传热学(3)
传热学 第三章 辐射换热
q = E − AEb
A
(1-A)Eb
w/m2
当温度相等时, 当温度相等时,两表面处于 热平衡状态, 热平衡状态,q=0,于是得到 , E=AEb
第三章 辐射换热 热辐射的基本概念
五、基尔霍夫定律
上式可以写成: 上式可以写成:
E = Eb A
推广到任何物体得到: E1 = E2 = E3 L = E = E 推广到任何物体得到: b A1 A2 A3 A 上式就是基尔霍夫定律的数学表达式。 上式就是基尔霍夫定律的数学表达式。它可以表述 在热平衡条件下, 为:在热平衡条件下,任何物体的辐射力与吸收率的 比值,恒等于同温度下黑体的辐射力。 比值,恒等于同温度下黑体的辐射力。
第三章 辐射换热
热辐射是热传递的三种基本方式之一, 热辐射是热传递的三种基本方式之一,它是 由电磁波来传递能量的现象, 由电磁波来传递能量的现象,与导热和对流有着 本质的区别。辐射换热是互不接触的物体之间通 本质的区别。 过相互辐射进行热交换的过程。 过相互辐射进行热交换的过程。
第三章 辐射换热
第三章 辐射换热 热辐射的基本概念
四、黑度
物体的黑度表示该物体辐射力接近绝对黑体辐射力 的程度。 的程度。
E ε= Eb
第三章 辐射换热 热辐射的基本概念
五、基尔霍夫定律
如图设有两个表面,一个是黑体,一个是灰体。 如图设有两个表面,一个是黑体,一个是灰体。 两个表面互相平行,距离很近, 两个表面互相平行,距离很近,于是从一块板上发射 的辐射能全部落到另一块板上。若板1为黑体表面 为黑体表面, 的辐射能全部落到另一块板上。若板 为黑体表面, 其辐射力、吸收率、和表面温度分别为E 其辐射力、吸收率、和表面温度分别为 b,Ab和 T1, 为灰体表面, 板2为灰体表面,其辐射力、吸收率、和表面温度分 为灰体表面 其辐射力、吸收率、 别为E,A和 T2。 别为 和 。
传热学第3章非稳态导热
(1)两个阶段的过程是有区别的;
(2)与热流方向向垂直的截面上热流量处处不等。
◆对于非稳态导热一般不能用热阻的方法来做问题的定量分析。
2020/5/3 - 5 -
第3章 非稳态导热——§3-1 非稳态导热的基本概念
6、非稳态导热问题的求解 (1) 温度分布和热流量分布随时间和空间的变化规律
t
tf
tf
h
h
0
x
t
tf
h
0
x
2020/5/3 - 7 -
第3章 非稳态导热——§3-1 非稳态导热的基本概念
(3) 第三类边界条件下Bi数对平板内温度分布的影响
Bi r h
rh
1h
无量纲数
无量纲数的简要介绍:
基本思想:当所研究的问题非常复杂,涉及到的参数很多,为了减少问题所涉
及的参数,于是人们将这样一些参数组合起来,使之能表征一类物理现象,或物 理过程的主要特征,并且没有量纲。
Bi r h
rh 1 h
当 Bi 时, 当 Bi 时0,
,r因此,r可h 以忽略对流换热热阻 ,r因 此,可rh以忽略导热热阻
0 Bi
2020/5/3 - 9 -
第3章 非稳态导热——§3-2 集中参数法
§3-2 零维问题的分析法——集中参数法
3.2.1 集中参数法温度场分布的解析解
]
J
s
2020/5/3 - 13 -
第3章 非稳态导热——§3-2 集中参数法
即与 1/
的量纲相同,当
Vc
hA
时,则
hA 1 Vc
此时,
e1 36.8% 0
传热学讲义——第三章
第三章 非稳态导热(unsteady state conduction)物体的温度随时间而变化的导热过程称非稳态导热。
0≠τ∂∂t,任何非稳态导热过程必然伴随着加热或冷却过程。
根据物体内温度随时间而变化的特征不同,非稳态导热过程可分为两类:(1)周期性导热(periodic unsteady conduction ):物体的温度按照一定的周期发生变化; 如建筑物的外墙和屋顶温度的变化。
(2)瞬态导热(transient conduction):物体的温度随时间不断升高或降低,在经历相当长时间后,物体的温度逐渐趋于周围介质的温度,最终达到热平衡。
分析非稳态导热的任务:找出温度分布和热流密度随时间和空间的变化规律。
第一节 非稳态导热的基本概念一、瞬态导热过程采暖房屋外墙墙内温度变化过程。
采暖设备开始供热前:墙内温度场是稳态、不变的。
采暖设备开始供热:室内空气温度很快升高并稳定;墙壁内温度逐渐升高;越靠近内墙升温越快;经历一段时间后墙内温度趋于稳定、新的温度分布形成。
墙外表面与墙内表面热流密度变化过程 采暖设备开始供热前:二者相等、稳定不变。
采暖设备开始供热:刚开始供热时,由于室内空气温度很快升高并稳定,内墙温度的升高相对慢些,内墙表面热流密度最大;随着内墙温度的升高,内墙表面热流密度逐渐减小;随着外墙表面的缓慢升高,外墙表面热流密度逐渐增大;最终二者相等。
