中考数学复习整式的运算[人教版]
专题03 整式的运算与因式分解篇(解析版)-2023年中考数学必考考点总结
知识回顾专题03整式的运算与因式分解2023年中考数学必考考点总结1.合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。
2.整式的加减的实质:合并同类项。
3.整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。
②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。
③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。
④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。
4.乘法公式:①平方差公式:()()22b a b a b a -=-+。
②完全平方公式:()2222b ab a b a +±=±。
5.因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a -+=-22完全平方公式:()2222b a b ab a ±=+±。
③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则:()()n x m x c bx x ++=++2。
专题练习31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21.【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+b 2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21.【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时,原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣=1+1+2×+﹣1﹣2=2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值.【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值:(1)(x ﹣x 1)2;(2)x 4+41x .【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵,∴===﹣4x •=32﹣4=5;(2)∵=,∴=+2=5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°;(2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。
人教版七年级数学上册第二章整式的加减法中考复习试题大全六(含答案) (5)
人教版七年级数学上册第二章整式的加减法复习试题大全(含答案)先化简,再求值(1)3(x 2-7x )-(3x 2-5-7x ),其中x=﹣1;(2)()223(2)322a ab a b ab b ⎡⎤---++⎣⎦,其中12a =-,3b =. 【答案】(1)-14x+5;19;(2)-8ab ;12.【解析】【分析】(1)根据去括号,合并同类项,可化简整式,根据代数式求值,可得答案;(2)根据去括号,合并同类项,可化简整式,根据代数式求值,可得答案.【详解】(1)3(x 2-7x )-(3x 2-5-7x ),=3x 2-21x -3x 2+5+7x ,=-14x+5;当x=-1时,原式=14+5=19;(2)()()2232322a ab a b ab b ⎡⎤---++⎣⎦, =3a 2-6ab-(3a 2+2ab),=3a 2-6ab-3a 2-2ab ,=-8ab ; 当12a =-,3b =时,原式=-8×(12-)×3=12. 【点睛】本题考查了整式的化简求值,利用去括号,合并同类项化简整式是解题关键.(1)()()1072---+- (2)()()()759015-⨯--÷-(3)()12324834⎛⎫+-⨯- ⎪⎝⎭(4)()231113252⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭ (5)223247a a a a --- (6)解方程:35202x x -=-【答案】(1)-5;(2)41;(3)-1;(4)5-6;(5)2--9a a ;(6)5. 【解析】【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先算乘除,后算减法即可;(3)根据乘法的分配律计算即可;(4)先算乘方,再算括号里,后算乘除,然后算加减即可;(5)找出同类项合并即可;(6)按照移项、合并同类项、系数化为1的步骤求解即可.【详解】计算:(1)()()1072---+-解:原式=()()1072-+++--107-2=+127=-+5=- ;(2)()()()759015-⨯--÷-解:原式()35--6=356=+(3)()12324834⎛⎫+-⨯- ⎪⎝⎭解:原式123-2424-24834⎛⎫=⨯+⨯⨯ ⎪⎝⎭()-316-18=+-1= ;(4)()231113252⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭解:原式[]1-1-34-52=÷⨯ ()11-1--123=⨯⨯ 1-16=+ 5-6= ; (5)223247a a a a ---解:原式()()23-427a a =+--2--9a a = ;(6)解:32205x x +=+,525x =,5x =.【点睛】本题考查了有理数的混合运算,合并同类项及一元一次方程的解法,熟练掌握各知识点是解答本题的关键.43.先化简再求值.(1) -2(x 2-3x)+(x+2x 2),其中 x=-2(2)(2a2-2b2)-3(a2b2+a2)+3(a2b2+b2),其中,a=-1,b=2【答案】(1)7x,-14(2)-a2+b2,3【解析】【分析】根据整式的加减,先去括号,再合并同类项进行化简,最后代入求值即可.【详解】(1)-2(x2-3x)+(x+2x2)=-2x2+6x+ x+2x2=7x当x=-2时,原式=7×2=14;(2)(2a2-2b2)-3(a2b2+a2)+3(a2b2+b2)=2a2-2b2-3a2b2-3a2+3a2b2+3b2=- a2+b2当a=-1,b=2时,原式=-1+4=3.【点睛】此题主要考查了整式的化简求值,关键是灵活利用合并同类项法则进行整式的化简.44.化简:(1)(3a-2)-3(a-5)(2)-3x2y+2x2y+3xy2-2xy2(3)2m+(m+n)-2(m+n)(4)(4a2b-5ab2)+[-2(3a2b-4ab2)]【答案】(1)13(2)-x2y+xy2(3)m-n(4)-2a2b+3ab2【解析】【分析】根据去括号法则和合并同类项法则进行化简即可.【详解】(1)(3a-2)-3(a-5)=3a-2-3a+15=13(2)-3x2y+2x2y+3xy2-2xy2=(-3+2)x2y +(3-2)xy2=- x2y +xy2(3)2m+(m+n)-2(m+n)=2m+m+n-2m-2n=m-n(4)(4a2b-5ab2)+[-2(3a2b-4ab2)]=4a2b-5ab2-6 a2b+8ab2=-2 a2b+3ab2【点睛】此题主要考查了合并同类项,关键是利用合并同类项的法则,先找出同类项,再合并同类项即可求解.45.先化简,再求值:5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a =1,b=2.【答案】12a2b﹣6ab2,0【解析】【分析】先将原式化简,然后将a与b的值代入原式即可求出答案.【详解】解:原式=15a2b﹣5ab2﹣5﹣ab2﹣3a2b+5=12a2b﹣6ab2当a=1,b=2时,原式=12×1×2﹣6×1×4=24﹣24=0.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.46.按照下面的步骤计算:任意写一个三位数,百位数字比个数数字大3交换差的百位数字与个位数字用大数减去小数交换它的百位数字与个位数字做加法问题:(1)用不同的三位数再做两次,结果都是1089吗?(2)你能解释其中的道理吗?【答案】(1)结果是1089;用不同的三位数再做几次,结果都是一样的;(2)见解析.【解析】【分析】设这个三位数为100(3+c)+10b+c,再交换百位数字与个位数字后为100c+10b+3+c.再根据条件推理,可得结果是1089.【详解】解:(1)结果是1089;用不同的三位数再做几次,结果都是一样的;(2)设这个三位数为100(3+c)+10b+c,再交换百位数字与个位数字后为100c+10b+3+c.根据题意,有[100(3+c)+10b+c]﹣[100c+10b+3+c]=297.再交换297的百位和个位数字得792,而297+792=1089.所以用不同的三位数再做几次,结果都是1089.【点睛】本题考查了整式加减的运用.认真读题,理解题意是关键.47.郑东新区九年制实验学校体育组准备在网上为学校订购一批某品牌羽毛球拍和羽毛球在查阅京东网店后发现羽毛球拍一副定价40元,羽毛球每个定价5元.“双十一”期间A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一副球拍送1个羽毛球;B网店:羽毛球拍和羽毛球都按定价的90%付款.已知要购买羽毛球拍30副,羽毛球x个(x>30):(1)若在A网店购买,需付款_____元(用含x的代数式表示);若在B网店购买,需付款_______元.(用含x的代数式表示);(2)若x=40时,通过计算说明此时在哪家网店购买较为合算?(3)当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算出需付款多少元?【答案】(1)(5x+1050),(4.5x+1080);(2)在A网店购买合算;(3)先在A 网店购买30副羽毛球拍,送30个羽毛球需1200元,差10个羽毛球在B网店购买需45元,共需1245元.【解析】【分析】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把x=40代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先A网店购买30副羽毛球拍,送30个羽毛球,另外10副羽毛球拍在B网店购买即可.解:(1)A网店购买需付款30×40+(x﹣30)×5=(5x+1050)元;B网店购买需付款40×90%×30+5×90%×x=(4.5x+1080)元.故答案为(5x+1050),(4.5x+1080);(2)当x=40时,A网店需5×40+1050=1250(元);B网店需4.5×40+1080=1260(元);所以按A网店购买合算;(3)先A网店购买30副羽毛球拍,送30个羽毛球需1200元,差10个羽毛球B网店购买需45元,共需1245元.【点睛】此题考查列代数式,理解两种方案的优惠方案,得出运算的方法是解决问题的关键.48.先化简,再求值.(1) 14(﹣4x2+2x﹣8)﹣(12x﹣2),其中x=12.(2) 已知a2﹣a﹣4=0,求a2﹣2(a2﹣a+3)﹣12(a2﹣a﹣4)﹣a的值.【答案】(1)﹣x2;14;(2)-10.【解析】【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.解:(1)原式=﹣x2+12x﹣2﹣12x+2=﹣x2,当x=12时,原式=14-;(2)∵a2﹣a﹣4=0,即a2﹣a=4,∴原式=a2﹣2a2+2a﹣6﹣12a2+12a+2﹣a=﹣32(a2﹣a)﹣4=﹣6﹣4=﹣10.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.49.(1)一天数学老师布置了一道数学题:已知x=2017,求整式()()()322332678323541x x x x x x x x x--+---+-+++-的值,小明观察后提出:“已知x=2017是多余的”,你认为小明的说法有道理吗?请解释.(2)已知整式2531M x ax x=+--,整式M与整式N之差是234x ax x+-.①求出整式N.②若a是常数,且2M+N的值与x无关,求a的值.【答案】(1)小明说的有道理,理由见解析.(2) ①N=-2x2+ax-2x-1 ②a=811.【解析】【分析】(1)原式去括号合并同类项后得到最简结果,根据化简结果中不含x,得到x的值是多余的.(2)①根据题意,可得N=(x2+5ax-3x-1)-(3x2+4ax-x),去括号合并即可;②把M 与N 代入2M+N ,去括号合并得到最简结果,由结果与x 值无关,求出a 的值即可.【详解】(1)小明说的有道理,理由如下:原式=x 3-6x 2-7x+8+x 2+3x-2x 3+3+x 3+5x 2+4x-1=(1-2+1)x 3+(-6+1+5)x 2+(-7+3+4)x+(8+3-1)=10,由此可知该整式的值与x 的取值无关,所以小明说的有道理.(2)①N=(x 2+5ax-3x-1)-(3x 2+4ax-x )=x 2+5ax-3x-1-3x 2-4ax+x=-2x 2+ax-2x-1;②∵M=x 2+5ax-3x-1,N=-2x 2+ax-2x-1,∴2M+N=2(x 2+5ax-3x-1)+(-2x 2+ax-2x-1)=2x 2+10ax-6x-2-2x 2+ax-2x-1=(11a-8)x-3,由结果与x 值无关,得到11a-8=0,解得:a=811. 【点睛】此题考查了整式的加减,熟练掌握去括号与合并同类项法则是解本题的关键.50.已知3,5,a b a b ==且>,求代数式()322332a ab b b --++的值. 【答案】-43或-7【解析】【分析】根据绝对值的定义求出a 、b ,根据a>b 分两种情况进行讨论. 再把a 、b 的值代入所求的代数式中,根据有理数的运算法则计算即可.【详解】()322332a ab b b --++=322332a ab b b +-+=323a ab b +-∵a 3,b 5==∴a= ±3, b=±5∵a>b∴a= 3,b= -5或a=-3,b= -5当a=3,b= -5 时,原式=()()2333355+⨯⨯--- =27−45−25=−43当a=-3,b= -5时,原式=()()()()3233355-+⨯-⨯--- =274525-+-=7-∴原式的值为43-或7-【点睛】本题考查了代数式求值:把满足条件的值代入代数式,然后利用实数的运算法则进行计算.本题的关键点在于根据条件进行分类讨论.。
初中数学中考总复习——整式(合并同类项整式加减乘法除法混合运算分解因式图文详解)
初中数学总复习整式
多项式的项数与次数
例3 下列多项式次数为3的是( C)
A. 5x 2 6x 1
B.x 2 x 1
C .a 2b ab b2
D.x2 y2 2x3 1
注意(1)多项式的次数不是所有项的次数的和,而是它的最高 次项次数;
(2)多项式的每一项都包含它前面的符号; (3)再强调一次, “π”当作数字,而不是字母
—
~~~——
~~~
一找
=(4x2-3x2)+ (-8x+6x)+ (5-4) 二移
= x2 -2x +1
三并
初中数学总复习整式
合并同类项的步骤:
1、找出同类项 用不同的线标记出各组同类项,注意每一项的符号。 2、把同类项移在一起
用括号将同类项结合,括号间用加号连接。
3、合并同类项 系数相加,字母及字母的指数不变 。
项式,最高次项是____x__23_y_2_,常数项是____13_____;
初中数学总复习整式
易错题
例5 下列各个式子中,书写格式正确的是( F)
A.a b D.a3
B. 1 1 ab 2
C.a 3
E. 1ab
F. a2b 3
初中数学总复习整式
小结:
1、代数式中用到乘法时,若是数字与数字乘,要用“×” 若是数字与字母乘,乘号通常写成”.”或省略不写,如 3×y应写成3·y或3y,且数字与字母相乘时,字母与 字母相乘,乘号通常写成“·”或省略不写。
初中数学总复习整式
多项式的项数与次数
例4 、请说出下列各多项式是几次几项式,并写出多项式的最高次
项和常数项;
(1)25 x2 y xy3是 __四___次 __三___ 项式,最高次项是_____x_y__3_,常数项是___2__5____;
第一单元 第二讲 整式、因式分解++++课件+2025年九年级中考数学总复习人教版(山东)
C.(a-3)(a+3)
D.a2(a-9)
( A)
2.(2024·广西中考)如果a+b=3,ab=1,那么a3b+2a2b2+ab3的值为 ( D )
A.0
B.1
C.4
D.9
3.(2024·广元中考)分解因式:(a+1)2-4a=__________.
