×=936.而S 四边形ABCD =S △A ′CD +S △A ′BC =936.评注:Ⅰ.本题以∠ABD+∠BDC =90°为突破口,通过对称变换构造出与原图形相关的直角三角形.这样面积就很好解决.Ⅱ.对于这道题我们还可以将△BCD 作l 的对称图形,如下:题3.如下图所示,梯形ABCD 中,AB 平行与CD ,又BD =3,AC =4,AB+CD =5,试求梯形ABCD 的面积.「分析与解」如下图,将AB 沿AC 平移至CE ,连接BE .在三角形BDE 中,有BD =3,BE =4,DE =5,有BD 2+BE 2=DE 2,所以三角形BDE 为直角三角形.有S梯形ABCD =S△BDE=×3×4=6.题4.如图,在三角形ABD中,当AB和CD的长度相等时,请求出“?”所示的角是多少度,给出过程.「分析与解」因为AB=CD,于是可以将三角形ABC的边BA边与CD对齐,如右图.在右图中有∠BCA=110°,所以∠ACD=70°于是∠ACC′=∠ACD+∠DCC′=∠ACD+∠ACB=70°+40°=110°;于是∠ACC′=110°=∠CC′D;又因为C′A′只是CA移动的变化,所以C′A′=CA;则AB′C′A′是一等腰梯形.于是,∠ADC′=180°-110°=70°;又∠CDC′=30°,所以∠ADC=70°-30°=40°.题5.如下图所示,有六边ABCDEF,已知∠A=∠B=∠C=∠D=∠E=∠F=120°,AB=BC=CD;AF=DE;∠ECF=60°;已知FEC的面积为6,求六边形ABCDEF的面积为多少?「分析与解」如下图,因为BC=CE,所以我们可以将△CDE绕C点转到E′点,使E′B平行CD.连接E′、F;E′、B,设E′F、AB交于Q点.有△E′BC≌△EDC.而在△E′BQ、△FAQ中,∠E′BQ=∠FAQ=120°,∠E′QB=∠AQF(对顶角相等),E′B=AF=ED,所以有△E′BQ≌△FAQ.所以△E′FC即为六边形ABCDEF除△CEF所剩下的部分的等积图形;而在△E′FC、△EFC中,E′C=EC,FC=FC,∠E′CF=∠ECF,所以△E′FC≌△EFC.所以S六边形ABCDEF =2×S△CEF;于是,S六边形ABCDEF=6×2=12.题6.如下图,△ABC为边长为1的等边三角形,△BCD是等腰三角形,BD=CD,顶角∠BDC=120°,∠MDN=60°,求△AMN的周长.「分析与解」如下图,延长AC至P,使CP=MB,连接DP.则有∠MBD=60°+=∠PCD;CP=BM;BD=CD,所以有△MBD≌△PCD.于是∠MDB=∠PDC;又因为∠MDB+∠NDC=60°,所以∠PDC+∠NDC=∠NDP=60°;MD=PD.在△MND、△PND中,∠NDM=∠NDP,ND=ND,MD=PD,于是△MND≌△PND.有MN=PN.因为MN=NP=NC+CP,而AM=AB-MB=AB-CP,所以AM+AN+MN=(AB-CP)+AN+(NC+CP)=AB+AN+NC=2.即△AMN的周长为2.题7.如下图,三角形ADC,是AC边与AD边长度相等的等腰三角形.求出下图中?的角度.「分析与解」作△ADB关于AB的对称图形,为△AD′B,在BC上选择E点使EA=CA;△BD′A≌△BCA,∠BD′A=∠BDA,注意到∠BED′似直角,D′EA似为等边三角形.如果解决,则,显然就有∠BDA=∠BD′A=?,答案显然为105°.注意到∠AEC=30°,则∠EAC=120°,于是∠D′AE=60°,又因为D′A=DA=AC=AE,所以三角形D′AE为等边三角形.∠D′EC=∠D′EA+∠AEC=60°+30°=90°;于是∠D′EB=180°-90°=90°.又知道∠BEA=90°+60°=150°;所以∠BAE=180°-150°-15°=15°;所以BEA为等腰三角形;于是BE=EA=ED′;BED′为等腰直角三角形.综合以上分析知∠BDA=105°.题8.下图为半径20厘米、圆心角为144°的扇形图.点C、D、E、F、G、H、J 是将扇形的B、K弧线分为8等份的点.求阴影部分面积之和.「分析与解」如下图,做出辅助线△KMA与△ANG形状相同(对应角相等),大小相等(对应边相等),有△KMA≌△ANG,S△KMA =S△ANG,而△KMA是两个三角形的公共部分,所以上图中的阴影部分面积相等.所以,GNMK与扇形KGA的面积相等,那么KGEB的面积为2倍扇形KGA的面积.扇形KGA的圆心角为×3=54°,所以扇形面积为×202×π=60π平方厘米.那么KGEB的面积为60π×2=120π平方厘米.如右图,做出另一组辅助线.△JQA与△ARH形状相同(对应角相等),大小相等(对应边相等),有△JQA≌△ARH,S△JQA =S△ARH,而△PQA是两个三角形的公共部分,所以上图中的阴影部分面积相等.所以,JHPQ与扇形JHA的面积相等,那么JHDC的面积为2倍扇形JHA的面积.扇形JHA的圆心角为=18°,所以扇形面积为×202×π=20π平方厘米.那么JHDC的面积为10π×2=40π平方厘米.所以,原题图中阴影部分面积为SKGEB -SJHDC=120π-40π=80π≈80×3.14=251.2平方厘米.题9.如下图,三角形ABC中AB=AC,∠BAC=120°,三角形ADE为正三角形,点D在BC边上.并且有BD:DC=2:3.三角形ABC的面积为50平方厘米,试求三角形ADE的面积?「分析与解」以点A为中心,使三角形ABC旋转120°,240°使其与原图形形成一个正三角形,并使QC:PQ=RP:BR=2:3.在正三角形PBC的内部连接成一个正六边形图,再连接正六角形的顶点得到正三角形DQR.有S△PBC =S△ABC×3=150,S△DCQ=S△PBC××=36,S△DQR=S△PBC-3S△DCQ=42,S△ADE =S正六边形DQR=S△DQR=14平方厘米.。

六年级数学几何图形相关问题试题答案及解析

六年级数学几何图形相关问题试题答案及解析

六年级数学几何图形相关问题试题答案及解析1.观察下面的图,看各至少用几笔画成?【答案】图(1)要4笔画出,图(2)能1笔画出,图(3)能1笔画出。

【解析】图(1)有8个奇点,所以要4笔画出,图(2)有12个奇点,所以要一笔画出,图(3)能一笔画出。

2. 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?【答案】【解析】欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了。

而图B中有4个奇点显然不能一笔画出.3.右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【答案】能够【解析】将图形中的6个区域看成6个点,每个门看成连结他们的线段,显然6个点都是偶点,所以有人能一次不重复的走过所有的门。

