北师大版八年级上册数学全册教案

合集下载

北师大版数学八年级上册教案设计:1.2 一定是直角三角形吗

北师大版数学八年级上册教案设计:1.2 一定是直角三角形吗

2一定是直角三角形吗一、学生知识状况分析学生已经了解勾股定理,并在先前其他内容学习中已经积累了一定的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中,可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导.二、学习任务分析本节课是义务教育课程标准教科书北师大版数学八年级(上)第一章《勾股定理》第2节.教学任务有:探索勾股定理的逆定理,并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验.本节课的教学目标是:1.理解勾股定理逆定理的具体内容及勾股数的概念;2.能根据所给三角形三边的条件判断三角形是否是直角三角形;3.经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力;4.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.教学重点理解勾股定理逆定理的具体内容.三、教法学法1.教学方法:实验—猜想—归纳—论证本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验,但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,通过以旧引新,顺势教学过程;(3)利用探索,研究手段,通过思维深入,领悟教学过程.2.课前准备教具:教材、电脑、多媒体课件.学具:教材、笔记本、课堂练习本、文具.四、教学过程设计本节课设计了七个环节.第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业.第一环节:情境引入内容:情境:1.直角三角形中,三边长度之间满足什么样的关系?2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?意图:通过情境的创设引入新课,激发学生探究热情.效果:从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础.第二环节:合作探究内容1:探究下面有三组数,分别是一个三角形的三边长a,b,c①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:1.这三组数都满足222+=吗?a b c2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数.意图:通过学生的合作探究,得出“若一个三角形的三边长a,b,c,满足222+=,a b c则这个三角形是直角三角形”这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律.效果:经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足222+=,a b c可以构成直角三角形;②7,24,25满足222+=,可以构成直角三角形;③8,15,17a b c满足222+=,可以构成直角三角形.a b c从上面的分组实验很容易得出如下结论:如果一个三角形的三边长a,b,c,满足222+=,那么这个三角形是直角三角形.a b c内容2:说理提问:有同学认为测量结果可能有误差,不同意这个发现.你认为这个发现正确吗?你能给出一个更有说服力的理由吗?意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:如果一个三角形的三边长a ,b ,c ,满足222a b c +=,那么这个三角形是直角三角形. 满足222a b c +=的三个正整数,称为勾股数.注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识.活动3:反思总结提问:1.同学们还能找出哪些勾股数呢?2.今天的结论与前面学习勾股定理有哪些异同呢?3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢? 意图:进一步让学生认识该定理与勾股定理之间的关系第三环节:小试牛刀内容:1.下列哪几组数据能作为直角三角形的三边长?请说明理由.①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22解答:①②2.一个三角形的三边长分别是15 cm ,20 cm ,25 cm ,则这个三角形的面积是( )A.2250 cmB.2150 cmC.2200 cmD.不能确定解答:B3.如图,在△ABC 中,BC AD ⊥于点D ,20,12,9===AC AD BD ,则△ABC 是( )A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形解答:C4.将直角三角形的三边扩大相同的倍数后,得到的三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.不能确定解答:A意图:通过练习,加强对勾股定理及勾股定理逆定理认识及应用.效果:每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识.第四环节:登高望远内容:1.一个零件的形状如图2所示,按规定这个零件中DBCA∠∠,都应是直角.工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?CC1312534DA BBAD解答:符合要求.Θ222543=+,︒=∠∴90DAB. 又22213125=+Θ,∴︒=∠90DBC.2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90°,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?解答:由题意画出相应的图形,AB=240海里,BC=70海里,AC=250海里.在△ABC中,2222240250-=-ABAC=(250+240)(250-240)=4 900=270=2BC,即222ACBCAB=+.∴△ABC是直角三角形.答:船转弯后,是沿正西方向航行的.意图:利用勾股定理的逆定理解决实际问题,进一步巩固该定理.效果:学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系图3图2E 222a b c +=判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将222a b c +=作适当变形(222b a c =-),以便于计算.第五环节:巩固提高内容:1.如图4,在正方形ABCD 中,AB =4,AE =2,DF =1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流.解答:4个直角三角形,它们分别是△ABE 、△DEF 、△BCF 、△BEF .2.如图5,哪些是直角三角形,哪些不是,说说你的理由?图5解答:④⑤是直角三角形,①②③⑥不是直角三角形意图:第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题.效果:学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可.注意防漏解及网格的应用.第六环节:交流小结内容:师生相互交流总结出:1.今天所学内容①会利用三角形三边数量关系222a b c +=判断一个三角形是直角三角形;②满足222a b c +=的三个正整数,称为勾股数;2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律;③利用三角形三边数量关系222a b c +=判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将222a b c +=作适当变形,222c b a -=便于计算.① ② ③⑥ ⑤ ④意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.效果:学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系222+=a b c 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用.第七环节:布置作业课本习题1.3第1,2,4题.五、教学反思:1.充分尊重教材,以勾股定理的逆向思维模式引入“如果一个三角形的三边长a,b,c,满足222+=,是否能得到这个三角形是直角三角形”的问题;充分引用教材中出现a b c的例题和练习.2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律.3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算.4.注重对学习新知理解应用偏困难的学生的进一步关注.5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求.由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整.附:板书设计。