(a-1)2
21
考点4
整式的运算及乘法公式(一题多设问)
81
(7)化简:2b2+(a+b)(a-b)-(a-b)2=_________.
2ab
(8)一个长方形的面积是5xy+4y,宽为y,则长为__________.
5x+4
12
4.因式分解
几个整式的积
因式分解的概念 把一个多项式化成__________________的变形
提取公因
式法
如果一个多项式的各项含有____________,那么就可以把
±12
26
本课结束
C.-1
D.1
(2)若x-5y=7,则代数式3-2x+10y的值为_________.
-11
( C )
5
知识要点
2.整式及有关概念
6
对点练习
2.下列说法中,正确的是
2
A.
不是整式
4
3
B.的系数是-3,次数是3
2
C.3是单项式
D.多项式2x2y-xy是五次二项式
(C )
7
知识要点
3.整式的运算
D.(x3)2=x6
(3)化简-x(x-2)+4x的结果是 ( A )
A.-x2+6x
人教版 初中数学中考一轮复习---整式和整式的加减运算(含解析)
整式与整式的加减运算例1: 因式分解:22mx my -. 例2: 已知:,2-=b ,.求代数式:24a b c +-的值. 例3: 先化简,再求值:(1+a )(1﹣a )+(a ﹣2)2,其中a=﹣3.例4: 先化简,再求值:,其中x =A 组1、指出下列各单项式的系数和次数:23223,5,,37a x y ab a bc π- 2. 判断下列各式哪些是单项式: ①2ab x ②a ③25ab -④x y +⑤0.85-⑥12x +⑦2x⑧0 3. 对于多项式2221x yz xy xz -+-- (1)最高次数项的系数是 ; (2)是 次 项式; (3)常数项是 。
3=a 21=c 2(2)(21)(21)4(1)x x x x x +++--+4.已知多项式221345xy x y --,试按下列要求将其重新排列。
(1)按字母x 作降幂排列;(2)按字母y 作升幂排列。
点拨:在按照定义的要求情况下,注意各项前的符号。
5. 把下列各式填在相应的大括号里7x -,13x ,4ab ,23a ,35x -,y ,st,13x +,77x y +,212x x ++,11m m -+,38a x ,1-。
单项式集合{ } 多项式集合{ } 整式集合 { }6、三个连续的奇数中,最小的一个是23n -,那么最大的一个是 。
7、当2x =-时,代数式-221x x +-= ,221x x -+= 。
8、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
9、如果3y -+2(24)x -=0,那么2x y -=___。
10、多项式221x x -+的各项分别是( ) A 、22,,1x x B 、22,,1x x - C 、22,,1x x -- D 、22,,1x x --- 11、计算:35_____x x -=; 12、()22______326271x x x x +--=--+13、买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元。
2023中考数学复习:代数式与整式
乘法公式
(1)平方差公式:(a+b)(a-b)=a2-b2;
(2)完全平方公式:(a±b)2=a2±2ab+b2;
(3)乘法公式的常用恒等变形:a2+b2=(a+b)22ab=(a-b)2+2ab
第4讲
代数式与整式— 考点梳理
返回思维导图
返回栏目导航
续表
类别
运算法则
将系数、同底数幂分别相除作为商的一个因式,
C.a3与a·a·a
D.3(a+b)与3a+b
7
8
9
10
11
12
13
14
15
16
17
18
19
第4讲
返回命题点导航
代数式与整式— 真题试做
返回栏目导航
8.( 2020·河北2题3分)墨迹覆盖了等式“x3■x=x2(x≠0)”中的运算符
号,则覆盖的是(
A.+
D )
B.-Βιβλιοθήκη C.×D.÷9.( 2020·河北11题2分)若k为正整数,则( + + … + )k=( A )
3.( 2022·河北9题3分)若x和y互为倒数,则 +
A.1
返回栏目导航
返回命题点导航
代数式与整式— 真题试做
B.2
C.3
−
的值是( B )
D.4
4.( 2013·河北5题2分)若x=1,则|x-4|=( A )
A.3
B.-3
C.5
D.-5
1
5.( 2016·河北18题3分)若mn=m+3,则2mn+3m-5mn+10=
人教版八年级数学上册 专题复习:整式的运算
专题 整式的运算知 识 点名师点晴整式的有关概念单项式知道单项式、单项式的系数、次数多项式 知道多项式、多项式的项、多项式的次数、常数项.同类项 能够分清哪些项是同类项.整式的运算1.幂的运算能运用幂的运算法则进行同底数幂的乘法、除法、幂的乘方、积的乘方运算2.整式的加、减、乘、除法运算法则 能按照运算法则进行整式的加、减、乘、除法运算以及整式的混合运算3.乘法公式能熟练运用乘法公式☞2年中考【2015年题组】 1.(2015北海)下列运算正确的是( )A .3412a b a +=B .326()ab ab = C .222(5)(42)3a ab a ab a ab --+=- D .1262x x x ÷= 【答案】C . 【解析】试题分析:A .3a 与4b 不是同类项,不能合并,故错误;B .3226()ab a b =,故错误; C .正确;D .1266x x x ÷=,故错误;故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.去括号与添括号;4.同底数幂的除法. 2.(2015南宁)下列运算正确的是( )A .ab a ab 224=÷B .6329)3(x x =C .743a a a =•D .236=÷【答案】C .考点:1.整式的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.二次根式的乘除法. 3.(2015厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .22xy -B .23xC .32xyD .32x【答案】D . 【解析】试题分析:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A .22xy -系数是﹣2,错误;B .23x 系数是3,错误;C .32xy 次数是4,错误;D .32x 符合系数是2,次数是3,正确; 故选D .考点:单项式.4.(2015厦门)32-可以表示为( )A .2522÷ B .5222÷ C .2522⨯ D .(2)(2)(2)-⨯-⨯-【答案】A . 【解析】试题分析:A .2522÷=252-=2522÷,故正确;B .5222÷=32,故错误; C .2522⨯=72,故错误;D .(2)(2)(2)-⨯-⨯-=3(2)-,故错误;故选A .考点:1.负整数指数幂;2.有理数的乘方;3.同底数幂的乘法;4.同底数幂的除法. 5.(2015镇江)计算3(2)4(2)x y x y --+-的结果是( )A .2x y -B .2x y +C .2x y --D .2x y -+ 【答案】A .考点:整式的加减. 6.(2015广元)下列运算正确的是( )A .23222()()ab ab ab -÷=- B .2325a a a +=C .22(2)(2)2a b a b a b +-=-D .222(2)4a b a b +=+【答案】A . 【解析】试题分析:A .23222()()ab ab ab -÷=-,正确;B .325a a a +=,故错误;C .22(2)(2)4a b a b a b +-=-,股错误; D .222(2)44a b a b ab +=++,故错误. 故选A .考点:1.平方差公式;2.合并同类项;3.同底数幂的除法;4.完全平方公式. 7.(2015十堰)当x=1时,1axb 的值为-2,则11ab a b的值为的值为( )A .﹣16B .﹣8C .8D .16 【答案】A . 【解析】试题分析:∵当x=1时,1axb 的值为﹣2,∴12a b ++=-,∴3a b +=-,∴11a b a b=(﹣3﹣1)×(1+3)=﹣16.故选A .考点:整式的混合运算—化简求值.8.(2015黄冈)下列结论正确的是( )A .2232a b a b -= B .单项式2x -的系数是1-C .使式子2+x 有意义的x 的取值范围是2x >-D .若分式112+-a a 的值等于0,则1a =±【答案】B .考点:1.合并同类项;2.单项式;3.分式的值为零的条件;4.二次根式有意义的条件.9.(2015佛山)若n mx x x x ++=-+2)1()2(,则m n +=( ) A .1 B .﹣2 C .﹣1 D .2【答案】C . 【解析】试题分析:∵(2)(1)x x +-=2+2x x -=2x mx n ++,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选C .考点:多项式乘多项式. 10.(2015天水)定义运算:a ⊗b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a ⊗b=b ⊗a ,③若a+b=0,则(a ⊗a )+(b ⊗b )=2ab ,④若a ⊗b=0,则a=0或b=1,其中结论正确的序号是( )A .①④B .①③C .②③④D .①②④ 【答案】A .考点:1.整式的混合运算;2.有理数的混合运算;3.新定义. 11.(2015邵阳)已知3a b +=,2ab =,则22a b +的值为( ) A .3 B .4 C .5 D .6 【答案】C . 【解析】试题分析:∵3a b +=,2ab =,∴22a b +=2()2a b ab +-=9﹣2×2=5,故选C .考点:完全平方公式.12.(2015临沂)观察下列关于x 的单项式,探究其规律: x ,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2015个单项式是( )A .2015x2015B .4029x2014C .4029x2015D .4031x2015 【答案】C . 【解析】 试题解析:系数的规律:第n 个对应的系数是2n ﹣1.指数的规律:第n 个对应的指数是n .故第2015个单项式是4029x2015.故选C . 考点:1.单项式;2.规律型. 13.(2015日照)观察下列各式及其展开式:222()2a b a ab b +=++; 33223()33a b a a b ab b +=+++; 4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是( )A .36B .45C .55D .66【答案】B .考点:1.完全平方公式;2.规律型;3.综合题.14.(2015连云港)已知m n mn +=,则(1)(1)m n --= . 【答案】1.【解析】试题分析:(1)(1)m n --=mn ﹣(m+n )+1,∵m+n=mn ,∴(m ﹣1)(n ﹣1)=mn ﹣(m+n )+1=1,故答案为:1.考点:整式的混合运算—化简求值.15.(2015珠海)填空:2+10x x + =2(_____)x +.【答案】25;5. 【解析】试题分析:∵10x=2×5x ,∴2+1025x x +=2(5)x +.故答案为:25;5.考点:完全平方式. 16.(2015郴州)在m2□6m□9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为 .【答案】12.考点:1.列表法与树状图法;2.完全平方式. 17.(2015大庆)若若52=na ,162=nb ,则()nab = .【答案】5±. 【解析】试题分析:∵52=n a ,162=n b ,∴2280n na b ⋅=,∴2()80nab =,∴()n ab =45±5±.考点:幂的乘方与积的乘方.18.(2015牡丹江)一列单项式:2x -,33x ,45x -,57x ,…,按此规律排列,则第7个单项式为 . 【答案】213x -. 