电化学阻抗谱实例
以DSSC为例,图解EIS(电化学阻抗谱)原理、表征和Zview拟合
以DSSC为例,图解EIS(电化学阻抗谱)原理、表征和Zview拟合首先以DSSC为例,其工作原理及结构如图1所示:图1 DSSC结构及工作原理DSSC中的电子过程分以下几个部分:图2为上述过程的图解图2. DSSC电子过程1.EIS 工作基本原理电化学阻抗谱方法是一种以小振幅正弦波电位(或电流)为扰动信号的电化学测量方法。
对于一个稳定的线性系统M,如以一个角频率为w的正弦波电信号(电压或电流)x为激励信号输入该系统,相应的从该系统输出一个角频率为w的正弦波电信号(电流或电压)Y,Y即是响应信号。
Y与x之间的关系为:Y= G(w)·X式中G为频率的函数,即频响函数,它反映系统M的频响特性,由M的内部结构所决定。
因而可以从G随x与Y的变化情况获得线性系统内部结构的有用信息。
如染料敏化太阳能电池的内部电子传输过程可以看作一个黑箱模型M, 对M进行动态处理如图3所示如果扰动信号X为正弦波电流信号,而Y为正弦波电压信号,则称G为系统M的阻抗。
对于阻抗一般用z来表示,阻抗是一个随频率变化的矢量,用变量为角频率w的复变函数表示。
即(用Z'表示实部,Z''表示虚部)征,从这两种图中就可以对系统进行阻抗分析。
2.拟合原理和表征利用zview拟合可以直接获得样品的传输电阻(R t)、界面电阻(R ct)、界面电容C ch等等效电路元件信息,从而为研究DSC内部的电子传输特性提供依据图4.DSSC的传输线模型对于理想DSC来说,R t与R ct主要决定电池在稳态下的工作输出。
DSC在EIS测试中的基本相应为高频段是一段直线,一般称作韦伯(warburg)特性,低频段是一个半圆。
直线对应电子传输过程,半圆对应于电子的转移过程。
图5a中可以看到(R t固定为100欧),半圆的直径对应R ct的值,随着R ct的增加而增加;图5(b)显示(R ct固定为300欧),R t的值为直线在实轴上投影的3倍,随着R t的增加,直线的长度增加。
电化学阻抗谱EIS基础、等效电路、拟合及案例分析.ppt
稳定
不稳定
6
阻纳G是一个随变化的矢量,通常用角频率(或一般 频率f,=2f)的复变函数来表示,即:
G() G '() jG ''()
其中: j 1 G'—阻纳的实部, G''—阻纳的虚部
若G为阻抗,则有: Z Z ' jZ ''
阻抗Z的模值:
阻抗的相位角为
Z Z '2 Z ''2
tan
* *
***
Z'
Nyquist 图上为与纵轴(虚部)重合的一条直线
14
2.1.3 电感
Z Z ' jZ ''
X L C 电感的相位角=-/2
写成复数: ZL jX C jL
实部:
Z
' L
0
虚部:
Z
'' L
C
阻抗模值: / Z / C
Nyquist 图上为与纵轴(虚部)重合的一条直线
15
时间常数
当处于高频和低频之间时,有一个特征频率*,在这个特 征频率, RL和Cd 的复合阻抗的实部和虚部相等,即:
RL
1
*Cd* 1RLCd Nhomakorabea2. 1.5 电组R和电容C并联的电路
Z Z ' jZ ''
并联电路的阻抗的倒数是各并联元
件阻抗倒数之和
1 1 1 1 jC
Z Z'
''
虚部Z''
(Z',Z'')
|Z|
实部Z'
7
分析电极过程动 力学、双电层和 扩散等,研究电 极材料、固体电 解质、导电高分 子以及腐蚀防护 机理等。
电化学阻抗谱EIS高级电化学测量技术ppt课件
8
EIS技术就是测定不同频率(f)的扰动信号X和响应信
号 Y 的比值,得到不同频率下阻抗的实部Z‘、虚部Z’‘、
模值|Z|和相位角,然后将这些量绘制成各种形式的曲
线,就得到EIS抗谱。
奈奎斯特图
波特图
Nyquist plot
Bode plot
log|Z| / deg
14
2.1.3 电感
Z Z' jZ''
XL C 电感的相位角=-/2
写成复数: ZLjX CjL
实部:
ZL' 0
虚部:
ZL'' C
阻抗模值: /Z/C
Nyquist 图上为与纵轴(虚部)重合的一条直线
15
Z Z' jZ''
2.1.4 电组R和电容C串联的RC电路 串联电路的阻抗是各串联元件阻抗之和
31
对于复杂或特殊的电化学体系,EIS谱的形状将更加复 杂多样。
只用电阻、电容等还不足以描述等效电路,需要引入 感抗、常相位元件等其它电化学元件。
32
3 EIS拟合
3.1 阻抗实验注意点
