物理作业:求解天体的质量和密度

合集下载

高中物理天体运动知识

高中物理天体运动知识

“万有引力定律”习题归类例析.一、求天体的质量(或密度)1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量由mg=G 得 .(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.)[例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ.[解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度.根据平抛运动的特点得抛出物体竖直方向上的位移为设初始平抛小球的初速度为v,则水平位移为x=vt.有○1当以2v的速度平抛小球时,水平位移为x'= 2vt.所以有②在星球表面上物体的重力近似等于万有引力,有mg=G ③联立以上三个方程解得而天体的体积为,由密度公式得天体的密度为。

2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为[例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)()A.地球绕太阳运行的周期T和地球中心离太阳中心的距离rB.月球绕地球运行的周期T和地球的半径rC.月球绕地球运动的角速度和月球中心离地球中心的距离rD.月球绕地球运动的周期T和轨道半径r[解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D项正确.二、人造地球卫星的运动参量与轨道半径的关系问题根据人造卫星的动力学关系可得由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.[例3两颗人造卫星A、B绕地球做圆周运动,周期之比为,则轨道半径之比和运动速率之比分别为()A.B.C.D.[解析]由可得卫星的运动周期与轨道半径的立方的平方根成正比,由可得轨道半径,然后再由得线速度。

求中心天体的质量与密度

求中心天体的质量与密度

求中心天体的质量与密度求天体的加速度、质量、密度1.加速度: 表面上Mm GMGR 2 mg得g= R 2非表面万有引力与航天)基础知识:一、研究对象:绕中心天体的行星或卫星G丰R ha = GM ~ 2 R h2Mm mv Gr rv2G M m=mr2r ■ 2r 3半径)MmG*mr(〒)(2二)2r3T2G(已知线速度与半(已知角线速度与(已知周期与半径)—(已知周期)如果绕中心天体表面运转,中心天体的密度与周 期的平方即:片=詈是一个常量,与任何因数都 无关。

三、研究对象:距离地面h 高处的物体,万有引总结:M左G角速度三个中,只「、频率f 、转中,频任意组苔 會物理量理量。

:、研究对象:绕中心天体表面运行的行 星-Mm mv 2(已知线速度与半径)G =mR R3RM二G(已知角线速度与半径)P=— 4nG(已知角速度) 2~ Mm - mR () 2GF=mR (〒)M 2『R3T 2G(已知周期与半径)力等于重力R+Mm(R h)2=mg2g(R h)G(已知某高度处的重力加速度与距离)四、研究对象:地球表面的物体,万有引力等于重力MmR2二mggR2G体表面的重力加速度与半径)P =(已知中心天3g训练题(真题)1宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表■■面,测得抛出点与落地点之间的距离为L,若;a b 抛出时的初速度增大到2倍,则抛出点与落地地c 点间的距离为3 L,已知两落地点在同一水平图面上,该星球的半径为R,引力常量为G,求该星球的质量M 和密度p.[解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度.根据平抛运动的特点得抛出物体竖直方向上的位移为y =£gt2设初始平抛小球的初速度为V,则水平位移为X=vt.有(1gt2)2 (vt)^L2①2当以2v的速度平抛小球时,水平位移为x'= 2vt.所以有罰2)2 (2vt)2=(、3L)2②在星球表面上物体的重力近似等于万有引力,有mg=G学③R联立以上三个方程解得M二弓里3Gt而天体的体积为V=4「R3,由密度公式得3天体的密度为。

高中物理天体密度与质量求解问题

高中物理天体密度与质量求解问题

高中物理万有引力天体密度与质量的求解(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g4πGR .(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2;②若已知天体半径R ,则天体的平均密度ρ=M V =M 43πR 3=3πr 3GT 2R3.例题:1、2013年12月14日21时许,嫦娥三号携带“玉兔”探测器在月球虹湾成功软着陆,在实施软着陆过程中,嫦娥三号离月球表面4m 高时最后一次悬停,确认着陆点。

若总质量为M 的嫦娥三号在最后一次悬停时,反推力发动机对其提供的反推力为F ,已知引力常量为G ,月球半径为R ,则月球的质量为()A.FR 2MGB.FR MGC.MG FRD.MG FR 2【解析】在月球表面附近:Mg =G M 月MR2,嫦娥三号悬停时,F =Mg ,由以上两式解得:M 月=FR 2MG ,选项A 对。

【答案】A2、嫦娥五号探测器由轨道器、返回器、着陆器等多个部分组成。

探测器预计在2017年由长征五号运载火箭在中国文昌卫星发射中心发射升空,自动完成月面样品采集,并从月球起飞,返回地球,带回约2kg 月球样品。

某同学从网上得到一些信息,如表格中的数据所示,请根据题意,判断地球和月球的密度之比为()月球半径R 0月球表面处的重力加速度g 0地球和月球的半径之比RR 0=4地球表面和月球表面的重力加速度之比g g 0=6A.23B.32C .4D .6【解析】利用题给信息,对地球,有G Mm R 2=mg ,得M =gR 2G ,又V =43πR 3,得地球的密度ρ=M V =3g 4G πR ;对月球,有G M 0m R 20=mg 0,得M 0=g 0R 20G ,又V 0=43πR 30,得月球的密度ρ0=M 0V 0=3g 04G πR 0,则地球的密度与月球的密度之比ρρ0=32,故B 正确。

计算中心天体的质量和密度

计算中心天体的质量和密度

计算天体的质量和密度知识梳理“天上”法“地上”法原理万有引力提供向心力:22m GMmv r r ==2m r ω=224m r T π=n ma万有引力等于重力:2GMmmg R=质量M=2324GT r π=2v r G =23rG ω=2n a r G2gR M G=需要已知量 G 、r 、T(或ω、v)G 、g 、R密度3233M r V GT R πρ==特例,当r=R 时:23GT πρ=34g GR ρπ=注意:计算天体质量需“一个中心、两个基本点”: “一个中心”即只能计算出中心天体的质量;“两个基本点” 即要计算中心天体的质量,除引力常量G 外,还要已知两个独立的物理量。

例题分析【例1】下列哪一组数据不能估算出地球的质量。

引力常量G 已知( )A.月球绕地球运行的周期与月地之间的距离B.地球表面的重力加速度与地球的半径C.绕地球运行卫星的周期与线速度D.地球表面卫星的周期与地球的密度【例2】已知引力常量G .月球中心到地球中心的距离R 和月球绕地球运行的周期T 。

仅利用这三个数据,可以估算出的物理量有( ) A .月球的质量 B .地球的密度C .地球的半径D .月球绕地球运行速度的大小【例3】(2006北京)一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量( )A.飞船的轨道半径B.飞船的运行速度C.飞船的运行周期D.行星的质量【例4】(2005广东)已知万有引力常量G ,地球半径R ,月球和地球之间的距离r ,同步卫星距地面的高度h ,月球绕地球的运转周期T 1,地球的自转周期T 2,地球表面的重力加速度g 。