北师大版八年级上册数学教案6篇

北师大版八年级上册数学教案6篇

北师大版八年级上册数学教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、条据文书、合同协议、规章制度、应急预案、心得体会、总结报告、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, documents, contracts and agreements, rules and regulations, emergency plans, experiences, summary reports, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!北师大版八年级上册数学教案6篇教案的准备可以帮助教师更好地关注学生的情感和态度培养,教案写时需要反思自己的教学方法和策略,不断改进和创新,下面是本店铺为您分享的北师大版八年级上册数学教案6篇,感谢您的参阅。

2023年北师大版八年级上册数学第四章教案通用5篇

2023年北师大版八年级上册数学第四章教案通用5篇

2023年北师大版八年级上册数学第四章教案通用5篇2023年北师大版八年级上册数学第四章教案通用5篇数学精神努力去理解和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵。

这里给大家分享一些关于2023年北师大版八年级上册数学第四章教案,供大家参考学习。

2023年北师大版八年级上册数学第四章教案【篇1】教学建议1、平行线等分线段定理定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等。

注意事项:定理中的.平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成。

定理的作用:可以用来证明同一直线上的线段相等;可以等分线段。

2、平行线等分线段定理的推论推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:“中点”+“平行”得“中点”。

推论的用途:(1)平分已知线段;(2)证明线段的倍分。

重难点分析本节的重点是平行线等分线段定理。

因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础。

本节的难点也是平行线等分线段定理。

由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意。

教法建议平行线等分线段定理的引入生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:①从生活实例引入,如刻度尺、作业本、栅栏、等等;②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论。

教学设计示例一、教学目标1、使学生掌握平行线等分线段定理及推论。

2、能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力。

2018-2019学年北师大版数学八年级上册全册教案(含教学反思)

2018-2019学年北师大版数学八年级上册全册教案(含教学反思)

第一章勾股定理1. 探索勾股定理(第1课时)一、学生起点分析八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时. 勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.为此本节课的教学目标是:1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.三、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.第一环节:创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)意图:紧扣课题,自然引入,同时渗透爱国主义教育.效果:激发起学生的求知欲和爱国热情.第二环节:探索发现勾股定理1.探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论 1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.2.探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:A 的面积 (单位面积)B 的面积 (单位面积)C 的面积 (单位面积)左图 右图(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图1 图2 图3 学生的方法可能有: 方法一:如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形,13132214=+⨯⨯⨯=C S .方法二:如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,.方法三:如图3,正方形C 中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,.(4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出:结论 2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形C 的面积计算这一难点后得出结论2. 3.议一议内容:(1)你能用直角三角形的边长,b ,c 来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.第三环节:勾股定理的简单应用内容:例题 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?(教师板演解题过程) 练习:1.基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):弦股勾225100x172.生活中的应用:小明妈妈买了一部29 in (74 cm )的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm 长和46 cm 宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.第四环节:课堂小结内容: 教师提问:1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c分别表示直角三角形的两直角边和斜边,那么222c b a =+.2.方法:(1) 观察—探索—猜想—验证—归纳—应用; (2)“割、补、拼、接”法.3.思想:(1) 特殊—一般—特殊; (2) 数形结合思想.意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.第五环节:布置作业内容:布置作业:1.教科书习题1.1.2.观察下图,探究图中三角形的三边长是否满足意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.五、教学设计反思(一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.第一章勾股定理1. 探索勾股定理(第2课时)一、学生起点分析学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.二、教学任务分析本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础.为此本节课的教学目标是:1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.用面积法验证勾股定理,应用勾股定理解决简单的实际问题是本节课的重点.三、教学过程本节课设计了七个教学环节:(一)复习设疑,激趣引入;(二)小组活动,拼图验证;(三)延伸拓展,能力提升(四)例题讲解,初步应用;(五)追溯历史,激发情感;;(六)回顾反思,提炼升华;(七)布置作业,课堂延伸.第一环节:复习设疑,激趣引入内容:教师提出问题:(1)勾股定理的内容是什么?(请一名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.第二环节:小组活动,拼图验证.内容: 活动1: 教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)活动2:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c 2.并得到)从而利用图1验证了勾股定理. 活动3 : 自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二) 意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重图1点内容之一,并突破了本节课的难点.第三环节延伸拓展,能力提升1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c22.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角边的长。

