实验 MOS场效应晶体管Kp F的测试

合集下载

「分享」MOS场效应管工作原理及MOS管测试

「分享」MOS场效应管工作原理及MOS管测试

「分享」MOS场效应管工作原理及MOS管测试1、MOS管的构造在一块掺杂浓度较低的P型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作为漏极D和源极S。

然后在漏极和源极之间的P型半导体表面复盖一层很薄的二氧化硅(Si02)绝缘层膜,在再这个绝缘层膜上装上一个铝电极,作为栅极G。

这就构成了一个N沟道(NPN型)增强型MOS管。

显然它的栅极和其它电极间是绝缘的。

图1-1所示 A 、B分别是它的结构图和代表符号。

同用上述相同的方法在一块掺杂浓度较低的N型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的P+区,及上述相同的栅极制作过程,就制成为一个P沟道(PNP型)增强型MOS管。

下图所示分别是N沟道和P沟道MOS管道结构图和代表符号。

2、MOS管的特性上述MOS管的工作原理中可以看出,MOS管的栅极G和源极S 之间是绝缘的,由于Sio2绝缘层的存在,在栅极G和源极S之间等效是一个电容存在,电压VGS产生电场从而导致源极-漏极电流的产生。

此时的栅极电压VGS决定了漏极电流的大小,控制栅极电压VGS的大小就可以控制漏极电流ID的大小。

这就可以得出如下结论:1)MOS管是一个由改变电压来控制电流的器件,所以是电压器件。

2) MOS管道输入特性为容性特性,所以输入阻抗极高。

3、MOS管的电压极性和符号规则上图是N沟道MOS管的符号,图中D是漏极,S是源极,G是栅极,中间的箭头表示衬底,如果箭头向里表示是N沟道的MOS管,箭头向外表示是P沟道的MOS管在实际MOS管生产的过程中衬底在出厂前就和源极连接,所以在符号的规则中;表示衬底的箭头也必须和源极相连接,以区别漏极和源极。

上图是P沟道MOS管的符号。

MOS管应用电压的极性和我们普通的晶体三极管相同,N沟道的类似NPN晶体三极管,漏极D接正极,源极S接负极,栅极G正电压时导电沟道建立,N沟道MOS管开始工作。

场效应管的测量方法

场效应管的测量方法

场效应管的测量方法场效应管(Field Effect Transistor,简称FET)是一种常见的半导体器件,用于放大电信号和控制电流流动。

它是现代电子技术中至关重要的组成部分,广泛应用于通信、计算机、电力、医疗设备等领域。

本文将从测量方法的角度对场效应管进行全面评估,并探讨其在实际应用中的价值和意义。

一、场效应管的基本原理1.1 堆叠型场效应管堆叠型场效应管是一种常见的结构,由源极、栅极和漏极组成。

其中,栅极是控制电流流动的关键部分,通过改变栅极电压来控制电流的大小。

当栅极电压为正时,沟道中的电子流可以被栅极电场引导,从而形成导电通路;当栅极电压为负时,电子流被屏蔽,无法通过沟道,电流几乎为零。

这种控制电流的特性使得场效应管成为一种理想的放大器和开关。

1.2 压敏型场效应管压敏型场效应管则是利用栅极与源极之间的电场形成PN结,具有较高的电压稳定性。

这种结构特点使得压敏型场效应管在防火、防雷等领域得到广泛应用。

二、场效应管的测量方法2.1 静态参数测量静态参数测量主要是通过电流-电压(I-V)特性曲线来评估场效应管的性能。

通过改变栅极电压和漏极电压,测量器件的电流变化,以确定其工作状态和性能指标。

常见的静态参数包括:- 零漏极电流(IDSS):在源极和栅极间施加零电压时,测量的漏极电流;- 转移特性曲线:以栅极电压为横轴,漏极电流为纵轴,绘制的特性曲线;- 漏极截止电压(VDS(off)):当栅极电压为零时,测量的漏极电压。

