中考数学分类汇编-等腰三角形

合集下载

中考数学真题分类汇编及解析(二十四)等腰三角形

中考数学真题分类汇编及解析(二十四)等腰三角形

(2022•桂林中考)如图,在△ABC中,∠B=22.5°,∠C=45°,若AC=2,则△ABC的面积是()A.3+√22B.1+√2C.2√2D.2+√2【解析】选D.如图,过点A作AD⊥AC于A,交BC于D,过点A作AE⊥BC于E,因为∠C=45°,所以△ADC是等腰直角三角形,所以AD=AC=2,∠ADC=45°,CD=√2AC=2√2,因为∠ADC=∠B+∠BAD,∠B=22.5°,所以∠DAB=22.5°,所以∠B=∠DAB,所以AD=BD=2,因为AD=AC,AE⊥CD,所以DE=CE,所以AE=12CD=√2,所以△ABC的面积为12•BC•AE=12×√2×(2+2√2)=2+√2.(2022·安徽中考)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA(2022•泰安中考)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°【解析】选A.如图,因为AB=BC,∠C=25°,所以∠C=∠BAC=25°,因为l1∥l2,∠1=60°,所以∠BEA=180°﹣60°﹣25°=95°,因为∠BEA=∠C+∠2,所以∠2=95°﹣25°=70°(2022•宜宾中考)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则CFAF =45;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+√3.其中含所有正确结论的选项是()A.①②④ B.①②③ C.①③④ D.①②③④【解析】选B.如图1中,因为∠BAC=∠DAE=90°,所以∠BAD=∠CAE,因为AB=AC,AD=AE,所以△BAD≌△DAE(SAS),所以BD=EC,∠ADB=∠AEC,故①正确,因为∠ADB+∠ADC=180°,所以∠AEC+∠ADC=180°,所以∠DAE+∠DCE=180°,所以∠DAE=∠DCE=90°,取DE的中点O,连接OA,OA,OC,则OA=OD=OE=OC,所以A,D,C,E四点共圆,所以∠DAC=∠CED,故②正确,设CD=m,则BD=CE=2m.DE=√5m,OA=√52m,过点C作CJ⊥DF于点J,因为tan∠CDF=CJDJ =CECD=2,所以CJ=2√55m,因为AO⊥DE,CJ⊥DE,所以AO∥CJ,所以CFAF =CJAO=2√55m√52m=45,故③正确.如图2中,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,所以BP=BN,PC=NM,∠PBN=60°,所以△BPN是等边三角形,所以BP=PN,所以PA+PB+PC=AP+PN+MN,所以当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时∠APB=∠APC=∠BPC=120°,PB=PC,AD⊥BC,所以∠BPD=∠CPD=60°,设PD=t,则BD=AD=√3t,所以2+t=√3t,所以t=√3+1,所以CE=BD=√3t=3+√3,故④错误,故正确的结论是①②③.(2022•福建中考)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为()(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm【解析】选B.因为AB=AC,BC=44cm,所以BD=CD=22cm,AD⊥BC,因为∠ABC=27°,所以tan∠ABC=ADBD≈0.51,所以AD≈0.51×22=11.22cm.(2022•永州中考)如图,在Rt△ABC中,∠ABC=90°,∠C=60°,点D为边AC的中点,BD=2,则BC 的长为()A.√3B.2√3C.2D.4【解析】选C.在Rt△ABC中,∠ABC=90°,点D为边AC的中点,BD=2,所以AC=2BD=4,因为∠C=60°,所以∠A=30°,所以BC=12AC=2.(2022•鄂州中考)如图,直线l1∥l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为()A.10°B.15°C.20°D.30°【解析】选B.由题意可得AC=BC,所以∠CAB=∠CBA,因为∠BCA=150°,∠BCA+∠CAB+∠CBA=180°,所以∠CAB=∠CBA=15°,因为l1∥l2,所以∠1=∠CBA=15°.(2022•梧州中考)如图,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别是点E ,F ,则下列结论错误的是( )A .∠ADC =90°B .DE =DFC .AD =BC D .BD =CD【解析】选C .因为AB =AC ,AD 是△ABC 的角平分线,所以AD ⊥BC ,BD =CD ,∠B =∠C ,所以∠ADC =90°,在△BDE 和△CDF 中,{∠B =∠C ∠BED =∠CFD BD =CD,所以△BDE ≌△CDF (AAS ),所以DE =DF .(2022•龙东中考)如图,△ABC 中,AB =AC ,AD 平分∠BAC 与BC 相交于点D ,点E 是AB 的中点,点F是DC 的中点,连接EF 交AD 于点P .若△ABC 的面积是24,PD =1.5,则PE 的长是( )A .2.5B .2C .3.5D .3【解析】选A .如图,过点E 作EG ⊥AD 于G ,因为AB =AC ,AD 平分∠BAC ,所以AD ⊥BC ,BD =CD ,所以∠PDF =∠EGP =90°,EG ∥BC , 因为点E 是AB 的中点,所以G 是AD 的中点,所以EG =12BD ,因为F 是CD 的中点,所以DF =12CD ,所以EG =DF ,因为∠EPG =∠DPF ,所以△EGP ≌△FDP (AAS ),所以PG =PD =1.5,所以AD =2DG =6,因为△ABC 的面积是24,所以12•BC •AD =24,所以BC =48÷6=8, 所以DF =14BC =2,所以EG =DF =2,由勾股定理得:PE =√22+1.52=2.5.A .36°B .54°C .72°D .108°【解析】选A .由题意可得BP 为∠ABC 的角平分线,所以∠ABD =∠CBD ,因为AD =BD ,所以∠A =∠ABD ,所以∠A =∠ABD =∠CBD ,所以∠ABC =2∠A ,因为AB =AC ,所以∠ABC =∠C =2∠A ,所以∠A +∠ABC +∠C =∠A +2∠A +2∠A =180°,解得∠A =36°.