某同学根据以上条件,提出一种估算地球质量M 的方法: 同步卫星绕地球作圆周运动,由得⑴请判断上面的结果是否正确,并说明理由。

如不正确,请给出正确的解法和结果。

⑵请根据已知条件再提出两种估算地球质量的方法并解得结果。

同步练习1.已知下面的哪组数据可以计算出地球的质量?引力常量G 已知( )A .月球绕地球运动的周期和月球的半径B .地球同步卫星离地面的高度C .地球绕太阳运动的周期和地球到太阳中心的距离D .人造卫星在地面附近的运动速度和周期2.下列哪一组数据能够估算出地球的密度。

高考物理考题一 天体质量(密度)的估算

高考物理考题一 天体质量(密度)的估算

考题一 天体质量(密度)的估算求解中心天体质量、密度的方法1.利用天体表面的重力加速度g 和天体半径R 求解 由于G Mm R 2=mg ,故天体质量M =gR 2G .2.利用卫星绕天体做匀速圆周运动求解(1)已知卫星的轨道半径r 和该轨道上的重力加速度g ,根据GMm r 2=mg ,得M =gr 2G ;(2)已知卫星线速度v 和轨道半径r ,根据GMm r 2=m v 2r 得M =r v 2G ;(3)已知卫星运转周期T 和轨道半径r ,由GMm r 2=m 4π2T 2r 得M =4π2r 3GT 2;(4)已知卫星线速度v 和运转周期T ,根据GMm r 2=m v 2πT 和r =v T 2π得M =v 3T 2πG.3.天体密度的估算一般在质量估算的基础上,利用M =ρ·43πR 3进行.例1 宇宙中有两颗相距无限远的恒星S 1、S 2,半径均为R 0.图1分别是两颗恒星周围行星的公转周期T 2与半径r 3的图象,则( )图1A.恒星S 1的质量大于恒星S 2的质量B.恒星S 1的密度小于恒星S 2的密度C.恒星S 1的第一宇宙速度大于恒星S 2的第一宇宙速度D.距两恒星表面高度相同的行星,S 1的行星向心加速度较大解析 两颗恒星周围的行星绕恒星做匀速圆周运动,万有引力提供向心力,G Mm r 2=m 4π2T 2r ,变形得T 2r 3=4π2GM .故图象的斜率越大,质量越小.故恒星S 1的质量小于恒星S 2的质量.故A 错.因为两颗恒星的半径相等,所以体积相等,故恒星S 1的密度小于恒星S 2的密度,故B 对.由G MmR 2=m v 2R变形后得第一宇宙速度v = GMR,即质量越大,第一宇宙速度越大.故恒星S 1的第一宇宙速度小于恒星S 2的第一宇宙速度,故C 错.行星向心加速度a =GMr 2,行星距两恒星表面高度相同,故质量越大,加速度越大,故D 错. 答案 B 变式训练1.地质勘探发现某地区表面的重力加速度发生了较大的变化,怀疑地下有空腔区域.进一步探测发现在地面P 点的正下方有一球形空腔区域储藏有天然气,如图2所示.假设该地区岩石均匀分布且密度为ρ,天然气的密度远小于ρ,可忽略不计.如果没有该空腔,地球表面正常的重力加速度大小为g ;由于空腔的存在,现测得P 点处的重力加速度大小为kg (k <1).已知引力常量为G ,球形空腔的球心深度为d ,则此球形空腔的体积是( )图2A.kgd GρB.kgdGρ C.(1-k )gd GρD.(1-k )gd 2Gρ答案 D解析 如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值,因此,如果将空腔填满,地面质量为m 的物体重力为mg ,没有填满时是kmg ,故空腔填满后引起的引力为(1-k )mg ;由万有引力定律,有:(1-k )mg =G ρVmd 2,解得:V =(1-k )gd 2Gρ,D对.2.某行星外围有一圈厚度为d 的发光带(发光的物质),简化为如图3甲所示模型,R 为该行星除发光带以外的半径.现不知发光带是该行星的组成部分还是环绕该行星的卫星群,某科学家做了精确地观测,发现发光带绕行星中心的运行速度与到行星中心的距离r 的关系如图乙所示(图中所标量为已知),则下列说法正确的是( )图3A.发光带是该行星的组成部分B.该行星的质量M =v 20RGC.行星表面的重力加速度g =v 20RD.该行星的平均密度为ρ=3v 20R4πG (R +d )3答案 BC解析 若发光带是该行星的组成部分,则其角速度与行星自转角速度相同,应有v =ωr ,v 与r 应成正比,与图不符,因此该发光带不是该行星的组成部分,故A 错误,发光带是环绕该行星的卫星群,由万有引力提供向心力,则有:G Mm r 2=m v 2r 得该行星的质量为:M =v 2r G;由题图知,r =R 时,v =v 0,则有:M =v 20R G .故B 正确.当r =R 时有mg =m v 2R ,得行星表面的重力加速度g =v 20R ,故C 正确.该行星的平均密度为ρ=M 43πR 3=3v 204πGR 2,故D 错误,故选B 、C.3.“嫦娥二号”绕月卫星于10月1日18时59分57秒在西昌卫星发射中心发射升空,并获得了圆满成功.“嫦娥二号”新开辟了地月之间的“直航航线”,即直接发射至地月转移轨道,再进入距月面约h =1×105 m 的圆形工作轨道,开始进行科学探测活动.设月球半径为R ,月球表面的重力加速度为g 月,万有引力常量为G ,则下列说法正确的是( ) A.由题目条件可知月球的平均密度为3g 月4πGRB.“嫦娥二号”在工作轨道上绕月球运行的周期为2π R G 月C.“嫦娥二号”在工作轨道上的绕行速度为g 月(R +h )D.“嫦娥二号”在工作轨道上运行时的向心加速度为(R R +h )2g 月答案 AD解析 在月球表面重力与万有引力相等,由G mM R 2=mg 月可得月球质量M =g 月R 2G ,据密度公式可得月球密度ρ=MV =g 月R 2G 43πR 3=3g 月4πGR,故A 正确;根据万有引力提供圆周运动的向心力有 G Mm (R +h )2=m (R +h )4π2T 2,可得周期T = 4π2(R +h )3GM= 4π2(R +h )3g 月R 2,故B 错误;根据万有引力提供圆周运动的向心力有 G mM(R +h )2=m v 2R +h可得“嫦娥二号”绕行速度v =GMR +h= g 月R 2R +h,故C 错误; 根据万有引力提供圆周运动的向心力有 G mM (R +h )2=ma , 可得“嫦娥二号”在工作轨道上的向心加速度 a =GM (R +h )2=(R R +h)2g 月,故D 正确. 考题二 人造卫星问题解答卫星问题的三个关键点 1.根据G Mmr2=F向=m v 2r =mrω2=mr 4π2T2=ma ,推导、记忆v = GMr、ω= GMr 3、T = 4π2r 3GM 、a =GMr2等公式. 2.理解掌握第一宇宙速度的意义、求法及数值、单位.3.灵活应用同步卫星的特点,注意同步卫星与地球赤道上物体的运动规律的区别与联系.例2 (·江苏·7)如图4所示,两质量相等的卫星A 、B 绕地球做匀速圆周运动,用R 、T 、E k 、S 分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积.下列关系式正确的有( )图4A.T A >T BB.E k A >E k BC.S A =S BD.R 3A T 2A =R 3B T 2B解析 由GMm R 2=m v 2R =m 4π2T 2R 和E k =12m v 2可得T =2π R 3GM, E k =GMm 2R ,因R A >R B ,则T A >T B ,E k A <E k B ,A 对,B 错; 由开普勒定律可知,C 错,D 对. 答案 AD 变式训练4.