【解析】试题分析:第7个单项式的系数为﹣(2×7﹣1)=﹣13,x 的指数为8,所以,第7个单项式为213x -.故答案为:213x -.考点:1.单项式;2.规律型.19.(2015安顺)计算:201320111(3)()3-⋅-= .【答案】9.考点:1.幂的乘方与积的乘方;2.同底数幂的乘法.20.(2015铜仁)请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则6()a b += .【答案】654233245661520156a a b a b a b a b ab b ++++++. 【解析】试题分析:6()a b +=654233245661520156a a b a b a b a b ab b ++++++.故本题答案为:654233245661520156a a b a b a b a b ab b ++++++.考点:1.完全平方公式;2.规律型:数字的变化类;3.综合题. 21.(2015南宁)先化简,再求值:(1)(1)(2)1x x x x +-++-,其中12x =.【答案】2x ,1. 【解析】试题分析:先利用乘法公式展开,再合并得到答案,然后把12x =代入计算即可.试题解析:原式=22121x x x -++-=2x ,当12x =时,原式=2×12=1.考点:整式的混合运算—化简求值.22.(2015无锡)计算: (1)02(5)(3)3--+-;(2)2(1)2(2)x x +--. 【答案】(1)1;(2)25x +.考点:1.整式的混合运算;2.实数的运算;3.零指数幂.23.(2015内江)填空:()()a b a b -+= ;22()()a b a ab b -++= ; 3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+. 【答案】(1) 22a b -,33a b -,44a b -;(2) nna b -;(3)342. 【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可; (2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果. 试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -; 3223()()a b a a b ab b -+++=44a b -;故答案为:22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=nna b -,故答案为:nna b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342. 考点:1.平方差公式;2.规律型;3.阅读型;4.综合题.24.(2015咸宁)(1)计算:128(2)-++-;(2)化简:2232(2)()a b ab b b a b --÷--.【答案】(1)32;(2)22b -.考点:1.整式的混合运算;2.实数的运算;3.零指数幂.25.(2015随州)先化简,再求值:5322(2)(2)(5)3()a a a a b a b a b +-+-+÷-,其中12ab =-.【答案】42ab -,5.【解析】试题分析:利用平方差公式、单项式乘以多项式法则、单项式除法运算,合并得到最简结果,把ab 的值代入计算即可求出值.试题解析:原式=22453a a ab ab -+-+=42ab -,当12ab =-时,原式=4+1=5.考点:整式的混合运算—化简求值.26.(2015北京市)已知22360a a +-=. 求代数式3(21)(21)(21)a a a a +-+-的值.【答案】7. 【解析】试题分析:利用单项式乘以多项式法则、平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:∵22360a a +-=,即2236a a +=,∴原式=226341a a a +-+=2231a a ++=6+1=7. 考点:整式的混合运算—化简求值.27.(2015茂名)设y ax =,若代数式()(2)3()x y x y y x y +-++化简的结果为2x ,请你求出满足条件的a 值.【答案】a=﹣2或0.【解析】试题分析:因式分解得到原式=2()x y +,再把当y ax =代入得到原式=22(1)a x +,所以当2(1)1a +=满足条件,然后解关于a 的方程即可.试题解析:原式=2()x y +,当y ax =时,代入原式得222(1)a x x +=,即2(1)1a +=,解得:a=﹣2或0.考点:1.整式的混合运算;2.平方根. 28.(2015河北省)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式; (2)若16+=x ,求所捂二次三项式的值.【答案】(1)221x x -+;(2)6.考点:整式的混合运算—化简求值.【2014年题组】 1.(2014年百色中考) 下列式子正确的是( ) A .(a ﹣b )2=a2﹣2ab+b2 B . (a ﹣b )2=a2﹣b2 C .(a ﹣b )2=a2+2ab+b2 D .(a ﹣b )2=a2﹣ab+b2 【答案】A . 【解析】试题分析:A .(a ﹣b )2=a2﹣2ab+b2,故A 选项正确;B .(a ﹣b )2≠a2﹣b2,故B 选项错误;C .(a ﹣b )2≠a2+2ab+b2,故C 选项错误;D .(a ﹣b )2≠a2﹣ab+b2,故D 选项错误;故选A . 考点:完全平方公式.2.(2014年镇江中考)下列运算正确的是( ) A.()339x x = B.()332x 6x -=- C.22x x x -= D.632x x x ÷=【答案】A .考点:1.幂的乘方和积的乘方;2.合并同类项;3.同底幂乘除法. 3.(2014年常州中考)下列运算正确的是( )A. 33a a a ⋅=B.()33ab a b = C. ()236a a = D. 842a a a ÷=【答案】C .【解析】试题分析:根据同底幂乘法,同底幂乘除法,幂的乘方和积的乘方运算法则逐一计算作出判断: A. 31343a a aa a+⋅==≠,选项错误; B.()3333ab a b a b=≠,选项错误;C.()23326a a a ⨯==,选项正确; D. 848442a a aa a -÷==≠,选项错误.故选C .考点:1.同底幂乘法;2.同底幂乘除法;3.幂的乘方和积的乘方. 4.(2014年抚顺中考)下列运算正确的是( ) A .-2(a-1)=-2a-1B .(-2a )2=-2a2C .(2a+b )2=4a2+b2 D . 3x2-2x2=x2 【答案】D . 【解析】 试题分析:A 、-2(a-1)=-2a+2,故A 选项错误;B 、(-2a )2=4a2,故B 选项错误;C 、(2a+b )2=4a2+4ab+b2,故C 选项错误;D 、3x2-2x2=x2,故D 选项正确. 故选D .考点:1.完全平方公式;2.合并同类项;3.去括号与添括号;4.幂的乘方与积的乘方. 5.(2014年眉山中考)下列计算正确的是( )A .235x x x +=B .236x x x ⋅=C .236()x x =D .632x x x ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.6.(2014年资阳中考)下列运算正确的是( ) A .a3+a4=a7 B . 2a3•a4=2a7 C . (2a4)3=8a7 D . a8÷a2=a4 【答案】B . 【解析】试题分析:A 、a3和a4不能合并,故A 错误;B 、2a3•a4=2a7,故B 正确;C 、(2a4)3=8a12,故C 错误;D 、a8÷a2=a6,故D 错误;故选B .考点:整式的运算.7.(2014年镇江中考)化简:()()x 1x 11+-+=.【答案】2x . 【解析】试题分析:第一项利用平方差公式展开,去括号合并即可得到结果:()()22x 1x 11x 11x +-+=-+=.考点:整式的混合运算.8.(2014年吉林中考)先化简,再求值:x (x+3)﹣(x+1)2,其中x=+1.【答案】x ﹣1;2.【解析】试题分析:先利用整式的乘法和完全平方公式计算,再进一步合并化简,最后代入数值即可. 试题解析:原式=x2+3x ﹣x2﹣2x ﹣1=x ﹣1,当x=2+1时,原式=2+1﹣1=2. 考点:1.整式的运算;2.化简求值.9.(2014年绍兴中考)先化简,再求值:()()()2a a 3b a b a a b -++--,其中1a 1b 2==-,.【答案】a2+b2,54.考点:整式的混合运算—化简求值.10.(2014年杭州中考)设y kx =,是否存在实数k ,使得代数式2222222(x y )(4x y )3x (4x y )--+-能化简为4x ?若能,请求出所有满足条件的k 值,若不能,请说明理由. 【答案】能. 【解析】试题分析:化简代数式,根据代数式恒等的条件列关于k 的方程求解即可 试题解析:∵y kx=,∴222222222222222(x y )(4x y )3x (4x y )(4x y )(x y 3x )(4x y )--+-=--+=-()2222242(4x k x )x 4k =-=-.∴要使代数式22222224(x y )(4x y )3x (4x y )x --+-=,只要()224k1-=.∴24k 1-=±,解得k=±3或k=±5.考点:1. 代数式的化简;2. 代数式恒等的条件;3.解高次方程.☞考点归纳归纳 1:整式的有关概念 基础知识归纳:整式:单项式与多项式统称整式.(1)单项式:由数与字母的乘积组成的代数式叫做单项式(单独一个数或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;单项式中的所有字母的指数的和叫做这个单项式的次数.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中次数最高的项的 次数叫做这个多项式的次数.不含字母的项叫做常数项.2. 同类项:所含字母相同并且相同字母的指数也分别相等的项叫做同类项.基本方法归纳:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同. 注意问题归纳:1、单项式的次数是指单项式中所有字母指数的和,单独一个非0数的次数是0;2、多项式的次数是指次数最高的项的次数.3、同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同. 【例1】下列式子中与3m2n 是同类项的是( ) A.3mn B.3nm2 C.4m D.5n 【答案】B .考点:同类项. 归纳 2:幂的运算 基础知识归纳:(1)同底数幂相乘:am ·an =am +n (m ,n 都是整数,a ≠0) (2)幂的乘方:(am )n =amn (m ,n 都是整数,a ≠0) (3)积的乘方:(ab )n =an ·bn (n 是整数,a ≠0,b ≠0) (4)同底数幂相除:am ÷an =am -n (m ,n 都是整数,a ≠0) 注意问题归纳:(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理. 【例2】下列运算正确的是( )A. 33a a a ⋅= B.()33ab a b = C.()236a a = D. 842a a a ÷=【答案】C .考点:幂的运算.归纳 3:整式的运算 基础知识归纳:1.整式的加减法:,实质上就是合并同类项 1.整式乘法①单项式乘多项式:m (a +b )=ma+mb ; ②多项式乘多项式:(a +b )(c +d )=ac+ad+bc+bd ③乘法公式:平方差公式:(a+b )(a-b )=a2-b2;完全平方公式:(a ±b )2=a2±2ab+b2.3.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.注意问题归纳:注意整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算. 