4.如图所示,四个全等的圆每个半径均为2m,阴影部分的面积是.【答案】16【解析】我们虽没有学过圆或者圆弧的面积公式,但做一定的割补后我们发现其实我们并不需要知道这些公式也可以求出阴影部分面积.如图,割补后阴影部分的面积与正方形的面积相等,等于.5.图中小圆的面积是30平方厘米,则大圆的面积是多少平方厘米.(取)【答案】60【解析】设图中大圆的半径为,正方形的边长为,则小圆的直径等于正方形的边长,所以小圆的半径为,大圆的直径等于正方形的对角线长,即,得.所以,大圆的面积与小圆的面积之比为:,即大圆的面积是小圆面积的2倍,大圆的面积为(平方厘米).6.直角三角形放在一条直线上,斜边长厘米,直角边长厘米.如下图所示,三角形由位置Ⅰ绕点转动,到达位置Ⅱ,此时,点分别到达,点;再绕点转动,到达位置Ⅲ,此时,点分别到达,点.求点经到走过的路径的长.【答案】【解析】由于为的一半,所以,则弧为大圆周长的,弧为小圆周长的,而即为点经到的路径,所以点经到走过的路径的长为(厘米).7.把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.【答案】【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左下图所示的三种分法.又因为,所以,如果我们把每一个小三角形的面积看做1,那么就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形.根据上面的分析,又可以得到如右下图的另两种分法.8.下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.【答案】【解析】直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,边长正好为3,所以边分成两段,找到的三等分点,现在,,,,所以还要找到的中点,连接,就把梯形分成完全相同的两部分.如右上图.9.把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?【答案】【解析】先把图形分成相等的两块,每一块中再分成相等的两份,这样就不难分成四块了,如右上图.10.如图,它是由个边长为厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后个小图形的周长总和与原来大图形的周长相差厘米.【答案】;8;22【解析】⑴因为总共有个小正方形,所以分成个大小形状相同的图形后每个图形应该有(个)小正方形,如图.⑵每个小图形的周长为厘米.⑶个小图形的周长和:(厘米),原图形的周长:(厘米),所以相差(厘米).11.有6个完全相同的,你能将它们拼成下面的形状吗?【答案】→→【解析】利用染色法以及图形的对称性,对称轴两侧都有三个小图形,按照上面的顺序标号即可完成.12.试用图a中的8个相等的直角三角形,拼成图b中的空心正八边形和图c中的空心正八角星.【答案】【解析】把一个直角三角形的斜边与另一个直角三角形的一条直角边重合,同时,斜边上的一个锐角顶点与直角顶点重合,像这样依次摆放下去,便可得空心正八边形.若把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点均不重合,依次摆放下去,便可由这八个相等的直角三角形组成空心正八角星.13.如下图两个正方形的边长分别是和(),将边长为的正方形切成四块大小、形状都相同的图形,与另一个正方形拼在一起组成一个正方形.【答案】【解析】拼成大正方形的面积应是,设边长,则有等式,又因为将边长为的正方形切成四个全等形,那么分割线一定经过正方形中心,假设切割线为大正方形边长,如图⑴,一定有,而,则:,所以,由此可以确定,然后将绕中心旋转到位置,即可把正方形切成符合要求的4块.如图⑵与图⑶.这种分法同时确保图⑶的中间部分就是边长为的小正方形.这是因为:⑴中心四边形的角即边长为的正方形的四个角,∠,∠,∠,∠,又因为各边长度相等.因此中心四边形是正方形.⑵中心正方形的边长.因此,中间部分是边长为的正方形.14.下图是一个锯齿状的零件,每一个锯齿的两条线段都长2厘米,求这个零件的周长.【答案】48【解析】平移法,将锯齿状的零件转化成平行四边形,两组对边相等都等于24厘米,所以这个零件的周长是24×2=48(厘米).15.求右图所示图形的周长(单位:分米)【答案】220【解析】这道题最简单的方法也是用平移法来解.下面我们来看一个基本解法.这是一个组合图形,由两个矩形组成,不要误认为两个矩形周长的和就是组合图形的周长.仔细观察图形可以发现:右边矩形的右边边长可以移到左边,这样就可以使左边的矩形变得完整.所以,这个组合图形的周长就是左边矩形的周长再加上右边矩形的一条已知边长的倍.即:(分米)16.如右图所示,在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲,和形区域乙和丙.甲的周长为厘米,乙的边长是甲的周长的倍,丙的周长是乙的周长的倍,那么丙的周长为多少厘米?长多少厘米?【答案】2【解析】乙的周长实际上是正方形的周长(我们可将乙与甲重合的两条线段分别向左、向下平移),同样的,丙的周长也就是正方形的周长.由于,,所以丙的周长为厘米,(厘米).17.如图,平行四边形,,,,,平行四边形的面积是,求平行四边形与四边形的面积比.【答案】1/18【解析】连接、.根据共角定理∵在和中,与互补,∴.又,所以.同理可得,,.所以.所以.18.一个长方形分成4个不同的三角形,绿色三角形面积占长方形面积的,黄色三角形面积是.问:长方形的面积是多少平方厘米?【答案】60【解析】黄色三角形与绿色三角形的底相等都等于长方形的长,高相加为长方形的宽,所以黄色三角形与绿色三角形的面积和为长方形面积的,而绿色三角形面积占长方形面积的,所以黄色三角形面积占长方形面积的.已知黄色三角形面积是,所以长方形面积等于().19.如图,在长方形中,是的中点,是的中点,如果厘米,厘米,求三角形的面积.【答案】24【解析】∵是的中点,是的中点,∴,,又∵是长方形,∴ (平方厘米).20.如图ABCD是一个长方形,点E、F和G分别是它们所在边的中点.如果长方形的面积是36个平方单位,求三角形EFG的面积是多少个平方单位.【答案】9【解析】如右图分割后可得,(平方单位).21.数一数,图中共有多少个角?【答案】8【解析】锐角、直角各4个,共8个角.22.将一个边长为4厘米的正方形对折,再沿折线剪开,得到两个长方形.请问:这两个长方形的周长之和比原来正方形的周长多几厘米?【答案】8【解析】剪开后的图形与原图形相比,多了两条边,这两条边的长度即为所求.4×2=8厘米23.用12个边长为1的小正方形拼一个大长方形,这个长方形的周长最短是多少?【答案】14【解析】拼成的图形长和宽最接近时,新的图形周长最短.即新图形边长为3和4时,周长最短,为(3+4)×2=1424.长方形有四个角,剪掉一个角,还剩几个角?【答案】如解析【解析】共有三种情况,如下图,分别剩下5、4、3个角.25.有两个相同的直角三角形纸片,三条边分别为3厘米、4厘米、5厘米.不许折叠,用这两个直角三角形可以拼成几种平行四边形?【答案】3【解析】3种.26.如图所示,剪一块纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘).那么这个多面体的面数、顶点数和棱数的总和是多少?【答案】74【解析】多面体的面数,可以直接从侧面展开图中数出来,12个正方形加8个三角形,共20面.下图是多面体上部的示意图共有9个顶点;同样,下部也是9个顶点,共18个顶点.棱数要分三层来数,上层从示意图数,有15条;下层也是15条;中间部分分为6条.一共15×2+6=36条棱.20+18+36=74.所以多面体的面数、顶点数和棱数的总和为74.27.如图,这是一个用若干块体积相同的小正方体粘成的模型.把这个模型的表面(包括底面)都涂上红色,那么,把这个模型拆开以后,有3面涂上红色的小正方体比有2面涂上红色的小正方体多多少块?【答案】12【解析】三面涂上红色的小正方形有2×4+5×4=28(个);两面涂上红色的小正方形有3×4+1×4=16(个),所以多出28-16=12(个).28.如图,四边形的面积是平方米,,,,,求四边形的面积.【答案】13.2【解析】连接.由共角定理得,即同理,即所以连接,同理可以得到所以平方米29.如图,正方形的树林每边长1000米,里边有白杨树和榆树.小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰到一株榆树就往正东走,最后他走到了东北角上.问小明一共走了多少米的距离?【答案】2000【解析】小明往正北走路程可能分许多段.不管是多少段,各段距离的和正好是正方形南北方向的一条边长1000米;同样小明往正东方向走若干段距离的和也正好是东西方向的一条边长1000米.所以,小明一共走了1000+1000=2000(米).30.在图中,共有多少个不同的三角形?【答案】85【解析】下图中共有35个三角形,两个叠加成题中图形时,又多出5+5×2=15个三角形,共计35×2+15=85个三角形.。