(2022•滨州中考)如图,屋顶钢架外框是等腰三角形,其中AB =AC ,立柱AD ⊥BC ,且顶角∠BAC =120°,则∠C 的大小为 30° .【解析】因为AB =AC 且∠BAC =120°,所以∠B =∠C =12(180°﹣∠BAC )=12×60°=30°.答案:30°.(2022•绍兴中考)如图,在△ABC 中,∠ABC =40°,∠BAC =80°,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连结CD ,则∠BCD 的度数是 10°或100° .【解析】如图,点D 即为所求;在△ABC中,∠ABC=40°,∠BAC=80°,所以∠ACB=180°﹣40°﹣80°=60°,由作图可知:AC=AD,所以∠ACD=∠ADC=12(180°﹣80°)=50°,所以∠BCD=∠ACB﹣∠ACD=60°﹣50°=10°;由作图可知:AC=AD′,所以∠ACD′=∠AD′C,因为∠ACD′+∠AD′C=∠BAC=80°,所以∠AD′C=40°,所以∠BCD′=180°﹣∠ABC﹣∠AD′C=180°﹣40°﹣40°=100°.综上所述:∠BCD的度数是10°或100°.答案:10°或100°.(2022•娄底中考)如图,已知等腰△ABC的顶角∠BAC的大小为θ,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转θ角度时点D落在D′处,连接BD′.给出下列结论:①△ACD≌△ABD′;②△ACB∽△ADD′;③当BD=CD时,△ADD′的面积取得最小值.其中正确的结论有①②③(填结论对应的应号).【解析】由题意可知AC=AB,AD=AD′,∠CAD=∠BAD′,所以△ACD≌△ABD′,故①正确;因为AC=AB,AD=AD′,∠BAC=∠D′AD=θ,所以ACAD =ABAD′,所以△ACB∽△ADD′,故②正确;因为△ACB∽△ADD′,所以S△ADD′S△ACB=(ADAC)2,因为当AD⊥BC时,AD最小,△ADD′的面积取得最小值.而AB=AC,所以BD=CD,所以当BD=CD时,△ADD′的面积取得最小值,故③正确;(2022•岳阳中考)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD= 3 .【解析】因为AB=AC,AD⊥BC,所以CD=BD,因为BC=6,所以CD=3.答案:3(2022•德阳中考)如图,直角三角形ABC纸片中,∠ACB=90°,点D是AB边上的中点,连结CD,将△ACD沿CD折叠,点A落在点E处,此时恰好有CE⊥AB.若CB=1,那么CE=√3.【解析】如图,设CE交AB于点O.因为∠ACB=90°,AD=DB,所以CD=AD=DB,所以∠A=∠ACD,由翻折的性质可知∠ACD=∠DCE,因为CE⊥AB,所以∠BCE+∠B=90°,因为∠A+∠B=90°,所以∠BCE=∠A,所以∠BCE=∠ACD=∠DCE=30°,,所以CO=CB•cos30°=√32因为DA=DE,DA=DC,所以DC=DE,,所以CE=√3.因为DO⊥CE,所以CO=OE=√32答案:√3.(2022•嘉兴中考)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件∠B=60°.【解析】有一个角是60°的等腰三角形是等边三角形,答案:∠B=60°(2022•无锡中考)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE 交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=80°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是4−√3.【解析】因为△ACB,△DEC都是等边三角形,所以AC=CB,DC=EC,∠ACB=∠DCE=60°,所以∠BCD=∠ACE,在△BCD和△ACE中,{CB=CA∠BCD=∠ACE CD=CE,所以△BCD≌△ACE(SAS),所以∠DBC=∠EAC=20°,因为∠BAC=60°,所以∠BAF=∠BAC+∠CAE=80°.如图1中,设BE交AC于点T.同法可证△BCD ≌△ACE ,所以∠CBD =∠CAF ,因为∠BTC =∠ATF ,所以∠BCT =∠AFT =60°,所以点F 在△ABC 的外接圆上运动,当∠ABF 最小时,AF 的值最小,此时CD ⊥BD ,所以BD =√BC 2−CD 2=√52−32=4,所以AE =BD =4,∠BDC =∠AEC =90°,因为CD =CE ,CF =CF ,所以Rt △CFD ≌Rt △CFE (HL ),所以∠DCF =∠ECF =30°,所以EF =CE •tan30°=√3,所以AF 的最小值为AE ﹣EF =4−√3.答案:80,4−√3(2022•鄂州中考)如图,在边长为6的等边△ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 42+18√77 .【解析】因为△ABC 是等边三角形,所以AB =BC ,∠ABD =∠C =60°,在△ABD 和△BCE 中,{AB =BC∠ABD =∠C BD =CE所以△ABD ≌△BCE (SAS ),所以∠BAD =∠CBE ,所以∠APE =∠ABP +∠BAD =∠ABP +∠CBE =∠ABD =60°,所以∠APB =120°,在CB 上取一点F 使CF =CE =2,则BF =BC ﹣CF =4,所以∠C =60°,所以△CEF 是等边三角形,所以∠BFE =120°,即∠APB =∠BFE ,所以△APB ∽△BFE ,所以AP BP =BF EF =42=2, 设BP =x ,则AP =2x ,作BH ⊥AD 延长线于H ,因为∠BPD =∠APE =60°,所以∠PBH =30°,所以PH =x 2,BH =√32x ,所以AH =AP +PH =2x +x 2=52x ,在Rt △ABH 中,AH 2+BH 2=AB 2,即(52x )2+(√32x )2=62, 解得x =6√77或−6√77(舍去),所以AP =12√77,BP =6√77, 所以△ABP 的周长为AB +AP +BP =6+12√77+6√77=6+18√77=42+18√77, 答案:42+18√77. (2022•泰州中考)如图,△ABC 中,∠C =90°,AC =8,BC =6,O 为内心,过点O 的直线分别与AC 、AB边相交于点D 、E .若DE =CD +BE ,则线段CD 的长为 2或12 .