1. 要尽量减少测量连接线的长度,减小杂散电容、电感的 影响。互相靠近和平行放置的导线会产生电容。长的导线 特别是当它绕圈时就成为了电感元件。测定阻抗时要把仪
器和导线屏蔽起来。
2.频率范围要足够宽 一般使用的频率范围是105-10-4Hz。阻抗测量中特别重视 低频段的扫描。反应中间产物的吸脱附和成膜过程,只 有在低频时才能在阻抗谱上表现出来。测量频率很低时, 实验时间会很长,电极表面状态的变化会很大,所以扫 描频率的低值还要结合实际情况而定。
电化学曲线极化曲线阻抗谱分析
电化学曲线极化曲线阻抗谱分析一、极化曲线1.绘制原理铁在酸溶液中,将不断被溶解,同时产生H2,即:Fe + 2H+ = Fe2+ + H2 (a)当电极不与外电路接通时,其净电流I总为零。
在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即:(1)I(Fe)的大小反映Fe在H+中的溶解速率,而维持I(Fe),I(H)相等时的电势称为Fe/H+体系的自腐蚀电势εcor。
图1是Fe在H+中的阳极极化和阴极极化曲线图。
图2 铜合金在海水中典型极化曲线当对电极进行阳极极化(即加更大正电势)时,反应(c)被抑制,反应(b)加快。
此时,电化学过程以Fe的溶解为主要倾向。
通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。
当对电极进行阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。
同理,可获得阴极极化曲线rdc。
2.图形分析(1)斜率斜率越小,反应阻力越小,腐蚀速率越大,越易腐蚀。
斜率越大,反应阻力越大,腐蚀速率越小,越耐腐蚀。
(2)同一曲线上各各段形状变化如图2,在section2中,电流随电位升高的升高反而减小。
这是因为此次发生了钝化现象,产生了致密的氧化膜,阻碍了离子的扩散,导致腐蚀电流下降。
(3)曲线随时间的变动以7天和0天两曲线为例,对于Y轴,七天后曲线下移(负移),自腐蚀电位降低,说明更容易腐蚀。
对于X轴,七天后曲线正移,腐蚀电流增大,亦说明更容易腐蚀。
二、阻抗谱1.测量原理它是基于测量对体系施加小幅度微扰时的电化学响应,在每个测量的频率点的原始数据中,都包含了施加信号电压(或电流)对测得的信号电流(或电压)的相位移及阻抗的幅模值。
从这些数据中可以计算出电化学响应的实部和虚部。
阻抗中涉及的参数有阻抗幅模(| Z |)、阻抗实部(Z,)、阻抗虚部(Z,,)、相位移(θ)、频率(ω)等变量,同时还可以计算出导纳(Y)和电容(C)的实部和虚部,因而阻抗谱可以通过多种方式表示。
31 电化学阻抗谱EIS基础、等效电路、拟合及案例分析
ZC
=
1
j(Q)1
=
1
jC
ZQ
=
1
Y0 n
cos
n
2
−
j
1
Y0
n
sin
n
2
上面介绍的公式中的n实质上都是经验常数,缺乏确切的物 理意义,但可以把它们理解为在拟合真实体系的阻抗谱时对 电容所做的修正。
2.2.2 电荷传递和扩散过程混合控制的EIS
平板电极上的反应:
电极过程由电荷传递过程和扩散过程共同控制,电化学 极化和浓差极化同时存在时,则电化学系统的等效电路 可简单表示为:
高频区
低频区
9
1.3 EIS的特点 1. 由于采用小幅度的正弦电势信号对系统进行微扰,电
极上交替出现阳极和阴极过程,二者作用相反,因此, 即使扰动信号长时间作用于电极,也不会导致极化现 象的积累性发展和电极表面状态的积累性变化。因此 EIS法是一种“准稳态方法”。
2. 由于电势和电流间存在线性关系,测量过程中电极处 于准稳态,使得测量结果的数学处理简化。
Nyquist 图上为与纵轴(虚部)重合的一条直线
15
Z = Z ' + jZ ''
2.1.4 电组R和电容C串联的RC电路 串联电路的阻抗是各串联元件阻抗之和
Z
=
ZR
+
ZC
=
R−
j( 1 )
C
实部: Z ' = R
虚部: Z '' = −1/ C
RC复合元件频率响应谱的阻抗复平面图
RC复合元件的波特图
5
3. 稳定性条件(stability): 扰动不会引起系统内部结构 发生变化,当扰动停止后,系统能够回复到原先的状 态。可逆反应容易满足稳定性条件;不可逆电极过程, 只要电极表面的变化不是很快,当扰动幅度小,作用 时间短,扰动停止后,系统也能够恢复到离原先状态 不远的状态,可以近似的认为满足稳定性条件。
电化学阻抗谱简介 (EIS) ppt课件
哪些体系适合进行EIS测定?