六年级奥数图形问题讲解

六年级奥数图形问题讲解

圆和组合图形(1)一、填空题1. 算出圆内正方形的面积为 .6 厘米2. 右图是一个直角等腰三角形 , 直角边长 2 厘米, 图中阴影局部面积是平方厘米 .23. 一个扇形圆心角120 , 以扇形的半径为边长画一个正方形 , 这个正方形的面积是 120 平方厘米. 这个扇形面积是 .4. 以以下图 , 以 B、C 为圆心的两个半圆的直径都是 2 厘米, 那么阴影局部的周长是厘米.( 保存两位小数 )EA B C D5. 三角形 ABC 是直角三角形 , 阴影局部①的面积比阴影局部②的面积小 28 平方厘米 . AB长 40 厘米, BC 长厘米.C②①B A6. 如右图, 阴影局部的面积为 2 平方厘米, 等腰直角三角形的面积为 .7. 扇形的面积是 31.4 平方厘米 , 它所在圆的面积是 157 平方厘米, 这个扇形的圆心角是度.8. 图中扇形的半径 OA= OB=6 厘米. AOB 45 , AC 垂直 OB 于 C, 那么图中阴影局部的面积是平方厘米. ( 3. 14 )A645O C B9. 右图中正方形周长是 20 厘米. 图形的总面积是平方厘米.10. 在右图中( 单位: 厘米), 两个阴影局部面积的和是平方厘米 .151220二、解答题11. ABC 是等腰直角三角形 . D 是半圆周的中点 , BC 是半圆的直径 , :AB= BC=10, 那么阴影局部的面积是多少 ?(圆周率 3.14 )10BADC12. 如图, 半圆 S1 的面积是 14.13 平方厘米 , 圆S2 的面积是 19.625 平方厘米. 那么长方形 ( 阴影局部的面积 ) 是多少平方厘米 ?S2S113. 如图, 圆心是 O, 半径 r=9 厘米, 1 2 15 , 那么阴影局部的面积是多少平方厘米 ?( 3.14 )A1 2BC14. 右图中 4 个圆的圆心是正方形的 4 个极点, 它们的公共点是该正方形的中心 . 若是每个圆的半径都是 1 厘米, 那么阴影局部的总面积是多少平方厘米 ?———————————————答 案——————————————————————1. 18 平方厘米.由图示可知 , 正方形两条对角线的长都是 6 厘米, 正方形由两个面积相等的 1三角形构成 . 三角形底为 6厘米, 高为 3厘米, 故正方形面积为 6 3 2 18( 平2方厘米).2. 1.14 平方厘米.由图示可知 , 图中阴影局部面积为两个圆心角为 45 的扇形面积减去直角三45 12 ( 平方厘米). 角形的面积 . 即3.142 2 2 2 1. 14360 2平方厘米.由条件可知圆的半径的平方为 120 平方厘米. 故扇形面积为 1203.14 120 125.6 ( 平方厘米).360 4. 3.09 厘米.边结 BE 、CE, 那么 BE=CE=BC= 1( 厘米), 故三角形 BCE 为等边三角形 . 于是⌒ ⌒60EBC BCE 60 . BE=CE= 3.14 2 1.045 ( 厘米). 于是阴影局部周长360为1. 045 2 1 3.09 ( 厘米).5. 32.8 厘米.从图中可以看出阴影局部①加上空白局部的面积是半圆的面积 , 阴影局部② 加上空白局部的面积是三角形 ABC 的面积. 又①的面积比②的面积小 28 平方厘米, 故半圆面积比三角形 ABC 的面积小 28 平方厘米.240 1半圆面积为 3.14 628( 平方厘米), 三角形 ABC 的面积为2 2 628+28=656( 平方厘米). BC 的长为 656 2 40 32.8( 厘米). 6.9 37 平方厘米. 13将等腰直角三角形补成一个正方形 , 设正方形边长为 x 厘米, 那么圆的半径为 x 2 厘米. 图中阴影局部面积是正方形与圆的面积之差的 1 8 , 于是有212 xx 3.14 8 2, 解得232002x . 故等腰直角三角形的面积为133200 13 1293713( 平方厘米 ).7. 72 .扇形面积是圆面积的131.4 157 , 故扇形圆心角为360 的515即72 .8. 5.13.三角形 ACO 是一个等腰直角三角形 , 将 AO 看作底边, AO 边上的高为1AO 2 6 2 3( 厘米), 故三角形 ACO 的面积为 6 3 9( 平方厘米). 而扇2452 ( 平方厘米), 进而阴影局部面积为形面积为 3.14 6 14. 1336014.13- 9=5.13( 平方厘米 ).9. 142.75.由正方形周长是 20 厘米, 可得正方形边长也就是圆的半径为 20 4 5( 厘米). 图形总面积为两个34圆面积加上正方形的面积 , 即32 ( 平方厘米).2410. 90平方厘米.图中阴影局部的面积是从两个以直角三角形直角边为直径的半圆及一个直角三角的面积和中减去一个以直角三角形斜边为直径的半圆的面积即2 12 2 3. 14 12(16 22)1212 1512(20 22)1290( 平方厘米).11. 如图作出辅助线 , 那么阴影局部的面积为三角形A10B EAED 的面积减去正方形 BEDO 的面积再加上圆面积的14. O D三角形 AED 的面积是1(10 10 2) (10 2) ; 正方形面2C积是 2(10 2) , 圆面积的14是14(10 22) , 故阴影局部面积为 :(10 10 2) (10 2)12 (1012 3.14 (10 2)42)237. 5 25 19.625 32. 125〔平方厘米〕 .12. 由半圆 S1 的面积是 14.13 平方厘米得半径的平方为14.13 2 3.14 9( 平方厘米 ), 故半径为 3 厘米, 直径为 6 厘米.又因圆 S2 的面积为平方厘米, 因此 S2 半径的平方为19.625 3.14 6.25( 平方厘米), 于是它的半径为 2.5 厘米, 直径为 5 厘米.阴影局部面积为(6 5) 5 5( 平方厘米).13. 因OA=OB , 故三角形 OAB 为等腰三角形 , 即OBA 1 15 , AOB 180 15 2 150 , 同理AOC 150 , 于是BOC 360 150 2 60 .60 2 扇形面积为360 (平方厘米).14. 正方形可以切割成两个底为 2, 高为 1 的三角形, 其面积为1 2 2 1 2 2 ( 平方厘米).正方形内空白局部面积为 4 个14圆即一个圆的面积与正方形面积之差 , 即12 ( 平方厘米), 全部空白局部面积为2( 2) 平方厘米.2 2故阴影局部面积为四个圆面积之和与两个空白面积之和的差 , 即为12 ( 平方厘米 ).4 2 2( 2) 8十二、圆和组合图形〔2〕一、填空题1. 如图, 阴影局部的面积是 .2 1 22. 大圆的半径比小圆的半径长 6厘米, 且大圆半径是小圆半径的 4倍. 大圆的面积比小圆的面积大平方厘米 .3. 在一个半径是4.5 厘米的圆中挖去两个直径都是 2 厘米的圆. 剩下的图形的面积是平方厘米.( 取 3.14, 结果精确到 1 平方厘米 )4. 右图中三角形是等腰直角三角形 , 阴影局部的面积是 ( 平方厘米).5. 如图所求 , 圆的周长是 16.4 厘米, 圆的面积与长方形的面积正好相等 . 图中阴影局部的周长是厘米. ( 3.14 )6. 如图, 1 15 的圆的周长为 62.8 厘米, 平行四边形的面积为 100 平方厘米. 阴影局部的面积是 .7. 有八个半径为 1 厘米的小圆 , 用它们的圆周的一局部连成一个花瓣图形( 如图). 图中黑点是这些圆的圆心 . 若是圆周率 3.1416 , 那么花瓣图形的面积是平方厘米 .8. : ABCD是正方形, ED=DA=AF=2 厘米, 阴影局部的面积是 .C BGE D A F9. 图中, 扇形BAC的面积是半圆 ADB 的面积的11 倍, 那么, CAB 是度. 3CDA BO10. 右图中的正方形的边长是 2 厘米, 以圆弧为分界线的甲、乙两局部的面积差( 大减小) 是平方厘米.( 取 3.14)甲乙2二、解答题11. 如图: 阴影局部的面积是多少 ?四分之一大圆的半径为 r.( 计算时圆周率取22 )712. 右图中大正方形边长是 6 厘米, 中间小正方形边长是 4 厘米. 求阴影局部的面积 .13. 有三个面积都是 S的圆放在桌上 , 桌面被圆覆盖的面积是 2S+2, 并且重合的两块是等面积的 , 直线 a 过两个圆心 A、B, 若是直线 a 下方被圆覆盖的面积是9, 求圆面积 S的值.A B aC14. 以以下图, 一块半径为 2 厘米的圆板 , 从平面上 1 的地址沿线段 AB、BC、CD 滚到 2 的地址, 若是 AB、BC、CD的长都是 20 厘米, 那么圆板的正面滚过的面积是多少平方厘米 ?12BD120AC———————————————答案——————————————————————1. 6.两个扇形面积相等 , 故阴影局部面积等于一个长为 3, 宽为 2 的长方形面积 , 为 6 个平方单位 .2. 188.4.小圆的半径为 6 (4 1) 2( 厘米), 大圆的半径为 2 4 8( 厘米). 大圆的面积比小圆的面积大(82 22( 平方厘米).3. 57.2 ( 平方厘米) ≈57( 平方厘米).24. 10.26.从圆中可以看出 , 阴影局部的面积是两个半圆的面积与三角形面积之差 , 即3.14 (612 2 ( 平方厘米 ).25. 20.5.设圆的半径为 r, 那么圆面积即长方形面积为 2r , 故长方形的长为 DC r .1 5 ⌒阴影局部周长 DC BC BA AD r r ( r r) 2 r 2 r4 45 4 16.4 20.5 ( 厘米).6.548 ( 平方厘米 ).6如图, 连结 OA、AC, 过 A 点作 CD 的垂线交 CD 于B AE. 三角形 ACD 的面积为100 2 50( 平方厘米).又圆半径为 6.28 ( 3.14 2) 10 ( 厘米), 因为 1 15 , C E O1 D又 OA=OD , 故AOC 15 2 30 , 扇形 AOC 的面积为30 23. 14 10 2616( 平方厘米). 三角形 AOC的面积为 50 2 25( 平方厘米).360方形面积为1 126 25 1 ( 平方厘米), 进而阴影局部的面积为6 61 550 1 48 ( 平6 6方厘米). 7. 19.1416.花瓣图形的结构是正方形的面积 , 加上四个 3 4圆面积后, 再割去四个半圆的面积. 圆的半径为 1 厘米, 正方形边长为 4 厘米. 故花瓣图形的面积是43 12 ( 平方厘米 ).2 24 2C B8. 2.43 平方厘米.如图, 将①移到②得 : 阴影局部面积等于梯形 CEFB 的 ① ②G面积减去三角形 CED 、三角形 CDA 、扇形 AFG 的面积, 即 1 1 (2 2 3) 2 2 2 2 2 21 452 ( 平方厘22 360米 ).E DAF9. 60.设扇形 ABC 圆心角的度数是 x, 半圆的半径 OA=r , 有x 360 (2r 2 ) 1 13 12r 2, 解得 x= 60. 10. 0.14.2( 平方厘米), 甲局部面积为扇形面积为1 421 12 ( 平方厘米), 乙局部面积为 3.14 2 0.43 3.14 2 2 2 ( 平方 2 4厘米), 甲乙两局部面积差为 0.57 0.43 0.14 ( 平方厘米). 11. 如图, 小正方形的边长为 r 2, 那么①的面积为 :②1 4 22 7r 22 r r r 2 2 2 7,① ③221 22 r r 12②的面积为 r , ①和②的面积和为2 7 2 7 41 4 2271 22 2 2r r 2 r . 即阴影局部面积为4 7272r .12. 将阴影局部旋转后 , 可以看出所求阴影局部面积为大正方形面积的一半减2 ( 平方厘米).2去小正形的一半 , 即阴影局部面积等于 6 2 4 2 1013. 设一个阴影局部的面积为 x, 那么有: 3S 2x 2S 2, 于是S 2x 2 (1)3 4S 18又2S x 9 , 于是有 x 2, 解得 S=6.2 312 14. 圆板的正面滚过的局部如右图阴影局部所求 ,它的面积为 :1 2 1 22 (20 2) 4 4 2 6 ( 20 4)AB D4 (20 2) 4141 23 C2 ( 平方厘米 ).2 22 3面积计算〔三〕专题简析:对于一些比较复杂的组合图形,有时直接分解有必然的困难,这时,可以经过把其中 的局部图形进行平移、翻折或旋转,化难为易。

六年级图形问题综合(奥数)含答案

六年级图形问题综合(奥数)含答案

平面图形计算(一)经典图形:1. 任意三角形ABC 中,CD=31AC ,EC=43BC ,则三角形CDE 的面积占总面积的31⨯43=41(为什么?)2. 任意平行四边形中任意一点,分别连接四个顶点,构成的四个三角形中,上下两个三角形面积之和等于左右两个三角形面积之和。

(为什么?)3. 任意梯形,连接对角线,构成四个三角形。

(1)腰上的两个三角形面积相等;(2)上下两个三角形面积之积等于左右两个三角形面积之积。

(为什么?)4. 正方形的面积等于边长的平方,或者等于对角线的平方÷2.等腰直角三角形面积等于直角边的平方÷2,或者等于斜边的平方÷4.(为什么?)例题: 例1. 如右图,三角形ABC 的面积是10,BE=2AB ,CD=3BC ,求三角形BDE 的面积。

例2. 如图,已知三角形ABC 的面积是1,延长AB 至D ,使BD=AB ,延长BC 至E ,使CE=2BC ,延长CA 至F ,使AF=3AC ,求三角形DEF 的面积。

例3. 如图,三角形ABC 的面积是180平方厘米,D 是BC 的中点,AE=ED ,EF=2BF ,求AEF 的面积。

例4. 如图,ABCD 是个长方形,DEFG 是个平行四边形,E 点在BC 边上,FG 过A 点,已知,三角形AKF 与三角形ADG 面积之和等于5平方厘米,DC=CE=3厘米。

求三角形BEK 的面积。

FK BEC DGA例5. 如图,三角形ABC 的AB 和AC 两条边分别被分成5等分。

三角形ABC 面积是500,求图中阴影部分的面积?例6. 如图,设正方形ABCD 的面积为120,E 、F 分别为边AB 、AD 的中点,FC=3GC ,则阴影部分的面积是多少?ABC DFEG例7. 在如图所示的三角形AGH 中,三角形ABC ,BCD ,CDE ,DEF,EFG ,FGH 的面积分别是1,2,3,4,5,6平方厘米,那么三角形EFH 的面积是多少平方厘米?ABCD EFG H例8. 如图,在平行四边形ABCD 中,AC 为对角线,EF 平行于AC ,如果三角形AED 的面积为12平方厘米,,求三角形DCF 的面积。