【解析】如图,过点O 的直线分别与AC 、AB 边相交于点D 、E ,连接BO ,CO ,因为O 为△ABC 的内心,所以CO 平分∠ACB ,BO 平分∠ABC ,所以∠BCO =∠ACO ,∠CBO =∠ABO ,当CD =OD 时,则∠OCD =∠COD ,所以∠BCO =∠COD ,所以BC ∥DE ,所以∠CBO =∠BOE ,所以BE =OE ,则DE =CD +BE ,设CD =OD =x ,BE =OE =y ,在Rt △ABC 中,AB =√AC 2+BC 2=10,所以{AD AC =DE BC AE AB =DE BC ,即{8−x 8=x+y 610−y 10=8−x 8,解得{x =2y =52,所以CD =2,过点O 作D ′E ′⊥AB ,作DE ∥BC ,因为点O 为△ABC 的内心,所以OD =OE ′,在Rt △ODD ′和Rt △OE ′E 中,{∠OE′E =∠ODD′OE′=OD ∠EOE′=∠D′OD,所以△ODD ′≌△OE ′E (ASA ),所以OE =OD ′,所以D ′E ′=DE =CD +BE =CD ′+BE ′=2+52=92,在△AD ′E ′和△ABC 中,{∠A =∠A ∠D′E′A =∠BCA,所以△AD ′E ′∽△ABC , 所以AD′AB =D′E′BC ,所以AD′10=926,解得:AD ′=152,所以CD ′=AC ﹣AD ′=12. 答案:2或12. (2022•包头中考)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =3,D 为AB 边上一点,且BD =BC ,连接CD ,以点D 为圆心,DC 的长为半径作弧,交BC 于点E (异于点C ),连接DE ,则BE 的长为 3√2−3 .【解析】因为∠ACB =90°,AC =BC =3,所以AB =√2AC =3√2,∠A =∠B =45°,因为BD =BC =3,AC =BC ,所以BD =AC ,AD =3√2−3.因为DC =DE ,所以∠DCE =∠DEC .因为BD =BC ,所以∠DCE =∠CDB ,所以∠CED =∠CDB ,因为∠CDB =∠CDE +∠EDB ,∠CED =∠B +∠EDB ,所以∠CDE =∠B =45°.所以∠ADC +∠EDB =180°﹣∠CDE =135°.因为∠ADC +∠ACD =180°﹣∠A =135°,所以∠ACD =∠EDB .在△ADC 和△BED 中,{AC =BD ∠ACD =∠EDB CD =DE,所以△ADC ≌△BED (SAS ).所以BE =AD =3√2−3.答案:3√2−3.【解析】过点A作AH⊥BC于点H.设AN=CM=x.因为AB=AC=√2,∠BAC=90°,所以BC=√(√2)2+(√2)2=2,因为AH⊥BC,所以BH=AH=1,所以AH=BH=CH=1,所以AM+BN=√12+(1−x)2+√(√2)2+x2,欲求AM+BN的最小值,相当于在x轴上寻找一点P(x,0),到E(1,1),F(0,√2)的距离和的最小值,如图1中,作点F关于x轴的对称点F′,当E,P,F′共线时,PE+PF的值最小,此时直线EF′的解析式为y=(√2+1)x−√2,当y=0时,x=2−√2,所以AM+BN的值最小时,CM的值为2−√2.答案:2−√2(2022•自贡中考)如图,△ABC是等边三角形,D、E在直线BC上,DB=EC.求证:∠D=∠E.【证明】因为△ABC是等边三角形,所以AB=AC,∠ABC=∠ACB=60°,所以∠ABD=∠ACE=120°,在△ABD和△ACE中,{AB=AC∠ABD=∠ACE BD=CE,所以△ABD≌△ACE(SAS),所以∠D=∠E.(2022•怀化中考)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【解析】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,因为MQ∥BC,所以∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,所以△AMQ是等边三角形,所以AM=QM,因为AM=CN,所以QM=CN,在△QMP和△CNP中,{∠QPM=∠CPN ∠QMP=∠N QM=CN,所以△QMP≌△CNP(AAS),所以MP=NP;(2)因为△AMQ是等边三角形,且MH⊥AC,所以AH=HQ,因为△QMP≌△CNP,所以QP=CP,所以PH=HQ+QP=12 AC,因为AB=a,AB=AC,所以PH=1 2 a(2022•杭州中考)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC 于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.(2022•绥化中考)我们可以通过面积运算的方法,得到等腰三角形底边上的任意一点到两腰的距离之和与一腰上的高之间的数量关系,并利用这个关系解决相关问题.(1)如图一,在等腰△ABC 中,AB =AC ,BC 边上有一点D ,过点D 作DE ⊥AB 于E ,DF ⊥AC 于F ,过点C 作CG ⊥AB 于G .利用面积证明:DE +DF =CG .(2)如图二,将矩形ABCD 沿着EF 折叠,使点A 与点C 重合,点B 落在B '处,点G 为折痕EF 上一点,过点G 作GM ⊥FC 于M ,GN ⊥BC 于N .若BC =8,BE =3,求GM +GN 的长.(3)如图三,在四边形ABCD 中,E 为线段BC 上的一点,EA ⊥AB ,ED ⊥CD ,连接BD ,且AB CD =AE DE ,BC =√51,CD =3,BD =6,求ED +EA 的长.【解析】(1)连接AD ,因为S △ABC =S △ABD +S △ACD ,所以12×AB ×CG =12×AB ×DE +12×AC ×DF ,因为AB =AC ,所以DE +DF =CG ;(2)因为将矩形ABCD 沿着EF 折叠,使点A 与点C 重合,所以∠AFE =∠EFC ,AE =CE ,因为AD ∥BC ,所以∠AFE =∠CEF ,所以∠CEF =∠CFE ,所以CE =CF ,因为BC =8,BE =3,所以CE =AE =5,在Rt △ABE 中,由勾股定理得,AB =4,所以等腰△CEF 中,CE 边上的高为4, 由(1)知,GM +GN =4;(3)延长BA 、CD 交于G ,作BH ⊥CD 于H ,因为ABCD =AEDE ,∠BAE =∠EDC =90°,所以△BAE ∽△CDE ,所以∠ABE =∠C ,所以BG =CG ,所以ED +EA =BH ,设DH =x ,由勾股定理得,62﹣x 2=(√51)2﹣(x +3)2,解得x =1,所以DH =1, 所以BH =√BD 2−DH 2=√62−12=√35,所以ED +EA =√35.。