北师大版数学八年级上册1《认识无理数》教案5

北师大版数学八年级上册1《认识无理数》教案5

北师大版数学八年级上册1《认识无理数》教案5一. 教材分析《认识无理数》是人教版八年级数学上册的一章,本章主要让学生了解无理数的概念、性质和应用。

无理数是实数的一个重要组成部分,与有理数相比,无理数具有无限不循环的小数特点。

本章内容在数学系统中占有重要地位,为学生深入学习三角函数、复数等数学知识打下基础。

二. 学情分析学生在学习本章内容前,已经掌握了有理数、实数等基础知识,对数的运算和性质有一定的了解。

但学生对无理数的概念、性质和应用可能较为陌生,因此,在教学过程中,需要注重引导学生从已有知识出发,逐步理解和掌握无理数的相关概念。

三. 教学目标1.了解无理数的概念,掌握无理数的性质;2.能够对无理数进行简单的运算和估计;3.理解无理数在实际生活中的应用,提高数学素养。

四. 教学重难点1.无理数的概念及其与有理数的区别;2.无理数的性质,如无限不循环小数、不能表示为分数等;3.无理数在实际生活中的应用。

五. 教学方法1.采用情境教学法,以生活实例引导学生认识无理数;2.采用探究教学法,让学生通过小组合作、讨论,探索无理数的性质;3.采用实践教学法,让学生通过实际操作,体会无理数在生活中的应用。

六. 教学准备1.准备相关的生活实例和图片,用于导入和巩固环节;2.准备无理数的性质和运算练习题,用于操练和家庭作业环节;3.准备PPT或黑板,用于呈现和板书。

七. 教学过程1.导入(5分钟)利用生活实例,如测量物体长度、计算圆的周长等,引导学生认识无理数。

让学生感受无理数在实际生活中的存在,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT或黑板,呈现无理数的概念和性质。

详细解释无理数的定义,阐述无理数与有理数的区别,展示无理数的性质,如无限不循环小数、不能表示为分数等。

3.操练(10分钟)让学生进行无理数的运算练习,如求无理数的和、差、积、商等。

通过实际操作,让学生加深对无理数的理解,巩固所学知识。

4.巩固(10分钟)通过小组合作、讨论,让学生探究无理数的性质。

北师大版初二数学上册教案(全册)

北师大版初二数学上册教案(全册)

第一章丰富的图形世界(1)§1.1 生活中的立体图形(1)一、教学目标1.结合具体例子,体会数学与我们的成长密切相关。

2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。

3.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。

4.通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。

现代课堂教学手段教学准备教师准备录音机、投影仪、剪刀、长方形纸片。

学生准备预习、剪刀、长方形纸片四、教学方法启发式教学五、教学过程设计§1.1 生活中的立体图形(2)二、教学目标1、通过观察生活中的大量物体,认识基本的几何体。

2、经过比较不同的物体学会观察物体间的不同特征,体会几何体间的联系与区别。

现代课堂教学手段教学准备教师准备录音机、投影仪、剪刀、长方形纸片。

学生准备预习、剪刀、长方形纸片五、教学方法启发式教学六、教学过程设计1、引入:(1)幻灯投影P2的彩图,利用现实生活的背景让学生说出熟悉的几何体(如球体、长方体、正方体等)(2)展出圆柱、圆锥、正方体、棱柱、球的模型,让学生分别说出这几种几何体的名称。