6年级奥数几何综合问题(上)例题解析

6年级奥数几何综合问题(上)例题解析

【内容概述】勾股定理,多边形的内角和,两直线平行的判别准则,由平行线形成的相似三角形中对应线段和面积所满足的比例关系.与上述知识相关的几何计算问题.各种具有相当难度的几何综合题. 【例题】1.如图16-1,已知四边形ABCD 中,AB=13,BC=3,CD=4,DA=12,并且BD 与AD 垂直,则四边形ABCD 的面积等于多少?[分析与解] 因为∠ADB =90°,所以在△ABD 中有AB 2=AD 2+BD 2,即BD 2=AB 2-AD 2=132-122=25,所以BD =5.△ABD 的面积为12×BD ×AD =30.而在△BCD 中有32+42=52,即BC 2+CD 2=BD 2,所以有△BCD 为直角三角形.△BCD 的面积为12×BC ×CD =6.而四边形ABCD 的面积为△ABD 、△BCD 的面积和,即为30+6=36.2.如图16-2,已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?[分析与解] 因为CEFG 的边长题中未给出,那么显然阴影部分的面积与其无关. 设正方形CEFG 的边长为x ,有:S 正方形ABCD =10×10=100,S 正方形CEFG =x 2,S △BGF =12DG ×GF =12(10-x)x =.又S △ABD =12×10×10=50,S △BEF =12(10+x)x =.阴影部分的面积为:S 正方形ABCD +S 正方形CEFG +S △BGF -S △ABD -S △BEF =100+x 2+-50-=50(平方厘米).解法二:连接FC ,有FC 平行与DB ,则四边形BCFD 为梯形.有△DFB 、△DBC 共底DB ,等高,所以这两个三角形的面积相等,显然△DBC 的面积为12×10×10=50(平方厘米).阴影部分△DFB 的面积为50平方厘米.3.如图16-3,在平行四边形ABCD 中,AB=16,AD=10,BE=4,那么FC 的长度是多少?[分析与解]因为有CB平行与DA,有=,有FB=×DA=×10=2,所以CF=CB-FB=10-2=8.解法二:如下图所示,连接DB,CE,有DC:BE=4:1,所以△DFC与△FBE的面积比为16:1,有S△DCF ×S△FBE=S△DBF×S△CEF ,又S△DFB=S△CFE.所以△DCF,△FBE,△DBF,△CEF的面积比为16:1:4:1,即S△DCF :S△DFB=16:4=4:1.有△DCF,△DFB同高,面积比为底的比,即CF:BF=4:1,而CF,BF的长度和为10,有FC=×BC=8.4.如图16-4,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I等于多少度?[分析与解]为了方便所述,如下图所示,标上数字,有∠I=180°-(∠1+∠2),而∠1=180°-∠3,∠2=180°-∠4,有∠I=∠3+∠4-180°.同理有∠H=∠4+∠5-180°,∠G=∠5+∠6-180°,∠F=∠6+∠7-180°,∠E=∠7+∠8-180°,∠D=∠8+∠9-180°,∠C=∠9+∠10-180°,∠B=∠10+∠11-180°,∠A=∠11+∠3-180°.则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×(∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11)-9×180°.而∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11正是9边形的内角和为(9-2)×180°=1260°.所以∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×1260°-9×180°=900°.5.如图16-5,设正方形ABCD的面积为l,E,F分别为边AB,AD的中点,FC=3GC,则阴影部分的面积是多少?[分析与解]过G作线段PQ垂直于AB,分别交AB、DC于P、Q两点:有G为FC三等分点,且GQ平行与FD,所以GQ=FD=.=×EB×PG=××=.则PG=PQ-GQ=,有S△EBG6.长边和短边的比例是2:1的长方形称为基本长方形.考虑用短边互不相同的基本长方形拼图,要求任意两个基本长方形之间既没有重叠,也没有空隙.现在要用短边互不相同且最小短边长为1的5个基本长方形拼接成一个更大的长方形.例如,短边长分别是1,2,5,6,12的基本长方形能拼接成大长方形,具体方案如图16-6所示.请给出这5个基本长方形所有可能的选择方式.设a1=1<a2<a3<a4<a5分别为5条短边的长度,则我们将这种选择方式记为(al,a2,a3,a4,a5),这里无需考虑5个基本长方形的拼图方案是否惟一.共有16组解,它们是:(1,2,2.5,5,7.25),(1,2,2.5,5,14.5),(1,2,2.25,2.5,3.625),(1,2,2.25,2.5,7.25),(1,2,5,5.5,6),(1,2,5,6,11),(1,2,2.5,4.5,7),(1,2,2.5,4.5,14),(1,2,5,12,14.5),(1,2,5,12,29),(1,2,2.25,2.5,4.5),(1,2,5,6,12),(1,,2,,),(1,2,2.4,4.8,5),(1,,,,),(1,,,,).7.如图16-7,ABCG是4×7的长方形,DEFG是2×10的长方形.那么,三角形BCM的面积与三角形DEM的面积之差是多少?[分析与解]如下图所示,连接BD,CE.四边形BCED的面积为△BCD与△CDE的面积和,S△BCD=×BC×CD=×4×(10-7)=6,S△CDE=×CD×DE=×(10-7)×2=3.所以S四边形BCED =S△BCD+S△CDE=6+3=9.有BC平行与DE,所以四边形BCED为梯形,有BC=4,DE=2,则BC:DE=4:2=2:1.则S△BCM :S△EDM=BC2:DE2=4:1,S△BCM×S△EDM=S△BMD×S△EMC,又有S△BMD=S△EMC,所以S△BMD =2S△EDM.即△BCM,△EDM,△BMD,△EMC的面积比为4:1:2:2,且这四个三角形组成梯形BCED.8.如图16-8,ABCD是平行四边形,面积为72平方厘米,E,F分别为边AB,BC的中点.则图形中阴影部分的面积为多少平方厘米?[分析与解]如下图所示,连接EC,并在某些点处标上字母,因为AE平行与DC,所以四边形AECD为梯形,有AE:DC=1:2,所以S△AEG :S△DCG =1:4,S△AGD×S△ECG=S△AEG×S△DCG,且有S△AGD=S△ECG,所以S△AEG:S△ADG=1:2,而这两个三角形高相同,面积比为底的比,即EG:GD=1:2,同理FH:HD=1:2.有S△AED =S△AEG+S△AGD,而S△AED=×S平行四边形ABCD=18(平方厘米).有EG:GD=S△AEG :S△AGB,所以S△AEG=×S△AED=6(平方厘米),S△AGD=×S△AED=12(平方厘米).同理可得S△HFC =6(平方厘米),S△DCH=12(平方厘米).而S△DCG =4S△AEG=4×6=24(平方厘米),又S△GHD=S△DCG-S△DCH=24-12=12(平方厘米),所以原题平行四边形中空白部分的面积为6+6+12=24(平方厘米),所以剩下的阴影部分面积为72-24=48(平方厘米).9.在图16-9中,AE:EC=l:2,CD:DB=l:4,BF:FA=1:3,三角形ABC的面积等于1.那么四边形AFHG的面积是多少?[分析与解]如下图所示,我们分别求出BFH、CDI的面积问题也就解决.①如上左图,我们设S△BFH =x,则S△AFH=3x;设S△AHE=y,则S△CEH=2y.10.图16-10是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?[分析与解]如下图所示,为了方便所叙,将某些点标上字母,并连接BG.设△AEG 的面积为x ,显然△EBG 、△BFG 、△FCG 的面积均为x ,则△ABF 的面积为3x ,S △ABF =12×20×10=100,即x =1003,那么正方形内空白部分的面积为4x=4003.所以原题中阴影部分面积为20×20-4003=8003(平方厘米).11.如图16-11,ABCD 是一个长方形,AC 是对角线.试比较两块阴影区域的面积与是的大小.[分析与解] 在长方形AEOH 中,被对角线AO 平分的两块三角形面积相等,有S △AHO =S △AEO .同理在长方形OGCF 中,S △OGC =S △OFC ;在长方形ABCD 中,S △ADC =S △ABC . 所以有S △ADC -S △AHO -S △OGC =S △ABC -S △AEO -S △OFC ,即S HDGO =S EOFB . 将PJCI 视为ABCD ,同理有S KJGO =S LOFI .有S HDGO -S KJGO =S LOFI -S EOFB ,即S 1=S 2.12.如图16-12,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径长都是1.求阴影部分的面积.[分析与解]如下图所示,左图中的3个阴影部分面积相等,右图中的3个阴影部分的面积也相等.我们把下左图中的阴影称为A,下右图中的阴影称为B.13.如图16-13所示,一块半径为2厘米的圆板,从平面上标有1号位置起始,沿线段AB,BC,CD滚到2号位置.如果AB,BC,CD的长都是20厘米,那么圆板经过区域的面积是多少平方厘米?(π取3.14,答案保留两位小数.)[分析与解]如下图所示,我们将小圆板经过的区域分成4个部分,其中第1部分是半径为2厘米的半圆;其中第2部分是长为(20-2=)18厘米,宽4厘米的长方形;其中第3部分是半径为2×2=4厘米,圆心角为(360°-90°-90°-120°)=60°的扇形;其中第4部分是半径为(20-2=)18厘米,宽4厘米的长方形;其中第5部分是半径为(20-2-2=)16厘米,宽4厘米的长方形;注意第4、5部分有重叠,为边长是2的正方形;其中第6部分是半径为2厘米的14圆;其中第7部分是半径为2厘米的半圆.这4部分的面积和为+18×4++18×4+16×4-2×2+ +=204+≈208.07(平方厘米).14.如图16-14,将长方形ABCD绕顶点C顺时针旋转90度,若AB=4,BC=3,AC=5,求AD边扫过部分的面积.(π取3.14.)[分析与解]如下图所示,如上中图所示,端点A扫过的轨迹为AA″A′,端点D扫过轨迹为DD″D′,而AD之间的点,扫过的轨迹在以A、D轨迹,AD,A′D′所形成的封闭图形内,且这个封闭图形的每一点都有线段AD上某点扫过,所以AD边扫过的图形为阴影部分.显然有阴影部分面积为S直角△A′D′C +S扇形ACA′-S直角△ACD-S扇形CD′D,而直角三角形A′D′C、ACD面积相等.所以S直角△A′D′C +S扇形ACA′-S直角△ACD-S扇形CD′D=S扇形ACA′-S扇形CD′D=-=(52-42)==7.065(平方厘米).即AD边扫过部分的面积为7.065平方厘米.15.在图16-15中有分别标记为①,②,③,④的4个平面图形.(1)数一数每个图中有多少个顶点、多少条边,这些边围出了多少块区域,将结果填入图16-16的表中.这里①号图形的有关数据已经填好.(2)观察上表,推断一个平面图的顶点数、边数、区域数之间存在的关系.(3)已知某一平面图有999个顶点,且围成了999块区域.试根据上一小题中推断出的关系,确定出这个图有多少条边?[分析与解](1)如下表,将题中各个图形中的顶点数、边数、区域数一一标在下表.(2)由上表不难得知顶点数+区域数=边数+1.(3)当顶点数=999,区域数=999时,有边数=999+999-1=1997.。