• 因果性条件
– 当用一个正弦波的电位信号对电极系统进行扰动,要求 电极系统只对该电位信号进行响应。
• 线性条件
– 只有当一个状态变量的变化足够小,才能将电极过程速 度的变化与该状态变量的关系近似作线性处理。
phase angle presentation
Charge-transfer at the platinum counter electrode
High (kHz)
Photoinjected electrons within the TiO2
Nernstian diffusion within the electrolyte
ppt课件
24
Junction Models
T<340 K
340K<T<400 K
p-n-n system
FDR FDR
FDR
340K<T<400 K T>400 K
FDR
ppt课件
Full Depletion Region (FDR)
Band diagrams of pCuInS2 /n-CuInS2 /nTiO2 as a function of temperature at zero applied bias voltag2e5 .
-Z’’~Z’为阻抗复平面图,也称为Nyquist图;
~ log f (或log ) log|Z| ~ log f (或log )
Bode 图
ppt课件
7
EIS测量结果典型示例
Nyquist
特征频率*=1/RC 时间常数=1/ *=RC
《电化学阻抗谱知识点滴基础篇》PPT课件讲义
(Suitable for teaching courseware and reports)
§1 概述 §2 交流信号微扰下电解池体系的等效电路及其简化 §3 电化学极化下的交流阻抗 §4 浓差极化时的交流阻抗 §5 一些常见的电极过程的阻抗谱及等效电路 §6 交流阻抗测量技术 §7 交流阻抗测量实验注意事项 §8 阻抗谱的分析思路
高频率、大面积 RL
用来求溶液电导率。(交频信号下测量电导率的基础)
③ 在①的前提下,实现Zf研→∞
RL→0
RL
Cd研
加入电解质,仪器清除
Cd研
§3 电化学极化下的交流阻抗
3.1 交流电路中的线性元件
电化学阻抗谱(EIS)的测试中,需要在直流电位下叠加交流微扰信号, 测定交流信号所引起的电极响应信号。
先看一下交流电路中线性元件电阻、电容、电感的阻抗。
假设正旋波交流电的电压可表示为: u(t)U0sin t (3-1)
① 纯电阻的阻抗(电阻)
u(t)施加到电阻R上产生的电流
i(t)u(t)U 0s RR
in tI0sin t
(3-2)
如此,
ZR
U0 I0
R
ui 0
显然,电压、电流的位相一致,其交流阻抗ZR就是它的电阻值R。
1.3.3 浓差极化不会积累性发展,但可通过交流阻抗将极化测量出来
① 控制幅度小(电化学极化小); ② 交替进行的阴、阳极过程,消除了极化的积累。
1.3.4 Rr、Cd和RL是线性的,符合欧姆 阻抗与导纳
对于一个稳定的线性系统M,如以一个角频率为 的正弦波电信号(电压或 电流)X为激励信号(在电化学术语中亦称作扰动信号)输入该系统,则相应 地从该系统输出一个角频率也是 的正弦波电信号(电流或电压)Y,Y即是 响应信号。Y与X之间的关系可以用下式来表示:
(完整版)电化学曲线极化曲线阻抗谱分析
电化学曲线极化曲线阻抗谱分析一、极化曲线1.绘制原理铁在酸溶液中,将不断被溶解,同时产生H2,即:Fe + 2H+ = Fe2+ + H2 (a)当电极不与外电路接通时,其净电流I总为零。
在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即:(1)I(Fe)的大小反映Fe在H+中的溶解速率,而维持I(Fe),I(H)相等时的电势称为Fe/H+体系的自腐蚀电势εcor。
图1是Fe在H+中的阳极极化和阴极极化曲线图。