【例3】下列计算正确的是( ) A .2x -x =x B .a3·a2=a6 C .(a -b )2=a2-b2 D .(a +b )(a -b )=a2+b2 【答案】A .【解析】A 、原式=x ,正确;B 、原式=x5,错误;C 、原式=a2-2ab+b2,错误;D 、原式=a2-b2,故选A .考点:整式的运算.【例4】先化简,再求值:()()()22a b a b b a b b +-++-,其中1a =、2b =-.【答案】-1.【解析】原式222222a b ab b b a ab =-++-=+;当1a =、2b =-时,原式()2112121=+⨯-=-=-.考点:整式的混合运算—化简求值.【例5】计算21()(21)(41)2x x x +-÷- 【答案】12.【解析】原式=12(2x+1)(2x ﹣1)÷[(2x ﹣1)(2x+1)]=12.考点:整式的混合运算. ☞1年模拟 1、(2015届云南省剑川县九上第三次统一模拟考试数学试卷)下列运算正确的是( )A .6a ÷2a =3aB .22532a a a -=C .235()a a a -⋅=D .527a b ab +=【答案】C .考点:整式的运算. 2.(2015届湖北省咸宁市嘉鱼县城北中学中考模拟考试数学试卷)下列运算正确的是( ).A .623a a a =⋅B .6223)(b a ab =C .222)(b a b a -=-D .235=-a a【答案】B . 【解析】试题分析:因为32235a a a a +⋅==,所以A 错误;因为6223)(b a ab =,所以B 正确;因为222()2a b a ab b -=-+,所以C 错误;因为532a a a -=,所以D 错误;故选B .考点:1.幂的运算;2.整式的加减. 3.(2015届重庆市合川区清平中学等九年级模拟联考数学试卷)下列运算正确的是( )A .23a a ⋅=6aB .33()y y x x = C .55a a a ÷= D .326()a a =【答案】D .考点:1.同底数幂的除法;2.幂的乘方与积的乘方;3.同底数幂的乘法.4.(2015届云南省腾冲县九年级上学期五校联考摸底考试数学试卷)下列运算正确的是( )A .642a a a =+B .523)(a a =C .2328=+D .222))((b ab a b a b a ---=---【答案】C .【解析】试题分析:A .2a 和4a 不能合并,故错误;B .3265()a a a =≠,故错误;C .8222232+=+=,故正确;D .2222()()()a b a b a b a b ---=--=-+,故错误;故选C .考点:1.二次根式的混合运算;2.整式的混合运算. 5.(2015届山东省日照市中考一模)观察下列各式及其展开式: (a+b )2=a2+2ab+b2(a+b )3=a3+3a2b+3ab2+b3(a+b )4=a4+4a3b+6a2b2+4ab3+b4(a+b )5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 …请你猜想(a+b )10的展开式第三项的系数是( ) A .36 B .45 C .55 D .66 【答案】B .考点:完全平方公式.6.(2015届云南省腾冲县九年级上学期五校联考摸底考试数学试卷)若3223y x mm -与3852y x m +-能够进行加减运算,则21m +=_________________; 【答案】-1或9.【解析】试题分析:∵3223y x mm -与3852y x m +-能够进行加减运算,∴2258m m m -=+,即:2340m m --=,解得:1m =-或4m =,①当1m =-时,21m +=-1,②当4m =时,21m +=9.故答案为:-1或9.考点:1、同类项;2、解一元二次方程-因式分解法;3、分类讨论. 7.(2015届广东省佛山市初中毕业班综合测试)已知a2-2a-3=0,求代数式2a (a-1)-(a+2)(a-2)的值.【答案】7.考点:整式的混合运算—化简求值.7、我们各种习气中再没有一种象克服骄傲那麽难的了。
中考数学专题复习2整式的运算(解析版)
整式的运算复习考点攻略考点01 整式的有关概念1.整式:单项式和多项式统称为整式.2.单项式:单项式是指由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有字母指数的和叫做单项式的次数. 【注意】单项式的系数包括它前面的符号3.多项式:几个单项式的和叫做多项式;多项式中.每一个单项式叫做多项式的项.其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项叫做同类项. 【例1】单项式3212a b 的次数是_____. 【答案】5 【解析】单项式3212a b 的次数是325+=.故答案为5. 【例2】下列说法中正确的是( )A .25xy -的系数是–5 B .单项式x 的系数为1.次数为0C .222xyz -的次数是6D .xy +x –1是二次三项式 【答案】D【解析】A.25xy -的系数是–15.则A 错误;B.单项式x 的系数为1.次数为1.则B 错误;C.222xyz -的次数是1+1+2=4.则C 错误;D.xy +x –1是二次三项式.正确.故选D.【例3】若单项式32m x y 与3m nxy +是同类项.2m n +_______________.【答案】2【解析】由同类项的定义得:13m m n =⎧⎨+=⎩解得12m n =⎧⎨=⎩221242m n +=⨯+==故答案为:2.【例4】按一定规律排列的单项式:a .2a -.4a .8a -.16a .32a -.….第n 个单项式是( )A .()12n a --B .()2na -C .12n a -D .2n a【答案】A 【解析】解:a .2a -.4a .8a -.16a .32a -.….可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------•••∴ 第n 项为:()12.n a -- 故选A .【例5】如图.图案均是用长度相等的小木棒.按一定规律拼搭而成.第一个图案需4根小木棒.则第6个图案需小木棒的根数是( )A .54B .63C .74D .84【答案】A【解析】拼搭第1个图案需4=1×(1+3)根小木棒. 拼搭第2个图案需10=2×(2+3)根小木棒. 拼搭第3个图案需18=3×(3+3)根小木棒. 拼搭第4个图案需28=4×(4+3)根小木棒. …拼搭第n 个图案需小木棒n (n +3)=n 2+3n 根. 当n =6时.n 2+3n =62+3×6=54. 故选A.考点02 整式的运算1.幂的运算:a m ·a n =a m +n ;(a m )n =a mn ;(ab )n =a n b n ;a m ÷a n =m n a -. 2. 整式的加减:几个整式相加减.如有括号就先去括号.然后再合并同类项。
2020中考数学考点举一反三讲练第2讲 代数式及整式的运算 (教师版)
第2讲 代数式及整式的运算一、考点知识梳理【考点1 代数式定义及列代数式】1.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.2.代数式的值:用数值代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值.【考点2 幂的运算】同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.a m •a n =a m +n (m ,n 是正整数)幂的乘方法则:底数不变,指数相乘.(a m )n =a mn (m ,n 是正整数)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab )n =a n b n (n 是正整数)同底数幂的除法法则:底数不变,指数相减.a m ÷a n =a m ﹣n (a ≠0,m ,n 是正整数,m >n )【考点3 合并同类项】所含字母相同并且相同字母的指数也分别相同的项叫做同类项.所有的常数项都是同类项.把多项式中同类项合成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【考点4 整式的乘法】单项式乘以多项式m(a +b)=am +bm多项式乘以多项式(a +b)(m +n)=am +an +bm +bn二、考点分析【考点1 代数式定义及列代数式】【解题技巧】(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式;(2)列代数式的关键是正确分析数量关系,掌握文字语言(和、差、积、商、乘以、除以等)在数学语言中的含义;(3)注意书写规则:a×b 通常写作a·b 或ab ;1÷a 通常写作1a;数字通常写在字母前面,如a×3通常写作3a ;带分数一般写成假分数,如115a 通常写作65a. 【例1】(2019.海南中考)当m =﹣1时,代数式2m +3的值是( )A .﹣1B .0C .1D .2【答案】C .【分析】将m=﹣1代入代数式即可求值;【解答】解:将m=﹣1代入2m+3=2×(﹣1)+3=1;故选:C.【举一反三1-1】(2019.云南中考)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1【答案】C.【分析】观察指数规律与符号规律,进行解答便可.【解答】解:∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:C.【举一反三1-2】(2019•台湾)图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a,矩形面积为b.若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?()A.4a+2b B.4a+4b C.8a+6b D.8a+12b【答案】C.【分析】根据已知条件即可得到结论.【解答】解:∵正三角形面积为a,矩形面积为b,∴图2中直角柱的表面积=2×4a+6b=8a+6b,故选:C.【举一反三1-3】(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.10﹣x B.10﹣y C.10﹣x+y D.10﹣x﹣y【答案】A.【分析】根据点的饮料能确定在B和C餐中点了x份意大利面,由题意可得点A餐10﹣x;【解答】解:x杯饮料则在B和C餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10﹣x;故选:A.【考点2 幂的运算】【解题技巧】1.在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x﹣y)2与(x﹣y)3等;②a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.2.概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.3.注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.【例2】(2019•广东中考)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6【答案】C.【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案.【解答】解:A、b6+b3,无法计算,故此选项错误;B、b3•b3=b6,故此选项错误;C、a2+a2=2a2,正确;D、(a3)3=a9,故此选项错误.故选:B.【举一反三2-1】(2019•甘肃中考)计算(﹣2a)2•a4的结果是()A.﹣4a6B.4a6C.﹣2a6D.﹣4a8【答案】C.【分析】直接利用积的乘方运算法则化简,再利用同底数幂的乘法运算法则计算得出答案.【解答】解:(﹣2a)2•a4=4a2•a4=4a6.故选:B.【举一反三2-2】(2019•海南中考)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2 D.