2.2 动态参数测量动态参数测量主要是评估场效应管的响应速度和频率特性。

常见的动态参数包括:- 开关时间:指场效应管从开关状态到导通状态所需的时间;- 内部电容:用于描述电荷移动的速度,在高频应用中尤为重要;- 过载能力:指器件在负载变化时的电流变化能力。

三、场效应管在实际应用中的价值3.1 放大器场效应管作为一种理想的放大器,具有高增益、低噪声和低失真等特点,被广泛应用于音频放大、射频放大等领域。

场效应晶体管参数测量的实验报告(共9篇)

场效应晶体管参数测量的实验报告(共9篇)

场效应晶体管参数测量的实验报告(共9篇)实验2、场效应晶体管参数测量实验二场效应晶体管特性的测量与分析一前言场效应晶体管不同于一般的双极晶体管。

场效应晶体管是一种电压控制器件。

从工作原理看,场效应晶体管与电子管很相似,是通过改变垂直于导电沟道的电场强度去控制沟道的导电能力,因而称为“场效应”晶体管。

场效应晶体管的工作电流是半导体中的多数载流子的漂移流,参与导电的只有一种载流子,故又称“单极型”晶体管。

通常用“FET”表示。

场效应晶体管分为结型场效应管(JFET)和绝缘栅型场效应管(MISFET)两大类。

目前多数绝缘栅型场效应应为金属-氧化物-半导体(MOS)三层结构,缩写为MOSFET。

本实验对结型、MOS型场效应管的直流参数进行检测。

场效应管按导电沟道和工作类型可分为:???耗尽型??n沟????增强型MOSFET???耗尽型?? FET?p沟??增强型?????JFET?n沟?耗尽型???p沟???检测场效应管特性,可采用单项参数测试仪或综合参数测试仪。

同时,场效应管与双极管有许多相似之处,故通常亦采用XJ4810半导体管图示仪检测其直流参数。

本实验目的是通过利用XJ4810半导体管图示仪检测场效应管的直流参数,了解场效应管的工作原理及其与双极晶体管的区别。

二实验原理1. 实验仪器实验仪器为XJ4810图示仪,与测量双极晶体管直流参数相似,但由于所检测的场效应管是电压控制器件,测量中须将输入的基极电流改换为基极电压,这可将基极阶梯选择选用电压档(伏/级);也可选用电流档(毫安/级),但选用电流档必须在测试台的B-E间外接一个电阻,将输入电流转换成输入电压。

测量时将场效应管的管脚与双极管脚一一对应,即G(栅极)? B(基极);S(源极)? E(发射极);D(漏极)? C(集电极)。

值得注意的是,测量MOS管时,若没有外接电阻,必须避免阶梯选择直接采用电流档,以防止损坏管子。

另外,由于场效应管输入阻抗很高,在栅极上感应出来的电荷很难通过输入电阻泄漏掉,电荷积累会造成电位升高。

场效应管实验报告

场效应管实验报告

场效应管实验报告场效应管实验报告引言:场效应管(Field Effect Transistor,简称FET)是一种常见的半导体器件,广泛应用于电子电路中。

本实验旨在通过实际操作,深入了解场效应管的性质和特点,以及其在电路中的应用。

一、实验目的通过实验,掌握场效应管的基本原理和工作特性,了解其在放大电路中的应用。

二、实验原理场效应管由栅极、漏极和源极三个电极组成。

栅极与源极之间的电压可以控制漏极与源极之间的电流,从而实现对电路的放大和控制。

根据栅极结构的不同,场效应管可以分为金属-氧化物半导体场效应管(Metal-Oxide-Semiconductor Field Effect Transistor,简称MOSFET)和结型场效应管(Junction Field Effect Transistor,简称JFET)两种。

三、实验器材和仪器1. 场效应管(MOSFET或JFET)2. 直流电源3. 变阻器4. 示波器5. 电阻、电容等元件四、实验步骤及结果分析1. 实验一:静态特性测量通过调节直流电源的电压,测量并记录场效应管在不同栅极电压下的漏极电流。