图2 铜合金在海水中典型极化曲线当对电极进行阳极极化(即加更大正电势)时,反应(c)被抑制,反应(b)加快。
此时,电化学过程以Fe的溶解为主要倾向。
通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。
当对电极进行阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。
同理,可获得阴极极化曲线rdc。
2.图形分析(1)斜率斜率越小,反应阻力越小,腐蚀速率越大,越易腐蚀。
斜率越大,反应阻力越大,腐蚀速率越小,越耐腐蚀。
(2)同一曲线上各各段形状变化如图2,在section2中,电流随电位升高的升高反而减小。
这是因为此次发生了钝化现象,产生了致密的氧化膜,阻碍了离子的扩散,导致腐蚀电流下降。
(3)曲线随时间的变动以7天和0天两曲线为例,对于Y轴,七天后曲线下移(负移),自腐蚀电位降低,说明更容易腐蚀。
对于X轴,七天后曲线正移,腐蚀电流增大,亦说明更容易腐蚀。
二、阻抗谱1.测量原理它是基于测量对体系施加小幅度微扰时的电化学响应,在每个测量的频率点的原始数据中,都包含了施加信号电压(或电流)对测得的信号电流(或电压)的相位移及阻抗的幅模值。
从这些数据中可以计算出电化学响应的实部和虚部。
阻抗中涉及的参数有阻抗幅模(| Z |)、阻抗实部(Z,)、阻抗虚部(Z,,)、相位移(θ)、频率(ω)等变量,同时还可以计算出导纳(Y)和电容(C)的实部和虚部,因而阻抗谱可以通过多种方式表示。
电化学阻抗谱EIS基础、等效电路、拟合及案例分析
*
对于复杂或特殊的电化学体系,EIS谱的形状将更加复杂多样。 只用电阻、电容等还不足以描述等效电路,需要引入感抗、常相位元件等其它电化学元件。
碱杲怯姚岿伍焊撞佗呕妊芷闺懿啶脊兴们盎栳岑乱肚醋嫦沮舡崽诟棰粜弋蒇奘若拌憷衔干汆洚
3.1 阻抗实验注意点
在固体电极的EIS测量中发现,曲线总是或多或少的偏离半圆轨迹,而表现为一段圆弧,被称为容抗弧,这种现象被称为“弥散效应”,原因一般认为同电极表面的不均匀性、电极表面的吸附层及溶液导电性差有关,它反映了电极双电层偏离理想电容的性质。
常相位角元件(Constant Phase Element, CPE)具有电容性质,它的等效元件用Q表示,Q与频率无关,因而称为常相位角元件。
阻抗模值:
*
2.1.4 电组R和电容C串联的RC电路
串联电路的阻抗是各串联元件阻抗之和
实部:
虚部:
忮魂产柯枫呆鸟蹂锃舌尔夹丽澍遛翟土粕余阔
RC复合元件频率响应谱的阻抗复平面图
RC复合元件的波特图
推论: 1.在高频时,由于数值很大,复合元件的频响特征恰如电阻R一样。 2.在低频时,由于数值很大,复合元件的频响特征恰如电容C一样。
*
j
Z=
实部:
虚部:
消去,整理得:
圆心为
圆的方程
半径为
倔廓玄愣嗵邡嗾燃贫鲍哐刍燔镇柝佾擀硕哑诫蛾挛樵诩飙颍眠泵搴旱悚樟黢
电极过程的控制步骤为电化学反应步骤时, Nyquist 图为半圆,据此可以判断电极过程的控制步骤。
从Nyquist 图上可以直接求出R和Rct。
由半圆顶点的可求得Cd。
半圆的顶点P处:
0
电化学阻抗谱分析演示文稿
-40 102
-20
101 0 10-1 100 101 102 103 104 105
f ,Hz
RC
第三十三页,共110页。
-100 100
-80
-60
-40
10
-20
0
1
10-2 10-1 100 101 102 103 104 105 106
f/Hz
(RC)
6.5 溶液电阻不可忽略时电化学极化的EIS
G =G '+jG ''
第四页,共110页。
引言
• 优点
用小幅度正弦波对电极进行极化 不会引起严重的浓度极化及表面状态变化 使扰动与体系的响应之间近似呈线性关系
➢是频域中的测量 速度不同的过程很容易在频率域上分开 速度快的子过程出现在高频区,速度慢的子 过程出现在低频区
第五页,共110页。