(·全国丙卷·14)关于行星运动的规律,下列说法符合史实的是( ) A.开普勒在牛顿定律的基础上,导出了行星运动的规律 B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律 答案 B解析 开普勒在天文观测数据的基础上总结出了开普勒天体运动三定律,找出了行星运动的规律,而牛顿发现了万有引力定律.5.水星或金星运行到地球和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星凌日”.已知地球的公转周期为365天,若将水星、金星和地球的公转轨道视为同一平面内的圆轨道,理论计算得到水星相邻两次凌日的时间间隔为116天,金星相邻两次凌日的时间间隔为584天,则下列判断合理的是( ) A.地球的公转周期大约是水星的2倍 B.地球的公转周期大约是金星的1.6倍 C.金星的轨道半径大约是水星的3倍D.实际上水星、金星和地球的公转轨道平面存在一定的夹角,所以水星或金星相邻两次凌日的实际时间间隔均大于题干所给数据 答案 BD解析 水星相邻两次凌日的时间间隔为t =116天, 设水星的周期为T 1,则有:2πT 1t -2πT 2t =2π, 代入数据解得T 1≈88天,可知地球公转周期大约是水星的4倍,故A 错误; 金星相邻两次凌日的时间间隔为584天,设金星的周期为T 3,则有:2πT 3t -2πT 2t =2π,代入数据解得T 3≈225天,可知地球的公转周期大约是金星的1.6倍,故B 正确; 根据G Mm r 2=mr (2πT )2,得r = 3GMT 24π2,因为水星的公转周期大约是金星的0.4倍,则水星的轨道半径大约是金星的0.5倍,故C 错误;由所给资料,若运行轨道平面不存在夹角,那么行星凌日间隔时间会与理论时间一致,而实际与理论不同,故运行轨道平面必然存在夹角,故D 正确.考题三 双星与多星问题1.双星问题的模型构建对于做匀速圆周运动的双星问题,双星的角速度(周期)以及向心力大小相等,基本方程式为G M 1M 2L 2=M 1r 1ω2=M 2r 2ω2,式中L 表示双星间的距离,r 1,r 2分别表示两颗星的轨道半径,L =r 1+r 2.2.做匀速圆周运动的双星问题中需要注意的几个关键点(1)双星绕它们连线上的某点做匀速圆周运动,两星轨道半径之和与两星距离相等; (2)双星做匀速圆周运动的角速度必相等,因此周期也必然相等;(3)双星做匀速圆周运动的向心力由双星间相互作用的万有引力提供,大小相等;(4)列式时须注意,万有引力定律表达式中的r 表示双星间的距离,而不是轨道半径(双星系统中两颗星的轨道半径一般不同).抓住以上四个“相等”,即向心力、角速度、周期相等,轨道半径之和与两星距离相等,即可顺利求解此类问题.例3 (12分)天体A 和B 组成双星系统,围绕两球心连线上的某点做匀速圆周运动的周期均为T .天体A 、B 的半径之比为2∶1,两天体球心之间的距离为R ,且R 远大于两天体的半径.忽略天体的自转,天体A 、B 表面重力加速度之比为4∶1,引力常量为G ,求A 天体的质量. [思维规范流程]每式各2分. 变式训练6.美国在2月11日宣布“探测到引力波的存在”.天文学家通过观测双星轨道参数的变化来间接验证引力波的存在,证实了GW150914是一个36倍太阳质量的黑洞和一个29倍太阳质量的黑洞合并事件.假设这两个黑洞绕它们连线上的某点做圆周运动,且这两个黑洞的间距缓慢减小.若该黑洞系统在运动过程中各自质量不变且不受其他星系的影响,则关于这两个黑洞的运动,下列说法正确的是( ) A.这两个黑洞运行的线速度大小始终相等B.这两个黑洞做圆周运动的向心加速度大小始终相等C.36倍太阳质量的黑洞轨道半径比29倍太阳质量的黑洞轨道半径大D.随两个黑洞的间距缓慢减小,这两个黑洞运行的周期也在减小 答案 D解析 这两个黑洞共轴转动,角速度相等,根据v =ωr 可知,由于不知道两个黑洞的转动半径关系,所以线速度大小不一定相等,故A 错误;根据a =ω2r 可知,由于不知道两个黑洞的转动半径关系,所以向心加速度大小不一定相等,故B 错误;两个黑洞都是做圆周运动,则Gm 1m 2r 2=m 1ω2r 1=m 2ω2r 2,可以得到半径与质量成反比关系,质量大的半径小,故选项C 错误;根据G m 1m 2r 2=m 14π2r 1T 2可得,m 2=4π2r 2GT 2r 1,根据G m 1m 2r 2=m 24π2r 2T 2可得,m 1=4π2r 2T 2r 2,所以m 1+m 2=4π2r 2GT 2(r 1+r 2)=4π2r 3GT 2,当m 1+m 2不变时,r 减小,则T 减小,即双星系统运行周期会随间距减小而减小,故D 正确.7.由三颗星体构成的系统,叫做三星系统.有这样一种简单的三星系统:质量刚好都相同的三个星体a 、b 、c 在三者相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同周期的圆周运动,若三个星体的质量均为m ,三角形的边长为a ,万有引力常量为G ,则下列说法正确的是( ) A.三个星体做圆周运动的轨道半径为a B.三个星体做圆周运动的周期均为2πaa3GmC.三个星体做圆周运动的线速度大小均为3GmaD.三个星体做圆周运动的向心加速度大小均为3Gma 2答案 B解析 由几何关系知,它们的轨道半径为r =a 232=33a ,故A 错误;根据合力提供向心力有:2·Gm 2a 2cos 30˚=ma ′=m v 2r =mr 4π2T 2,得星体做圆周运动的周期为:T =2πa a3Gm,线速度为:v =Gm a ,向心加速度为:a ′=3Gma2,故B 正确,C 、D 错误. 专题规范练1.有研究表明,目前月球远离地球的速度是每年3.82±0.07 cm.则10亿年后月球与现在相比( )A.绕地球做圆周运动的周期变小B.绕地球做圆周运动的加速度变大C.绕地球做圆周运动的线速度变小D.地月之间的引力势能变小 答案 C解析 对月球进行分析,根据万有引力提供向心力,则:GMm r 2=m (2πT)2r ,则:T =4π2r 3GM,由于半径变大,故周期变大,故选项A 错误.根据GMm r 2=ma ,则:a =GMr 2,由于半径变大,故加速度变小,故选项B 错误;根据GMmr 2=m v 2r,则v =GMr,由于半径变大,故线速度变小,故选项C 正确;由于月球远离地球,万有引力做负功,故引力势能变大,故选项D 错误.2.3月8日,马来西亚航空公司从吉隆坡飞往北京的航班MH370失联,MH370失联后多个国家积极投入搜救行动,在搜救过程中卫星发挥了巨大的作用.其中我国的北斗导航系统和美国的GPS 导航系统均参与搜救工作,北斗导航系统包含5颗地球同步卫星,而GPS 导航系统由运行周期为12小时的圆轨道卫星群组成,下列说法正确的是( ) A.发射人造地球卫星时,发射速度只要大于7.9 km/s 就可以 B.北斗同步卫星的线速度与GPS 卫星的线速度之比为312C.北斗同步卫星的机械能一定大于GPS 卫星的机械能D.卫星向地面上同一物体拍照时,GPS 卫星的拍摄视角小于北斗同步卫星的拍摄视角 答案 B解析 发射不同的人造地球卫星,发射速度要求是不相同的,故A 错;北斗同步卫星的周期是24 h ,GPS 导航系统卫星的周期为12小时,根据开普勒第三定律可得半径比为34,万有引力提供向心力,由v =GMr ,得线速度之比为312,B 对;不知道北斗同步卫星和GPS 卫星的质量,无法比较机械能,C 错;GPS 卫星半径小于北斗同步卫星运动半径,得GPS 卫星的拍摄视角大于北斗同步卫星的拍摄视角,D 错.3.