根据测量数据,绘制栅极电压与漏极电流之间的关系曲线。

分析曲线的特点,了解场效应管的工作状态和特性。

2. 实验二:动态特性测量将场效应管作为放大器的关键元件,通过接入变阻器、电容等元件,构建放大电路。

调节输入信号的幅值和频率,测量并记录输出信号的波形和幅度。

通过对比输入输出信号,分析场效应管的放大特性和频率响应。

3. 实验三:稳定性和可靠性测试在实验二的基础上,通过调节电源电压和工作温度,测试场效应管在不同工作条件下的稳定性和可靠性。

观察输出信号的变化情况,分析场效应管的工作范围和极限。

五、实验结论1. 场效应管的静态特性曲线呈现出明显的非线性特点,通过调节栅极电压可以实现对漏极电流的控制。

2. 场效应管作为放大器的关键元件,能够实现输入信号的放大,并具有一定的频率响应。

(整理)实验二功率场效应晶体管.

(整理)实验二功率场效应晶体管.

实验二功率场效应晶体管(MOSFET)特性与驱动电路研究一.实验目的:1.熟悉MOSFET主要参数的测量方法2.掌握MOSEET对驱动电路的要求3.掌握一个实用驱动电路的工作原理与调试方法二.实验内容1.MOSFET主要参数:开启阀值电压VGS(th),跨导gFS,导通电阻Rds输出特性ID=f (Vsd)等的测试2.驱动电路的输入,输出延时时间测试.3.电阻与电阻、电感性质载时,MOSFET开关特性测试4.有与没有反偏压时的开关过程比较5.栅-源漏电流测试三.实验设备和仪器1.MCL-07电力电子实验箱中的MOSFET与PWM波形发生器部分2.双踪示波器3.毫安表4.电流表5.电压表四、实验线路见图五.实验方法1.MOSFET主要参数测试(1)开启阀值电压VGS(th)测试开启阀值电压简称开启电压,是指器件流过一定量的漏极电流时(通常取漏极电流ID=1mA) 的最小栅源电压。

在主回路的“1”端与MOS 管的“25”端之间串入毫安表,测量漏极电流ID,将主回路的“3”与“4”端分别与MOS管的“24”与“23”相连,再在“24”与“23”端间接入电压表, 测量MOS管的栅源电压Vgs,并将主回路电位器RP左旋到底,使Vgs=0。

将电位器RP逐渐向右旋转,边旋转边监视毫安表的读数,当漏极电流ID=1mA时的栅源电压值即为开启阀值电压VGS(th)。

读取6—7组ID、Vgs,其中ID=1mA必测,测的数据如图所示:(2)跨导gFS测试双极型晶体管(GTR)通常用hFE(β)表示其增益,功率MOSFET器件以跨导gFS表示其增益。