上述非稳态导热过程,存在着右侧面参与换热与不参与换热的两个不同阶段。
(1)第一阶段(右侧面不参与换热)是过程开始的一段时间,特点是:物体中的一部分温度已经发生变化,而另一部分仍维持初始状态时的温度分布(未受到界面温度变化的影响),温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,物体内各处温度随时间的变化率是不一样的,即:在此阶段物体温度分布受t分布的影响较大,此阶段称非正规状况阶段或初始阶段(initialregime)。
(2)第二阶段(右侧面参与换热)当右侧面参与换热以后,物体中的温度分布不受t影响,主要取决于边界条件及物性。
传热学第三版课程设计
传热学第三版课程设计
一、课程设计目的
热传导、热对流和热辐射是传热学中的三种基本传热方式,广泛用于热工业、材料科学、环境保护等领域。
本课程设计旨在让学生深刻理解传热学各个方面的基本原理和数学模型,掌握用数学方法解决传热学问题的能力,并在实践中体验传热学的基本原理和现代应用。
二、教学内容
2.1 传热学基础理论
让学生掌握传热学基本概念、基本方程、基本原理和数学形式化模型,包括:•热传导定律
•热对流定律
•热辐射定律
•热传导方程
•热力学第二定律
2.2 典型传热学问题
讲解典型传热学问题,并要求学生利用传热学基础理论和数学方法进行求解。
包括:
•热传导问题
•对流传热问题
•热辐射问题
•复杂传热问题
1。
传热学第三章对流传热
传热学第三章对流传热一、名词解释1.速度边界层:在流场中壁面附近流速发生急剧变化的薄层。
2.温度边界层:在流体温度场中壁面附近温度发生急剧变化的薄层。
3.定性温度:确定换热过程中流体物性的温度。
4.特征尺度:对于对流传热起决定作用的几何尺寸。
5.相似准则(如Nu,Re,Pr,Gr,Ra):由几个变量组成的无量纲的组合量。
6.强迫对流传热:由于机械(泵或风机等)的作用或其它压差而引起的相对运动。
7.自然对流传热:流体各部分之间由于密度差而引起的相对运动。
8.大空间自然对流传热:传热面上边界层的形成和发展不受周围物体的干扰时的自然对流传热。
9.珠状凝结:当凝结液不能润湿壁面(θ>90˚)时,凝结液在壁面上形成许多液滴,而不形成连续的液膜。
10.膜状凝结:当液体能润湿壁面时,凝结液和壁面的润湿角(液体与壁面交界处的切面经液体到壁面的交角)θ<90˚,凝结液在壁面上形成一层完整的液膜。
11.核态沸腾:在加热面上产生汽泡,换热温差小,且产生汽泡的速度小于汽泡脱离加热表面的速度,汽泡的剧烈扰动使表面传热系数和热流密度都急剧增加。
12.膜态沸腾:在加热表面上形成稳定的汽膜层,相变过程不是发生在壁面上,而是汽液界面上,但由于蒸汽的导热系数远小于液体的导热系数,因此表面传热系数大大下降。
二、填空题1.影响自然对流传热系数的主要因素有:、、、、、。
(流动起因,流动速度,流体有无相变,壁面的几何形状、大小和位置,流体的热物理性质)2.速度边界层是指。
(在流场中壁面附近流速发生急剧变化的薄层。
)温度边界层是指。
(在流体温度场中壁面附近温度发生急剧变化的薄层。
)3.流体刚刚流入恒壁温的管道作层流传热时,其局部对流传热系数沿管长逐渐,这是由于。
(减小,边界层厚度沿管长逐渐增厚)4.温度边界层越对流传热系数越小,强化传热应使温度边界层越。
(厚,簿)5.流体流过弯曲的管道或螺旋管时,对流传热系数会,这是由于。
(增大,离心力的作用产生了二次环流增强了扰动)6. 流体横掠管束时,一般情况下, 布置的平均对流传热系数要比 布置时高。
传热学 第3章-非稳态导热分析解法
第三章 非稳态导热分析解法1、 重点内容:① 非稳态导热的基本概念及特点;② 集总参数法的基本原理及应用;③一维及二维非稳态导热问题。
2、掌握内容:① 确定瞬时温度场的方法;② 确定在一时间间隔内物体所传导热量的计算方法。
3、了解内容:无限大物体非稳态导热的基本特点。
许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。
如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。
因此,应确定其内部的瞬时温度场。
钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。
§3—1 非稳态导热的基本概念一、非稳态导热1、定义:物体的温度随时间而变化的导热过程称非稳态导热。
2、分类:根据物体内温度随时间而变化的特征不同分:1)物体的温度随时间的推移逐渐趋于恒定值,即:const t =↑τ2)物体的温度随时间而作周期性变化1)物体的温度随时间而趋于恒定值如图3-1所示,设一平壁,初值温度t 0,令其左侧的表面温度突然升高到1t 并保持不变,而右侧仍与温度为0t 的空气接触,试分析物体的温度场的变化过程。