(多选)我国志愿者王跃曾与俄罗斯志愿者一起进行“火星 500”的模拟实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的12,质量是地球质量的19.已知地球表面的重力加速度是g ,地球的半径为R ,王跃在地球表面能竖直向上跳起的最大高度为h ,忽略自转的影响.下列说法正确的是( ) A.火星的密度为2g3πGRB.火星的第一宇宙速度与地球的第一宇宙速度相等C.火星表面的重力加速度为4g 9D.王跃在火星表面能竖直向上跳起的最大高度为9h4答案 ACD4.(·四川理综·3)国务院批复,自起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( ) A.a 2>a 1>a 3 B.a 3>a 2>a 1 C.a 3>a 1>a 2 D.a 1>a 2>a 3答案 D解析 由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a =ω2r ,r 2>r 3,则a 2>a 3;由万有引力定律和牛顿第二定律得,G Mmr 2=ma ,由题目中数据可以得出,r 1<r 2,则a 2<a 1;综合以上分析有,a 1>a 2>a 3,选项D 正确.5.(·天津理综·3)如图1所示,我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )图1A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接 答案 C解析 若使飞船与空间实验室在同一轨道上运行,然后飞船加速,所需向心力变大,则飞船将脱离原轨道而进入更高的轨道,不能实现对接,选项A 错误;若使飞船与空间实验室在同一轨道上运行,然后空间实验室减速,所需向心力变小,则空间实验室将脱离原轨道而进入更低的轨道,不能实现对接,选项B 错误;要想实现对接,可使飞船在比空间实验室半径小的轨道上加速,然后飞船将进入较高的空间实验室轨道,逐渐靠近空间实验室后,两者速度接近时实现对接,选项C 正确;若飞船在比空间实验室半径小的轨道上减速,则飞船将进入更低的轨道,不能实现对接,选项D 错误.6.(多选)已知地球自转周期为T 0,有一颗与同步卫星在同一轨道平面的低轨道卫星,自西向东绕地球运行,其运行半径为同步轨道半径的四分之一,该卫星两次在同一城市的正上方出现的时间间隔可能是( ) A.T 04 B.3T 04 C.3T 07 D.T 07答案 CD解析 设地球的质量为M ,卫星的质量为m ,运动周期为T ,因为卫星做圆周运动的向心力由万有引力提供,有:GMm r 2=4π2mrT2,解得:T =2πr 3GM. 同步卫星的周期与地球自转周期相同,即为T 0.已知该人造卫星的运行半径为同步卫星轨道半径的四分之一,所以该人造卫星与同步卫星的周期之比是:T T 0=r 3(4r )3=18,解得T =18T 0.设卫星至少每隔t 时间才在同一地点的正上方出现一次,根据圆周运动角速度与所转过的圆心角的关系θ=ωt 得:2πT t =2n π+2πT 0t ,解得t =nT 07,当n =1时t =T 07,n =3时t =3T 07,故A 、B 错误,C 、D 正确.7.据新华社北京3月21日电,记者21日从中国载人航天工程办公室了解到,已在轨工作1 630天的“天宫一号”目标飞行器在完成与三艘神舟飞船交会对接和各项试验任务后,由于超期服役两年半时间,其功能已于近日失效,正式终止了数据服务.根据预测,“天宫一号”的飞行轨道将在今后数月内逐步降低,并最终进入大气层烧毁.若“天宫一号”服役期间的轨道可视为圆且距地面h (h ≈343 km),运行周期为T ,地球的半径为R ,下列关于“天宫一号”的说法正确的是( )A.因为“天宫一号”的轨道距地面很近,其线速度小于同步卫星的线速度B.女航天员王亚平曾在“天宫一号”中漂浮着进行太空授课,那时她不受地球的引力作用C.“天宫一号”进入外层稀薄大气一小段时间内,克服气体阻力的功小于引力势能的减小量D.由题中信息可知地球的质量为4π2R 3GT 2答案 C解析 根据万有引力提供向心力可知:G Mmr 2=m v 2r,解得:v =GMr,由于“天宫一号”的轨道半径小于同步卫星的半径,则其线速度大于同步卫星的线速度,故A 错误;航天员在“天宫一号”中处于失重状态,地球对她的万有引力提供她随“天宫一号”围绕地球做圆周运动的向心力,不是不受地球的引力作用,故B 错误;根据动能定理可知引力与空气阻力对“天宫一号”做的总功应为正值,而引力做的功等于引力势能的减少,即“天宫一号”克服气体阻力做的功小于引力势能的变化,故C 正确; 根据万有引力提供向心力可知, G Mm(R +h )2=m 4π2(R +h )T 2, 解得:M =4π2(R +h )3GT 2,故D 错误.8.宇宙间是否存在暗物质是物理学之谜,对该问题的研究可能带来一场物理学的革命.为了探测暗物质,我国在12月17日成功发射了一颗被命名为“悟空”的暗物质探测卫星.已知“悟空”在低于同步卫星的轨道上绕地球做匀速圆周运动,经过时间t (t 小于其运动周期),运动的弧长为L ,与地球中心连线扫过的角度为θ(弧度),引力常量为G ,则下列说法中正确的是( )A.“悟空”的质量为L 3Gθt 2B.“悟空”的环绕周期为2πtθC.“悟空”的线速度大于第一宇宙速度D.“悟空”的向心加速度小于地球同步卫星的向心加速度 答案 B解析 “悟空”绕地球做匀速圆周运动,根据万有引力提供向心力,只能求出地球质量,不能求出“悟空”的质量,故A 错误;“悟空”经过时间t (t 小于“悟空”的周期),它运动的弧长为L ,它与地球中心连线扫过的角度为θ(弧度),则“悟空”的角速度为:ω=θt ,周期T=2πω=2πtθ,故B 正确;“悟空”在低于地球同步卫星的轨道上绕地球做匀速圆周运动,万有引力提供向心力,则有:GMmr 2=m v 2r,得v =GMr,可知卫星的轨道半径越大,速率越小,第一宇宙速度是近地卫星的环绕速度,故“悟空”在轨道上运行的速度小于地球的第一宇宙速度,故C 错误;由GMm r 2=ma 得:加速度a =G Mr 2,则知“悟空”的向心加速度大于地球同步卫星的向心加速度,故D 错误.9.一半径为R 、密度均匀的自行旋转的行星,其赤道处的重力加速度为极地处重力加速度的n 倍(n <1).求该行星的同步卫星距离地面的高度.答案 (311-n-1)R 解析 设行星的质量为M ,自转的角速度为ω,其极地处的重力加速度为g .对质量为m 1的物体位于极地和赤道时,根据万有引力定律 G Mm 1R2=m 1g G Mm 1R2-nm 1g =m 1Rω2 设同步卫星的质量为m 2,距离地面的高度为h ,根据万有引力定律 G Mm 2(R +h )2=m 2(R +h )ω2 整理得h = (311-n-1)R . 10.假设某天你在一个半径为R 的星球上,手拿一只小球从离星球表面高h 处无初速度释放,测得小球经时间t 落地.若忽略星球的自转影响,不计一切阻力,万有引力常量为G .求: (1)该星球的质量M ;(2)在该星球上发射卫星的第一宇宙速度大小v . 答案 (1)2hR 2Gt 2 (2)2hRt解析 (1)根据h =12gt 2可知g =2ht 2由GMmR 2=mg 可得M =2hR 2Gt2(2)根据GMmR 2=mg =m v 2R可得v =2hRt.。