跨导的定义为漏极电流的小变化与相应的栅源电压小变化量之比,即gFS=△ID/△VGS。

典型的跨导额定值是在1/2额定漏极电流和VDS=15V下测得,受条件限制,实验中只能测到1/5额定漏极电流值。

根据表5—6的测量数值,计算gFS。

(3)转移特性ID=f(VGS)栅源电压Vgs与漏极电流ID的关系曲线称为转移特性。

实验14 MOS场效应晶体管Kp、F测试

实验14 MOS场效应晶体管Kp、F测试
Xidian University

School of Microelectronics
实验主要步骤
◎测量步骤: 向上方,参数测量开关置于Kp位置。 (6)转换开关置于校正处,此时调节信号调节旋钮,使μA 表指示某一参 考值(35格处),以信号调节不准在动,然后把转换开关置于测量处。 (7)插上被测管,调节电源面板上的UDS ,UGS 各旋钮开关,使UDS 、 UGS 为所需值。 (8)调节测试盒上的输入调谐、输出调谐,输出匹配旋纽使 μA指示最 大,若指针超过满度,则应随时适当改变信号衰减器1、2使指针回到所取的参考 点附近,接着进行中和调整,即把转换开关调到中和位置,调节测试盒上的中和
Xidian University
School of Microelectronics
功率增益测试原理
☆ MOSFET Kp的测试 功率增益是MOSFET的重要参数,是指放大器输出端信号功率与输入端信号 功率之比,其定义公式为:
式中:PO、Pi 分别为放大器输出,输入功率;Kp为功率增益值。 实际上检测PO、Pi有困难,根据MOSFET的等效电路,在输入输出共轭匹配 时,推导的功率表示式可知:
测量这两种噪声功率比较困难,但将输出的信噪比固定,可将测试公式简 化,给测试带来方便。由于:
Xidian Univelectronics
噪声系数F的测试原理
因而 :
若用分贝表示: F(dB)=10*lgIa (Pso/Pno=l) 由上式可知,在取输出信噪比为1的条件下,场效应管的噪声系数在大小上正好 与噪声二极管的直流分量相等。测量时先不加由噪声二极管产生的噪声,这时仪 器内等效内阻产生的热噪声经放大后在接收机输出表上有一定指示,然后衰减 3dB,相当于热噪声减少一半。最后加由噪声二极管产生的信号使输出表指针回 到原来不衰减的位置处,这样可以保证输出信噪比等于 l 。

场效应管(MOSFET)检测方法与经验

场效应管(MOSFET)检测方法与经验

场效应管(MOSFET)检测方法与经一、用指针式万用表对场效应管进行判别(1)用测电阻法判别结型场效应管的电极根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。

具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。

当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。

因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。

也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。

当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。

若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。

若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

(2)用测电阻法判别场效应管的好坏测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。

具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。

然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。

要注意,若两个栅极在管内断极,可用元件代换法进行检测。

(3)用感应信号输人法估测场效应管的放大能力具体方法:用万用表电阻的R×100档,红表笔接源极S,黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时表针指示出的漏源极间的电阻值。

场效应管的检测与测量

场效应管的检测与测量

场效应管的检测与测量场效应管的检测:由于场效应管的结构、原理和普通三极管不同,在业余条件下用万用表作判别的方法亦不相同,在测试前将双手摸触一下自来水管或地线,以放掉身体的电荷。

1.G极(栅极)的判定:万用表用R×100档,分别测量场效应管每两脚间的阻值(正反向各测一次),应有一对脚阻值为数百欧姆(如均为大阻值,则用两表笔卡住两只脚,黑笔再点另一脚,如仍为高阻值,再将红笔点另一脚,总有一次出现有两脚低阻值的情况,如没有这种情况,管子应属已损坏)这时万用表两表笔所接的引脚是D极(漏极)和S极(源极),对其它脚均为阻值大的是G极(栅极)。

2.D极(漏极)、S极(源极)的判定:万用表臵于R×10档,将红、黑表笔卡住要判断的D、S极上,分别测量两极间的正反向电阻值,在测得阻值为较大值时,用黑表笔与G极(栅极)接触一下,然后再恢复原状,在此过程中,红、黑笔应始终与原管脚相触,这时万用表的读数会出现两种情况:若读数由大变小,则万用表黑笔所接的管脚为D极(漏极),红表笔所接的管脚为S极(源极);若万用表读数没有明显变化,仍为较大值,这时就应把黑表笔与引脚保持接触,然后移动红表笔与G极(栅极)触碰一下。

此时若阻值由大变小,则黑表笔所接的管脚为S极(源极),红表笔所接的管脚为D极(漏极)。

3.类型的判定:确定D极(漏极)和S极(源极)后,如果万用表黑表笔所接为D极(漏极),红表笔所接为S极S极(源极),而且用黑表笔触发G(栅极)极,这时表明该场效应管为N沟道;如果黑表笔所接为S极(源极),红表笔所接为D极(漏极),且需用红表笔才能触发G极(栅极),则表明该场效应管为P沟道。

4.跨导大小的判别:对于N沟道的场效应管,用红表笔接S极(源极)黑表笔接D极(漏极),万用表读数应较大,这时若用100K电阻一端先按D极(漏极),再碰G极(栅极),万用表读数就会发生变化,变化越明显,说明该场效应管的跨导越大。