首先,物体与高温表面靠近部分的温度很快上升,而其余部分仍保持原来的t 0 。
如图中曲线HBD ,随时间的推移,由于物体导热温度变化波及范围扩大,到某一时间后,右侧表面温度也逐渐升高,如图中曲线HCD 、HE 、HF 。
最后,当时间达到一定值后,温度分布保持恒定,如图中曲线HG (若λ=const ,则HG 是直线)。
由此可见,上述非稳态导热过程中,存在着右侧面参与换热与不参与换热的两个不同阶段。
(1)第一阶段(右侧面不参与换热)温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受t 分布的影响较大,此阶段称非正规状况阶段。
11-2 传热学第三章-导热四学时-3非稳态导热
物体的温度随时间的推移逐渐趋近于恒定的值。
下面用实例介绍这两类非稳态导热的特点。
§3-1 非稳态导热的基本概念
(1)周期性非稳态导热过程简介
室内墙 面温度
墙内各 处温度 最高值
★ 夏季室外空气温度以一天 24小时为周期变化;
★ 室外墙面温度也以24小时为 周期变化,但比室外空气温 度变化滞后一个相位、振幅 有所减小;
(
t n
)w
h(tw
t
f
)
★ 解的唯一性定理:
本章所介绍的各种分析法都被认为是满足特定问题的唯一解。
§3-1 非稳态导热的基本概念
5.第三类边界条件下Bi数对平板中温度分布的影响
在第三类边界条件下,确定非稳态导热物体中的温度变化特征 与边界条件参数的关系。
t
已知:平板厚2δ、平板导热系数λ、
初温t0,将其突然置于温度为
第三章 非稳态导热
2
§3-1 非稳态导热的基本概念
2.非稳态导热的分类及其特点
非稳态导热分为周期性和非周期性(瞬态导热)两大类。
周期性非稳态导热:物体温度按一定的周期发生变化;
非周期性非稳态导热(非稳态 稳态):
物体的温度随时间不断地升高(加热过程)或降低(冷却过 程);在经历相当长时间后,物体温度逐渐趋近于周围介质温
(3)求解方法:分析解法、近似分析法、数值解法。
分析解法: 分离变量法、积分变换、拉普拉斯变换; 近似分析法: 集中参数法、积分法; 数值解法: 有限差分法、蒙特卡洛法、有限元法、
分子动力学模拟。
§3-1 非稳态导热的基本概念
4.导热微分方程解的唯一性定律
非稳态导热问题的求解实质:在规定的初始条件及边界条 件下求解导热微分方程式。
传热学-3 非稳态导热
0
方程中指数的单位:
物体中的 温度呈指 数分布
hA
W m2K
m
2
w1
Vc
kg m3
[
m3
]
J kgK
J
s
3-2 集 总 参 数 法
即与
1 的量纲相同,当
Vc
时,则
hA
hA
1 Vc
此时,
e1 36.8%
0
上式表明:当传热时间等于 Vc 时,物体的过余温
3-1 概 述
t1
H
G
F
t0
A
温度场的特征(三个阶段):
E B CD
1) 不规则情况阶段:温度变化从边界面逐渐地深入
到物体内,温度分布受初始温度分布的影响很大。
2)正常情况阶段(正规状况阶段):初始温度分布
影响消失,物体内各处温度随时间的变化率具有一
定的规律。温度分布主要取决于边界条件及物性。
3)建立新的稳态阶段:温度分布不再随时间变化。
第三章 非稳态导热
1 重点内容: ① 非稳态导热的基本概念及特点; ② 集总参数法的基本原理及应用; ③ 一维及二维非稳态导热问题。
2 掌握内容: ① 确定瞬时温度场的方法; ② 确定在一时间间隔内物体所传导热量的计算方法。
3 了解内容:无限大物体非稳态导热的基本特点。
3-1 概 述
非稳态导热 :导热体的温度场随时间而变化。
通常,当毕渥数 Bi<0.1 时,采用集总参数法求解温 度影响误差不大。
3-2 集 总 参 数 法
集总参数法的特点: 1)是一种理想化模型; 2)物体内热阻忽略不计; 3)物体内温度梯度忽略不计,认为整个物体具有 相同的温度; 4)通过表面传递的热量立即使整个物体的温度同 时发生变化 5)把一个有分布热容的物体看成一个集中热容的 物体。
03传热学第三章非稳态热传导
cV
dt
d
cV (t0
t )(
hA
cV
)
exp(
hA
cV
)
hA0
exp(
hA
cV
)
※0~ 时间内传给流体的总热量:
Q 0 d
0
h
A
0
e
xp(
hA
cV
)d
2021/1/14
0 cV
1
exp
hA
cV
15
(2) 时间常数
令
c
cV
hA
ቤተ መጻሕፍቲ ባይዱ
e c
0
※当 时
0 0
即t t
※当
时
c
与几何参数、物理性 质、换热条件有关
(, ) m ( )
cos(1)
f
( Bi , )
则平板中任意点过余温度比 m 0 m 0
2021/1/14
31
相当于第一 类边界条件
2021/1/14
32
2021/1/14