广东省广州市白云区中考数学试题分类汇编考点25 等腰三角形2

广东省广州市白云区中考数学试题分类汇编考点25 等腰三角形2

等腰三角形一、选择题36,AB的中垂线MD交AC于点D、交AB 1.(2011某某某某,13,3分)如图,已知AB=AC,∠A=于点M。

下列结论:①BD是∠ABC的平分线;②△BCD是等腰三角形;③△ABC∽△BCD;④△AMD≌△BCD,正确的有( )个A.4 B.3 C.2 D.1(第13题)【答案】B2. (2011某某某某,12,3分)如图4, △ABC与△DEF均为等边三角形, O为BC、EF的中点,则AD:BE 的值为( )A. 3:1B.2:1C. 5:3D. 不确定【答案】A3. (2011某某呼和浩特市,7,3分)如果等腰三角形两边长是6cm和3cm ,那么它的周长是()A. 9cmB. 12cmC. 15cm或12cmD. 15cm【答案】D4. (2011某某某某,7,4分)等腰三角形的两条边长分别为3、6,那么它的周长为()A.15B.12 C【答案】A5. (2011某某某某,20,3分)如图在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点E ,连结DE 、EF.下列结论:①tan ∠ADB=2 ②图中有4对全等三角形 ③将△DEF 沿E 折叠,则点D 不一定落在AC 上 ④BD=BF ⑤AOF DFOE S S ∆=四边形,上述结论中正确的个数是( )A 、1个B 、2个C 、3个D 、4个【答案】C6. (2011某某某某,8,3分)如图,直线1l ∥2l ,点A 在直线1l 上,以点A 为圆心,适当长为半径画弧,分别交直线1l 、2l 于B 、C 两点,连结AC 、BC .若54ABC ∠=,则1∠的大小为(A )36.(B )54.(C )72.(D )73.【答案】(C )7. (2011年某某地区,7,4分)下列关于等腰三角形的性质叙述错误的是( )B.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合D.等腰三角形是轴对称图形. 【答案】C8. (2011某某某某,8,3分)如图,在△ABC 中,AB =20㎝,AC =12㎝,点P 从点B 出发以每秒3㎝的速度向点A 运动,点Q 从点A 同时出发以每秒2㎝的速度向点C 运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ 是等腰三角形时,运动的时间是 ( ) A . 2.5B .3秒C .3.5秒D .4秒QCBPA【答案】D9. (2011某某某某,8,3分)如图,直线1l ∥2l ,点A 在直线1l 上,以点A 为圆心,适当长为半径画弧,分别交直线1l 、2l 于B 、C 两点,连结AC 、BC .若54ABC ∠=,则1∠的大小为(A )36. (B )54.(C )72.(D )73.【答案】(C )11. (2010乌鲁木齐,10,4分)如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且1BP =,点D 为AC 边上一点若60APD ∠=︒,则CD 的长为A.12 B.23 C.34【答案】B12.13. (2011某某某某,10,3分)如图6,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADB +∠EDC =120°,BD =3,CE =2,则△ABC 的边长为A .9B .12C .16D .18【答案】A二、填空题1.(2011某某某某,12,4分)如图,在△ABC中,AB=AC,∠B=40°,则∠A=.【答案】100°;2. (2011某某,8,3分)如图,在△ABC中,AB=AC,CD平分∠ACB,∠A =36°,则∠BDC的度数为.【答案】723. (2011某某某某,15,3分)如图4,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,则图中阴影部分面积等于_________cm2.AB′C′图4【答案】34. (2011某某莱芜,15,4分)如图,已知在△ABC 中,AB=B C,∠B=0120,AB 的垂直平分线交AC 于点D.若AC=6cm ,则AD=___________cm.(第15题图)DCBA【答案】25. (2011某某,14,3分)如图,在△A BC 中,A B =AC ,∠A =80°,E ,F ,P 分别是A B ,A C ,BC 边上一点,且BE =BP ,CP =CF ,则∠EPF =度.【答案】506. (2011某某某某,12,3分)如图,在△ABC 中,∠B=30°,ED 垂直平分BC ,ED=3,则CE 的长为_________.【答案】67. (2011某某某某,19,3分)如图4,△ABD 与△AEC 都是等边三角形,AB ≠AC ,下列结论中:①BE=DC ;②∠BOD=60°;③△BOD ∽△COE.正确结论的序号是.图4BA CEO【答案】①8. (2011某某某某,12,3分)如图,在△ABC 中,∠B=30°,ED 垂直平分BC ,ED=3,则CE 的长为_________.【答案】69. (2011某某,15,3分)如图,△ABC 中,AB=AC ,点D 为BC 的中点,∠BAD=20°,则∠C=.【答案】70° 10. 11. 12. 13. 14. 15. 16. 三、解答题1. (2011某某某某,21,本题满分9分)如图9,已知线段AB 的长为2a ,点P 是AB 上的动点(P 不与A ,B 重合),分别以AP 、PB 为边向线段AB 的同一侧作正△APC 和正△PBD .(1)当△APC 与△PBD 的面积之和取最小值时,AP=___________;(直接写结果)(2)连结AD 、BC ,相交于点Q ,设∠AQC=α,那么α的大小是否会随点P 的移动而变化?请说明理由;ACDB(3)如图10,若点P 固定,将△PBD 绕点P 按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明)【答案】(1)223a ;(2)α的大小不会随点P 的移动而变化, 理由:∵△APC 是等边三角形,∴PA=PC, ∠APC=600,∵△BDP 是等边三角形,∴PB=PD, ∠BPD=600, ∴∠APC=∠BPD, ∴∠APD=∠CPB, ∴△APD ≌△CPB, ∴∠PAD=∠PCB,∵∠QAP+∠QAC+∠ACP=1200,∴∠QCP+∠QAC+∠ACP=1200, ∴∠AQC=1800-1200=600; (3) 此时α的大小不会发生改变,始终等于600.2. (2011某某随州,18,7分)如图,在等腰三角形ABC 中,∠ABC=90°,D 为AC 边上中点,过D 点作DE ⊥DF ,交AB 于E ,交BC 于F ,若AE=4,FC=3,求EF 长.【答案】连结BD ,证△BED ≌△CFD 和△AED ≌△BFD ,求得EF=5 3. (2011某某襄阳,21,6分)如图6,点D ,E 在△ABC 的边BC 上,连接AD ,AE . ①AB =AC ;②AD =AE ;③BD =CE .以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答);第18题图BAEDF C(2)请选择一个真命题进行证明(先写出所选命题,然后证明).【答案】(1)①②⇒③;①③⇒②;②③⇒①. ·········· 3分 (2)(略) 6分4. (2011某某达州,20,6分)如图,△ABC 的边BC 在直线m 上,AC⊥BC,且AC=BC ,△DEF 的边FE 也在直线m 上,边DF 与边AC 重合,且DF=EF .(1)在图(1)中,请你通过观察、思考,猜想并写出AB 与AE 所满足的数量关系和位置关系;(不要求证明)(2)将△DEF 沿直线m 向左平移到图(2)的位置时,DE 交AC 于点G ,连结AE ,BG .猜想△BCG 与△ACE 能否通过旋转重合?请证明你的猜想.【答案】解:(6分)(1)AB=AE, AB ⊥AE(2) 将△BCG 绕点C 顺时针旋转90°后能与△ACE 重合(或将△ACE 绕点C 逆时针旋转90°后能与△BCG 重合),理由如下:∵AC ⊥BC ,DF ⊥EF ,B 、F 、C 、E 共线,∴∠ACB=∠ACE=∠DFE=90° 又∵AC=BC ,DF=EF ,∴∠DFE=∠D=45°,在△CEG 中,∵∠ACE=90°,∴∠CGE=∠DEF=90°, ∴CG=CE , 在△BCG 和△ACE 中E DCB A图6∵⎪⎩⎪⎨⎧=∠=∠=CE CG ACE ACB AC BC ∴△BCG ≌△ACE (SAS )∴将△BCG 绕点C 顺时针旋转90°后能与△ACE 重合(或将△ACE 绕点C 逆时针旋转90°后能与△BCG 重合)5. (2011某某省随州市,18,8分)如图,在等腰直角三角形ABC 中,∠ABC =90°,D 为AC 边的中点,过D 点作DE ⊥DF ,交AB 于E ,交BC 于F 。