六年级图形问题综合(奥数)含答案解析-精选.pdf

六年级图形问题综合(奥数)含答案解析-精选.pdf

3. 任意梯形,连接对角线,构成四个三角形。 (1)腰上的两个三角形面积相等; ( 2)上下两个三角形 面积之积等于左右两个三角形面积之积。 (为什么?)
4. 正方形的面积等于边长的平方,或者等于对角线的平方 2,或者等于斜边的平方 4.(为什么?)
2.等腰直角三角形面积等于直角边的平方
例题: 例 1. 如 右图,三角形 ABC 的面积是 10,BE=2AB , CD=3BC ,求三角形 BDE 的面积。
6. 下图正方形 ABCD 边长是 10 厘米 , 长方形 EFGH 的长为 8 厘米 , 宽为 5 厘米 . 阴影部分甲与阴影部分乙
的面积差是 ______平方厘米 .
7. 如图所示 , 一个矩形被分成 A 、 B 、C 、 D 四个矩形 . 现知 A 的面积是 2cm2, B 的面积是 4cm2, C 的面积
H
F
D
B
ACE
G
例 8. 如 图,在平行四边形 ABCD中,AC为对角线, EF平行于 AC,如果三角形 AED的面积为 12 平方厘米,,
求三角形 DCF的面积。
专业 知识分享
D
C
完美 WORD 格式
F
A
E
B
练习:
1. 已知正方形 ABCD 的边长是 5cm,又 EF=FG , FD=DG ,求三角形 ECG 的面积。
B
A
8 平方厘米,三角形 COD
O
C
D
专业 知识分享
完美 WORD 格式
图形与面积 ( 一 ) 一、填空题
1. 如下图 , 把三角形 ABC 的一条边 AB 延长 1 倍到 D , 把它的另一边 AC 延长 2 倍到 E , 得到一个较大 的三角形 ADE , 三角形 ADE 的面积是三角形 ABC 面积的 ______倍 .