任意时刻平板 内温度均匀
33
书中的诺谟图仅适用一维平板第一类边界条件下的加热及冷却
过程以及具有恒温介质的第三类边界条件,并且Fo>0.2
Q0
cV (t0 t )
0
τ时刻的平均 过余温度
当Fo>0.2时,正规状况阶段温度场与导热量的计算式可统一表示为:
( , 0
)
A exp(
12 Fo)
f
( 1 )
Q Q0
1
A exp(12Fo)B
其中,A、B、f(μ1η)的表达示见表3-1。
2021/1/14
30
传热学(第三版)(张靖周,常海萍,谭晓茗编著)PPT模板
0 1 4.1对流换热概述
0 2 4.2对流换热过程的数学描写
03
4.3对流换热的边界层微分方程 组
0 4 4.4湍流对流换热边界层微分方程组
0 5 4.5边界层类比 0 6 4.6管内层流充分发展对流换热理论
解
第4章对流换热的 理论分析
思考题 练习题 参考文献
05
第5章单相流体对流 换热的准则关联式
7.2黑体辐 射基本定 02 律
7.3实际
05
03
固体和液
思考题
04
体的辐射
7.4气体辐
特性
射特性
第7章热辐射的理 论基础
参考文献
08
第8章辐射换热的 计算
第8章辐射换热的计算
8.1被透明介质隔开的两
1
表面间辐射换热
8.2被透明介质隔开的封
闭系统表面间辐射换热
2
8.3遮热板
3
8.4气体与包壳间的辐射
附录5空气在不 同压力和温度下
的热物理性质
附录6干饱和水 蒸气的热物理性
质
A
B
C
D
E
F
附录8大气压力下过热水 蒸气的热物理性质
附录10几种饱和液体的热 物理性质
附录12材料发射率
附录
1 2 3 4 5 6
附录7大气压力下标准烟 气的热物理性质
附录9饱和水的热物理性 质
附录11液态金属的热物理 性质
单击此处添加文本具体内 容,简明扼要的阐述您的 观点。根据需要可酌情增 减文字,以便观者准确的 理解您传达的思想。
第9章几个专题
练习题 参考文献
10
附录
附录
附录1常用单位 换算表
传热学-第3章-稳态导热的计算与分析
15
3.1.3 第一类边界条件下变物性、无内热源的平壁
d dt 0
dx dx
0 1 bt
分离变量积分并利用边界条件,得到平壁内的温度分布:
0
t
b 2
t2
m
tw2
tw1
x
0
t
w1
b 2
t 2 w1
式中:
m
0
1
tw1
tw2 2
b
为平壁平均温度下的导热系数
16
3.1.3 第一类边界条件下变物性、无内热源的平壁
0
t
b 2
t2
m
tw2 tw1
x
0
t
w1
b 2
t 2w1
这表明,当材料的导热系数随温度呈线性规律变化时,
平壁内的温度分布是二次曲线方程,该二次曲线的凹凸性
主要由温度系数b的正负决定。
利用傅里叶定律分析表明:
——b>0时,温度分布曲线的开口向下;
——b<0时曲线开口向上
17
3.1.3 第一类边界条件下变物性、无内热源的平壁
需要用平壁算术平均温度下的导热系数λm代替
19
3.1.3 第一类边界条件下变物性、无内热源的平壁 ❖ 由于热流密度为常数,仍可采用对傅立叶定律分离变量
积分的分析方法得到平壁内的温度分布 ❖ 作为练习,请大家自行推导
20
3.1.4 第三类边界条件下的常物性、无内热源的平壁
❖ 当平壁左、右两侧面分别与温度为tf1和tf2(tf1>tf2) 的流体进行对流传热时,平壁两侧均处于第三类 边界条件
态 稳态的特征:物体内各位置处的温度不随时间变化,可
以去掉方程中的非稳态项
传热学第三章稳态导热
传热学第三章稳态导热
11
根据热阻串联的叠加原则,通过三 层壁的热流密度计算式为:
q
tw1 tw4
1 2 3
1 2 3
W/m2
、
qA
1
tw1 tw4
2 3
W
1A 2A 3A
2021/2/12
传热学第三章稳态导热
12
由
q
t
可得各层接触面上的温度分别为 :
tw2
、tw1
q1 1
℃
tw3
பைடு நூலகம்
tw4
W/m2
可见,通过平壁稳态导热的热流密度 取决于导热系数、壁厚及两侧面的温差。
稳态下平壁内与热流相垂直的各截面 上的热流密度为常量。
2021/2/12
传热学第三章稳态导热
6
通过整个平壁的热流量为:
AqAt
W
当λ=λ0(1+bt) 时,在温差(t1-t2 ) 下的导热量仍可用常物性导热计算式来 计算,只需用平均温度t=(t1+t2)/2 下的平 均导热系数计算即可。
rλ
rh2
传热学第三章稳态导热
返回 15
第二节 通过圆筒壁的导热
一、第一类边界条件下的圆筒壁导热 二、第三类边界条件下的圆筒壁导热 三、临界热绝缘直径
2021/2/12
传热学第三章稳态导热
16
一、第一类边界条件下的圆筒壁导热
1.单层圆筒壁
已知:长圆筒壁 r1、r2、 l ;
λ=const
r=r1 ,t=tw1; r=r2 ,t=tw2 求: (1) Φ=?