2、过程:(1)组织学生分组讨论圆柱、圆锥的共同点与异同点,然后学生回答。

(2)组织学生分组讨论棱柱、圆锥的共同点与异同点,老师巡场指导。

(3)学生回答问题。

老师鼓励学生大胆说出自己的答案,并对每一种答案再交由学生共同讨论它的正确性。

(4)幻灯演示,棱柱的两种类型:直棱柱与斜棱柱,一般棱柱仅指直棱柱。

(5)组织学生讨论如何对以上几何体进行分类:a、按底面b、按侧面学生上台动手将这几种几何体进行分类,老师让学生试着说明归类的理由是什么?无论学生说什么老师都应用鼓励的目光让学生说出自己的答案。

3、议一议:投影P3的图片让学生感知这是现实生活中的一角,可能是书房的一角可能是教室的一角,让学生分组讨论:(1)、上图中哪些物体的形状与长方体、正方体类似?(学生在回答桌面时老师应指出桌面是指整个层面)(2)上图中哪些物体的形状与圆柱、圆锥类似?挂篮球的网袋是否类似于圆锥?为什么?(3)请找出上图中与笔筒形状类似的物体?(4)请找出上图中与地球形状类似的物体?4、想一想:生活中还有哪些物体的形状类似于棱柱、圆柱、圆锥与球。

北师大版八年级上册的数学教学计划范本(三篇)

北师大版八年级上册的数学教学计划范本(三篇)

北师大版八年级上册的数学教学计划范本一、指导思想教育学生掌握初中数学学习常规,掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。

会用归纳演绎、类比进行简单的推理。

使学生懂得数学来源于实践又反过来作用于实践。

提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。

顽强的学习毅力和独立思考、探索的新思想。

培养学生应用数学知识解决问题的能力。

二、学情分析从学生的成绩来看,比较理想。

两个班的优生只有二十个,仅占百分之十,而学困生接近百分之四十。

大部分同学的数学成绩不理想,大部分学生数学基础差,底子薄给教学带来了一定的困难,所以今年的教学任务较重。

所以要根据实际情况,面对全体,因材施教,对于学习较差的同学今年进行小组辅导,对特别差的学生可以进行个别辅导二、在教学过程中抓住以下几个环节1、发挥集体智慧,认真进行集体备课。

新的学期,初中数学课课节较少,怎么能在有限的时间里提高学习效率是所有数学老师面对的问题?在这里,学校给我们明确了方向。

加强集体备课,发挥集体智慧,认真研究教材及课程标准,争取每节课前,与同组同仁们讨论、研究确定教学的重点、难点、教学目标、教法、学法,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,甚至例题的选用,作业的布置等等,让每一节课上出实效,让每位学生愉悦的获得新知。

2、学习和强化“自主学习”与分层教学实践新的学期,我校所有学科都主张自主学习与集体备课,争取每节课前,与同组同仁们讨论、研究确定重点、难点、教学目标、教法、学法,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,甚至例题的选用,作业的布置等等通过学案的使用,能够使学生明确学习任务,了解教学目标,对于课堂教学省时高效,取得事半功倍的好效果3、抓住课堂____分钟。

严格按照教学计划,备课统一进度,统一练习,进行教学,在备好课的基础上,上好每一个____分钟,提高____分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,能“吃”饱、“吃”好。

北师大版数学八年级上册2《求解二元一次方程组》教案1

北师大版数学八年级上册2《求解二元一次方程组》教案1

北师大版数学八年级上册2《求解二元一次方程组》教案1一. 教材分析《求解二元一次方程组》是人教版初中数学八年级上册的一章内容。

这一章主要让学生掌握二元一次方程组的解法,以及应用方程组解决实际问题。

此章节在数学知识体系中起着承前启后的作用,为后续学习更复杂的方程组和函数打下基础。

二. 学情分析学生在学习本章内容前,已经掌握了方程和一元一次方程的解法,但对于二元一次方程组,他们可能还缺乏直观的认识和解决方法。

因此,在教学过程中,需要引导学生从实际问题中抽象出二元一次方程组,并通过实例让学生感受方程组的意义和应用。

三. 教学目标1.理解二元一次方程组的含义,掌握二元一次方程组的解法。

2.能够应用二元一次方程组解决实际问题。

3.培养学生的抽象思维能力和解决问题的能力。

四. 教学重难点1.重点:二元一次方程组的解法及应用。

2.难点:如何引导学生从实际问题中抽象出二元一次方程组,以及解二元一次方程组的方法。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中提出问题,并探索解决问题的方法。