实验MOS场效应管常数测试

实验MOS场效应管常数测试

实验七 MOS场效应管常数测试实验项目性质:普通实验所涉及课程:半导体物理微电子器件物理微电子器件工艺薄膜电子材料计划学时:2学时一、实验目的1.熟悉场效应管参数测试仪的使用;2.测量场效应管的饱和漏电流I DSS,夹断电压V Dsat开启电压V T和沟道电导g m。

二、实验原理1.饱和漏源电流I DSS定义:栅源电压为0,漏源电压为规定值时的漏极电流称为I DSS。

测试原理如图1所示:图1 I DSS测试原理图先设定V DS、V gs满足测试条件,再按下I DSS键测试参数。

2.夹断电压V P或开启电压V T。

定义:漏源电压V DS和漏源电流I DS为规定值时,栅—源间的电压值称为V P (耗尽型)或V T(增强型)测试原理如图2所示图2 V P和V T测试原理图说明:先设定V DS、I DS满足测试条件,再按下V P(T)键测试参数。

3.低频正向跨导g m定义:输出交流短路,漏源输出交流电流与栅—源输入交流小信号电压之比称为跨导g m。

测试原理如图3图3 g m测试原理图1/(wxR D)R D r DSC D —输出交流短路C g——输入耦合电容,其值应足够大,保证栅极小信号通过G m——I DS/V gs=V测/(R D V gs)式中若V gs=10 mV , R D=100, V测=1mV则g m= V测/(R D V gs)=1mV(10mV0.1K) =1mS单位:mS——读做毫西门子说明:先设定V DS、V gs(或I DS)、f(1000H Z固定频率,机内已保证) 满足测试条件,再按下g m键测试参数。

三、实验内容和实验步骤一)使用说明1 面板旋钮位置整机出厂时,面板旋钮位置预置于下列位置(可供平时使用参考)电源开关——关(倒向左侧)V GS——地键(中)按下V GS调节——反钟向到底V DS——N+键按下V DS调节——反钟向到底⏹I DS(uA)——10uA键(中)按下⏹校——DC键按下(显示器右侧)⏹参数选择(位于显示器下面,简称下排)——校键按下2 使用性校准按通整机电源(电源开关由左侧倒向右侧),预热15分钟,然后顺便校准一下整机(步骤简单,但是十分必要)。

场效应电晶体的检测经验介绍

场效应电晶体的检测经验介绍

場效應電晶體的檢測經驗介紹(一)結型場效應電晶體的檢測1.判別電極與管型用萬用表R×100檔或R×1k檔,用黑表筆任接一個電極,用紅表筆依次觸碰另外兩個電極。

若測出某一電極與另外兩個電極的阻值均很大(無窮大)或阻值均較小(幾百歐姆至一千歐姆),則可判斷黑表筆接的是柵極G,另外兩個電極分別是源S和漏極D。

在兩個阻值均爲高阻值的一次測量中,被測管爲P溝道結型場效應電晶體;在兩個阻值均爲低阻值的一次測量中,被測管爲N溝道結型場效應電晶體。

也可以任意測量結型場效應電晶體任意兩個電極之間的正、反向電阻值。

若測出某兩隻電極之間的正、反向電阻均相等,且爲幾千歐姆,則這兩個電極分別爲漏極D和源極S,另一個電極爲柵極G。

結型場效應電晶體的源極和漏極在結構上具有對稱性,可以互換使用。

若測得場效應電晶體某兩極之間的正、反向電阻值爲0或爲無窮大,則說明該管已擊穿或已開路損壞。

2.檢測其放大能力用萬用表R×100檔,紅表筆接場效應管的源極S,黑表筆接其漏極D,測出漏、源極之間的電阻值R SD後,再用手捏信柵極G,萬用表指標會向左或右擺動(多數場效應管的R SD會增大,錶針向左擺動;少數場效應管的R SD會減小,錶針向右擺動)。