(3a2)2=6a4【答案】A.【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【解答】解:a•a2=a1+2=a3,A准确;a6÷a2=a6﹣2=a4,B错误;2a2﹣a2=a2,C错误;(3a2)2=9a4,D错误;故选:A.【举一反三2-3】(2019•江苏南京中考)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【答案】D.【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【举一反三2-4】(2019•山东济南中考模拟)在平面直角坐标系中,任意两点A(a,b),B(c,d),定义一种运算:A*B=[(3﹣c),],若A(9,﹣1),且A*B=(12,﹣2),则点B的坐标是______.【答案】(﹣1,8).【分析】根据新运算公式列出关于c、d的方程组,解方程组即可得c、d的值;进一步得到点B的坐标.【解答】解:根据题意,得,解得:.则点B的坐标为(﹣1,8).故答案为:(﹣1,8).【考点3 合并同类项】【解题技巧】合并同类项时要注意以下三点:(1)要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;(2)明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;(3)“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.(4)只要不再有同类项,就是结果(可能是单项式,也可能是多项式).【例3】(2019•吉林长春中考)先化简,再求值:(2a+1)2﹣4a(a﹣1),其中a=.【答案】2.【分析】直接利用完全平方公式以及单项式乘以多项式分别化简得出答案.【解答】解:原式=4a2+4a+1﹣4a2+4a=8a+1,当a=时,原式=8a+1=2.【举一反三3-1】(2019•山东威海中考)下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+1【答案】C.【分析】根据合并同类项法则,幂的乘方的性质,单项式与多项式乘法法则,同底数幂的除法的性质对各选项分析判断后利用排除法求解.【解答】解:A、(a2)3=a6,故本选项错误;B、3a2+a,不是同类项,不能合并,故本选项错误;C、a5÷a2=a3(a≠0),正确;D、a(a+1)=a2+a,故本选项错误.故选:C.【举一反三3-2】(2019•辽宁沈阳中考)下列运算正确的是()A.2m3+3m2=5m5B.m3÷m2=mC.m•(m2)3=m6D.(m﹣n)(n﹣m)=n2﹣m2【答案】B.【分析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可.【解答】解:A.2m3+3m2=5m5,不是同类项,不能合并,故错误;B.m3÷m2=m,正确;C.m•(m2)3=m7,故错误;D.(m﹣n)(n﹣m)=﹣(m﹣n)2=﹣n2﹣m2+2mn,故错误.故选:B.【举一反三3-3】(2019•河北石家庄中考模拟)先化简,再求值:(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.【分析】首先去括号,合并同类项,将两代数式化简,然后代入数值求解即可.【解答】解:∵(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a)=5a2+2a+1﹣12+32a﹣8a2+3a2﹣a=33a﹣11,∴当a=时,原式=33a﹣11=33×﹣11=0;【举一反三3-4】(2019•山东青岛中考模拟)化简求值:已知整式2x2+ax﹣y+6与整式2bx2﹣3x+5y﹣1的差不含x和x2项,试求4(a2+2b3﹣a2b)+3a2﹣2(4b3+2a2b)的值.【分析】根据两整式的差不含x和x2项,可得差式中x与x2的系数为0,列式求出a、b的值,然后将代数式化简再代值计算.【解答】解:2x2+ax﹣y+6﹣(2bx2﹣3x+5y﹣1)=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵两个整式的差不含x和x2项,∴2﹣2b=0,a+3=0,解得a=﹣3,b=1,4(a2+2b3﹣a2b)+3a2﹣2(4b3+2a2b)=4a2+8b3﹣4a2b+3a2﹣8b3﹣4a2b=7a2﹣8a2b,当a=﹣3,b=1时,原式=7a2﹣8a2b=7×(﹣3)2﹣8×(﹣3)2×1=7×9﹣8×9×1=63﹣72=﹣9.【考点4 整式的乘法】【解题技巧】多项式的乘法要注意多项式中每一项不要漏乘,还要注意运算符号,遵循去括号的法则。
中考数学复习第2课时《整式》教案
中考数学复习第2课时《整式》教案一. 教材分析中考数学复习第2课时《整式》主要涉及整式的概念、性质和运算。
整式作为初中数学的基础内容,贯穿于整个数学学习过程中。
本节课的内容主要包括整式的加减、乘除运算以及整式的乘方。
这些内容不仅是中考的重点,也是学生后续学习函数、几何等知识的基础。
二. 学情分析学生在之前的学习中已经掌握了整式的基本概念和部分运算,但仍有部分学生对整式的运算规则理解不透彻,导致在实际运算中出现错误。
此外,学生在解决实际问题时,往往不能灵活运用整式的知识,需要老师在教学中引导学生学会运用整式解决实际问题。
三. 教学目标1.知识与技能:使学生掌握整式的加减、乘除和乘方运算,能熟练运用整式解决实际问题。
2.过程与方法:通过小组合作、讨论交流等方法,培养学生的合作意识和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的重要性。
四. 教学重难点1.重点:整式的加减、乘除和乘方运算。
2.难点:整式运算的灵活运用以及解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入整式运算,使学生感受到数学与生活的紧密联系。
2.小组合作学习:引导学生分组讨论,培养学生的合作意识和解决问题的能力。
3.启发式教学:教师提问,引导学生思考,激发学生的学习兴趣。
六. 教学准备1.教师准备:熟练掌握整式运算的相关知识,准备相关的教学案例和练习题。
2.学生准备:预习整式运算的相关内容,了解基本概念和运算规则。
七. 教学过程1.导入(5分钟)教师通过生活实例引入整式运算,如计算购物时的折扣金额。
让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)教师展示整式的加减、乘除和乘方运算的案例,引导学生观察和分析,让学生尝试自己解决问题。
3.操练(10分钟)学生分组讨论,共同解决教师提出的问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成。
人教版中考数学复习:第1章课时3 代数式、整式与因式分解
按照这种规律摆下去,第n个图形用的棋子个数为
( D)
A. 3n
B. 6n
C. 3n+6
D. 3n+3
考点巩固训练
4. 如图1-1-3-6所示的图形都是由同样大小的小圆圈按
一定规律组成的,其中第①个图形中一共有1个空心小圆
圈,第②个图形中一共有6个空心小圆圈,第③个图形中
中考考题精练
考点1 代数(5年未考) 1. (2017自贡)如图1-1-3-1,填在各正方形中四个数之 间都有相同的规律,根据这种规律,m的值为( ) C
A. 180 C. 184
B. 182 D. 186
中考考题精练
2. (2017扬州)在一列数:a1,a2,a3,…,an中,a1=3,a2=7, 从第三个数开始,每一个数都等于它前两个数之积的个
A. 1
B. 2
C. 3
D. 5
考点巩固训练
7. 计算(-xy3)2的结果是( A ) A. x2y6 C. x2y9 8. 下列运算正确的是( C ) A. 3a+4a=12a B. (ab3)2=ab6 C. (5a2-ab)-(4a2+2ab)=a2-3ab D. x12÷x6=x2
B. -x2y6 D. -x2y9
17. 把式子:-6x2+12x-6因式分解,正确的是( )A
A. -6(x-1)2 B. -6(x+1)2 C. -6x(x-2) D. -6x(x+2)
考点巩固训练
18. 把多项式4x2y-4xy2-x3分解因式的结果是( B ) A. 4xy(x-y)-x3 B. -x(x-2y)2 C. x(4xy-4y2-x2) D. -x(-4xy+4y2+x2) 19. 分解因式:ax2-ay2=___a_(x_+_y_)_(_x_-y_)____. 20. 分解因式:4x2-6x=____2_x_(_2_x_-3_)____.
2022年最新中考数学知识点梳理 考点02 整式与因式分解(教师版)
2022年最新中考数学知识点梳理考点总结+真题演练涵盖近年来的中考真题和中考模拟考点02 整式与因式分解考点总结一、代数式代数式的书写要注意规范,如乘号“×”用“·”表示或省略不写;分数不要用带分数;除号用分数线表示等. 二、整式1.单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的次数,数字因数叫做单项式的系数.注:○1单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如2143a b -,这种表示就是错误的,应写成2133a b -;○2一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如325a b c -是6次单项式。
2.多项式:由几个单项式相加组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个多项式的次数,其中不含字母的项叫做常数项. 3.整式:单项式和多项式统称为整式.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项. 5.整式的加减:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 6.幂的运算:a m ·a n =a m +n ;(a m )n =a mn ;(ab )n =a n b n ;a m ÷a n =m n a -.7.整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. (2)单项式与多项式相乘:m (a +b +c )=ma +mb +mc . (3)多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nb . 8.乘法公式:(1)平方差公式:22()()a b a b a b +-=-. (2)完全平方公式:222()2a b a ab b ±=±+.9.整式的除法:(1)单项式除以单项式,把系数、同底数的幂分别相除,作为商的因式:对于只在被除式含有的字母,则连同它的指数作为商的因式.(2)多项式除以单项式:先把这个多项式的每一项除以单项式,再把所得的商相加.三、因式分解1.把一个多项式化成几个因式积的形式,叫做因式分解,因式分解与整式乘法是互逆运算.2.因式分解的基本方法:(1)提取公因式法:()ma mb mc m a b c ++=++.(2)公式法:运用平方差公式:²²()()a b a b a b -=+-. 运用完全平方公式:22²2()a ab b a b ±+=±. 3.分解因式的一般步骤:(1)如果多项式各项有公因式,应先提取公因式; (2)如果各项没有公因式,可以尝试使用公式法: 为两项时,考虑平方差公式; 为三项时,考虑完全平方公式;为四项时,考虑利用分组的方法进行分解;(3)检查分解因式是否彻底,必须分解到每一个多项式都不能再分解为止. 以上步骤可以概括为“一提二套三检查”.真题演练一.选择题(共10小题)1.(2021•河北模拟)若(9m)2=312,则m的值为()A.3 B.4 C.5 D.6【分析】化为同底数的幂的形式,列方程即可得到答案.【解答】解:∵(9m)2=312,∴34m=312,∴4m=12,∴m=3,故选:A.2.