求解中心天体质量和密度

求解中心天体质量和密度
F引=Fn
G
Mm r2

m
2
T
2
r

M

4 2r3
GT 2
球体的体积公式:V 4 R3
3
三、计算天体的密度 求解中心天体质量和密度
创新微课
已知太阳某行星的公转周期T、轨道半径r, 太阳的半径R,求太阳的密度?
F引=Fn
G
Mm r2

m
2
T
2
r

M

4 2r3
F引=Fn
只可求出中心天体的质量, 求不出环绕体的质量。
求解中心天体质量和密度
创新微课
这种方法可以计算中心天体的质量
如已知:
月亮周期:
T
月亮轨道半径: r
求 地球的质量 M?
F引=Fn
求解中心天体质量和密度
创新微课
二、计算中心天体的质量
如果不知道环绕体的公转周期,而知
道环绕体的线速度或角速度及其轨道半径,
黄金代换:GM=gR 2
2.将行星(或卫星)的运动看成 是匀速圆周运动.
3.万有引力充当向心力 F引=F向
明确各个物理量 求解中心天体质量和密度
创新微课
转动天体m
轨道半经r
中心天体M 天体半经R
同学,下节再见
创新微课 现在开始
行星运动的三定律
求解中心天体质量和密度
创新微课
一、“称量地球的质量” 求解中心天体质量和密度
创新微课
黄金代换:GM=gR 2
g---半径
求解中心天体质量和密度
二、计算太阳的质量
创新微课
我们可以测出太阳某行星的公转周期T、轨道半径r, 能不能由此求出太阳的质量M?

物理-L28-万有引力计算天体质量和密度问题

物理-L28-万有引力计算天体质量和密度问题

即mg海=G
可得 g海=
同理地球表面的重力加速度g地=
因g海≈g地,所以G =G
M海=16M地=9.6×1025 kg.
9
例题2 在某行星上宇航员用弹簧秤测质量为m的物体的重力为F,乘宇宙飞船在靠 近该行星的空间飞行,测得其环绕周期为T,根据这些数据求该星球的质量.
解题思路:在行星表面的物体的重力等于行星对它的万有引力, 在行星附近飞行的飞船,由万有引力提供其做圆周运动的向心力.
3


3 r3
GT 2R3
.
特别提醒 要注意R、r的区分.R指中心天体的半径,r指行星或卫星的轨道半径.若绕近地轨道运行,则有R=r.
23
24
25
M= 根据数学知识星球的体积V=πR3. 所以天体的密度ρ===. 若卫星距天体表面高为h处运行,则有 G=m(R+h)
3
(3)若已知月球运行的线速度v和运行周期T,由于地球对月球的引力等于月球做匀速圆周运 动的向心力,根据牛顿第二定律,得
G
=m月·v·
以上两式消去r,解得
G
=m月.
M地=v3T/(2πG). (4)若已知地球的半径R和地球表面的重力加速度g,根据物体的重力近似等于地球对物体的 引力,得
mg=G ,
解得地球质量为M地= .
4
由以上论述可知,在万有引力定律这一章中,求天体质量的方法主要有两种:一种方法是根 据天体表面的重力加速度来求天体质量,即g=G ,则M= ,另一种方法是根据天体的 圆周运动,即根据天体做匀速圆周运动的向心力由万有引力提供,列出方程: G =m r=m =mω2r来求得质量M= = = 用第二种方法只能求出圆心处天体质量(即中心天体).
21

物理作业:求解天体的质量和密度(含答案)

物理作业:求解天体的质量和密度(含答案)

求解天体的质量和密度1.(2018·广东第二次大联考)已知一质量为m 的物体分别静止在北极与赤道时对地面的压力差为ΔN ,假设地球是质量分布均匀的球体,半径为R 。