中考数学专题复习:等腰三角形

中考数学专题复习:等腰三角形

中考数学专题复习:等腰三角形一、选择题1. 若等腰三角形的顶角为50°,则它的底角度数为( )A .40°B .50°C .60°D .65° 2. 如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°3. 一个等腰三角形两边的长分别为75和18,则这个三角形的周长为()A .10 3+3 2B .5 3+6 2C .10 3+3 2或5 3+6 2D .无法确定4. 如图,在△ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A .120°B .130°C .145°D .150°5. 如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为( )A .40︒B .45︒C .50︒D .60︒6. 如图,已知△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =90°,BD ,CE 交于点F ,连接AF .下列结论:①BD =CE ;②BF ⊥CF ;③AF 平分∠CAD ;④∠AFE =45°.其中正确结论的个数有( )A .1B .2个C .3个D .4个CE F7. △ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( )A. 120°B. 125°C. 135°D. 150°8. 如图,在△ABC 中,AB =AC ,BC =12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D .设BD =x ,tan ∠ACB =y ,则()A. x -y 2=3B. 2x -y 2=9C. 3x -y 2=15D. 4x -y 2=21二、填空题9. 若等腰三角形的顶角为120°,腰长为2 cm ,则它的底边长为________ cm . 10. 如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上) ①∠BAD =∠ACD ②∠BAD =∠CAD③ AB +BD =AC +CD ④ AB -BD =AC -CD11. 如图,在△ABC 中,AB =AC ,∠BAC 的平分线AD 交BC 于点D ,E 为AB 的中点.若BC =12,AD =8,则DE 的长为________.ECB A12. 如图,在△ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若△AFC 是等边三角形,则∠B =________°. ABC DE F13. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.14. 如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE 的延长线于点D,BD=8,AC=11,则边BC的长为________.15. 如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为__________.16. 如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M 是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为________.MD CBA三、解答题17. 如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;ODABCxy(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.18. 如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.19. 如图,在四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中点,CE⊥BD,连接AC交DE于点M.(1)求证:AD=BE;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?说明理由.20. 如图,在△ABC中,AB=AC,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连接CD,AE,延长EA交CD于点G.(1)求证:△ACE≌△CBD;(2)求∠CGE的度数.21. 如图,在△ABC中,AB=AC=5 cm,BC=6 cm,AD是BC边上的高.点P 由C出发沿CA方向匀速运动.速度为1 cm/s.同时,直线EF由BC出发沿DA 方向匀速运动,速度为1 cm/s,EF//BC,并且EF分别交AB、AD、AC于点E,Q,F,连接PQ.若设运动时间为t(s)(0<t<4),解答下列问题:(1)当t为何值时,四边形BDFE是平行四边形?(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.参考答案1. 【答案】D2. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .3. 【答案】[解析] A 因为75=5 3,18=3 2.当5 3为腰长时,三角形的周长为10 3+3 2;当5 3为底边长时,因为3 2+3 2=6 2=72,72<75,所以不能构成三角形,故三角形的周长为10 3+3 2.4. 【答案】B【解析】可利用三角形的外角性质求∠ FEC 的度数,结合等腰三角形与平行线的性质,可得∠ EDC 、∠B 均与∠C 相等.即:∵AB =AC ,∴∠B =∠C =65°.∵DF ∥AB ,∴∠ EDC =∠B =65°.∴∠FEC =∠EDC +∠C =65°+65°=130°.5. 【答案】C【解析】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠, ∵1804040100ACB ∠=︒-︒-︒=︒,∴1502BCG ACB ∠=∠=︒.故选C . 6. 【答案】C【解析】∵△ABC 和△ADE 都是等腰直角三角形,∴AB=AC ,AD=AE ,∵∠BAD=90°+∠CAD ,∠CAE=90°+∠CAD ,∴∠BAD=∠CAE ,在△AEC 与△ADB 中, AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,∴△AEC ≌△ADB(SAS),∴BD=CE ,故①正确;∴∠ADB=∠AEC ,∵∠DEF+∠AEC+∠EDA=90°,∴∠DEF+∠ADB+∠EDA=90°∴∠DEF+∠EDF=90∘,∴BD ⊥CE ,故②正确;∵作AN ⊥CE ,AM ⊥BD∵△AEC ≌△ADB(SAS),∴AM=AN,∵AF是∠BFE的角平分线,∠BFE=90°,∴∠AFE=45°,故④正确,故③正确;因为QF≠PF,故③错误。