2.使用多媒体教学,通过动画和实例,帮助学生直观地理解二元一次方程组的概念和解法。

3.学生进行小组讨论和合作交流,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.教学课件和教学素材。

3.练习题和实际问题。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生提出二元一次方程组的问题,激发学生的学习兴趣。

2.呈现(10分钟)介绍二元一次方程组的概念,并通过多媒体展示实例,让学生直观地理解二元一次方程组的意义。

3.操练(10分钟)引导学生通过小组讨论,探索解二元一次方程组的方法。

教师在旁边给予指导,并引导学生总结解法。

4.巩固(10分钟)让学生独立解决一些简单的二元一次方程组问题,检验学生对解法的掌握情况。

5.拓展(10分钟)引导学生思考如何应用二元一次方程组解决实际问题,并让学生举例说明。

6.小结(5分钟)教师引导学生总结本节课所学内容,强调二元一次方程组的概念和解法。

北师大版八年级上册的数学教学计划(4篇)

北师大版八年级上册的数学教学计划(4篇)

北师大版八年级上册的数学教学计划一、指导思想二、学情分析本期我继续授八(二)班数学,本班学生数学成绩两极分化比较严重,不少同学基础很差,问题较严重。

在上学期镇组织的期末统考中,本班数学只是位列中上游,要在本期获得理想成绩,师生需加倍努力,补缺补差,注重方法,夯实基础。

三、教材分析本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:第十六章二次根式本章是在数的开方的基础上展开的,是算术平方根概念的抽象与扩展。

本章的重点是二次根式的化简和运算,难点是正确理解二次根式的性质和运算法则的合理性。

第十七章勾股定理直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,____度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。

第十八章平行四边形本章的主要内容是认识平行四边形及几种特殊的四边形,通过对图形的操作或度量,让学生直观认识图形的性质,通过逆命题的猜想、操作验证和逻辑推理的证明等过程,让学生理解并掌握几种图形的判定方法,提高数学思维能力。

第十九章一次函数教研专区全新登场教学设计教学方法课题研究教育论文日常工作本章的主要内容是函数的基本知识,以及一次函数的图象、性质和简单应用。

函数是数学中重要的基本概念之一,它揭示了现实世界中数量相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。

本章是学习函数的入门,也是进一步学习函数的基础。

第二十章数据的分析本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

四、教学目标和要求注重基础知识的教学和基本能力的培养,面向全体学生,缩小两极分化,尽力使后进生能迎头赶上,大面积提高教学质量。

新北师大版八年级数学上册全册教案

新北师大版八年级数学上册全册教案

新北师大版八年级数学上册全册教案一、内容概述数与代数:包括有理数的概念与运算、代数式的初步认识与化简、一元一次方程的解法与应用等,旨在培养学生的数感和代数思维能力。

几何图形:主要学习图形的性质与分类、图形的变换(平移、旋转、对称等)、三角形和全等图形的概念与性质等,旨在提高学生的空间观念和几何证明能力。

函数与图象:通过实例引入函数的概念,学习函数的图象与性质,为后续的数学学习打下基础。

统计与概率:学习数据的收集与整理、概率的初步认识与应用等,培养学生的数据分析能力和概率思维。

教材中还融入了数学文化、数学史话等内容,旨在拓宽学生的视野,增强对数学的兴趣和热爱。

每个章节都设计了丰富的例题、习题和探究活动,以帮助学生巩固知识、提高能力。

教案在设计和实施过程中,注重知识的连贯性和系统性,同时也注重培养学生的创新思维和实践能力。

1. 介绍教材版本及适用年级本教案将针对《新北师大版八年级数学上册》展开详细解读与教学设计。

此教材版本属于北京师范大学出版社,是八年级数学上册全册的新修订版本。

本教材旨在满足八年级学生的认知水平和学习需求,涵盖了初中数学的核心知识点,包括代数、几何、概率与统计等多个领域。

其设计思路清晰,内容深入浅出,适合八年级学生使用。

通过学习本册教材,学生将掌握初中数学的基础知识,为将来的数学学习奠定坚实的基础。

2. 简述八年级数学在基础教育阶段的重要性八年级数学在基础教育阶段占有极其重要的地位。

学生所接触的数学知识深度和广度都在逐渐提升,涉及到的数学概念和原理更为复杂,为后续的数学学习和实际应用打下坚实的基础。

八年级数学是连接初中数学与高中数学的重要桥梁。

学生在这个阶段开始接触到更为高级的数学知识,如代数、几何、概率等,这些知识的掌握程度将直接影响其后续的高中数学学习。

数学作为一门基础学科,其教育价值不仅仅在于知识的灌输,更在于培养学生的逻辑思维能力和问题解决能力。

八年级的数学课程通过一系列的问题解决和推理训练,有助于培养学生的抽象思维、逻辑推理和创新能力。

北师大初二数学上册教案

北师大初二数学上册教案

北师大初二数学上册教案全等三角形的性质:全等三角形对应边相等、对应角相等。

全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).人教版八年级数学全等三角形知识点讲解就为大家介绍到这里了,希望大家都能养成善于总结的好习惯。