则地球的自转周期为( )A .T =2πmRΔN B .T =2πΔNmRC .T =2π m ΔNRD .T =2πRm ΔN2.(2019广东惠州调研)科学家发现了一颗距离地球14光年的“另一个地球”沃尔夫,它是迄今为止在太阳系外发现的距离最近的宜居星球。

沃尔夫的质量为地球的4倍,它围绕红矮星运行的周期为18天。

设想从地球发射一颗科学探测卫星围绕沃尔夫表面运行。

已知万有引力常量为G ,天体的环绕运动可看作匀速圆周运动。

则下列说法正确的是 A .从地球发射该探测卫星的速度应该小于第三宇宙速度 B .根据沃尔夫围绕红矮星运行的运动周期可求出红矮星的密度C .若已知围绕沃尔夫表面运行的探测卫星的周期和地球的质量,可近似求沃尔夫半径D .沃尔夫绕红矮星公转和地球绕太阳公转的轨道半径的三次方之比等于(18365)23(2018高考全国II )2018年2月,我国500 m 口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T =5.19 ms ,假设星体为质量均匀分布的球体,已知万有引力常量为。

以周期T 稳定自转的星体的密度最小值约为A .B .C .D .4(2018·邢台模拟)为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R ,地球质量为m ,太阳与地球中心间距为r ,地球表面的重力加速度为g ,地球绕太阳公转的周期为T 。

则太阳的质量为( )A.4π2r3T 2R 2g B.T 2R 2g 4π2mr 3 C.4π2mgr 2r 3T 2 D.4π2mr3T 2R 2g11226.6710N m /kg -⨯⋅93510kg /m ⨯123510kg /m ⨯153510kg /m ⨯183510kg /m ⨯5(2016·河北百校联考)嫦娥五号探测器由轨道器、返回器、着陆器等多个部分组成。

(完整版)求中心天体的质量与密度

(完整版)求中心天体的质量与密度

求天体的加速度、质量、密度一.知识聚焦1. 加速度:万有引力与航天)基础知识:一、研究对象:绕中心天体的行星或卫星总结:线速度v、角速度ω(周期T 、频率f、转速n)、轨道半径r,这三个物理量中,任意组合二个,一定能求出中心天体的质量M。

或者说:中心天体的质量M、及三个物理量中,只要知道其中的两个,可求出其它物理量。

表面上MmG M R m2mg 得g G R M2R非表面Mmma 得aGMMm mv22rr2vr(已知线速度与半径)MmG 2 mrr2r3(已知角线速度与半径)Mm2rmr(2T)2(2 )2r3T2G(已知周期与半径)Mm 2 mv v2R(已知线速度与半径)GR2RMGGMmmR22R3 R(已知角线速度与半径)2MR2G4G已知角速、研究对象:绕中心天体表面运行的行星或卫星度)32四、研究对象:地球表面的物体,万有引力等于重力4 GRMmR 2mR(2T ) 2(2 )2 R 3T 2G(已知周期与半径 )GT 2 (已知周期 )如果绕中心天体表面运转,中心天体的密度与周期的平方即: 任何因数都无关。

23T 是一个常量,与 G三、研究对象:距离地面 h 高处的物体,万有引力等于重力(已知某高度处的重力加速度与距离 )MmR 2mgM gR2G 3g( 已知中心天体表面的重力加速度与半径 )训练题(真题)1 宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间表面,测得抛出点与落地点之间的距离为 L ,若抛出时的初速度增大到地点间的距离为 3 L ,已知两落地点在同一水平面上,该星球的半径为 R ,引力常量为G ,求该星球的质量 M 和密度ρ[解析 ]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密 度.12根据平抛运动的特点得抛出物体竖直方向上的位移为 y 1 gt 2 2设初始平抛小球的初速度为 v ,则水平位移为 x=vt .有 (1 gt 2) 2 (vt)2 L 2 ○11当以 2v 的速度平抛小球时, 水平位移为 x'= 2vt .所以有 (1 gt 2)2 (2vt)2 ( 3L)22 在星球表面上物体的重力近似等于万有引力,有 mg=G Mm 2 ③R 2160N ,把此物体放在航天器中,若航天器以加速度 a g ( g 为地球表面的重力加速度)垂直地面上升,这时再用同一弹簧测力计2测得物体的重力为 90N ,忽略地球自转的影响, 已知地球半径 R ,求此航天器距地面的高度。

专题 天体质量和密度的估算 高一物理 (人教版2019)(解析版)

专题 天体质量和密度的估算 高一物理 (人教版2019)(解析版)

专题09 天体质量和密度的估算一、利用黄金代换估算天体质量和密度1.地球表面重力加速度为g ,地球半径为R ,引力常量为G ,下式关于地球密度的估算式正确的是( ) A .34gRGρπ=B .234gR Gρπ=C .g RGρ=D .2g GR ρ=【答案】A【解析】地球表面,忽略地球自转,重力等于万有引力有2Mm G mg R =得GgR M 2=地球的密度MVρ=又343V R π=联立可得34g RG ρπ=故A 正确,BCD 错误。

故选A 。

2.卡文迪许用扭秤实验测定了引力常量,以实验验证了万有引力定律的正确性。

应用引力常量还可以计算出地球的质量,卡文迪许也因此被称为“能称出地球质量的人”。

已知引力常量G = 6.67×10-11N·m 2/kg 2,地面上的重力加速度g =9.8m/s 2,地球半径R =6.4×106m ,则地球质量约为( ) A .6×1018kg B .6×1020 kg C .6×1022 kg D .6×1024 kg【答案】D【解析】根据公式2GMm mg R =可得224610kg gR M G=≈⨯故ABC 错误D 正确。

故选D 。

3.“科学真是迷人”,天文学家已经测出月球表面的加速度g 、月球的半径R 和月球绕地球运转的周期T 等数据,根据万有引力定律就可以“称量”月球的质量了。

已知引力常数G ,用M 表示月球的质量。

关于月球质量,下列说法正确的是( ) A .GgR M 2=B .2GR M g=C .2324R M GT π=D .2324T R M Gπ=【答案】A【解析】AB .把质量为m 的物体在月球表面上,则物体受到的重力等于月球对它的万有引力,即2Mm mg G R =解得GgR M 2=故A 正确,B 错误;CD .在利用月球绕地球做圆周运动的周期计算天体质量时,只能计算中心天体的质量,即计算的是地球质量而不是月球的质量,故CD 错误。