中考数学真题分类汇编之第二十三章等腰三角形及参考答案

中考数学真题分类汇编之第二十三章等腰三角形及参考答案

第23章 等腰三角形一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )36【答案】B2. (2011四川南充市,10,3分)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个 (D )4个MECA【答案】D3. (2011浙江义乌,10,3分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有 (第7题)A BCD EA .1个B .2个C .3个D .4个【答案】D4. (2011台湾全区,30)如图(十三),ΔABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、AB于D 、E 两点,并连接BD 、DE .若∠A =30∘,AB =AC ,则∠BDE 的度数为何?A . 45B . 52.5C . 67.5D . 75 【答案】C5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC 、DEF ,且D 、A 分别为△ABC 、△DEF 的重心.固定D 点,将△DEF 逆时针旋转,使得A 落在DE 上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A .2:1B . 3:2C . 4:3D . 5:4 【答案】C6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是A .15cmB .16cm ABCDEF GC .17cmD .16cm 或17cm 【答案】D7. (2011四川凉山州,8,4分)如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( )A .1013 B .1513 C .6013 D .7513【答案】C二、填空题1. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________.【答案】2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 【答案】4或63. (2011浙江杭州,16,4)在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .4. (2011浙江台州,14,5分)已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为【答案】80º5. (2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = °.【答案】1106. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。

中考数学分类(含答案)等腰三角形

中考数学分类(含答案)等腰三角形

中考数学分类(含答案)等腰三角形一、选择题 1.(2010浙江宁波) 如图,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是△ABC 、△BCD 的角平分线, 则图中的等腰三角形有(A)5个 (B)4个 (C)3个 (D)2个【答案】A 2.(2010 浙江义乌)如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA =5,则线段PB 的长度为( ▲ )A .6B .5C .4D .3 【答案】B3.(2010江苏无锡)下列性质中,等腰三角形具有而直角三角形不一定具有的是 ( )A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180° 【答案】B4.(2010 黄冈)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定ABC DPE D CBA(第10题)第15题图 【答案】B . 5.(2010山东烟台)如图,等腰△ ABC 中,AB=AC ,∠A=20°。

线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于 A 、80° B 、 70° C 、60° D 、50°【答案】C6.(2010江西)已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是( )A .8B .7C . 4D .3【答案】B 7.(2010湖北武汉)如图,△ABC 内有一点D ,且DA=DB=DC ,若∠DAB=20°,∠DAC=30°,则∠BDC 的大小是( )DA.100°B.80°C.70°D.50° 【答案】A 8.(2010山东威海)如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点, 连接BD .若BD 平分∠ABC ,则下列结论错误的是A .BC =2BEADBEB .∠A =∠EDAC .BC =2AD D .BD ⊥AC 【答案】C9.(2010 湖南株洲)如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是 A .6B .7C .8D .9【答案】C 10.(2010云南楚雄)已知等腰三角形的一个内角为70°,则另外两个内角的度数是( )A .55°,55° B.70°,40° C .55°,55°或70°,40° D .以上都不对 【答案】C 11.(2010湖北随州)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定第15题图【答案】B12.(2010湖北襄樊)已知:一等腰三角形的两边长x 、y 满足方程组2-3,328,x y x y =⎧⎨+=⎩则此等腰三角形的周长为( )A .5B .4C .3D .5或4 【答案】A 13.(2010 山东东营)如图,点C 是线段AB 上的一个动点,△ACD 和△BCE 是在ABB A第8题图 C同侧的两个等边三角形,DM ,EN 分别是△ACD 和△BCE 的高,点C 在线段AB 上沿着从点A 向点B 的方向移动(不与点A ,B 重合),连接DE ,得到四边形DMNE .这个四边形的面积变化情况为( )(A )逐渐增大 (B) 逐渐减小 (C) 始终不变 (D) 先增大后变小【答案】C 14.(2010 广东汕头)如图,把等腰直角△ABC 沿BD 折叠,使点A 落在边BC 上的点E 处.下面结论错误的是( )A .AB =BE B .AD =DC C .AD =DE D .AD =EC【答案】B15.(2010 重庆江津)已知:△ABC 中,AB=AC=x ,BC=6,则腰长x 的 取值范围是( )A .03x <<B .3x >C .36x <<D .6x >【答案】B16.(2010 重庆江津)如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF .下列结论中正确的个数有( )①45EAF ∠=︒ ②△ABE ∽△ACD ③EA 平分CEF ∠ ④222BE DC DE +=A .1个B .2个C .3个D .4个【答案】C 17.(2010广东茂名)如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E 、F 分别是边AB 、AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是A 、15米B 、20米C 、25米D 、30米 【答案】C 18.(2010广东深圳)如图1,△ABC 中,AC=AD=BD ,∠DAC=80°。