(2021•开平区一模)如果()•m=m6,那么()=()A.m7B.m6C.m5D.5m【分析】根据同底数幂的乘法法则解决此题.【解答】解:根据同底数幂的乘法,得m5•m=m6.故选:C.3.(2021•桥东区二模)关于﹣a﹣b进行的变形或运算:①﹣a﹣b=﹣(a+b);②(﹣a﹣b)2=(a+b)2;③|﹣a﹣b|=a﹣b;④(﹣a﹣b)3=﹣(a﹣b)3.其中不正确的是()A.①②B.③④C.①③D.②④【分析】利用完全平方公式,绝对值的定义,去括号和添括号法则逐一判断即可.【解答】解:①﹣a﹣b=﹣(a+b),正确;②(﹣a﹣b)2=(a+b)2,正确;③|﹣a﹣b|=a+b,故原说法错误;④(﹣a﹣b)3=﹣(a+b)3,故原说法错误.其中不正确的有③④,故选:B.4.(2021•河北模拟)若k为正整数,则(k3)2表示的是()A.2个k3相加B.3个k2相加C.2个k3相乘D.5个k相乘【分析】根据幂的定义判断即可. 【解答】解:(k 3)2表示的是2个k 3相乘. 故选:C .5.(2021•安次区一模)计算a 6×(﹣a 2)的结果是( ) A .a 4B .﹣a 8C .a 8D .﹣a 4【分析】利用同底数的幂相乘,底数不变,指数相加,即可得到答案. 【解答】解:a 6×(﹣a 2)=﹣a 8, 故选:B .6.(2021•开平区一模)古希腊著名的毕达哥拉斯学派把1,3,6,10......这样的数称为“三角形数”,而把1,4,9,16.......这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,根据上面的规律,用含有n (n 为大于等于1的整数)的等式表示上面关系正确的是( )A .n +n +2=n 2B .n (n +3)=n 2C .(n +1)(n ﹣1)=n 2﹣1 D .n(n+1)2+(n+1)(n+1+1)2=(n +1)2【分析】根据特殊到一般的数学思想解决此题. 【解答】解:第1个图形,(1+1)2=4=1+(1+2); 第2个图形,(2+1)2=9=1+2+(1+2+3); 第3个图形,(3+1)2=16=1+2+3+(1+2+3+4); 第4个图形,(4+1)2=25=1+2+3+4+(1+2+3+4+5); …第n ﹣1个图形,(n ﹣1+1)2=n 2=1+2+3+…+n ﹣1+(1+2+3+…+n ); 第n 个图形,(n +1)2=1+2+3+…+n +(1+2+3+…+n +n +1). ∴(n +1)2=n(n+1)2+(n+1)(n+2)2. 故选:D .7.(2021•桥东区二模)若33+33+33+⋯+33︸k 个33=3m (k >1,k ,m 都是正整数),则m 的最小值为( ) A .3B .4C .6D .9【分析】提取公因式33,原式化为:33⋅(1+1+1+⋯+1)︷k=3m,根据k >1,k ,m 都是正整数,求出k 的最小值,进而求出m 的最小值.【解答】解:原式化为:33⋅(1+1+1+⋯+1)︷k=3m, ∴k =3m÷33=3m ﹣3,∵k >1,k ,m 都是正整数, ∴k 的最小值为3, ∴m ﹣3=1, ∴m 的最小值为4, 故选:B .8.(2021•唐山一模)若1052﹣210×5+52=k +992﹣1,则k 的值是( ) A .100B .105C .200D .205【分析】由1052﹣210×5+52=(105﹣5)2=1002=k +992﹣1=k +100×98,可得k 的值. 【解答】解:∵1052﹣210×5+52=(105﹣5)2=1002,k +992﹣1=k +(99+1)×(99﹣1)=k +100×98,∴k +100×98=1002, ∴k =200. 故选:C .9.(2021•鸡泽县模拟)我国古代数学的许多创新和发展都位居世界前列,如南宋数宁家杨辉(约13世纪)所著的《详解九章算术》一书中,用下图的三角形解释二项和(a +b )n的展开式的各项系数,此三角形称为“杨辉三角”. (a +b )0…① (a +b )1…①①(a+b)2…①②①(a+b)3…①③③①(a+b)4…①④⑥④①(a+b)5…①⑤⑩⑩⑤①…根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190 【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数.【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+19=190,故选:D.10.(2021•平泉市一模)下列运算正确的是()A.x3+x3=2x6B.(2x)3=6x3C.2x2•3x=6x3D.(2x﹣y)2=4x2﹣y2【分析】根据整式的加减运算以及乘法运算法则即可求出答案.【解答】解:A、原式=2x3,故A不符合题意.B、原式=8x3,故B不符合题意.C、原式=6x3,故C符合题意.D、原式=4x2﹣4xy+y2,故D不符合题意.故选:C.二.填空题(共5小题)11.(2021•河北模拟)已知a2+ab=0,b2﹣3ab=4.(1)3ab﹣b2=﹣4 ;(2)a﹣b=±2 .【分析】(1)加上一个负括号,然后整体代入;(2)已知两式相加,构成完全平方式,利用直接开平方法求解.【解答】解:(1)3ab ﹣b 2=﹣(b 2﹣3ab ) =﹣4; 故答案为:﹣4;(2)∵a 2+ab =0,b 2﹣3ab =4, ∴a 2+ab +b 2﹣3ab =4. 即a 2﹣2ab +b 2=4. ∴(a ﹣b )2=4. ∴a ﹣b =±2. 故答案为:±2.12.(2021•顺平县二模)如果一个两位数a 的个位数字与十位数字都不是零,且互不相同,我们称这个两位数为“跟斗数”,定义新运算:将一个“跟斗数”的个位数字与十位数字对调,把这个新两位数与原两位数的和与11的商记ω(a ),例如:a =13,对调个位数字与十位数字得到新两位数31,新两位数与原两位数的和,31+13=44,和与11的商44÷11=4,所以ω(13)=4.根据以上定义,回答下列问题: (1)计算:ω(23)= 5 .(2)若一个“跟斗数”b 的十位数字是k ,个位数字是2(k +1),且ω(b )=8,则“跟斗数”b = 26 .(3)若m ,n 都是“跟斗数”,且m +n =100,则ω(m )+ω(n )= 19 . 【分析】(1)根据题目中“跟斗数”的定义,可以计算出f (23)的值;(2)根据题意,可以得到关于k 的方程,从而可以求得k 的值,然后即可得到b 的值; (3)根据题意,可以表示出m 、n ,然后即可计算出f (m )+f (n )的值. 【解答】解:(1)ω(23)=23+3211=5. 故答案为:5;(2)∵一个“跟斗数”b 的十位数字是k ,个位数字是2(k +1),且ω(b )=8, ∴[10k+2(k+1)]+[10×2(k+1)+k]11=8,解得k =2, ∴2(k +1)=6,∴b=26.故答案为:26;(3)∵m,n都是“跟斗数”,且m+n=100,设m=10x+y,则n=10(9﹣x)+(10﹣y),∴ω(m)+ω(n)=(10x+y)+(10y+x)11+[10(9−x)+(10−y)]+[10(10−y)+(9−x)]11=10x+y+10y+x11+90−10x+10−y+100−10y+9−x11=11x+11y11+209−11x−11y11=x+y+19﹣x﹣y=19.故答案为:19.13.(2021•河北)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为a2+b2;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片 4 块.【分析】(1)由图可知:一块甲种纸片面积为a2,一块乙种纸片的面积为b2,一块丙种纸片面积为ab,即可求解;(2)利用完全平方公式可求解.【解答】解:(1)由图可知:一块甲种纸片的面积为a2,一块乙种纸片的面积为b2,一块丙种纸片面积为ab,∴取甲、乙纸片各1块,其面积和为a2+b2,故答案为:a2+b2;(2)设取丙种纸片x块才能用它们拼成一个新的正方形,(x≥0)∴a2+4b2+xab是一个完全平方式,∴x为4,故答案为:4.14.(2021•丰润区一模)计算:(﹣a)6÷a3=a3.【分析】同底数幂相除,底数不变,指数相减.据此计算即可.【解答】解:(﹣a)6÷a3=a6÷a3=a3.故答案为:a3.15.(2021•衡水模拟)若(2x+4y)2=4x2﹣2(m﹣1)xy+16y2,则m的值为﹣7 .【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵(2x+4y)2=4x2+16xy+16y2=4x2﹣2(m﹣1)xy+16y2,∴﹣2(m﹣1)=16,∴m=﹣7.故答案为:﹣7.三.解答题(共3小题)16.(2021•河北模拟)在数学课上,王老师出示了这样一道题目:“当a=12,b=﹣3时,求多项式2a2+4ab+2b2﹣2(a2+2ab+b2﹣1)的值.”解完这道题后,小明指出:“a=12,b=﹣3是多余的条件.”师生讨论后,一致认为小明的说法是正确的.(1)请你说明正确的理由;(2)受此启发,王老师又出示了一道题目:“已知无论x,y取什么值,多项式2x2﹣my+12﹣(nx2+3y﹣6)的值都等于定值18,求m+n的值.”请你解决这个问题.【分析】(1)去括号合并同类项可得代数式的值与a、b无关,即可得结论;(2)先求出m、n的值,再代入计算即可.【解答】解:(1)2a2+4ab+2b2﹣2(a2+2ab+b2﹣1)=2a2+4ab+2b2﹣2a2﹣4ab﹣2b2+2=2,∴该多项式的值为常数.与a和b的取值无关,小明的说法是正确的;(2)2x2﹣my+12﹣(nx2+3y﹣6)=2x2﹣my+12﹣nx2﹣3y+6=(2﹣n)x2+(﹣m﹣3)y+18,∵已知无论x,y取什么值,多项式2x2﹣my+12﹣(nx2+3y﹣6)的值都等于定值18,∴2﹣n=0,﹣m﹣3=0,解得n=2,m=﹣3,∴m+n=﹣3+2=﹣1.17.(2021•南皮县一模)已知:整式A=2x+1,B=2x﹣1.(1)化简A﹣2B;(2)若无论x为何值,A•B+k(k为常数)的值都是正数,求k的取值范围.【分析】(1)把相应的整式代入,再利用单项式乘多项式的法则,以及合并同类项的法则进行运算即可;(2)利用多项式乘多项式的法则进行运算,并结合条件进行分析即可.【解答】解:(1)A﹣2B=(2x+1)﹣2(2x﹣1)=2x+1﹣4x+2=﹣2x+3;(2)A•B+k=(2x+1)(2x﹣1)+k=4x2﹣1+k,∵无论x为何值时,4x2≥0,若A•B+k的值是正数,则﹣1+k>0,解得:k>1.18.(2021•开平区一模)(1)化简求值:(﹣m2+3+2m)﹣(5m﹣4+3m2),其中m=﹣2.(2)老师出了一道整式计算题化简求值题:(5x2﹣9)+(2+ax2),其中的字母a为常数;小明计算后说这个题的最后结果与x的取值无关,请你通过计算找到a的值.【分析】(1)先化简,再把给定字母的值代入计算,得出整式的值;(2)先化简,再根据计算后说这个题的最后结果与x的取值无关这个条件,列等式求出a.【解答】解:(1)(﹣m2+3+2m)﹣(5m﹣4+3m2)=﹣m2+3+2m﹣5m+4﹣3m2=﹣4m2﹣3m+7;把m=﹣2代入原式得,﹣4×(﹣2)2﹣3×(﹣2)+7=﹣3.(2)(5x2﹣9)+(2+ax2)=5x2﹣9+2+ax2=﹣7+(5+a)x2,∵计算后说这个题的最后结果与x的取值无关,∴5+a=0,∴a=﹣5.。
中考复习--整式和分式--2 (1)
题型四 x2+(p+q)x+pq 型式子的因式分解
例 4 分解因式:(1)x2+3x+2;(2)x2-3x-4.
思路导引 根据 x2+(p+q)x+pq=(x+p)(x+q),通过多次尝试“十字模型”解答.
多项式
尝试格式
x2+3x+2
x2-3x-4
(1)由于负整数指数幂可以变为分数(或分式)形式,分数(或分式)的 分母不能为 0,所以负整数指数幂的底数不为 0. (2)负整数指数幂的运算性质与正整数指数幂的运算性质相同. 重点解 (3)负整数指数幂的运算法则可逆用,形式为:a1n=a-n(a≠0,n 为 读 正整数). (4)由负整数指数幂的运算法则可得:ab-n=ban(a≠0,b≠0,n 为正整数).