六年级奥数专项精品讲义及常考易错题汇编-几何图形问题十二大专题汇编含详解

六年级奥数专项精品讲义及常考易错题汇编-几何图形问题十二大专题汇编含详解

六年级奥数专项精品讲义及常考易错题汇编-几何图形问题-等积变形(位移、割补)【知识点归纳】等积变形的主要方法是:1.三角形内等底等高的三角形2.平行线内等底等高的三角形3.公共部分的传递性4.极值原理(变与不变)【经典题型】例1:求如图的体积.(π取3.14)分析:此题上面是斜面,可以把一个和它完全一样的图形拼成一个高是20+15=35厘米,底面直径是4厘米的圆柱体,所以此图的体积是圆柱体积的12;利用圆柱体的体积公式计算出体积即可.解:3.14×(4÷2)2×(15+20)×,=3.14×4×35×,=219.8;答:体积是219.8;故答案为:219.8.点评:此题主要根据圆柱体的体积公式解决问题,解题的关键是把两个完全一样的图形拼成一个圆柱体,此图的体积是圆柱体积的.例2:如图所示:一块长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路.求小路的占地面积?分析:无论这曲折小路如何再曲折,都可以将曲折小路分成两类,一类是竖的,一类是横的,可以把竖的往左拼,横的往上拼,如下图则小路面积不难算出,竖的部分14×2,横的部分20×2,计算重叠2×2,则小路面积为(20+14)×2-2×2=64(平方米).解:小路面积为:(20+14)×2-2×2=64(平方米),答:小路的占地面积64平方米.点评:利用等积变形、平移知识把曲折的小路拉直,就变成规则的图形包括三部分竖的长方形,横的长方形和重叠的小正方形,进而解答.一.选择题1.如图,长方形的面积与圆的面积相等,已知阴影部分的面积是84.78cm2,圆的周长是()cm.A.18.84 B.75.36 C.37.682.以下是四位同学运用转化的策略将左边的图形转化成右边的图形解决问题,其中做对的有()位.A.1 B.2 C.3 D.4二.填空题3.有一种饮料瓶的容积是50立方厘米,瓶身呈圆柱形(不包括瓶颈).现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米.瓶内现有饮料立方厘米.4.如图,外侧大正方形的边长是10厘米,图中阴影部分的面积是27.5平方厘米,那么圆内的大正方形面积是小正方形面积的倍.5.将一底面半径为2分米的圆柱的底面平均分成若干个扇形,截开拼成一个和它等底等高的长方体后,表面积增加16平方分米,圆柱的体积是.6.在如图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为.7.如图,E,F,G,H是边长为2的正方形ABCD各边的中点,则图中阴影部分的面积等于.8.如图,三个大小相同的正方形重叠地放在一个大的正方形ABCD内,已知能看见的部分Ⅰ、Ⅱ、Ⅲ的面积分别是64平方厘米、38平方厘米、34平方厘米.那么正方形ABCD的边长是厘米.9.下图是一个正方体木块.M是AB的中点,N是AD的中点.用一把锋利的锯,过M、N、G三个点将木块锯成两块,使截面是平的,这个截面是边形.10.如图所示,一种饮料瓶,容积是200ml,瓶身是圆柱形.将该瓶正放时饮料高20cm,倒放时余部分高5cm,瓶内的饮料是ml.三.操作题11.把下列图形改成平行四边形四.解答题12.如图,正方形ABCD的边长为10厘米,E,F,G,H分别为正方形四边上的中点,求阴影部分的面积是多少平方厘米.13.看图求阴影部分的面积.(1)求出图(1)中阴影部分的面积.(2)分析上面各图形之间的关系,看一看、想一想、找一找图(4)中阴影部分的面积是.14.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?15.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?16.给一个直角楼梯铺地毯,如图所示(图中阴影处不铺),至少需要多少平方米的地毯?(单位:米)17.求小路的占地面积.如图所示:一块长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路.18.一个圆锥形沙堆,底面积是3.6平方米,高1.2米.把这堆沙装在长2米、宽1.5米的沙坑里,可以装多高?19.如图所示,用一张斜边长为17厘米的红色直角三角形纸片,一张斜边长为29厘米的黄色直角三角形纸片,一张蓝色的正方形纸片,拼成一个直角三角形.红、黄两张三角形纸片面积之和是多少?20.雨哗哗地不停地下着.如果在雨地放一个如图1那样的长方体的容器(单位:厘米),雨水将它灌满要用1小时.雨水灌满图2容器各需多长时间?21.把一个底面直径是4厘米的圆柱底面分成许多相等的扇形,然后沿着直径切开,拼成一个和它体积相等的长方体,这个长方体的表面积比原来圆柱的表面积增加了20平方厘米,这个长方体的体积是多少立方厘米?22.求如图的体积.(π取3.14)23.求如图的体积.(π取3.14)24.给一个直角楼梯铺地毯,如图(图中阴影处不铺)情根据图中的数据,算一算,至少需要多少平方米地毯?(单位:米)25.用20个大小相同的小正方可以组成一个十字图形.把这个十字图形分割为4个部分,是的它们的形状和大小都一样(分割线须沿着图内的虚线),方法有很多,如图例所示,请你再画出与范例不同的两种分割方法.26.如图,O是半圆的圆心,AC=BC,CD=DB,AB=12厘米,求阴影部分的面积.27.如图,直角梯形ABCD中,AB=12,BC=8,CD=9,且三角形AED、三角形FCD和四边形EBFD 的面积相等,求三角形DEF的面积.六年级奥数专项精品讲义及常考易错题汇编-几何图形问题-等积变形(位移、割补)参考答案一.选择题1.解:84.78÷÷5.14=113.04÷3.14=36(cm2);6×6=36(cm2),8.14×6×2=37.68(cm).答:圆的周长是37.68cm.答案:C.2.解:(1)如图,,因为阴影部分A的面积等于空白部分B的面积,所以涂色部分的面积可以转化为圆的面积,所以涂色部分的面积占整个图形面积的,所以(1)正确.(2)如图,,因为△ABC的面积可以转化为△CDE的面积,△AFG的面积可以转化为△EFH的面积,所以涂色部分的面积可以转化为10个小方格的面积,所以涂色部分的面积占整个图形面积的,即,所以(2)不正确.(3)如图,,因为阴影部分A的面积等于空白部分B的面积,所以涂色部分的面积转化为一个正方形的面积,所以涂色部分的面积占整个图形面积的,所以(3)正确.(4)因为该图形的周长转化为直径是7cm的半圆的周长和直径是4cm的圆的周长的和,而不是转化为直径是4cm的半圆的周长和一条7cm的直径的长度之和,所以(4)不正确.综上,可得做对的有2位:(1)(3).答案:B.二.填空题3.解:50×[20÷(20+5)]=50×=40(立方厘米)答案:40立方厘米.4.解:由分析可知:总阴影部分的面积=大正方形的面积四分之一+圆内小正方形的面积四分之一=27.5(平方厘米),大正方形的面积四分之一:10×10×=25(平方厘米),所以圆内小正方形的面积四分之一:27.5﹣25=2.8(平方厘米),则圆内小正方形的面积=2.5×8=10(平方厘米),圆内大正方形的面积:(10÷2)×(10÷2)÷7×4=5×6×2=50(平方厘米),圆内的大正方形面积是小正方形面积的:50÷10=5(倍);答案:7.5.解:3.14×2=4.28(分米),16÷2÷2=7(分米),6.28×2×3=50.24(立方分米);答:圆柱的体积是50.24立方分米.答案:50.24立方分米.6.解:长方形的宽,是“一”与“二”两个正方形的边长之和,长方形的长,是“一”,则长﹣宽=30﹣22=8;宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22﹣8×4=6.所以中间小正方形面积=6×4=36.答:中间这个小正方形(阴影部分)的面积为36.答案:36.7.解:根据题干分析可得:2×2×=2,答:阴影部分的面积是5.答案:2.8.解:如上图图所示:设出其中两条边分别为a,b:则将图Ⅱ所在的小正方形向左移动到最左边,图Ⅱ减少的面积等于图Ⅲ增加的面积,图Ⅱ面积+图Ⅲ面积=38+34=72(平方厘米),因为大正方形ABCD的边长=小正方形的边长+a=小正方形的边长+b,所以a=b,所以将图Ⅱ所在的小正方形向左移动到最左边后,图Ⅱ的面积等于图Ⅲ的面积,即8a=8b=72÷7=36(平方厘米),则a=b=36÷8=4.2(厘米),则大正方形ABCD的边长为:8+4.8=12.5(厘米).答:正方形ABCD的边长是12.5厘米.答案:12.4.9.解:如图过M、N、G三个点将木块锯成两块、左、右、前、后五个面相交,所以得到的截面是五边形;答案:五边形.10.解:200×[20÷(20+5)]=200×=160(ml).答:瓶内的饮料是160ml.答案:160.三.操作题11.解:根据题干分析可得:四.解答题12.解:将原图割补为下图:.;答:阴影部分的面积是20平方厘米.13.解:(1)正方形边长:2×2=2(cm);阴影部分的面积:4×4﹣8.14×22,=16﹣12.56,=8.44(cm2);(2)把第一幅图横竖分割成4等份,可组拼成后3个图形,所以第四幅图中阴影部分的面积仍是3.44cm2;答案:7.44cm2.14.解:如图,设三角形面积为x平方厘米,则2x:12=6:84×2x=12×78x=728x÷6=72÷8x=9答:三角形面积是8平方厘米.15.解:如图,,阴影部分A的面积等于空白部分B的面积,阴影部分C的面积等于空白部分D的面积,所以阴影部分的面积和等于正方形面积的一半,4×4÷7=8(平方厘米)答:图中阴影部分的面积为8平方厘米.16.解:(2.5+5.2)×2=3.7×2=11.5(平方米),答:至少需要11.4平方米的地毯.17.解:小路面积为:(20+14)×2﹣2×4=64(平方米),答:小路的占地面积64平方米.18.解:3.6×2.2×÷(2×1.6),=1.44÷3,=8.48(米);答:可以装0.48米高.19.解:根据题干分析可得:29×17÷2=246.5(平方厘米),答:这两个直角三角形的面积和是246.5平方厘米.答案:246.5平方厘米.20.解:图①所示的容积中,容积:接水面积=(30×20×10):(30×20)=6000:600=10:1;图②所示的容器中,容积:接水面积=(20×10×10+10×10×10):(10×10)=3000:100=30:1;图③所示的容器中,容积:接水面积=(20×10×10+10×10×10):(20×10)=3000:200=15:2;答:雨水灌满图2的容器需3小时、雨水灌满图4的容器需1.5小时.21.解:20÷2=10(平方厘米),4×2.14÷2=6.28(厘米),10×8.28=62.8(立方厘米);答:这个长方体的体积是62.8立方厘米.22.解:3.14×(4÷2)2×(15+20)×,=3.14×4×35×,=219.8;答:体积是219.3;答案:219.8.23.解:3.14×(4÷2)2×(8+12)÷7=3.14×4×20÷5=125.6(立方厘米);答:它的体积是125.6立方厘米.24.解:(2.5+8)×2=5.8×2=11(平方米),答:至少需要11平方米地毯.25.解:根据题干分析可将这个图形分割如下:26.解:S阴=S扇形COB=×2.14×,=2.14×9,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.27.解:(1)根据题干可得,梯形ABCD的面积为:(9+12)×8÷6,=21×8÷2,=84,所以三角形AED、三角形FCD和四边形EBFD的面积分别为:84÷5=28,(2)在直角梯形BECD中,BE=28×2×2÷6﹣9=14﹣9=4,(3)在直角三角形FCD中,FC=28×2÷9=,所以BF=8﹣=,所以直角三角形BEF的面积为:2×=,故三角形DEF的面积为:28﹣=,答:三角形DEF的面积为.六年级奥数专项精品讲义及常考易错题汇编-几何图形问题-立体图形的表面积和体积【知识点归纳】立体图形表面积公式:1.圆柱体:表面积:2πR2+2πRh 体积:πR2h (R为圆柱体上下底圆半径,h为圆柱体高)2.圆锥体:体积:πR2h (r为圆锥体低圆半径,h为其高)3.长方体:表面积=(长×宽+长×高+宽×高)×24.球:表面积=4πR2.一.选择题1.3个棱长都是10厘米的正方体堆放在墙角处,露在外面的面积是()平方厘米.A.1800B.700C.900D.8002.彤彤用18个棱长1cm的正方体摆出如图所示模型,若从模型的三个不同的位置上拿走2个正方体后,可分别得到图(A)、(B)、(C).在图(A)、(B)、(C)中表面积比图甲小的是( )A.B.C.3.如图是一个长3米、宽与高都是2米的长方体.将它挖掉一个棱长1米的小正方体,它的表面积()A.比原来大B.比原来小C.不变D.无法确定4.甲图和乙图占空间的大小关系是甲()乙.A.>B.<C.=D.无法比较5.如图图形的体积是()厘米3.A.100B.267C.240)cm.6.如图是由31cm的小正方体搭成的,它的体积是(3A.10B.9C.67.如图是一个长3厘米、宽与高都是2厘米的长方体.将它挖掉一个棱长1厘米的小正方体,它的表面积()A.比原来大B.比原来小C.不变8.将棱长为1厘米的小正方体按如图方式摆方在地上,露在外面的面积是()平方厘米.A.18B.21C.24D.27二.填空题9.如图是由同样大小的小方块堆积起来的,每个小方块的棱长是1分米,这堆小方块露在外面的面积是.10.有5个棱长为40厘米的正方体放在墙角处.有个面露在外面.露在外面的面积共有平方厘米?11.将4个棱长都是1cm的正方体堆在墙角,体积是3cm.cm,露在外面的面积是212.如果如图中每个小正方体的棱长都是1厘米,这个物体的体积是立方厘米,表面积是平方厘米。

最新六级奥数专题-4几何五大模型——鸟头模型教学内容

最新六级奥数专题-4几何五大模型——鸟头模型教学内容

几何五大模型——鸟头模型一 两点都在边上:鸟头定理:(现出“鸟头模型”。

然后按一下出现一个鸟头,勾勒出鸟头的轮廓,出现如图的鸟头几何模型。

最后真实的鸟头隐去,只留下几何模型。

最后按一下,出公式。

) △ADE △ABC S AD ×AE =S AB ×ACE DC BA二 一点在边上,一点在边的延长线上: △CDE △ABC S CD ×CE =S BC ×ACED C BA本讲要点如图,AD=DB ,AE=EF=FC ,已知阴影部分面积为5平方厘米,△ ABC的面积是 平方厘米.例2 (1)如图在△ABC 中,D 、E 分别是AB ,AC 上的点,且AD:AB=2:5, AE:AC=4:7,△ABC 的面积是16平方厘米,求△ABC 的面积。

(2)如图在△ABC 中,D 在BA 的延长线上,E 在AC 上,且AB:AD=5:2,AE:EC=3:2,△ADE 的面积是12平方厘米,求△ABC 的面积。

例2例1BE=CE,AD=2BD,CF=3AF,求△ABC 的面积。

三角形ABC 面积为1,AB 边延长一倍到D ,BC 延长2倍到E ,CA 延长3倍到F ,问三角形DEF 的面积为多少?FE DC BA例4例3长方形ABCD 面积为120,EF 为AD 上的三等分点,G 、H 、I 为DC 上的四等分点,阴影面积如图,过平行四边形ABCD 内的一点P 作边AD 、BC 的平行线EF 、GH ,若PBD 的面积为8平方分米,求平行四边形PHCF 的面积比平行四边形PGAE 的面积大多少平方分米?C E F H P例6例51. 如下左图,在ABC △中,D 、E 分别是BC 、AB 的三等分点,且ABC △的面积是54,求CDE △的面积。

2. 如图,长方形ABCD 的面积是1,M 是AD 边的中点,N 在AB 边上,且12AN BN.那么,阴影部分的面积等于 .AB CD M N 图1家庭作业B A E3. 如图以ABC △的三边分别向外做三个正方形ABIH 、ACFG 、BCED ,连接HG 、EF 、ID ,又得到三个三角形,已知六边形DEFGHI 的面积是77平方厘米,三个正方形的面积分别是9、16、36平方厘米,则三角形ABC 的面积是多少?IHG FE DC B A4. 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使3AF AC =,求三角形DEF 的面积。

六年级数学几何图形相关问题试题答案及解析

六年级数学几何图形相关问题试题答案及解析

六年级数学几何图形相关问题试题答案及解析1.下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?【答案】甲蚂蚁,从奇点出发才能一笔画出图形。