第三章 稳态导热
§3-1 通过平壁的导热 §3-2 通过圆筒壁的导热 §3-3 通过球壁的导热 §3-4 接触热阻 §3-5 通过肋片的导热
传热学第三章
内能减小=物体向环境对流换热
7
机械工程与材料能源学部 能源与动力工程学院
传 热 学
定义过余温度: θ=t-t∞
dt cV Ah (t t ) d
cV
dt Ah d
初始条件:
d
τ=0, θ =θ0=t0-t∞
微分方程分离变量,并积分:
0
hA cV
Fo>0.2,正规状况阶段
非稳态导热过程中传递热量
从τ=0 至热平衡
Q0 cV (t 0 t )
19
机械工程与材料能源学部 能源与动力工程学院
传 热 学
从τ=0 至τ时刻
Q c V t 0 t ( x, )dV 1 Q0 cV (t 0 t ) V 1 1 V (t 0 t ) (t t ) dV V t0 t
机械工程与材料能源学部 能源与动力工程学院 6
传 热 学
1. 导热微分方程式建立
例:测量变化着的温度的热电偶
t0 t
t t0 0
t f ( ) ?
t 2t 2t 2t ( 2 2 2) 导热微分方程: c x y z c
11
传 热 学
4. BiV及FoV物理意义
Biv hl
1 h
l
内部面积导热热阻 表面面积对流换热热阻
无量纲 热阻 无量纲 时间
从边界上开始发生热扰 动时刻起 a 到所计算时刻为止的时 间间隔 Fov 2 2 边界上发生有限大小的 热扰动穿过一定 l l a 厚度的固体层扩散到 2的面积上所需时间 l
FoV越大,热扰动越深入地传播到物体内部, 物体内各点的温度越接近周围介质的温度
传热学第三章-非稳态导热-3
等温层:当深度足够大时,温度波振幅的衰减可以忽略 不计,这种深度下的地温可以认为常年不变,称为等温 层。
2)温度波的延迟,用 表示延迟时间
相位角 角速度
x
aT
2
1x 2
T
a
T
3)周期性变化的热流波
热流能量:
qw,z
x
w,
代入式(13),并令 x=0,得
x
w,
Aw
cos 2 sin 2
热流影响的范围
12a 3.46 a
工程实际中,若物体本身的厚度 L ( ) ,则可认为
该物体为半无限大物体。
从式5 当x 0时 因ierfc0 1
则有 0, 2qw a 1 2qw a
即
qw
t
x0 a
t0
tw t0
1.13 a
(6)
2)初始温度为t,而壁面温度保持tw (常壁 温)条件下的非稳态导热情况
h 2 a 2
erf c
2
x
a
h
a
(12)
例2:地下埋管问题
泥土初始温度为20℃,60天内常表面温度为15℃,
为避免结冰, 求最小埋没深度。设土壤物性300K ,
2050 Kg m3 , 0.52W m K ,
c 1.84 KJ Kg K , a 0.138106 m2 s
分析: 该情况相当于初始温度为t0, 而壁面温度保持在tw的 半无限大物体的非稳态导热情况, 在表面温度改变60天后
r, x,t r, z
r, z
0
0 无限长柱
0 平壁
(2)
即,它的二维解可表示为厚度为 2 的平壁和半径为 r 的无限长圆柱体的一维解的乘积。于是,利用海斯
传热学第三章辐射传热
传热学第三章辐射传热一、名词解释1.热辐射:由于物体内部微观粒子的热运动状态改变,而将部分内能转换成电磁波的能量发射出去的过程。
2.吸收比:投射到物体表面的热辐射中被物体所吸收的比例。
3.反射比:投射到物体表面的热辐射中被物体表面所反射的比例。
4.穿透比:投射到物体表面的热辐射中穿透物体的比例。
5.黑体:吸收比α= 1的物体。
6.白体:反射比ρ=l的物体(漫射表面)7.透明体:透射比τ= 1的物体8.灰体:光谱吸收比与波长无关的理想物体。
9.黑度:实际物体的辐射力与同温度下黑体辐射力的比值,即物体发射能力接近黑体的程度。
10.辐射力:单位时间内物体的单位辐射面积向外界(半球空间)发射的全部波长的辐射能。
11.漫反射表面:如果不论外界辐射是以一束射线沿某一方向投入还是从整个半球空间均匀投入,物体表面在半球空间范围内各方向上都有均匀的反射辐射度L r,则该表面称为漫反射表面。
12.角系数:从表面1发出的辐射能直接落到表面2上的百分数。
13.有效辐射:单位时间内从单位面积离开的总辐射能,即发射辐射和反射辐射之和。
14.投入辐射:单位时间内投射到单位面积上的总辐射能。
15.定向辐射度:单位时间内,单位可见辐射面积在某一方向p的单位立体角内所发出的总辐射能(发射辐射和反射辐射),称为在该方向的定向辐射度。
16.漫射表面:如该表面既是漫发射表面,又是漫反射表面,则该表面称为漫射表面。
17.定向辐射力:单位辐射面积在单位时间内向某一方向单位立体角内发射的辐射能。
18.表面辐射热阻:由表面的辐射特性所引起的热阻。
19.遮热板:在两个辐射传热表面之间插入一块或多块薄板以削弱辐射传热。
20.重辐射面:辐射传热系统中表面温度未定而净辐射传热量为零的表面。
二、填空题1.热辐射是由于产生的电磁波辐射。
热辐射波长的单位是,在工业范围内,热辐射的波段主要集中于区段。
(热的原因,μm,红外)2.太阳与地球间的热量传递属于传热方式。