变化
形式
位置 (b+a)(-b+a)=(a+b)(a-b)=a2-b2
重 符号 (-a-b)(a-b)=(-b-a)(-b+a)=(-b)2-a2=b2-a2
点 系数 (2a+3b)(2a-3b)=(2a)2-(3b)2=4a2-9b2
解
指数 (a2+b2)(a2-b2)=(a2)2-(b2)2=a4-b4
A.a2-3a+2
B.a2-7a+4
C.a2-7a+2
D.a2-3a+4
【解析】 这个多项式是(6a2-5a+3)-(5a2+2a-1)=6a2-5a+3-5a2-2a+1=a2 -7a+4.故选 B.
易错点 2 把互为相反数的底数化为同底数时出现符号错误 36.计算:-(x-y)·(y-x)2·(y-x)3. 解:方法 1:原式=-(x-y)·(x-y)2·[-(x-y)3] =(x-y)·(x-y)2·(x-y)3 =(x-y)1+2+3 =(x-y)6. 方法 2:原式=(y-x)·(y-x)2·(y-x)3 =(y-x)1+2+3=(y-x)6.
中考数学专题复习《整式的运算》测试卷-附带答案
中考数学专题复习《整式的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算(−x2)3的结果是()A.−x6B.x6C.−x5D.−x82.下列计算正确的是()A.x7÷x=x7B.(−3x2)2=−9x4C.x3•x3=2x6D.(x3)2=x63.下列计算正确的是()A.3x+3y=6xy B.a2•a3=a6C.b6÷b3=b2D.(m2)3=m6 4.下列计算正确的是()A.3a3⋅2a3=6a3B.(−4a3b)2=8a6b2C.(a+b)2=a2+b2D.−2a2+3a2=a25.下列运算正确的是()A.(x−1)(x+1)=x2−x−1B.x2−2x+3=(x−1)2+4C.(x−1)2=x2−2x−1D.(x−1)(−1−x)=1−x26.观察一列单项式:x−3x37x5−15x731x9⋯.则第n个单项式是()A.(−1)n+1(2n−1)x2n−1B.(−1)n(2n−1)x2n+1C.(−1)n+1(2n−1)x2n−1D.(−1)n(2n+1)x2n−17.若k为任意整数则(2k+3)2−4k2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除8.已知10a=25,100b=40则a+2b的值是()A.1B.2C.3D.49.对于任意自然数n关于代数式(n+7)2﹣(n﹣5)2的值说法错误的是()A.总能被3整除B.总能被4整除C.总能被6整除D.总能被7整除10.若2a-3b=-1 则代数式4a2−12ab+9b2的值为()A.-1B.1C.2D.311.已知关于x的两个多项式A=x2−ax−2B=x2−2x−3.其中a为常数下列说法:①若A−B的值始终与x无关则a=−2②关于x的方程A+B=0始终有两个不相等的实数根③若A ⋅B 的结果不含x 2的项 则a =52④当a =1时 若A B 的值为整数 则x 的整数值只有2个.以上结论正确的个数有( ) A .4B .3C .2D .112.对于若干个单项式 我们先将任意两个单项式作差 再将这些差的绝对值进行求和并化简 这样的运算称为对这若干个单项式作“差绝对值运算”. 例如:对2,3,4作“差绝对值运算” 得到|2−3|+|2−4|+|3−4|=4 则①对1,3,4,7作“差绝对值运算”的结果是19 ②对x 2,x ,−3(x 2>x >−3)进行“差绝对值运算”的结果是38 则x =±4 ③对a ,b ,c (互不相等)进行“差绝对值运算”的结果一共有7种. 以上说法中正确的个数为( ) A .0B .1C .2D .3二 填空题13.已知3x+y=-3 xy=-6 则 xy 3+9x 3y = .14.若实数m 满足(m −2023)2+(2024−m)2=2025 则(m −2023)(2024−m)= .15. 已知 m +n +2m+n =4,则 (m +n )2+(2m+n )2的值为 . 16.小明在化简:(4x 2−6x +7)−(4x 2−□x +2)时发现系数“□”印刷不清楚 老师提示他:“此题的化简结果是常数” 则多项式中的“□”表示的数是 .17.如果一个三位自然数m =abc ̅̅̅̅̅的各数位上的数字互不相等且均不为0 满足a +c =b 那么称这个三位数为“中庸数”.将“中庸数”m =abc ̅̅̅̅̅的百位 个位数字交换位置 得到另一个“中庸数”m ′=cba ̅̅̅̅̅ 记F(m)=m−m ′99,T(m)=m+m ′121.例如:m =792,m ′=297.F(m)=792−29799=5 T(m)=792+297121=9.计算F(583)= 若“中庸数”m 满足2F(m)=s 2,2T(m)=t 2 其中s ,t 为自然数1 2 3…… 则该“中庸数”m 是 .18.一个四位自然数M 若它的千位数字与十位数字的差为3 百位数字与个位数字的差为2 则称M 为“接二连三数” 则最大的“接二连三数”为 已知“接二连三数”M 能被9整除 将其千位数字与百位数字之和记为P 十位数字与个位数字之差记为Q 当PQ 为整数时 满足条件的M 的最小值为 .三 计算题19.计算:(1)x(1−x)(2)(a−1)(2a+3)−2a(a−4)(3)x 2x−1−x−1.20.计算:(1)(−2xy2)2⋅3x2y.(2)(−2a2)(3ab2−5ab3).(3)(3m2n)2⋅(−2m2)3÷(−m2n)2.(4)(a−2b−3c)(a−2b+3c).21.(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1)其中x=−12 ..22.−12(xy−x2)+3(y2−12x2)+2(14xy−12y2)其中x=−2y=12.23.先化简再求值:[(x+2y)2−(x+2y)(x−2y)]÷4y其中x=1y=−1.四解答题24.观察下面的等式:32−12=8×1,52−32=8×2,72−52=8×3,92−72=8×4,⋯(1)写出192−172的结果.(2)按上面的规律归纳出一个一般的结论(用含n的等式表示n为正整数)(3)请运用有关知识推理说明这个结论是正确的.25.尝试:①152=225=1×2×100+25.②252=625=2×3×100+25.③352=1225=_▲_...运用:小滨给出了猜想和证明请判断是否正确若有错误请给出正确解答.猜想:(10a+5)2=100a(a+1)+25.证明:(10a+5)2=100a(a+1)+25所以10a2+100a+5=100a2+100a+25.所以10a2=100a2.因为a≠0所以10a2≠100a2.所以等式不成立结论错误.26.已知实数a b满足(2a2+b2+1)(2a2+b2-1)=80 试求2a2+b2的值.解:设2a2+b2=m则原方程可化为(m+1)(m-1)=80 即m2=81 解得:m=±9 ∵2a2+b2≥0 ∴2a2+b2=9 上面的这种方法称为“换元法” 换元法是数学学习中最常用的一种思想方法在结构较复杂的数和式的运算中若把其中某些部分看成一个整体并用新字母代替(即换元)则能使复杂问题简单化.根据以上阅读材料解决下列问题:(1)已知实数x y满足(2x2+2y2-1)(x2+y2)=3 求3x2+3y2-2的值(2)若四个连续正整数的积为120 求这四个正整数.27.阅读下列材料:我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方公式如果一个多项式不是完全平方公式我们常做如下变形:先添加一个适当的项使式子中出现完全平方式再减去这个项使整个式子的值不变这种方法叫做配方法.配方法是一种重要的解决问题的数学方法可以求代数式的最大值或最小值.例如:求代数式x2+2x-3的最小值.解:x2+2x-3=x2+2x+12-12-3=(x2+2x+12)-4=(x+1)2-4.∵(x+1)2≥0 ∴(x+1)2-4≥-4∴当x=-1时x2+2x-3的最小值为-4.再例如:求代数式-x2+4x-1的最大值.解:-x2+4x-1=-(x2-4x+1)=-(x2-4x+22-22+1)=-[(x2-4x+22)-3]=-(x-2)2+3∵(x-2)2≥0 ∴-(x-2)2≤0 ∴-(x-2)2+3≤3.∴当x=2时-x2+4x-1的最大值为3.(1)【直接应用】代数式x2+4x+3的最小值为(2)【类比应用】若M=a2+b2-2a+4b+2023 试求M的最小值(3)【知识迁移】如图学校打算用长20m的篱笆围一个长方形菜地菜地的一面靠墙(墙足够长)求围成的菜地的最大面积.28.在学习《完全平方公式》时某数学学习小组发现:已知a+b=5 ab=3 可以在不求a b的值的情况下求出a2+b2的值.具体做法如下:a2+b2=a2+b2+2ab-2ab=(a+b)2-2ab=52-2×3=19.(1)若a+b=7 ab=6 则a2+b2=(2)若m满足(8-m)(m-3)=3 求(8-m)2+(m-3)2的值同样可以应用上述方法解决问题.具体操作如下:解:设8-m=a 8-m=a m-3=b则a+b=(8-m)+(m-3)=5 a+b=(8-m)+(m-3)=5 ab=(8-m)(m-3)=3所以(8-m)2+(m-3)2=a2+b2=(a+b)2-2ab=52-2×3=19.请参照上述方法解决下列问题:若(3x-2)(10-3x)=6 求(3x-2)2+(10-3x)2的值29.利用完全平方公式a2+2ab+b2=(a+b)2和a2−2ab+b=2(a−b)2的特点可以解决很多数学问题.下面给出两个例子:例1分解因式:x2+2x−3x2+2x−3=x2+2x+1−4=(x+1)2−4=(x+1+2)(x+1−2)=(x+3)(x−1)例2求代数式2x2−4x−6的最小值:2x2−4x−6=2(x2−2x)−6=2(x2−2x+1−1)−6=2[(x−1)2−1]−6=2(x−1)2−8又∵2(x−1)2≥0∴当x=1时代数式2x2−4x−6有最小值最小值是−8.仔细阅读上面例题模仿解决下列问题:(1)分解因式:m2−8m+12(2)代数式−x2+4x−2有最(大小)值当x=时最值是(3)当x y为何值时多项式2x2+y2−8x+6y+25有最小值?并求出这个最小值.30.发现:一个两位数的平方与其个位数字的平方的差一定是20的倍数.如:132−32=160160是20的8倍262−62=640640是20的32倍.(1)请你仿照上面的例子再举出一个例子:(⋅⋅⋅⋅)2−(⋅⋅⋅⋅⋅)2=(⋅⋅⋅⋅⋅)(2)十位数字为1 个位数字为a的两位数可表示为若该两位数的平方与a的平方的差是20的5倍则a=(3)设一个两位数的十位数字为m个位数字为n(0<m<100≤n<10且m n为正整数)请用含m n的式子论证“发现”的结论是否符合题意.31.灵活运用完全平方公式(a±b)2=a2±2ab+b2可以解决许多数学问题.例如:已知a−b=3,ab=1求a2+b2的值.解:∵a−b=3,ab=1∴(a−b)2=9,2ab=2,∴a2−2ab+b2=9∴a2−2+b2=9,∴a2+b2=9+2=11.请根据以上材料解答下列问题.(1)若a2+b2与2ab−4互为相反数求a+b的值.(2)如图矩形的长为a 宽为b 周长为14 面积为8 求a2+b2的值.32.定义:对于一个三位正整数如果十位数字恰好等于百位数字与个位数字之和的一半我们称这个三位正整数为“半和数”.例如三位正整数234 因为3=12×(2+4)所以234是“半和数”.