只要錶針有較大幅度的擺動,即說明被測管有較大的放大能力。

也可用圖7-16所示的測試電路來檢測結型場效應電晶體的放大能力(以N溝道場效應電晶體爲例)。

將萬用表置於10V直流電壓檔,表紅筆接漏極D,黑表筆接源極S。

調節電位器RP,看萬用表指示的電壓值是否變化。

在調節RP過程中,萬用表指示的電壓值變化越大,則說明該管的放大能力越強。

若在調節RP時,萬用表的指標變化不大,則說明該管的放大能力很小或已失去放大能力。

(二)雙柵場效應電晶體的檢測1.電極的判別大多數雙柵場效應電晶體的管腳位置排列順序是相同的,即從場效應電晶體的底部(管體的背面)看,按逆時針方向依次爲漏極D、源極S、柵極G1和柵極G2,如圖7-17所示。

实验二场效应晶体管(FET)特性参数测量

实验二场效应晶体管(FET)特性参数测量

实验二、场效应晶体管(FET)特性参数测量一、实验设备(1)半导体管特性图示仪(XJ4810A 型),(2)BJT 晶体管(S9014、S8050、S8550),(3)二极管(1N4001)二、实验目的1、熟悉BJT 晶体管特性参数测试原理;2、掌握使用半导体管特性图示仪测量BJT 晶体管特性参数的方法;3、学会利用手册的特性参数计算BJT 晶体管的混合π型EM1 模型参数的方法。

三、MOS 晶体管特性参数的测量原理1、实验仪器实验仪器为场效应管参数测试仪(BJ2922B),与测量双极晶体管直流参数相似,但由于所检测的场效应管是电压控制器件,测量中须将输入的基极电流改换为基极电压,这可将基极阶梯选择选用电压档(伏/级);也可选用电流档(毫安/级),但选用电流档必须在测试台的B-E 间外接一个电阻,将输入电流转换成输入电压。