《传热学》第3章_非稳态热传导分析
《传热学》第3章_非稳态热传导分析非稳态热传导分析是传热学中一个重要的研究内容。
在真实的物理系统中,尤其是工程实际中,非稳态热传导过程往往更为常见。
非稳态热传导分析主要研究物体内部温度分布随时间的变化规律,以及热传导过程中的能量交换。
本文将重点介绍非稳态热传导分析的基本原理和方法。
非稳态热传导分析需要考虑时间因素以及物质的热传导性质。
在非稳态热传导过程中,物体内部的温度分布随时间的变化满足热传导方程。
传热方程的一般形式为:∂(ρcT)/∂t=k∇²T+Q其中ρ是物质密度,c是比热容,T是温度,k是热传导系数,∇²是拉普拉斯算子,Q是热源项,即热传导过程中的能量增减。
解决非稳态热传导分析的一般步骤如下:1.建立热传导方程。
根据实际情况,确定适当的坐标系,并根据系统的几何形状和边界条件,建立热传导方程。
2.确定边界条件。
边界条件包括物体表面的温度、热通量以及对流边界等。
根据具体情况,选择适当的边界条件。
3.选择合适的数值方法。
非稳态热传导问题通常需要借助数值方法进行求解。
有限差分法、有限元法、迭代法等都可以应用于非稳态热传导分析,具体选择哪种方法需要根据具体问题的特点进行判断。
4.数值求解。
根据使用的数值方法,将热传导方程离散化,并进行数值求解。
通常需要在计算过程中进行迭代,直到得到满足要求的结果。
5.结果分析和验证。
得到物体内部温度随时间的变化规律后,可以通过实验进行验证。
比较模拟结果与实验结果,判断模拟的准确性。
非稳态热传导分析的典型应用包括热处理过程中的温度变化分析、电子元器件的散热分析、建筑物内部温度分布分析等。
通过对非稳态热传导问题的分析,可以更好地理解和控制物体内部温度分布的变化规律,为实际工程提供指导。
然而,非稳态热传导分析也存在一些挑战和限制。
首先,非稳态热传导分析通常需要考虑物质性质的非线性以及边界条件的复杂性,这增加了问题的难度。
其次,非稳态热传导问题的求解往往需要较长的计算时间和大量的计算资源。
《传热学》第三章 非稳态导热
令:
—— 过余温度
使导热微分方程边界条件齐次化:
1.分离变量法求解导热微分方程:
对于此类偏微分方程,应采用分离变量法来进行求解: 假定:
代入导热微分方程,得出:
令:
并对两式分别求解
求解结果: 因φ 不可能是无限大或常数,所以只能有:μ <0,因而可令:
求解结果:
将两个求解结果合并,得到:
其中:
A c1c2 , B c1c3
集总热容体的温度分布:
其中:
L
V ——定型尺寸 A
cV
hA
——时间常数(表示物体温度接近流体温度的快慢)
集总热容体的温度分布亦可写成:
四、不同加热方式下的无限大平壁瞬态导热
t
qv
h, t f
h, t f
qw
qw
h, t f
h, t f
x
第三节 半无限大物体的瞬态导热
应用领域:大地 一、第一类边界条件
半无限大物体表面温度:
半无限大物体表热负荷:
——一定时间内将壁温提高至tw所需的热负荷
第四节 其他形状物体的瞬态导热
一、无限长圆柱体和球体——计算线图法 分无 布限 计长 算圆 步柱 骤温 度
计算Bi和Fo
由图3-13计算中心温度
由图3-14计算任意处温度 无限大平壁—— 半壁厚δ
定型尺寸
无限长圆柱体和球体—— 半径 R 其他不规则形状物体——V/A
或:
傅立叶准则——
二、正常情况阶段——Fo准则对温度分布的影响
对
进行收敛性分析: 随着β n的递增,级数中指数一项收敛很快,所以级数收敛很快,尤其当Fo较 大时,收敛性更加明显。 因此,当Fo>0.2时,仅用级数第一项来描述,已足够精确,即:
传热学第三章-非稳态导热-(1)
11
ln(/0)
Fo > 0.2时,任一点过余温度与
中心过余温度m之比为
正规状况阶段
x/=0
(x, ) m ( )
cos(1
)
x
(e)
x/=1
Fo
0.2
即:比值与无关,仅与几何位置(x/)及边界条件(Bi数) 有关。这表明初始条件的影响已经消失,无论初始分布 如何,无量纲温度都是一样的。此时非稳态导热已进入 正规状态或充分发展阶段。
将无穷个解叠加,得:
(x, ) ean2 [ An cos(n x)] n1
An可利用初始条件 0, 求t0-t取 0
An
0
n
2sin( n ) sin( )n cos(n )
7
于是,得到解的最后形式为:
(x,
)
0
n 1
n
2sin( n ) sin( n ) cos(n
)
cos(n x) exp(an2
1 0
这里:
1 V
V (t t )dV
是 时刻物体的平均过余温度。 9
3-3-2 非稳态导热的正规状况阶段
当Fo > 0.2时,采用级数的第一项计算偏差小于1%,故 当Fo > 0.2时,由:
(x, 0
)
n 1
n
2sin(n ) sin n cos n
cos(n
x
) exp(
a 2
n2 )
围环境温度,所以 D 必须为负值,否则物体温度将无
穷增大。
令
D 2
则有
1 aT
dd以T 及 2
《传热学》第3章-非稳态导热
特殊多维非稳态导热的简易求解方法