引言
• 优点
(1)加减 ( a j b ) ( c j d ) ( a c ) j ( b d )
(2)乘除
( a j b ) ( c j d ) ( a c b d ) j ( b c a d ) (a jb ) (cjd ) a c c 2 b d d 2j(b c c 2 a d d 2)
第三十九页,共110页。
补充内容
常见的规律总结
一般说来,如果系统有电极电势E和另外n
个表面状态变量,那么就有n+1个时间常数, 如果时间常数相差5倍以上,在Nyquist图上 就能分辨出n+1个容抗弧。第1个容抗弧(高
第3章 电极过程的表面过程法拉第导纳
第4章 表面过程法拉第阻纳表达式与等效电路的关 系 4·2除电极电位E以外没有或只有一个其他状态变 量 4·3除电极电位E外还有两个状态变量X1和X2 第5章 电化学阻抗谱的时间常数 5·1状态变量的弛豫过程与时间常数 5·2EIS的时间常数 第6章 由扩散过程引起的法拉第阻抗 6·1由扩散过程引起的法拉第阻抗 6·2平面电极的半无限扩散阻抗(等效元件W)
电化学阻抗谱知识点滴(讲义)(基础篇)
Cd RL Rr Rad RL(Cd(Rr(RadCad))) Cad
1.7 交流阻抗测量方法简介
A. 共同点:
交流电桥法 选相调辉技术 选相法 选相检波技术 椭圆分析法(李沙育图解法) 载波扫描法
① 信号相同(小幅度正弦波); ② 分析方法、目的相同(通过阻抗求解)。
B. 不同点:
① 测定原理与手段、速度不同;
电解池等效电路 转化为研究电极等效电路 RL C d研 Zf研
② 在①的前提下,采用大面积、惰性研究电极,电解池等效电路简化为
高频率、大面积 RL
用来求溶液电导率。(交频信号下测量电导率的基础)
③ 在①的前提下,实现Zf研→∞
RL→0 RL Cd研 加入电解质,仪器清除 C d研
§3 电化学极化下的交流阻抗
② 法拉第阻抗
Rr
Zw
Zf
a. Z f Rr Z w 混合控制;
Z b. Rr Z w , f Rr ,纯电荷传递控制/电化学极化控制;
c. Rr Z w , Z f Z w ,纯扩散控制/浓差极化控制。
2.1 几种典型阻抗的等效电路
③ 界面阻抗
Cd Zf
2.2 电解池等效电路及其简化
电化学阻抗谱eis知识点滴基础篇概述11电化学阻抗谱测量法对电解池体系施加正弦电压或电流微扰信号使研究电极的电位或电流按小幅度正弦波规律变化同时测量交流微扰信号引起的极化电流或极化电位的变化通过比较测定的电位或电流的振幅相位与微扰信号之间的差异求出电极的交流阻抗进而获得与电极过程相关的电化学参数
电化学阻抗谱(EIS)知识点滴 (基础篇)
电极过程:通电时发生在电极表面一系列串联的过程(传质过程、表面反应过 程和电荷传递过程)。
电化学阻抗谱EIS-高级电化学测量技术PPT
n 1 n ZQ cos j sin n n Y0 2 Y0 2 1
上面介绍的公式中的n实质上都是经验常数,缺乏确切的物 理意义,但可以把它们理解为在拟合真实体系的阻抗谱时对 电容所做的修正。
2.2.2 电荷传递和扩散过程混合控制的EIS 平板电极上的反应: 电极过程由电荷传递过程和扩散过程共同控制,电化学 极化和浓差极化同时存在时,则电化学系统的等效电路 可简单表示为:
24
常相位角元件 常相位角元件(Constant Phase Element, CPE)具有电 容性质,它的等效元件用Q表示,Q与频率无关,因而称 为常相位角元件。
Z CPE 1 j (Q)n
n 1 n ZQ cos j sin n n Y0 2 Y0 2 1
通常n在0.5和1之间。对于理想电极(表面平滑、均匀), Q等于双层电容,n=1。n=1时,
阻抗测量技术
电化学阻抗谱(Electrochemical Impedance Spectroscopy, EIS) — 给电化学系统施加一个频率不同的小振幅的交流正弦 电势波,测量交流电势与电流信号的比值(系统的阻抗)随正 弦波频率的变化,或者是阻抗的相位角随的变化。