(1)判断147是否为“半和数” 并说明理由(2)小林列举了几个“半和数”:111 123 234 840… 并且她发现:111÷3=37123÷3=41 234÷3=78840÷3=280… 所以她猜测任意一个“半和数”都能被3整除.小林的猜想正确吗?若正确请你帮小林说明该猜想的正确性若错误说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】D4.【答案】D5.【答案】D6.【答案】C7.【答案】B8.【答案】C9.【答案】D10.【答案】B11.【答案】B12.【答案】B13.【答案】-27014.【答案】−101215.【答案】1216.【答案】617.【答案】2 121或484或58318.【答案】9967 885619.【答案】(1)解:x(1−x)=x−x2(2)解:(a−1)(2a+3)−2a(a−4)=2a2+3a−2a−3−2a2+8a=9a−3(3)解:x 2x−1−x−1=x2x−1−(x+1)=x2−(x+1)(x−1)x−1=x2−x2+1x−1=1x−1.20.【答案】(1)解:(−2xy2)2⋅3x2y=4x2y4⋅3x2y=12x4y5(2)解:(−2a2)(3ab2−5ab3)=−6a3b2+10a3b3(3)解:(3m2n)2⋅(−2m2)3÷(−m2n)2=9m4n2⋅(−8m6)÷m4n2=−72m10n2÷m4n2=−72m6(4)解:(a−2b−3c)(a−2b+3c)=[(a−2b)−3c][(a−2b)+3c]=(a−2b)2−9c2=a2−4ab+4b2−9c2.21.【答案】解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3当x=−1 2时∴原式=(−12)2+3=31 4.22.【答案】解:−12(xy−x2)+3(y2−12x2)+2(14xy−12y2)=−12xy+12x2+3y2−32x2+12xy−y2=−x2+2y2当x=−2y=1 2时原式=−(−2)2+2×(12)2=−4+2×1 4=−4+1 2=−72.23.【答案】解:化简方法一:[(x+2y)2−(x+2y)(x−2y)]÷4y=[(x+2y)(x+2y−x+2y)]÷4y=[(x+2y)·4y]÷4y=x+2y化简方法二:[(x+2y)2−(x+2y)(x−2y)]÷4y=[(x2+4xy+4y2)−(x2−4y2)]÷4y=(x2+4xy+4y2−x2+4y2)÷4y=(4xy+8y2)÷4y=4xy÷4y+8y2÷4y=x+2y当x=1y=−1时原式=1+2×(−1)=−1.24.【答案】(1)8×9(2)(2n+1)2−(2n−1)2=8n(3)(2n+1)2−(2n−1)2=(2n+1+2n−1)(2n+1−2n+1)=4n×2=8n。
人教版七年级数学上册第二章整式的加减法中考复习试题大全(含答案) (38)
人教版七年级数学上册第二章整式的加减法习题大全(含答案)阅读下面材料并解决问题我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小而解决问题的策略般要进行一定的转化,其中“求差法”就是常用的方法之一,所谓“求差法”:就是通过求差、变形,并利用差的符号来确定它们的大小,即要比较代数式ab 的大小,只要求出它们的差a -b ,若0a b ->,则a b >;若0a b -=,则a b =.若0a b <-,则a b <,请你用“求差法”解决以下问题(1)若P=m 2-2m-3,Q=m 2-2m-1,比较PQ 的大小关系;(2)制作某产品有两种用料方案方案一:用3块A 型钢板,用7块B 型钢板;方案二:用2块A 型钢板,用8块B 型钢板;A 型钢板的面积比B 型钢板的面积大,设每块A 型钢板的面积为x ,每块B 型钢板的面积为y ,从省料角度考虑,应选哪种方案?(3)试比较图1和图2中两个矩形周长M 、N 的大小.【答案】(1)P Q <;(2)从省料角度考虑,应选方案二; (3) ①当b c >时,M N >,②当b=c 时,=M N ,③当b c <时,M N <.【分析】(1)直接利用作差法即可比较大小;(2)根据题意表示两种方案的用料,利用作差法比较即可; (3)根据图形表示出两个矩形的周长M 、N ,利用作差法比较即可. 【详解】(1)()()2223212P Q m m m m -=-----=--20<P Q ∴<(2)(37)(28)x y x y +-+x y =-x y >0x y ∴->∴从省料角度考虑,应选方案二 (3)由图知:2()24M a b b a b =++=+ 2(2)222N a c b c a b c =-++=++24(222)2()M N a b a b c b c -=+-++=-①当b c >时2()0,b c ∴->0M N ->M N ∴> ②当b=c 时2()=0,b c ∴-=0M N -③当b c <时2()0,?b c ∴-<0M N -<M N ∴< 【点睛】此题考查了整式的加减,弄清楚题意是解本题的关键.72.先化简,再求值:22112(21)3()23a a a a -+-++,其中5a =-.【答案】2a -+;7 【解析】 【分析】原式去括号,合并同类项得到最简结果,然后代入求值. 【详解】解:原式224232a a a a a =--+++=-+, 当5a =-时,原式527=+=. 【点睛】本题考查了整式加减-化简求值,熟练掌握运算法则是解题关键.73.如图,已知正方形的边长为4,两个扇形将该正方形分为三部分,其中四分之一圆的半径为a .()1请用含a 的代数式表示阴影部分的面积. ()2当3a 2=,计算阴影部分的面积.【答案】(1)答案见解析;(2)答案见解析. 【解析】(1)根据图中阴影部分的面积等于(四分之一圆的面积减去三角形的面积)的2倍解答;(2)3a 2=代入解答即可. 【详解】解:(1)S=(14πa 2−12a 2)×2=222a a π- (2)当3a 2=m 时,S =2233992=-2284ππ-()() 即若制成边长为0.3m 的地板砖,每块地板砖中阴影面积为99-84π【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式. 74.在求一个多项式A 减去2x 2+5x ﹣3的差时,马虎同学将减号抄成了加号,结果变成﹣x 2+3x ﹣7,则这道题的正确答案是什么.【答案】﹣5x 2﹣7x ﹣1. 【解析】 【分析】由题意列出关系式,然后去括号,合并同类项,即可解答. 【详解】解:根据题意得:(﹣x 2+3x ﹣7)﹣2(2x 2+5x ﹣3)=﹣x 2+3x ﹣7﹣4x 2﹣10x +6=﹣5x 2﹣7x ﹣1.【点睛】本题主要考查了整式的和差,解答的关键在于弄得题意列出代数式以及掌握去括号的法则.75.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下表(注:水费按月份结算,3m 表示立方米).请根据上表的内容解答下列问题:(1)若某户居民2月份用水34m,则应收水费_________.元(2)若该户居民3月份用水3m<<),则应收水费多少aa(其中336m10m元(用含a的代数式表示,并简化).(3)若该户居民4,5两个月共用水315m(5月份用水量超过了4月份),设4月份,用水3m x,则该户居民4,5两个月共交水费多少元(用含x的代数式表示,并简化).【答案】(1)8;(2)应收水费(412)a-元;(3)该户居民4,5两个月共交水费(668)xx-+元或36元.-+元或(248)【解析】【分析】(1)根据表格可以求得该户居民2月份应缴纳的水费;(2)根据表格可以求得该户居民3月份用水a 3m (其中63m <a<103m )应缴纳的水费;(3)根据题意分三种情况,可以求得该户居民4,5两个月共交的水费.【详解】(1)由表格可得,该户居民2月份用水43m , 则应收水费为:2×4=8(元), 故答案为:8; (2)由题意可得,该户居民3月份用水a 3m (其中63m <a<103m ), 则应收水费为:2×6+(a −6)×4=12+4a −24=(4a −12)元, 即该户居民3月份应收水费为(4a −12)元; (3)由题意可得,分为下列三种情况:当0<x ⩽5时,该户居民4,5两个月共交水费为:2x+8(15-x-10)+4×4+2×6=-6x+68元;当5<x ⩽6时,该户居民4,5两个月共交水费为:2x+[2×6+(15−x −6)×4]=(48−2x)元;当6<x<7.5时,该户居民4,5两个月共交水费为:[2×6+(x −6)×4]+[2×6+(15−x −6)×4]=36元;综上所述,该户居民4,5两个月共交水费()668x -+元或()248x -+元或36元.【点睛】本题主要考查了代数式在实际问题中的应用,利用其中的相等关系列出方程,是用数学知识解决实际问题的一种重要方法,找到“等量关系”列方程解实际问题是解题的关键.76.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,其中种茄子每亩可获利2400元,种西红柿每亩可获利2600元,王大伯一共获纯利多少元.(1)若设种茄子x亩,用含有x的式子填下表:(2)王大伯种两种蔬菜一共获纯利多少元.(用含x的代数式表示)【答案】(1)表格见解析;(2)王大伯种两种疏菜一共获纯利(20065000)-+x元.【解析】【分析】找到合适的等量关系:①种茄子和西红柿的亩数=25亩;②总利润=茄子获利+西红柿获利.【详解】(1)若设种茄子x亩,用含有x的式子填下表:(2)设种茄子x 亩,根据题意列式得:王大伯种两种蔬菜共获利:2400x+2600(25-x)=-200x+65000(元); ∴王大伯种两种蔬菜共获利:(-200x+65000)元. 【点睛】本题主要考查了代数式在实际问题中的应用,利用其中的相等关系列出代数式,其中找到“等量关系”列式是解题的关键.77.先化简,再求值.(1)()()222235267b a a b -+---,其中1a =,1b =-.(2)已知m ,x ,y 满足22(5)5||05x m -+=且212y a b +-与3252b a 是同类项,求()()22222269337x y m xy y x xy y -+---+的值.【答案】(1)22128a b -,4;(2)22133x y xy --+,47-【解析】 【分析】(1)先去掉括号,再合并同类项,最后代入求值即可;(2)根据非负性求出x 、m 的值,之后利用同类项性质求出y 的值,最后代入代数式去括号化简求值即可.【详解】(1)()()222235267b a a b -+---=222215667b a a b -+++=22128a b -,∵1a =,1b =-, ∴原式=1284-=.(2)∵22(5)5||05x m -+=,∴5x =,0m =,∴()()22222269337x y m xy y x xy y -+---+=222226337x y x xy y --+- =22133x y xy --+又∵212y a b+-与3252b a 是同类项,∴13y +=,即2y =, ∴原式=22 5132352--⨯+⨯⨯= 255230--+ = 47- 【点睛】本题主要考查了代数式的化简求值,熟练掌握相关概念是解题关键. 78.已知﹣2a m bc 2与4a 3b n c 2是同类项,求多项式3m 2n ﹣2mn 2﹣m 2n+mn 2的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。