在第一类边界条件(初始温度均匀)或第三类边界条件(表面 传热系数h为常数)下的二维或三维的非稳态导热问题,在数学 上已经证明,它们的无量纲过余温度的解等于构成这些物体的 两个或三个物体在同样边界条件下一维非稳态导热问题解的连 乘。
特殊多维非稳态导热的简易求解方法
对于无限长方柱 θ (x, y,τ ) = θ (x,τ ) ⋅ θ (y,τ )
该问题的解可以由3块相应的无限大平板的 解得出。最低温度发生在钢锭的中心,即3 筷无限大平板中心截面的交点上,最高温度 发生在钢锭的顶角,即3块大平板表面的公 共点上。
4
例题3 θ
m/B则θi x0钢==锭hλδ(1θ中=m心3/ 4θ温840×0度).05x.2⋅5(θ=
2.14
m/θ 0
)
y
⋅ (θ
无限大平板的非稳态导热
当Fo ≥ 0.2时,可取
θ (x,τ )
θ0
=
β1
2 sin β1 + sin β1 cos β1
cos
β
1
x δ
e − β12 ⋅Fo
只与Bi、x/δ有关, 与时间无关
lnθ
=
−mτ
+ lnθ 0
β1
2sin β1 + sinτ β1 cos β1
cos
= 0.36
短圆柱的中心温度为
查图3-6得 θ
再讨论直径为
m2R/θ=600=0m0m.8的无θ限m长/ θ圆0柱=:0.13
×
0.8
=
0.104
Bi = hR = 232 × 0.3 = 1.72 λ 40.5
tm = 0.104θ0 + t∞ 查附=2图0.11得04θ×m(3/θ00−=103.0103) +1300
《传热学》第三章 非稳态热传导
第3章 非稳态导热
3-1 非稳态导热基本概念 3-2 零维问题的分析法-集中参数法 3-3 典型一维物体非稳态导热问题的分析解 3-4 半无限大物体的非稳态导热 3-5 简单几何形状物体多维非稳态导热的分析解
3.1 非稳态导热的基本概念
3.1.1 非稳态导热过程及其特点
物体的温度随时间而变化的导热过程为非稳态导 热。 自然界和工程上许多导热过程为非稳态,t= f(τ) 例:冶金、热处理与热加工中工件被加热或冷却; 锅炉、内燃机等装置起动、停机、变工况;自然环 境温度;供暖或停暖过程中墙内与室内空气温度。
∂t & ρcp = λ div( grad t ) + φ (3-1a) ∂τ
温度的拉普拉斯算子
∇ 2t
& ∂t φ = a∇ 2t + ∂τ ρcp
(3-1b)
初始条件的一般形式
t ( x, y, z , 0) = f ( x, y, z )
简单特例
f(x,y,z)=t0
边界条件:着重讨论第三类边界条件
∂t −λ ( ) w = h(tw − t f ) ∂n
解的唯一性定理 数学上可以证明,如果某一函数t(x,y,z,τ)满足 方程(3-1a)(3-1b)以及一定的初始和边界条 件,则此函数就是这一特定导热问题的唯一解。 本章所介绍的各种分析法都被认为是满足特定问题 的唯一解。
3.1.3 第三类边界条件下Bi数对平板中 温度分布的影响
第3章 非稳态导热
许多工程实际问题需要确定物体内部的温度场随时间的变化, 或确定其内部温度到达某一限值所需的时间。——非稳态导热 问题 本章讨论非稳态导热问题。首先简述非稳态导热的基本概念, 然后由简单到复杂依次介绍零维问题、一维问题、半无限大物 体以及多维问题的导热微分方程的分析解法。最后总结求解非 稳态导热问题的一般策略以及应用实例。 与稳态导热类似,非稳态导热主要掌握基本概念、确定物体瞬 时温度场的方法和在一段时间间隔内物体所传到热量的计算方 法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传热学(三)
一、单项选择题(本大题 10 小题,每小题 2 分,共 20 分)
在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确项前
的字母填在题后的括号内。
1. 在锅炉的炉墙中:烟气内壁外壁大气的热过和序为 : 【 A】
A. 辐射换热 , 导热 , 复合换热
B. 导热,对流换热,辐射换热
C. 对流换热泪盈眶,复合换热,导热
D. 复合换热,对流换热,导热
2. 由表面 1 和表面 2 组成的封闭系统中: X 1,2 _C____ X 2,1 。
A. 等于
B. 小于
C. 可能大于,等于,小于
D. 大于
3. 流体流过短管内进行对流换热时其入口效应修正系数【B 】
A.=1
B. >1
C. <1
D. =0
4. 在其他条件相同的情况下 , 下列哪种物质的导热能力最差 ? 【 A】
A. 空气
B. 水
C. 氢气
D. 油
5. 下列哪种物质中不可能产生热对流 ? d
A. 空气
B. 水
C. 油
D. 钢板
6.Gr 准则反映了 ____浮力与粘性力__ 的对比关系。
A. 重力和惯性力
B. 惯性力和粘性力
C. 重力和粘性力
D. 角系数
7. 表面辐射热阻与 ____D____ 无关。
A. 表面粗糙度
B. 表面温度
C. 表面积
D. 角系数
8. 气体的导热系数随温度的升高而【增大】
A. 减小
B. 不变
C. 增大
D. 无法确定
9. 下列哪种设备不属于间壁式换热器 ? 【D 】
A.1-2 型管壳式换热器 ?