[高一理化生]万有引力求天体的质量

[高一理化生]万有引力求天体的质量
若已知卫星的轨道半径r和卫星的运行周期T、角速度 或线速度v,可求得中心天体的质量为
1.下列几组数据中能算出地球质量的是(万有引力常量G是已知的)( )
A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r
B.月球绕地球运行的周期T和地球的半径r
C.月球绕地球运动的角速度和月球中心离地球中心的距离r
A.运行的线速度大小为
B.运行的线速度小于第一宇宙速度
C.运行时的向心加速度大小
D.地球表面的重力加速度大小为
4.(05天津理综21)土星周围有美丽壮观的“光环”,组成环的颗粒是大小不等、线度从1μm到10m的岩石、尘埃,类似于卫星,它们与土星中心的距离从7.3×104km延伸到1.4×105km.已知环的外缘颗粒绕土星做圆周运动的周期约为14 h,引力常量为6.67×10-11N·m2/kg2,则土星的质量约为(估算时不考虑环中颗粒间的相互作用)( )
A.400gB. gC.20gD. g
答案 B
解析 质量分布均匀的球体的密度ρ=3M/4πR3
地球表面的重力加速度:g=GM/R2=
吴健雄星表面的重力加速度:g′=GM/r2=
g/g′=R/r=400,故选项B正确.
10.湖南省长沙市一中2010届高三第五次月考随着太空技术的飞速发展,地球上的人们登陆其它星球成为可能。假设未来的某一天,宇航员登上某一星球后,测得该星球表面的重力加速度是地球表面重力加速度的2倍,而该星球的平均密度与地球的差不多,则该星球质量大约是地球质量的( D )
A.地球的平均密度与月球的平均密度之比约为9∶8
B.地球表面重力加速度与月球表面重力加速度之比约为9∶4
C.靠近地球表面沿圆轨道运行的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期之比约为8∶9

天体质量和密度的计算

天体质量和密度的计算

天体质量和密度的计算
原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力. G 2r mM =m 224T πr ,由此可得:M=2324GT r π;ρ=V M =33
4R M π=3223R
GT r π(R 为行星的半径) 对于近地卫星有:r R = 故可得地球平均密度为:2
2
3GT πρ=地 由m v
ρ=得: 223m v m v m v m v GT πρρ=⋅行地行地行地地行地行=
代入数值得:3/kg m ρ≈⨯4行 2.910
故选D
运用数学解决物理问题的能力也是高考考查的能力之一,故有一定的计算量也就不足为奇了。

对于估算,可先进行符号运算,求出用已知量表示的未知量的表达式,最后再代入数值计算,这样可省去一些中间量的计算,估算中,一般只保留二位有效数字就可以了,甚至更粗略的情况下,保留一位有效数字,这样计算基本上就是数量级运算了,再从选项中选一个和答案最接近的选项即可。

当然能记得一些常识性数据对解估算选择题往往有意想不到的效果,如本题,由题意可知该行星密度约为地球密度的5倍,如果我们能知道地球密度约为3/kg m ⨯3510这一数据的话,则显然正确答案是D 。

人教版物理必修二精品练习:第六章3破解天体质量和密度的相关计算+Word版含解析

人教版物理必修二精品练习:第六章3破解天体质量和密度的相关计算+Word版含解析

(答题时间:20分钟)1. 已知下面的哪组数据,可以算出地球的质量M (引力常量G 为已知)( ) A. 月球绕地球运动的周期T 1及月球到地球中心的距离R 1 B. 地球绕太阳运行周期T 2及地球到太阳中心的距离R 2 C. 人造卫星在地面附近的运行速度v 3和运行周期T 3D. 地球绕太阳运行的速度v 4及地球到太阳中心的距离R 42. 甲、乙两星球的平均密度相等,半径之比是R 甲︰R 乙=4︰1,则同一物体在这两个星球表面受到的重力之比是( )A. 1︰1B. 4︰1C. 1︰16D. 1︰643. 一艘宇宙飞船绕一个不知名的行星表面飞行。

要测定该行星的密度,只需测定( ) A.飞船的运行周期 B. 飞船的环绕半径 C. 行星的体积 D. 飞船的运动速度4. 甲是在地球表面附近运行的近地卫星,乙是地球的同步卫星,已知地球表面重力加速度为g ,地球半径为R ,地球自转周期为T ,乙运行高度为h ,甲、乙的轨道均可视为圆轨道。

以下判断正确的是( )A. )(R h g +B. 甲、乙的向心加速度均为零C. 甲、乙均处于完全失重状态D. 甲、乙的运动周期均为T5. 如图所示,是美国的“卡西尼”号探测器经过长达7年的“艰苦”旅行,进入绕土星飞行的轨道。

若“卡西尼”号探测器在半径为R 的土星上空离土星表面高h 的圆形轨道上绕土星飞行,环绕n 周飞行时间为t ,已知万有引力常量为G ,则下列关于土星质量M 和平均密度ρ的表达式正确的是( )A. M =232)(4Gt h R +π,ρ=323)(3R Gt h R +πB. M =222)(4Gt h R +π,ρ=322)(3R Gt h R +π C. M =2322)(4Gn h R t +π,ρ=3232)(3R Gn h R t +πD. M =2322)(4Gt h R n +π,ρ=3232)(3R Gt h R n +π6. 大陆天文爱好者金彰伟、陈韬将他们发现的小行星命名为“周杰伦”星,并获小行星中心公布永久编号为257248。

高考物理计算题复习《天体密度和质量的计算》(解析版)

高考物理计算题复习《天体密度和质量的计算》(解析版)

《天体密度和质量的计算》一、计算题1.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点沿水平方向以初速度抛出一个小球,测得小球经时间t落到斜坡上另一点Q,斜面的倾角为,已知该星球半径为R,万有引力常量为G,求:该星球表面的重力加速度;该星球的密度;人造卫星绕该星球表面做匀速圆周运动的周期T2.如图所示,火箭栽着宇宙探测器飞向某行星,火箭内平台上还放有测试仪器火箭从地面起飞时,以加速度竖直向上做匀加速直线运动为地面附近的重力加速度,已知地球半径为R.到某一高度时,测试仪器对平台的压力是刚起飞时压力的,求此时火箭离地面的高度h.探测器与箭体分离后,进入行星表面附近的预定轨道,进行一系列科学实验和测量,若测得探测器环绕该行星运动的周期为,试问:该行星的平均密度为多少?假定行星为球体,且已知万有引力恒量为3.飞船沿半径为R的圆周绕地球运动,其周期为T,如果飞船要返回地面,可在轨道上的某一点A处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的特殊椭圆轨道运动,椭圆和地球表面在B点相切,如图所示,如果地球半径为,万有引力常量G已知,求地球的密度飞船由A点到B点所需的时间。

4.我国月球探测计划嫦娥工程已经启动,“嫦娥1号”探月卫星也已发射。

设想嫦娥1号登月飞船贴近月球表面做匀速圆周运动,飞船发射的月球车在月球软着陆后,自动机器人在月球表面上沿竖直方向以初速度抛出一个小球,测得小球经时间t 落回抛出点,已知该月球半径为R,万有引力常量为G,月球质量分布均匀。