8
EIS技术就是测定不同频率(f)的扰动信号X和响应信 号 Y 的比值,得到不同频率下阻抗的实部Z‘、虚部Z’‘、 模值|Z|和相位角,然后将这些量绘制成各种形式的曲 线,就得到EIS抗谱。 奈奎斯特图 波特图
Nyquist plot
log|Z|
高频区
低频区
/ deg
Bode plot
9
1.3 EIS的特点
1. 由于采用小幅度的正弦电势信号对系统进行微扰,电 极上交替出现阳极和阴极过程,二者作用相反,因此, 即使扰动信号长时间作用于电极,也不会导致极化现 象的积累性发展和电极表面状态的积累性变化。因此 EIS法是一种“准稳态方法”。 2. 由于电势和电流间存在线性关系,测量过程中电极处 于准稳态,使得测量结果的数学处理简化。
实验8交流阻抗谱法测量电极过程参数
实验8:交流阻抗谱法测量电极过程参数一、实验目的1. 了解交流阻抗谱法的基本原理;2. 能够分析简单的Nyquist谱图获得电极过程参数。
二、实验原理交流阻抗法是电化学测试技术中一类常用的方法,是以小幅度的正弦波信号(电流或电位)施加于研究电极时,测量相应的电极电流或电位随时间的变化,进而计算各种电极参数。
复数阻抗的测量是以复数形式给出电极在一系列频率下的阻抗,可以提供被研究电极的较丰富的信息,此法得到广泛的发展,被认为是电化学研究中的颇有潜力的一种方法。
图1. 完全电化学控制下电极的复平面阻抗图图2. 完全电化学控制下电极的等效电路图(Nyquist 图) Rs: 溶液电阻;Cdl: 双电层电容;Rct: 电荷交换电阻图1是完全电化学控制下电极的复平面阻抗图,图2是该电极对应的等效电路图。
通过等效电路拟合实验所得的Nyquist图,获得电极反应的参数是目前解析交流阻抗谱图的常用方法。
三、实验器材CHI电化学工作站;铂片电极;Hg/Hg2SO4参比电极;玻碳电极;三口电解池;0.1 mol/L VO2+ + 0.1 mol/L VO2+ +3 mol/L H2SO4溶液;程控水浴锅四、实验步骤1. 配制0.1 mol/L VO2+ + 0.1 mol/L VO2+ +3 mol/L H2SO4溶液250ml;2. 预处理电极,将玻碳电极在砂纸上轻轻打磨,用去离子水冲洗干净,铂电极用硫酸浸泡以除去表面杂质,并用去离子水冲洗;3. 打开仪器和电脑,连接仪器和电极。
记录电极开路电位,待开路电位稳定后,选择“交流阻抗”方法。
电极电位为开路电位,施加交流电压信号振幅为10mV,频率范围为105~103 Hz;4. 待测量结束后,保存数据,将电解槽放入50o C水浴锅中,重复步骤3.5. 关闭电脑和仪器,清洗电极与电解槽。
五、实验数据处理及分析1. 使用仪器自带的软件拟合实验获得的Nyquist,求得Rs、Cdl和Rct三个参数;常温下,Rs=25.38ΩRct=495.2ΩCdl=3.324⨯10-5F50℃,Rs=25.38ΩRct=495.2ΩCdl=4.934⨯10-5F2. 在同一张图中作出不同温度下测量的玻碳电极的Nyquist 图及其拟合图。
电化学交流阻抗谱(免费)
保护膜
钝化膜
金属本体
金属腐蚀区
钝化膜
保护膜
4
3
2
1
1. 保护膜电容区 2. 保护膜阻抗区 3. 钝化膜电容区 4. 钝化膜阻抗区
电容随着频率减少而增加 阻抗不随频率而变化
保护膜层的阻抗变化
钝化膜层阻抗变化
(b) 微生物腐蚀机制的研究
Corrosion Science 49 (2007) 2159-2176
ic
ba b k 1 2.303 (ba +b k) Rp
极化曲线获取信息
1. 腐蚀电位(Ecorr),腐蚀电流(icorr) 2. 获得Tafel参数(阴极极化斜率ba,阳极极 化斜率bk) 3. 研究防腐蚀机理,可以知道是阳极机制剂、 阴极抑制剂或者是混合型抑制剂。 4. 通过腐蚀电流可以计算腐蚀抑制效率 (IE%=1-i /i )