B. 2-4 型管壳式换热器
C. 套管式换热器
D. 回转式空气预热器
10. 热传递的三种基本方式为【 C】
A. 导热、热对流和传热过热
B. 导热、热对流和辐射换热
C. 导热、热对流和热辐射
D. 导热、辐射换热和对流换热
第二部分非选择题
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分)
11. 在一台顺流式的换热器中,已知热流体的进出口温度分别为 180 和
100 ,冷流体的进出口温度分别为 40 和 80 ,则对数平均温差为
_____61.67______ 。
12. 已知一灰体表面的温度为 127 ,黑度为 0.5 ,则其车辆射力为
___725.76_________ 。
13. 为了达到降低壁温的目的,肋片应装在__冷流体______ 一侧。
14. 灰体就是吸收率与 ___波长_____ 无关的物体。
15. 冬季室内暖气壁面与附近空气之间的换热属于 _____复合___ 换热。
16. 传热系数的物理意义是指 _______冷热流体__ 间温度差为1时的传热热流密度。
17. 黑度是表明物体 _____辐射___ 能力强弱的一个物理量。
18. 肋壁总效率为 ___肋壁_实际传热量___ 与肋壁侧温度均为肋基温度时的理想散热量之比。
19. 在一个传热过程中,当壁面两侧换热热阻相差较多时,增大换热热阻 __大_____ 一侧的换热系数对于提高传热系数最有效。
20. 1-2型管壳式换热器型号中的“2”表示 _管程数________ 。
三、名词解释(本大题5小题,每小题4分,共20分)
21. 换热器的效能(有效度)换热器的实际传热量与最大可能传热量之比
22. 大容器沸腾
23. 准稳态导热: 物体内各点温升速度不变的导热过程。
24. 黑体 : 吸收率等于 1 的物体。
25. 复合换热: 对流换热与辐射换热同时存在的综合热传递过程。
四、简答题(本大题共2小题,每小题8分,共16分)
26. 气体辐射有哪些特点?( 1 )气体的辐射(和吸收)对波长有强烈的选择性,即它只能辐射和吸收某些波长范围内的能量。
( 2 )气体的辐射(和吸收)是在整个容积中进行的。
固体和液体不能穿透热射线,所以它们的辐射(和吸收)只在表面进行。
27. 为什么高温过热器一般采用顺流式和逆流式混合布置的方式?
( 1 )因为在一定的进出口温度条件下,逆流的平均温差最大,顺流的平均温差最小,即采用逆流方式有利于设备的经济运行。
( 2 )但逆流式换热器也有缺点,其热流体和冷流体的最高温度集中在换热器的同一端,使得该处的壁温较高,即这一端金属材料要承受的温度高于顺流型换热器,不利于设备的安全运行。
( 3 )所以高温过热器一般采用顺流式和逆流式混合布置的方式,即在烟温较高区域采用顺流布置,在烟温较低区域采用逆流布置。
五、计算题(本大题2小题,每小题12分,共24分)
28. 某炉墙由耐火砖和保温板组成,厚度分别为 200mm 和 80mm ,导热系数分别为 0.8W/(m. K) 和 0.11W/(m. K) ,炉墙内外侧壁温分别为 600 。
C 和70 。
C 。
求炉墙单位面积的热损失和两层材料间的温度。
29. 以 0.8m/s 的流速在内径为 2.5cm 的直管内流动,管子内表面温度为
60 。
C ,水的平均温度为 30 。
管长2 m 。
试求水所吸收的热量。
(已知 30 。
C 时 , 水的物性参数为: C p =4.17KJ/(kg.K), λ =61.8 ×10 -2 W/(m.K), ρ =995.7kg/m 3 , μ =0.805 × 10 -6 m 2 /s, ) Pr=5.42, 水 60 。
C 时的υ =469.9 × 10 -6 kg/(m.s)) 。
已知水在管内流动时的准则方程式为
(1) Nu f =0.027Re f 0.8 Pr f 0.4 ε 1 ε R
适用条件: Re f =10 4 — 1.2 × 10 5 , Rr f =0.6-120, 水与壁面间的换热温差 t ≤ 30C °
(2) Nu f =0.027Re f 0.2 Pr f 1/3 ( μ f / μ w ) 0.11 ε 1 ε R
适用条件: Re f =10 4 ~ 1.75 × 10 6 , Pr f = 0.6 ~ 700, 水与壁面间的换热温差 t > 30
以上两个准则方程式的定性温度均为流体的平均温度(μ w 的定性温度为管内壁温度) , 特性尺度为管内径。