测量时将场效应管的管脚与双极管脚一一对应,即 G(栅极) B(基极); S(源极) E(发射极); D(漏极) C(集电极)。

值得注意的是,测量MOS管时,若没有外接电阻,必须避免阶梯选择直接采用电流档,以防止损坏管子。

另外,由于场效应管输入阻抗很高,在栅极上感应出来的电荷很难通过输入电阻泄漏掉,电荷积累会造成电位升高。

尤其在极间电容较小的情况下,常常在测试中造成MOS管感应击穿,使管子损坏或指标下降。

因而在检测MOS管时,应尽量避免栅极悬空,且源极接地要良好,交流电源插头也最好采用三眼插头,并将地线(E接线柱)与机壳相通。

存放时,要将管子三个电极引线短接。

2、参数定义(1)、输出特性曲线与转移特性曲线输出特性曲线(IDS-VDS)即漏极特性曲线,它与双极管的输出特性曲线相似,如图2-1所示。

在曲线中,工作区可分为三部分: I 是可调电阻区(或称非饱和区);Ⅱ是饱和区;Ⅲ是击穿区。

转移特性曲线为IDS-VDS之间的关系曲线,它反映了场效应管栅极的控制能力。

由于结型场效应晶体管都属于耗尽型,且栅源之间相当于一个二极管,所以当栅压正偏(VGS>0)并大于 0.5V时,转移特性曲线开始弯曲,如图2-2中正向区域虚线所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ΔV=4KTΔf·dR 诱生栅极噪声:高频下沟道热噪声电压还将通过栅电容耦合栅极上,并在 栅极感应出噪声,这种通过电容耦合而诱生的噪声,叫做诱生噪声,大小为 :
Xidian University
School of Microelectronics
噪声系数F的测试原理
MPSFET高频噪声表示式:高频MOSFET场效应管的噪声主要是沟道热噪 声合诱生栅极噪声,这是两个相关的噪声源,但其相关性可以忽略,并可当作两 个独立的噪声源来对待。由噪声公式可导出MOSFET 管的最小噪声系数为: 其中:
Xidian University
School of Microelectronics
实验主要步骤
◎MOS高频场效应管Kp、F 参数测试仪由主机,偏置电源组成。实验前首先 熟悉操作步骤,方可测量。
◎准备工作: 把偏置电源放在主机上边,面板上的UDS 旋钮应放在“断”的位置,量程开关 放在最小的一挡,UDS的套轴旋钮均应逆时针旋到头,然后可插上电源线,接通 电源开关,此时指示灯发亮,预热20分钟。 把主机面板上的“噪声范围”开关置于断的位置,“测量参数”开关放Kp位 置, 接通电源开关,此时指示灯亮,预热20分钟。
当测完F参数后,应将噪声调节旋钮逆时针调回到头,3dB开关置于上,以 便继续测试。
Xidian University
School of Microelectronics
实验数据处理与分析
◎在测量MOSFET管的功率增益时要求测量3 次求出平均值,并将测量值与 手册中给出值比较、进行分析。
◎测量F 时,采用上述步骤求出噪声系数F的平均值,并对结果进行分析。 ◎做K P~IDS、F~IDS 曲线,选点不少于15个,其密度根据实际情况自定 。 最后分析结果。
(9)测量F的方法 在测得Kp值的基础上,测试盒上各旋钮的位置保持不动、只把参数测量开关
Xidian University
School of Microelectronics
实验主要步骤
◎测量步骤: 置于F位置,增益衰减器中3dB开关拨向上方、然后把增益衰减器中的5dB、
10dB 开关及增益调节,使μA表指针在某一参考点(如35格处),然后再拨动增益衰 减器中的3dB开关置下,衰减3dB,顺时针旋转噪声调节旋钮,使μA表指针准确 回到参考点位置,此时F 表头上的读数与噪声范围所指示值之和就是被测管的噪 声系数。
实验主要步骤
◎测量步骤: 调节,使μA表指示最小,再把转换开关调到测量位置,重新调节输入调谐,输 出调谐,输出匹配,特别是输出调谐和输出匹配,要相互减增地进行,反复调 节,使μA表指示最大,之后再进行中和调节μA表指示最小,反复几次调到最佳 状态;即当转换开关在测量时指示最大,而在中和时,指示最小。最后拨动信号 衰减器使μA表指针回到步骤(6)中规定的那个参考点附近,这时从信号衰减器 1、2读得的数之和就是被测管的功率增益值。
时,推导的功率表示式可知:
Xidia of Microelectronics
功率增益测试原理
其中 : 由此可得到最佳功率增益表示式:
由上式可见,Kp随频率增加而下降,器件的截止频率越高,功率增益值越大。 在实际测试中,功率增益的测试回路是指输入、输出端基本匹配的一对场效
实验14 MOS场效应晶体管Kp、F的测试
Xidian University
School of Microelectronics
实验目的和意义
☆ MOS场效应晶体管是一类应用广泛的半导体器件 ☆具有积体小,输入阻抗高,输入动态范围大,抗辐射能力强,低频噪声系 数小,热稳定性好等优点。 ☆制造工艺简单,集成度高,功耗小 ☆通过了解电容-电压法测量半导体中杂质分布基本原理;学习函数记录仪、 C-V测试仪的使用方法;学会制作肖特基结并用C-V法测量半导体中杂质分布。 ☆了解MOSFET的Kp、F的测试原理;掌握测定方法,观察Kp、F 随工作电 流、工作电压的变化关系。