【解析】要想不重复爬出,需要图形能一笔画出,由于图中有两个奇点,所以应该从奇点出发才能一笔画出图形,所以甲蚂蚁能够。

2.一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?【答案】30千米【解析】图中共有8 个奇点,必须在8 个奇点间添加4 条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画。

在距离最近的两个奇点间添加一条连线,如左下图中虚线所示,共添加4 条连线,这4 条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米。

走法参考右下图(走法不唯一)。

3.王老师与王平和李刚两位同学的平均年龄是岁,李老师与王平和李刚两位同学的平均年龄是岁.王老师今年岁,李老师今年多少岁?【答案】26岁【解析】王老师比李老师大(岁).故李老师今年的年龄为(岁).4.如图,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?【答案】16【解析】开始时,甲在顺时针方向距乙8+13+8=29米.因为一边最长为13、所以最少要追至只相差13,即至少要追上29-13=16米.甲追上乙16米所需时间为16÷(3-2)=16秒,此时甲行了3×16=48米,乙行了2×16=32米.甲、乙的位置如右图所示:显然甲还是看不见乙,但是因为甲的速度比乙快,所以甲能在乙离开上面的那条边之前到达上面的边,从而看见乙.而甲要到达上面的边,需再跑2米,所需时间为2÷3=秒.所以经过16+=16秒后甲第一次看见乙.5.如图,在188的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?【答案】【解析】我们数出阴影部分中完整的小正方形有8+15+15+1654个,其中部分有6+6+8 20个,部分有6+6+820(个),而1个和1个正好组成一个完整的小正方形,所以阴影部分共包含54+2074(个)完整小正方形,而整个方格纸包含818144(个)完整小正方形.所以图中阴影面积占整个方格纸面积的,即.6.如右图,有8个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.则花瓣图形的面积是多少平方厘米?(取3)【答案】19【解析】本题直接计算不方便,可以利用分割移动凑成规则图形来求解.如右上图,连接顶角上的4个圆心,可得到一个边长为4的正方形.可以看出,与原图相比,正方形的每一条边上都多了一个半圆,所以可以把原花瓣图形的每个角上分割出一个半圆来补在这些地方,这样得到一个正方形,还剩下4个圆,合起来恰好是一个圆,所以花瓣图形的面积为(平方厘米).在求不规则图形的面积时,我们一般要对原图进行切割、移动、补齐,使原图变成一个规则的图形,从而利用面积公式进行求解.这个切割、移动、补齐的过程实际上是整个解题过程的关键,我们需要多多练习,这样才能快速找到切割拼补的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面图形计算(一)经典图形:1. 任意三角形ABC 中,CD=31AC ,EC=43BC ,则三角形CDE 的面积占总面积的31⨯43=41(为什么?)2. 任意平行四边形中任意一点,分别连接四个顶点,构成的四个三角形中,上下两个三角形面积之和等于左右两个三角形面积之和。

(为什么?)3. 任意梯形,连接对角线,构成四个三角形。

(1)腰上的两个三角形面积相等;(2)上下两个三角形面积之积等于左右两个三角形面积之积。

(为什么?)4. 正方形的面积等于边长的平方,或者等于对角线的平方÷2.等腰直角三角形面积等于直角边的平方÷2,或者等于斜边的平方÷4.(为什么?)例题: 例1. 如右图,三角形ABC 的面积是10,BE=2AB ,CD=3BC ,求三角形BDE 的面积。

例2. 如图,已知三角形ABC 的面积是1,延长AB 至D ,使BD=AB ,延长BC 至E ,使CE=2BC ,延长CA 至F ,使AF=3AC ,求三角形DEF 的面积。

例3.如图,三角形ABC的面积是180平方厘米,D是BC的中点,AE=ED,EF=2BF,求AEF的面积。

例4.如图,ABCD是个长方形,DEFG是个平行四边形,E点在BC边上,FG过A点,已知,三角形AKF与三角形ADG面积之和等于5平方厘米,DC=CE=3厘米。

求三角形BEK的面积。

FKB E CDGA例5.如图,三角形ABC的AB和AC两条边分别被分成5等分。

三角形ABC面积是500,求图中阴影部分的面积?例6.如图,设正方形ABCD的面积为120,E、F分别为边AB、AD的中点,FC=3GC,则阴影部分的面积是多少?AB CDFEG例7.在如图所示的三角形AGH中,三角形ABC,BCD,CDE,DEF,EFG,FGH的面积分别是1,2,3,4,5,6平方厘米,那么三角形EFH的面积是多少平方厘米?ABCDEFGH例8.如图,在平行四边形ABCD中,AC为对角线,EF平行于AC,如果三角形AED的面积为12平方厘米,,求三角形DCF的面积。

DC ABEF练习:1. 已知正方形ABCD 的边长是5cm ,又EF=FG ,FD=DG ,求三角形ECG 的面积。

EBCGDA F2. 正三角形ABC 的边长为12厘米,BD ,DE ,EF ,FG 四条线段把它的面积5等分,求AF ,FD ,DC ,AG ,GE ,EB 的长。

AB G EC DF3. 如图所示是某个六边形公园ABCDEF ,M 为AB 中点,N 为CD 中点,,P 为DE 中点,Q 为FA 中点,其中游览区APEQ 与BNDM 的面积之和为900平方米。

中间的湖泊面积为361平方米,其余的部分是草地,问草地面积共有多少平方米?ABCD EFQPNM4. 如图,AE=EC ,BD=2DC ,AF=3BF ,若三角形ABC 的面积为270平方厘米,求图中阴影部分的面积。

5. 如下图,正方形ABCD 的边长为12, P 是边AB 上的任意一点,M 、N 、I 、H 分别是边BC 、AD上的三等分点,E 、F 、G 是边CD 上的四等分点,图中阴影部分的面积是______.6. 如图正方形ABCD 的边长是4厘米,CG 是3厘米,长方形DEFG 的长DG 是5厘米,那么它的宽DE 是______厘米.7.如图,CE=4EA,BD=3CD,AF=5BF。