这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1)必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2)将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3)将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

新北师大版八年级上册数学全册教案

新北师大版八年级上册数学全册教案

这里的 29 英寸(74 厘米)的电视机,指的是屏幕的长吗?只的 是屏幕的款吗?那他指什么呢?
五、巩固练习 1、错例辨析: △ABC 的两边为 3 和 4,求第三边 解:由于三角形的两边为 3、4 所以它的第三边的 c 应满足 =25 即:c=5 辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必 不可少的条件,可本题 △ABC 并未说明它是否是直角三角形,所以用勾股定理就没有依 据。 (2)若告诉△ABC 是直角三角形,第三边 C 也不一定是满足 , 题目中并为交待 C 是斜边 综上所述这个题目条件不足,第三边无法求得。 2、练习 P7 §1.1 1 六、作业 课本 P7 §1.1 2、3、4 §1.1 探索勾股定理(二) 教学目标: 1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活 动中发展学生的探究意识和合作交流的习惯。 2.掌握勾股定理和他的简单应用 重点难点: 重点: 能熟练运用拼图的方法证明勾股定理
和能力,初步形成积极参与数学活动的意识. 教学重点 运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一
难点:用面积证勾股定理
教学过程
一、创设问题的情境,激发学生的学习热情,导入课题
我们已经通过数格子的方法发现了直角三角形三边的关系,究竟
是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所
要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,
用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜
法说明勾股定理。
二、讲例
1、飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶
正上方 4000 多米处,过 20 秒,飞机距离这个男孩头顶 5000 米,飞
机每时飞行多少千米?
分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC

北师大版数学八年级上册3《轴对称与坐标变化》教案1

北师大版数学八年级上册3《轴对称与坐标变化》教案1

北师大版数学八年级上册3《轴对称与坐标变化》教案1一. 教材分析《轴对称与坐标变化》是北师大版数学八年级上册第三章的内容。

本节课主要介绍轴对称的概念,以及如何在坐标系中进行对称变换。

教材通过丰富的实例,让学生体会轴对称的性质,培养学生的空间想象能力。

同时,本节课还引导学生利用坐标系解决实际问题,提高学生的数学应用能力。

二. 学情分析学生在七年级已经学习了平面几何的基本知识,对图形的性质有一定的了解。

但是,对于轴对称的概念,以及如何在坐标系中进行对称变换,可能还比较陌生。

因此,在教学过程中,需要注重引导学生理解轴对称的性质,以及如何利用坐标系进行对称变换。

三. 教学目标1.理解轴对称的概念,掌握轴对称的性质。

2.学会在坐标系中进行对称变换,解决实际问题。

3.培养学生的空间想象能力,提高数学应用能力。

四. 教学重难点1.轴对称的概念及其性质。

2.在坐标系中进行对称变换的方法。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究轴对称的性质。

2.利用直观教具,如图形、模型等,帮助学生理解轴对称的概念。

3.通过实例分析,让学生掌握在坐标系中进行对称变换的方法。

4.注重启发式教学,引导学生运用坐标系解决实际问题。

六. 教学准备1.准备相关的图形、模型等直观教具。

2.准备一些实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称现象,如剪纸、建筑等,引导学生关注轴对称的概念。

提问:什么是轴对称?学生在思考和讨论中初步理解轴对称的概念。

2.呈现(10分钟)教师展示一些轴对称的图形,如正方形、矩形等,引导学生观察和分析这些图形的性质。

提问:轴对称图形的性质有哪些?学生在思考和回答中进一步理解轴对称的性质。

3.操练(10分钟)教师引导学生利用坐标系进行对称变换。

示例:已知点A(2,3),求点A关于x 轴的对称点B的坐标。

学生独立完成,教师点评和讲解。

4.巩固(10分钟)教师给出一些实际问题,让学生运用坐标系进行解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备课教案学校:调兵山市五中备课人:曹德刚班级:八(3)2012年9月八年级数学上册教学计划一、学情分析八年级是初中学习过程中的关键时期,在我们班上,两极分化问题很是严重,对优等生来说他们能够理解知识形成技能具备一定的数学能力,而对后进生来说简单的基础知识还不能够掌握成绩不容乐观。