求:月球表面的重力加速度;月球的密度;月球的第一宇宙速度。

5.宇航员在月球表面完成下面的实验:在一固定的竖直光滑圆轨道内部有一质量为m的小球可视为质点,如图所示当在最高点给小球一瞬间的速度v时,刚好能使小球在竖直平面内做完整的圆周运动。

已知圆弧的轨道半径为r,月球的半径为R,引力常量为求:若在月球表面上发射一颗环月卫星,所需最小发射速度为多大?月球的平均密度为多大?轨道半径为2R的环月卫星周期为多大?6.已知某星球半径为R,若宇航员随登陆舱登陆该星球后,在此星球表面某处以速度竖直向上抛出一个小球,小球能上升的最大高度为,不考虑星球自转的影响,引力常量为。

(完整版)求中心天体的质量与密度

(完整版)求中心天体的质量与密度

求天体的加速度、质量、密度一.知识聚焦 1.加速度:表面上 mg Mm G =2R得2g R GM=非表面 ()ma R MmG=+2h 得)(2R a h GM +=万有引力与航天 )基础知识:一、研究对象:绕中心天体的行星或卫星r mv rMm G 22= G r v M 2= (已知线速度与半径)22ωmr rMm G = G r M 32ω= (已知角线速度与半径)22)2(T mr rMm G π= G T r M 232)2(π= (已知周期与半径) 总结:线速度vr ,这三个物理量中,任意组合二个,一定能求出中心天体的质量M 。

或者说:中心天体的质量M 、及三个物理量中,只要知道其中的两个,可求出其它物理量。

二、研究对象:绕中心天体表面运行的行星或卫星R mv RMm G 22= G R v M 2= (已知线速度与半径)22ωmR RMm G = G R M 32ω= (已知角线速度与半径)G πωρ432=(已知角速度)22)2(T mR R Mm G π=(已知周期与半径) 已知周期)任何因数都无关。

三、研究对象:距离地面h 高处的物体,万有引力等于重力mg h R MmG =+2)( G h R g M 2)(+= (已知某高度处的重力加速度与距离)四、研究对象:地球表面的物体,万有引力等于重力mg RMmG =2 G gR M 2= (已知中心天体表面的重力加速度与半径)GRgπρ43=训练题(真题)1宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t ,小球落在星球表面,测得抛出点与落地点之间的距离为L ,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为3L ,已知两落地点在同一水平面上,该星球的半径为R ,引力常量为G ,求该星球的质量M 和密度ρ.[解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度.根据平抛运动的特点得抛出物体竖直方向上的位移为221gt y =设初始平抛小球的初速度为v ,则水平位移为x=vt .有2222)()21(L vt gt =+ ○1当以2v 的速度平抛小球时,水平位移为x'= 2vt .所以有2222)3()2()21(L vt gt =+ ②在星球表面上物体的重力近似等于万有引力,有mg=G 2RMm③联立以上三个方程解得22332Gt LR M =而天体的体积为334R V π=,由密度公式VM=ρ得天体的密度为R Gt L 223πρ=。

天体质量和密度计算(高三物理)

天体质量和密度计算(高三物理)

课前作业例一、(2015西城一模第23题节选)利用万有引力定律可以测量天体的质量。

(1)测地球的质量英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”。

已知地球表面重力加速度为g,地球半径为R,引力常量为G。

若忽略地球自转的影响,求地球的质量及密度。

例二、天宫一号于2011年9月29日成功发射,它将和随后发射的神州飞船在空间完成交会对接,实现中国载人航天工程的一个新的跨越。

天宫一号进入运行轨道后,其运行周期为T,距地面的高度为h,已知地球半径为R,万有引力常量为G。

若将天宫一号的运行轨道看做圆轨道。

求:(1)地球质量M;(2)地球的平均密度。

例三、近年来,人类发射的多枚火星探测器已经相继在火星上着陆,正在进行着激动人心的科学探究,为我们将来登上火星、开发和利用火星资源奠定了坚实的基础。

如果火星探测器环绕火星做“近地”匀速圆周运动,并测得该运动的周期为T,写出火星的平均密度 的表达式?(万有引力常量为G)方法提升:天体质量和密度的计算(写出具体表达式)一、利用天体表面的重力加速度g和天体半径R计算天体质量(不考虑自转影响)二、通过观察卫星(行星)绕行星(恒星)做匀速圆周运动的周期T和轨道半径r计算行星(恒星)的质量当堂检测一、已知万有引力常量G ,地球半径R ,月球和地球之间的距离r ,同步卫星距地面的高度h ,月球绕地球的运转周期T 1,地球的自转周期T 2,地球表面的重力加速度为g ,第一宇宙速度为v 。

某同学根据以上条件,提出一种估算地球质量M 的方法:同步卫星绕地心做圆周运动,由得。

(1)请判断上面的结果是否正确,并说明理由。

如果不正确,请给出正确的解法和结果。

(2)请根据已知条件再提出至少两种估算地球质量的方法并解得结果。

当堂检测二、宇航员在月球上做自由落体实验,将某物体由距月球表面高h 处释放,经时间t 后落到月球表面,月球半径为R 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11(2016武汉汉阳一中模拟)据每日邮报2014年4月18日报道,美国国家航空航天局(NASA )目前宣布首次在太阳系外发现“类地”行星Kepler-186f 。

假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T;宇航员在该行星“北极”距该行星地面附近h 处自由释放—个小球(引力视为恒力),落地时间为t 1;宇航员在该行星“赤道”距该行星地面附近h 处自由释放—个小球(引力视为恒力),落地时间为t 2。

则行星的半径R 的值 ( )
A .
B .
C . D. 12(2016·河北邯郸市高三一调)已知某半径为r 0的质量分布均匀的天体,测得它的一个卫星的圆轨道的半径为r ,卫星运行的周期为T 。

假设在该天体表面沿竖直方向以初速度v 0向上抛出一个物体,不计阻力,求它可以到达的最大高度h 是( )
A.v 20T 2(r -r 0)2
4π2r
3
B.v 20T 2(r -r 0)28π2r
3
C.v 20T 2r 20
4π2r
3
D.v 20T 2r 208π2r
3 13(2016·四川联考)火星(如图所示)是太阳系中与地球最为类似的行星,人类对火星生命的研究在今年因“火星表面存在流动的液态水”的发现而取得了重要进展。

若火星可视为均匀球体,火星表面的重力加速度为g 火星半径为R ,火星自转周期为T ,万有引力常量为G 。

求:
(1)火星的平均密度ρ。

(2)火星的同步卫星距火星表面的高度h 。

22212221224)(t t hT t t R π+=2
22122
212
22)(t t hT t t R π+=22212221222)(t t hT t t R π-=2
2
2122
21224)(t t hT t t R π-=。

相关文档
最新文档