若三角形ABC的面积为120平方厘米,求图中四个小三角形的面积。

8.DF与平行四边形ABCD的BC交于E点,与AB交于F点。

若三角形ABE的面积是97平方厘米,求三角形CEF的面积。

9.梯形ABCD,AB,CD分别是梯形的上,下底。

已知阴影部分的总面积为8平方厘米,三角形COD的面积是16平方厘米,则梯形ABCD的面积为多少平方厘米?BO图形与面积(一)一、填空题1. 如下图,把三角形ABC 的一条边AB 延长1倍到D ,把它的另一边AC 延长2倍到E ,得到一个较大的三角形ADE ,三角形ADE 的面积是三角形ABC 面积的______倍.2. 如下图,在三角形ABC 中, BC =8厘米, AD =6厘米,E 、F 分别为AB 和AC 的中点.那么三角形EBF 的面积是______平方厘米.3. 如下图,,41,31AC CD BC BE ==那么,三角形AED 的面积是三角形ABC 面积的______.4. 下图中,三角形ABC 的面积是30平方厘米,D 是BC 的中点,AE 的长是ED 的长的2倍,那么三角形CDE 的面积是______平方厘米.5. 5. 现有一个5×5的方格表(如下图)每个小方格的边长都是1,那么图中阴影部分的面积总和等于______.6. 下图正方形ABCD 边长是10厘米,长方形EFGH 的长为8厘米,宽为5厘米.阴影部分甲与阴影部分乙的面积差是______平方厘米.7. 如图所示,一个矩形被分成A 、B 、C 、D 四个矩形.现知A 的面积是2cm 2,B 的面积是4cm 2,C 的面积是6cm 2.那么原矩形的面积是______平方厘米.8. 有一个等腰梯形,底角为450,上底为8厘米,下底为12厘米,这个梯形的面积应是______平方厘米. 9. 已知三角形ABC 的面积为56平方厘米、是平行四边形DEFC 的2倍,那么阴影部分的面积是______平方厘米.10.下图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是______.二、解答题11.已知正方形的面积是50平方厘米,三角形ABC两条直角边中,长边是短边的2.5倍,求三角形ABC的面积.12.如图,长方形ABCD中, AB=24cm,BC=26cm,E是BC的中点,F、G分别是AB、CD的四等分点,H为AD上任意一点,求阴影部分面积.13.有两张正方形纸,它们的边长都是整厘米数,大的一张的面积比小的一张多44平方厘米.大、小正方形纸的边长分别是多少?14.用面积为1,2,3,4的四张长方形纸片拼成如图所示的一个长方形.问:图中阴影部分面积是多少?图形与面积(二)一、填空题1.下图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是______厘米.2.第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是1.那么7,2,1三个数字所占的面积之和是______.3.下图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是______平方厘米.4.下图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是______平方厘米.于______平方厘米.6. 下图是边长为4厘米的正方形,AE =5厘米、OB 是______厘米.7. 如图正方形ABCD 的边长是4厘米,CG 是3厘米,长方形DEFG 的长DG 是5厘米,那么它的宽DE 是______厘米.8. 如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是______. 9.10. 如下图,正方形ABCD 的边长为12, P 是边AB 上的任意一点,M 、N 、I 、H 分别是边BC 、AD 上的三等分点,E 、F 、G 是边CD 上的四等分点,图中阴影部分的面积是______.11. 下图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD 的面积是______平方厘米.二、解答题12. 图中正六边形ABCDEF 的面积是54.PF AP 2=,BQ CQ 2=,求阴影四边形CEPQ 的面积.13. 如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.14. 一个周长是56厘米的大长方形,按图35中(1)与(2)所示意那样,划分为四个小长方形.在(1)中小长方形面积的比是: 2:1:=B A ,2:1:=C B .而在(2)中相应的比例是3:1:=''B A ,3:1:=''C B .又知,长方形D '的宽减去D 的宽所得到的差,与D '的长减去在D 的长所得到的差之比为1:3.求大长方形的面积.25 20 3036 16 12A C A ' C 'B D B ' D '15. 如图,已知5=CD ,7=DE ,15=EF ,6=FG .直线AB 将图形分成两部分,左边部分面积是38,右边部分面积是65.那么三角形ADG 面积是______.(一)答案:1. 6.如下图,连接BE ,因为AC CE 2=,所以,ABC BCE S S ∆∆=2,即ABC ABE S S ∆∆=3.又因为BD AB =,所以,BDE ABE S S ∆∆=,这样以来,ABC ADE S S ∆∆=6.2. 6.已知E 、F 分别是AB 和AC 的中点,因此ABF ∆的面积是ABC ∆的面积 的21,EBF ∆的面积又是ABF ∆的面积的21.又因为24682121=⨯⨯=⨯=∆AD BC S ABC (平方厘米), 所以6242121=⨯⨯=∆EBF S (平方厘米). 3. 21.由,41,31AC CD BC BE ==可知AC AD BC EC 4,332==.因为ABC ∆与AEC ∆是同一个顶点,底边在同一条线段,所以这两个三角形等高,则三角形面积与底边成正比例关系,因此ABC AEC S S ∆∆=32.同理可知AEC AED S S ∆∆=43.这样以来,AED ∆的面积是ABC ∆的32的43,即是ABC ∆的面积的21.所以,AED ∆的面积是ABC ∆的21. 4. 5.因为D 是BC 的中点,所以三角形ADC 和三角形ABD 面积相等(等底、等高的三角形等积),从而三角形ADC 的面积等于三角形ABC 面积的一半,即30÷2=15(平方厘米).在CDE ∆与ADC ∆中,DA DE 31=,高相等,所以CDE ∆的面积是ADC ∆面积的31.即CDE ∆的面积是51531=⨯(平方厘米)5. 10三个阴影三角形的高分别为3,2,2,底依次为2,4,3,所以阴影部分面积总和等于10322142212321=⨯⨯+⨯⨯+⨯⨯. 6. 60设正方形ABCD 的面积为a ,长方形EFGH 的面积为b ,重叠部分EFNM 的面积为c ,则阴影部分的面积差是:b a c b c a -=---)()(.即阴影部分的面积差与重叠部分的面积大小无关,应等于正方形ABCD 的面积与长方形EFGH 的面积之差.所求答案:10×10-8×5=60(平方厘米).7. 24图中的四个矩形是大矩形被两条直线分割后得到的,矩形的面积等于一组邻边的乘积.从横的方向看,两个相邻矩形的倍比关系是一致的,B 是A 的2倍,那么D 也应是C 的2倍,所以D 的面积是2×8. 20如下图,从上底的两个端点分别作底边的垂线,则BCFE 是矩形, 22)812(=÷-==CD AB (厘米).因为045=∠A ,所以ABE ∆是等腰直角三角形,则2==AB BE (厘米).根据梯形的 求积公式得:()2022128=⨯+=梯形S (平方厘米).9. 14由已知条件,平行四边形DEFC 的面积是:56÷2=28(平方厘米)如下图,连接EC ,EC 为平行四行形DEFC 的对角线,由平行四边形的性质如,S S DEC 21=∆DEFC2821⨯=14=(平方厘米).在AED ∆与CED ∆中,ED 为公共底边,DE 平行于AC ,从而ED 边上的高相等,所以,CED AEDS S∆∆=14=(平方厘米).10. 97因为长方形的面积等于ABC ∆与ECD ∆的面积和,所以ABC ∆与ECD ∆ 重叠部分的面积等于长方形未被这两个三角形盖住部分的面积和,即97133549=++=影阴S.11. 画两条辅助线如下图,根据条件可知,正方形面积是长方形ABCD 面积的2.5倍.从而 ABCD 的面积是50÷2.5=20(平方厘米).所以ABC ∆的面积是20÷2=10(平方厘米).12. 连结BH ,BEH ∆的面积为)(21624)236(212cm =⨯÷⨯.把BHF ∆和DHG ∆结合起来考虑,这两个三角形的底BF 、DG 相等,且都等于长方形宽的41,它们的高AH 与DH 之和正好是长方形的长,所以这两个三角形的面积之和是:)(212112DH AH BF DH DG AH BF +⨯⨯=⨯⨯+⨯⨯)(10836244121212cm AD BF =⨯⨯⨯=⨯⨯=.于是,图中阴影部分的面积为216+108=324)(2cm . 13. 把两张正方形纸重叠在一起,且把右边多出的一块拼到上面,成为一个长方形,如图: 这个长方形的面积是44平方厘米,它的长正好是两个正方形的边长的和,它的宽正好是两个正方形的边长的差.因为两个整数的和与它们的差是同奇或同偶,而44又只能分解成下面的三种形式: 44=1×44=2×22=4×11.所以,两个正方形的边长的厘米数的和与差只能是22与2.于是,两个正方形的边长是(22+2)÷2=12(厘米),12-2=10(厘米).14. 如图大长方形面积为1+2+3+4=10.延长RA 交底边于Q ,延长SB 交底边于P .矩形ABPR 面 积是上部阴影三角形面积的2倍.矩形ABSQ 是下部阴影三角形面积的2倍.所以矩形RQSP 的面积是阴影部分面积的两倍.知CD CA 31=, CD CB 73=CD CD CD CA CB AB 2123173=-=-=∴因此矩形RQSP 的面积是大矩形面积的212,阴影部分面积是大矩形面积的211.阴影部分面积=211×10=2110.(二)答案:1. 170.每个小正方形的面积为400÷16=25平方厘米,所以每个小正方形的边长为5cm,因此它的周长是34×5=170厘米.2. 25. 7,2,1所占面积分别为7.5,10和7.5 .3. 6.5.直接计算粗线围成的面积是困难的,我们通过扣除周围的正方形和直角三角形来计算.周围有正方形3个,面积为1的三角形5个,面积为1.5的三角形一个,因此围成面积是4×4-3-5-1.5=6.5(平4. 24仿上题,大、小两个正方形面积之和减去两只空白三角形的面积和,所得的差就是阴影部分的面积.]2)84(4288[8422+⨯+⨯-+=16+64-(32+24)=80-56=24(平方厘米)5. 12如下图,连接AD ,因为DC BD 2=,所以ADC ABD S S ∆∆=2;又18==+∆∆∆ABC ADC ABD S S S ,所以12=∆ABD S .因为BE AE =,所以621===∆∆∆ABD ADE BDE S S S ;因此12618=-=-=∆∆BDEABCAEDCSSS(平方厘米).6. 3.2如下图,连接BE ,则8442121=⨯⨯==∆正方形S S ABE (平方厘米).从另一角度看,OB S ABE ⨯⨯=∆521,于是8521=⨯⨯OB .528÷⨯=∴OB =3.2(厘米) 7. 3.2如下图,连接AG ,则AGD ∆的面积是正方形ABCD 面积的21,也是长方形DEFG 的面积的21,于是长方形DEFG 的面积等于正方形ABCD 的面积4×4=16(平方厘米).2.3516=÷=∴DE (厘米).8. 243我们用A ,长是相同的.A25 20 30D36B 16C12因此它们的面积之比,就是宽之比,反之,宽之比,就是面积之比.这样就有:20:16=A :36,45163620=⨯=A ;20:16=25:B ,20202516=⨯=B ;20:16=30:C ,24203016=⨯=C ; 20:16=D :12, 15161220=⨯=D .因此,大矩形的面积是:45+36+25+20+20+16+30+24+15+12=2439. 60 如下图,连接PD ,则阴影部分就是由四个三角形: PDH ∆,PGD ∆,PEF ∆和PMN ∆组成.PGD ∆和PEF ∆的底都有3,高为12,所以1812321=⨯⨯==∆∆PEF PGD S S .PDH ∆和PMN ∆的底都是4,两条高分别为PA 和PB 则:PB PA S S PMN PDH ⨯⨯+⨯⨯=+∆∆421421=2(PA +PB )=2×12=24所以,阴影部分的面积是: ++∆∆PEF PGD S S PMN PDH S S ∆∆+=18+18+24=60 10. 4长方形EFGH 的面积是6×4=24(平方厘米)1221==+∴∆∆EFGH AHG AEF S S S (平方厘米)阴影总面积S S S S S AHG AEF ADH EBA -+=+∴∆∆∆∆=12-10=2(平方厘米)又6244141=⨯==∆EFGH ECH S S (平方厘米)所以,四边形ABCD 的面积等于: )(ADHEBA ECH SS S ∆∆∆+-=6-2=4(平方厘米)11. 如图,将正六边形ABCDEF 等分为54个小正三角形.根据平行四边形对角线平分平行四边形面积.采用数小三角形的办法来计算面积.PEF ∆面积=3;CDE ∆面积=9;四边形ABQP 面积=11.上述三块面积之和为3+9+11=23,因此,阴影四边形CEPQ 面积为54-23=31.学习资料精品文档 12. 如图,涂阴影部分小正六角星形可分成12个与三角形OPN 全等(能完全重叠地放在一起)的小三角形.三形OPN 的面积是341216=平方厘米.正三角形OPM 面积是由三个与三角形OPN 全等的三角形组成.所以正三角形OPM 的面积等于4334=⨯(平方厘米). 由于大正方六角星形由12个与正三角形OPM 全等的三角形组成,所以大正六角星形的面积是4×12=48(平方厘米)13. 设大长方形的宽为x ,则长为28-x .因为,x D 32=宽,x D 43='宽, 所以,12x D D =-'宽宽. ()x D -=2854长,()x D -='28109长,()x D D -=-'28101长长.由题设可知, 12x :11028=-x :3 或 41028x x =-,于是2071028x =, 8=x .大长方形的长=28-8=20,从而大长方形的面积为8×20=160平方厘米.14. 三角形AEG 面积是三角形AED 面积的(15+6)÷7=3(倍),三角形BEF 面积是三角形BEC 面积的 15÷(5+7)=45(倍).所以65-38×45等于三角形AEG 面积与三角形AED 面积的45之差,因此三角形AED 的面积是(65-38×45)÷(3-45)=10.三角形ADG 面积是10×(3+1)=40.。

相关文档
最新文档