(人教版)2020中考数学试题分类汇编 考点20 等腰三角形、等边三角形和直角三角形(含解析)

(人教版)2020中考数学试题分类汇编 考点20 等腰三角形、等边三角形和直角三角形(含解析)

考点20 等腰三角形、等边三角形和直角三角形一.选择题(共5小题)1.(2019•湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.2.(2019•宿迁)若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8 D.6【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【解答】解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:B.3.(2019•扬州)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.4.(2019•淄博)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C.D.8【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.5.(2019•黄冈)如图,在Rt△ABC中,∠A CB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.2【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选:C.二.填空题(共12小题)6.(2019•成都)等腰三角形的一个底角为50°,则它的顶角的度数为80°.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.7.(2019•长春)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.8.(2019•哈尔滨)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.9.(2019•吉林)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36 度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.10.(2019•淮安)若一个等腰三角形的顶角等于50°,则它的底角等于65 °.【分析】利用等腰三角形的性质及三角形内角和定理直接求得答案.【解答】解:∵等腰三角形的顶角等于50°,又∵等腰三角形的底角相等,∴底角等于(180°﹣50°)×=65°.故答案为:65.11.(2019•娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF= 6 cm.【分析】先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,又S△ABC=AC•BF,将AC=AB 代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,∵S△ABC=AC•BF,∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.12.(2019•桂林)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是 3 .【分析】首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.【解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:313.(2019•徐州)边长为a的正三角形的面积等于.【分析】根据正三角形的性质求解.【解答】解:过点A作AD⊥BC于点D,∵AD⊥BC∴BD=CD=a,∴AD==a,面积则是:a•a=a2.14.(2019•黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n= ()n.【分析】由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n的面积.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形AB n C n的面积为()n.故答案为:()n.15.(2019•湘潭)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= 30°.【分析】根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.又点D是边BC的中点,∴∠BAD=∠BAC=30°.故答案是:30°.16.(2019•天津)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.【分析】直接利用三角形中位线定理进而得出DE=2,且DE∥AC,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.【解答】解:连接DE,∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ABC的中位线,∴DE=2,且DE∥AC,BD=BE=EC=2,∵EF⊥AC于点F,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,∴FC=EC=1,故EF==,∵G为EF的中点,∴EG=,∴DG==.故答案为:.17.(2019•福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.三.解答题(共2小题)18.(2019•绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.19.(2019•徐州)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.※精品※试卷※【分析】(A类)连接AC,由AB=AC、AD=CD知∠BAC=∠BCA、∠DAC=∠DCA,两等式相加即可得;(B类)由以上过程反之即可得.【解答】证明:(A类)连接AC,∵AB=AC,AD=CD,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAC+∠DAC=∠BCA+∠DCA,即∠A=∠C;(B类)∵AB=AC,∴∠BAC=∠BCA,又∵∠A=∠C,即∠BAC+∠DAC=∠BCA+∠DCA,∴∠DAC=∠DCA,∴AD=CD.※推荐※下载※。

2023年中考数学真题分项汇编(全国通用)等腰三角形与直角三角形(共26道)(学生版)

2023年中考数学真题分项汇编(全国通用)等腰三角形与直角三角形(共26道)(学生版)