Nyquist图 相位图 大致表征几个 时间常数
Zw
Rct Cdl Rs
Nyquist图 一个时间常数
电荷转移阻抗
双电层电容
界面阻抗
(B)两个时间常数
界面 电容
两个时间常数
常见的两个时间常数的电路图
CPEDL
(C)三个时间常数
ROX CPEOX
RSG
CPESG
常见的三个时间常数的电路图
1.4. 在腐蚀与防护中的应用
线性极化法
1. 快速测定金属腐蚀体系瞬间腐蚀速度 2. 对腐蚀体系的影响和干扰很少,重现性好 优点 3. 进行连续检测和现场监控,并且可以用于筛选金属 材料和缓蚀剂以及评价金属镀层的耐腐蚀性能
缺点
1. 另行测定或者从文献中选取的塔菲尔常数不能够反 映腐蚀速度随时间的变化情况 2. 线性极化区时近似的,准确度不是很高 3. 不适用于电导率较低的体系,应用范围受到限制
电化学阻抗谱分析
V
URUmsint
IU R RU msR intImsint
R
V I
电阻两端的电压与流经电阻的电流是同频同相的正弦交流电
6.1 有关复数和电工学知识-电工学
V
(2)纯电感元件
I
Imsint dI
eL L dt
L d dt
(Imsint)
Imt
sin(t
)
2
ULeLIm Lsin(t2)
L I
V
t
电感两端的电压与流经的电流是同频率的正弦量, 但在相位上电压比电流超前 2
6.1 有关复数和电工学知识-电工学
I V t
Z jL
6.1 有关复数和电工学知识-电工学
V
(3)纯电容元件
UCUmsint
I
dQ dt
d(CU) dt
C d dt
(Umsint)
UmCcost
Imsin(t
)
2
||
C
V I t
电容器的两端的电压和流经的电流是同频率的正弦量, 只是电流在相位上比电压超前 2
Cd与Rp并联后的总导纳为
Y
1 Rp
jCd
Cd与Rp并联后与RL串联后的总阻抗为
Z R L 1 jR p R p C d R L 1 (R R p p C d )2 j1 (R R p 2 p C C d d )2
实部:
Z'
RL
Rp
1(RpCd)2
虚部:
Z''
1
Rp2Cd (RpCd
(1)高频区
(2)低频区
6.3 理想极化电极的电化学阻抗谱
Bode图 2 图 ~lg
电化学阻抗谱方法(EIS)
Seminar I
EIS测量的前提条件
因果性条件: 测定的响应信号是由输入的扰动信号引起的; 线性条件: 对体系的扰动与体系的响应成线性关系; 稳定性条件: 电极体系在测量过程中是稳定的,当扰动停止后, 体系将回复到原先的状态; 有限性条件: 在整个频率范围内所测定的阻抗或导纳值是有限的.
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
Seminar I
复合元件的CDC示例
按规则(1)将这一等效电路表示为: R CE-1 按规则(2),CE-1可以表示为 (Q CE-2). 因此整个电路可进一步表示为: R(Q CE-2) 将复合元件CE-2表示成: (Q(W CE-3)) 整个等效电路就表示成: R(Q(W CE-3)) 将简单的复合元件CE-3表示出来。应 表示为(RC),于是电路可以用如下的
高频端的近似: 低频端的近似:
Z = R + s
Z= 1
Q2+鉴清,电化学阻抗谱,讲义,2005
Seminar I
含锌Ni(OH)2碱性电池的EIS谱图
0%的DOD(放电深度)时不同Zn含量的Zn-Ni(OH)2碱性充电电池的EIS谱图 H.Chen,JQ Zhang, J Solid State Electrochem,2005 9:421-428
Seminar I
Ni电极的等效电路图
等效电路图
物理意义: Rs:从参比电极到工作电极的溶液电阻 CPE:与双电层电容关联的常相位角元件 Rt:电极的电荷转移电阻 Wo:固相扩散的沃伯格阻抗