在实际中,由于界面态等原因产生的噪声也有可能扩展到高频段;同时还 存在其它寄生因素产生的损耗,而实际噪声大于理论值。
Xidian University
School of Microelectronics
噪声系数F的测试原理
在测量场效应管的噪声系数时,通常引入了与晶体管噪声系数定义相同的 方法进行测量,即:测量回路输出端总的噪声功率与由于信号源内阻热噪声所引 起的,在其输出端的噪声功率之比或者用输入端信噪比与输出端信噪比之比值:
实验参考资料
◎张屏英、周佐谟:<< 晶体管原理>>,上海科学出版社,1985。 ◎周琼鉴、孙肖子:<<晶体管与晶体管放大电路>>,国防出版社,1979。 ◎<<高频场效应管KP、F参数测试仪>>说明书,上海无线电仪器厂。
Xidian University
School of Microelectronics
应管进行相对比较的一级高频放大器。当达到最佳匹配时,把求功率比值的问题 转化成求电压比的问题来处理。就有公式 :
Xidian University
School of Microelectronics
功率增益测试原理
测量Kp时,先使信号无衰减地进行校正,使指示器固定在某一点作为参考 点。在测量时,调节测量回路的微调电容,使指示最大,并拔动档级衰减器使指 针回到参考点。调节中和电路中的中和电容使指示最小,把测量,中和调节反复 几次后,就可从挡级衰减器上读出功率增益值。
测量这两种噪声功率比较困难,但将输出的信噪比固定,可将测试公式简 化,给测试带来方便。由于:
Xidian University
School of Microelectronics
噪声系数F的测试原理
因而 :
若用分贝表示: F(dB)=10*lgIa (Pso/Pno=l)
由上式可知,在取输出信噪比为1的条件下,场效应管的噪声系数在大小上正好 与噪声二极管的直流分量相等。测量时先不加由噪声二极管产生的噪声,这时仪 器内等效内阻产生的热噪声经放大后在接收机输出表上有一定指示,然后衰减 3dB,相当于热噪声减少一半。最后加由噪声二极管产生的信号使输出表指针回 到原来不衰减的位置处,这样可以保证输出信噪比等于 l 。
Xidian University
School of Microelectronics
功率增益测试原理
☆ MOSFET Kp的测试 功率增益是MOSFET的重要参数,是指放大器输出端信号功率与输入端信号 功率之比,其定义公式为:
式中:PO、Pi 分别为放大器输出,输入功率;Kp为功率增益值。 实际上检测PO、Pi有困难,根据MOSFET的等效电路,在输入输出共轭匹配
Xidian University
School of Microelectronics
实验主要步骤
◎测量步骤: 向上方,参数测量开关置于Kp位置。
(6)转换开关置于校正处,此时调节信号调节旋钮,使μA 表指示某一参 考值(35格处),以信号调节不准在动,然后把转换开关置于测量处。
(7)插上被测管,调节电源面板上的UDS ,UGS 各旋钮开关,使UDS 、 UGS 为所需值。 (8)调节测试盒上的输入调谐、输出调谐,输出匹配旋纽使 μA指示最 大,若指针超过满度,则应随时适当改变信号衰减器1、2使指针回到所取的参考 点X附idia近n Un,iver接sity着进行中和调整,即把转换开关调到中和位置,调节测S试cho盒ol of上Mic的roel中ectro和nics
Xidian University
School of Microelectronics
噪声系数F的测试原理
☆ MOS场效应管噪声来源和表示式 低频噪声:MOS器件低频噪声来源主要是l /f 噪声。大小与表面状态有关, 它随使用频率升高而迅速降低,近似的与频率成反比。 沟道热噪声:由于MOS器件导电沟道都存在一定的电阻。当载流子运动 时,产生的噪声电压,大小为:
Xidian University
School of Microelectronics
实验主要步骤
◎测量步骤: (1)根据需要测试的频率选取30MHz,100MHz的Kp、F 测试盒; (2)用较长两根同轴电缆线把测试盒与主机连接起来,主机上的输出接头 与测试盒上的输入接头相连,主机上的输入接头与测试盒上的输出接头相连,测 试盒上偏置电源插座与场效应管偏置电源上的插座通过一根二芯电缆线项连接。 (3)用一根较短的同轴电缆线一端与主机上的LT接头相接,另一端与测试 盒相接。 (4)频率选择开关应置在同测试盒上频率相同的位置上。 (5)信号衰减器1、2的开关均应置0dB,即信号“衰减器1”的四只开关都扳
Xidian University
School of Microelectronics
实验思考题
◎用自己的语言简述MOSFET 管KP , F 的测试原理。 ◎提高MOS管 KP 值和降低F 的措施各有什么办法?
Xidian University
School of Microelectronics
相关文档
最新文档