为使学生学好进一步学习所必需的代数、几何的基础知识与基本技能,进一步培养学生运算能力、发展思维能力和空间观念,使学生能够运用所学知识解决实际问题,逐步形成数学创新意识,作为教师,我将实行因材施教策略。

二、教材内容分析本学期数学内容包括第一章《勾股定理》、第二章《实数》,第三章《图形的平移与旋转》,第四章《四边形性质探索》,第五章《位置的确定》,第六章《一次函数》, 第七章《二元一次方程组》,第八章《数据的代表》。

第一章《勾股定理》的主要内容是勾股定理的探索和应用。

第二章《实数》主要内容是平方根、立方根的概念和求法,实数的概念和运算。

本章的内容虽然不多,但在初中数学中占有十分重要的地位。

第三章《图形的平移与旋转》主要内容是生活中一些简单几何图形的平移和旋转。

第四章《四边形性质探索》的主要内容是四边形的有关概念、几种特殊的四边形(平行四边形、矩形、菱形、正方形、梯形)的性质和判定以及三角形、梯形的中位线。

第五章《位置的确定》主要讲述平面直角坐标系中点的确定,会找出一些点的坐标。

第六章《一次函数》的主要内容是介绍函数的概念,以及一次函数的图像和表达式,学会用一次函数解决一些实际问题。

第七章《二元一次方程组》要求学会解二元一次方程组,并用二元一次方程组来解一些实际的问题。

第八章《数据的代表》主要讲述平均数和中位数、众数的概念,会求平均数和能找出中位数及众数。

三、教学目标要求上半学期完成第一章到第四章第四节,下半学期完成第四章第五节到本册教材结束。

掌握平方根与立方根、实数、平面坐标系、一次函数、勾股定理、四边形性质等知识并形成相应数学技能。

在情感与价值观上认识图形中的数量关系,培养学生的实事求是认真严肃的学习态度,在民主和谐合作的学习过程中养成独立探究勤与思考大胆创新,发展学生的非智力因素提高学生的数学素质与素养。

具体教学目标如下:1. 正确理解二次根式的概念,掌握二次根式的基本运算,并能熟练地进行二次根式的化简。

2. 掌握二次根式加、减、乘、除的运算法则,能够进行二次根式的运算。

掌握二次根式的化简,进一步提高学生的运算能力。

3. 理解四边形及有关概念,掌握几种特殊四边形的性质定理及判定。

4. 理解相似一次函数的概念,掌握一次函数的图像和表达式,学会用一次函数解决一些实际问题。

四、教材的重点和难点重点:勾股定理探索、四边形性质的探索、实数的概念、一次函数图象及其应用、二元一次方程组及其应用。

难点:勾股定理探索、四边形性质的掌握一次函数图象及其应用的数形结合技能、二元一次方程组及其应用能力培养。

五、本学期提高教学质量的主要措施:1、认真做好教学工作。

把认真教学作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,爱因斯坦如是说。

激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参加知识的构建,营造民主、和谐、平等、自主、探索、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。

引导学生写小论文,写复习提纲,使知识来源于学生的创造。

4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,让每个学生尽可能获得最大发展。

六、教学进度安排教学进度表以上计划从制定之日起执行,若有不妥之处,请学校教务处给予指正,并督促执行第一章 勾股定理§1.1 探索勾股定理(一)教学目标:1、 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现教学过程一、 创设问题的情境,激发学生的学习热情,导入课题出示投影 1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2 (书中的P2 图1—2)并回答:1、 观察图1-2,正方形A 中有_______个小方格,即A 的面积为______个单位。

正方形B 中有_______个小方格,即A 的面积为______个单位。

正方形C 中有_______个小方格,即A 的面积为______个单位。

2、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:3、 图1—2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C ,接着提出图1—1中的A.B,C 的关系呢?二、 做一做出示投影3(书中P3图1—4)提问:1、图1—3中,A,B,C 之间有什么关系?2、图1—4中,A,B,C 之间有什么关系?3、 从图1—1,1—2,1—3,1|—4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、 议一议1、 图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?2、 你能发现直角三角形三边长度之间的关系吗?在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。

这就是著名的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c那么222c b a =+我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、 分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)四、 想一想这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?五、 巩固练习1、 错例辨析:△ABC 的两边为3和4,求第三边解:由于三角形的两边为3、4所以它的第三边的c 应满足22243+=c =25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题△ ABC 并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△ABC 是直角三角形,第三边C 也不一定是满足222c b a =+,题目中并为交待C 是斜边综上所述这个题目条件不足,第三边无法求得。

2、 练习P7 §1.1 1六、 作业课本P7 §1.1 2、3、4 §1.1 探索勾股定理(二)教学目标:1. 经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。

2. 掌握勾股定理和他的简单应用重点难点:重点: 能熟练运用拼图的方法证明勾股定理难点:用面积证勾股定理教学过程七、创设问题的情境,激发学生的学习热情,导入课题我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c 为边长的正方形,并与同学交流。

在同学操作的过程中,教师展示投影1(书中p7 图1—7)接着提问:大正方形的面积可表示为什么?(同学们回答有这几种可能:(1))(22b a + (2)2421c ab +⋅ ) 在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。

22b a +=2421c ab +⋅ 请同学们对上面的式子进行化简,得到: 22222c ab b ab a +=++ 即 22b a +=2c这就可以从理论上说明勾股定理存在。

请同学们去用别的拼图方法说明勾股定理。

八、讲例1. 飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?分析:根据题意:可以先画出符合题意的图形。

如右图,图中△ABC 的4000,90=︒=∠AC c米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB 的长,由于直角△ABC 的斜边AB=5000米,AC=4000米,这样的CB 就可以通过勾股定理得出。

这里一定要注意单位的换算。

解:由勾股定理得千米)(94522222=-=-=AC AB BC即BC=3千米 飞机20秒飞行3千米,那么它1小时飞行的距离为: 小时)千米/(5403203600=⨯ 答:飞机每个小时飞行540千米。

九、 议一议展示投影2(书中的图1—9)观察上图,应用数格子的方法判断图中的三角形的三边长是否满足222c b a =+同学在议论交流形成共识之后,老师总结。

勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

十、作业1、 1、课文 P11§1.2 1 、22、 选用作业。

§1.2 能得到直角三角形吗教学目标:知识与技能1.掌握直角三角形的判别条件,并能进行简单应用;2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.情感态度与价值观敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.教学重点运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.教学难点会辨析哪些问题应用哪个结论.课前准备标有单位长度的细绳、三角板、量角器、题篇教学过程:复习引入:请学生复述勾股定理;使用勾股定理的前提条件是什么?已知△ABC 的两边AB=5,AC=12,则BC=13对吗?创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.这样做得到的是一个直角三角形吗?提出课题:能得到直角三角形吗讲授新课:⒈如何来判断?(用直角三角板检验)这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?就是说,如果三角形的三边为a ,b ,c ,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)⒉继续尝试:下面的三组数分别是一个三角形的三边长a ,b ,c :5,12,13; 6, 8, 10; 8,15,17.(1)这三组数都满足a 2 +b 2=c 2吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?⒊直角三角形判定定理:如果三角形的三边长a ,b ,c 满足a 2 +b 2=c 2 ,那么这个三角形是直角三角形.满足a 2 +b 2=c 2的三个正整数,称为勾股数.⒋例1 一个零件的形状如左图所示,按规定这个零件中 ∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?A DA D随堂练习:⒈下列几组数能否作为直角三角形的三边长?说说你的理由.⑴9,12,15; ⑵15,36,39;⑶12,35,36; ⑷12,18,22.⒉已知∆ABC 中BC=41, AC=40, AB=9, 则此三角形为_______三角形, ______是最大角.⒊四边形ABCD 中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.A B C D431213⒋习题1.3课堂小结:⒈直角三角形判定定理:如果三角形的三边长a ,b ,c 满足a 2 +b 2=c 2 ,那么这个三角形是直角三角形.⒉满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.1.3.蚂蚁怎样走最近教学目标教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题. 能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想. 情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.所以至少需13米长的梯子.2、讲授新课:①、蚂蚁怎么走最近ABAB出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少?(π的值取3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B 点的最短路线是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:(1)A→A′→B; (2)A→B′→B;(3)A→D→B; (4)A—→B.哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.②、做一做:教材14页。

相关文档
最新文档