等腰三角形与直角三角形(共26道)一、单选题1(2023·江苏徐州·统考中考真题)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC上,且ADAB=DEBC,则AE的长为()A.1B.2C.1或32D.1或22(2023·甘肃兰州·统考中考真题)如图,在矩形ABCD中,点E为BA延长线上一点,F为CE的中点,以B为圆心,BF长为半径的圆弧过AD与CE的交点G,连接BG.若AB=4,CE=10,则AG= ()A.2B.2.5C.3D.3.53(2023·北京·统考中考真题)如图,点A、B、C在同一条线上,点B在点A,C之间,点D,E在直线AC同侧,AB<BC,∠A=∠C=90°,△EAB≌△BCD,连接DE,设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>a2+b2;③2a+b>c;上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③4(2023·江苏无锡·统考中考真题)如图△ABC中,∠ACB=90°,AB=4,AC=x,∠BAC=α,O为AB中点,若点D为直线BC下方一点,且△BCD与△ABC相似,则下列结论:①若α=45°,BC与OD相交于E,则点E不一定是△ABD的重心;②若α=60°,则AD的最大值为27;③若α=60°,△ABC∽△CBD,则OD的长为23;④若△ABC∽△BCD,则当x=2时,AC+CD取得最大值.其中正确的为()A.①④B.②③C.①②④D.①③④5(2023·浙江·统考中考真题)如图,在四边形ABCD中,AD∥BC,∠C=45°,以AB为腰作等腰直角三角形BAE,顶点E恰好落在CD边上,若AD=1,则CE的长是()A.2B.2C.2D.126(2023·四川眉山·统考中考真题)如图,在正方形ABCD中,点E是CD上一点,延长CB至点F,使BF=DE,连结AE,AF,EF,EF交AB于点K,过点A作AG⊥EF,垂足为点H,交CF于点G,连结HD,HC.下列四个结论:①AH=HC;②HD=CD;③∠FAB=∠DHE;④AK⋅HD=2HE2.其中正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题7(2023·湖南·统考中考真题)七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4dm的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为dm3.8(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.9(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.10(2023·湖北·统考中考真题)如图,△BAC ,△DEB 和△AEF 都是等腰直角三角形,∠BAC =∠DEB =∠AEF =90°,点E 在△ABC 内,BE >AE ,连接DF 交AE 于点G ,DE 交AB 于点H ,连接CF .给出下面四个结论:①∠DBA =∠EBC ;②∠BHE =∠EGF ;③AB =DF ;④AD =CF .其中所有正确结论的序号是.11(2023·山东·统考中考真题)如图,△ABC 是边长为6的等边三角形,点D ,E 在边BC 上,若∠DAE =30°,tan ∠EAC =13,则BD =.12(2023·山东日照·统考中考真题)如图,矩形ABCD 中,AB =6,AD =8,点P 在对角线BD 上,过点P 作MN ⊥BD ,交边AD ,BC 于点M ,N ,过点M 作ME ⊥AD 交BD 于点E ,连接EN ,BM ,DN .下列结论:①EM =EN ;②四边形MBND 的面积不变;③当AM :MD =1:2时,S △MPE =9625;④BM +MN+ND 的最小值是20.其中所有正确结论的序号是.13(2023·四川遂宁·统考中考真题)如图,以△ABC的边AB、AC为腰分别向外作等腰直角△ABE、△ACD,连结ED、BD、EC,过点A的直线l分别交线段DF、BC于点M、N,以下说法:①当AB=AC= BC时,∠AED=30°;②EC=BD;③若AB=3,AC=4,BC=6,则DE=23;④当直线l⊥BC时,点M为线段DE的中点.正确的有.(填序号)14(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B 分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为15(2023·江苏苏州·统考中考真题)如图,∠BAC=90°,AB=AC=32.过点C作CD⊥BC,延长CD,连接AE,ED.若ED=2AE,则BE=.(结果保留根号)CB到E,使BE=1316(2023·山西·统考中考真题)如图,在四边形ABCD中,∠BCD=90°,对角线AC,BD相交于点O.若AB=AC=5,BC=6,∠ADB=2∠CBD,则AD的长为.17(2023·湖北十堰·统考中考真题)在某次数学探究活动中,小明将一张斜边为4的等腰直角三角形ABC∠A=90°硬纸片剪切成如图所示的四块(其中D,E,F分别为AB,AC,BC的中点,G,H分别为DE,BF的中点),小明将这四块纸片重新组合拼成四边形(相互不重叠,不留空隙),则所能拼成的四边形中周长的最小值为,最大值为.三、解答题18(2023·北京·统考中考真题)在△ABC中、∠B=∠C=α0°<α<45°,AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.19(2023·黑龙江·统考中考真题)如图①,△ABC和△ADE是等边三角形,连接DC,点F,G,H分别是DE,DC和BC的中点,连接FG,FH.易证:FH=3FG.若△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,如图②:若△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,如图③:其他条件不变,判断FH和FG之间的数量关系,写出你的猜想,并利用图②或图③进行证明.20(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:,∠BDC=°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=.21(2023·四川成都·统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且ADBD=1n(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=22AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图3,连接EF,设EF的中点为M.若AB=22,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).22(2023·吉林长春·统考中考真题)如图①.在矩形ABCD.AB=3,AD=5,点E在边BC上,且BE=2.动点P从点E出发,沿折线EB-BA-AD以每秒1个单位长度的速度运动,作∠PEQ=90°,EQ交边AD或边DC于点Q,连续PQ.当点Q与点C重合时,点P停止运动.设点P的运动时间为t 秒.(t>0)(1)当点P和点B重合时,线段PQ的长为;(2)当点Q和点D重合时,求tan∠PQE;(3)当点P在边AD上运动时,△PQE的形状始终是等腰直角三角形.如图②.请说明理由;(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和矩形ABCD重叠部分图形为轴对称四边形时,直接写出t的取值范围.23(2023·甘肃武威·统考中考真题)【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型迁移】(3)在(2)的条件下,若AD=42,BD=3CD,求cos∠AFB的值.24(2023·重庆·统考中考真题)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB =4,直接写出PQ+QF的最小值.25(2023·湖南岳阳·统考中考真题)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是,MN与AC的位置关系是.特例研讨:(2)如图2,若∠BAC=90°,BC=42,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.(1)求∠BCF的度数;(2)求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.。

中考数学真题分类汇编:等腰三角形

中考数学真题分类汇编:等腰三角形

等腰三角形一.选择题1.(2012肇庆)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为A.16 B.18C.20 D.16或20【解析】先利用等腰三角形的性质:两腰相等;再由三角形的任意两边和大于第三边,确定三角形的第三边长,最后求得其周长.【答案】C【点评】本题将两个简易的知识点:等腰三角形的两腰相等和三角形的三边关系组合在一起.难度较小.2.(2012江西)等腰三角形的顶角为80°,则它的底角是()A.20° B.50° C.60° D.80°考点:等腰三角形的性质。

分析:根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.解答:解:∵等腰三角形的一个顶角为80°∴底角=(180°﹣80°)÷2=50°.故选B.点评:考查三角形内角和定理和等腰三角形的性质的运用,比较简单.3.(2012•中考)把等腰△ABC沿底边BC翻折,得到△DBC,那么四边形ABDC()解答:解:∵等腰△ABC沿底边BC翻折,得到△DBC,∴四边形ABDC是菱形,∵菱形既是中心对称图形,又是轴对称图形,∴四边形ABDC既是中心对称图形,又是轴对称图形.故选C .点评: 本题考查了中心对称图形,等腰三角形的性质,轴对称图形,判断出四边形ABDC 是菱形是解题的关键.4.(2012荆州)如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为( )A .2 B ..3 【解析】题目中已知了△ABC 是等边三角形,联想到等边三角形的三边相等、三角相等、三线合一的性质。

本题中,有含有30°角的直角三角形,要想到30°角的直角边等于斜边的一半。

△ABC 是等边三角形,BD 是∠ABC 的平分线, 所以∠ABD=∠CBD=21∠ABC=30°。

等腰三角形试题含解析-中考数学真题分类汇编第一辑

等腰三角形试题含解析-中考数学真题分类汇编第一辑

等腰三角形一、选择题1.(2018?山东枣庄?3 分)如图是由8 个全等的矩形组成的大正方形,线段AB 的端点都在小矩形的顶点上,如果点P 是某个小矩形的顶点,连接PA、PB,那么使△ ABP为等腰直角三角形的点P 的个数是()A.2 个B.3 个C.4 个D.5 个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P 的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P 是解题的关键.2 (2018?山东枣庄?3 分)如图,在Rt △ABC中,∠ ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点 F 作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=9°0,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF 平分∠ CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF 平分∠ CAB,∠ ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△ BAC,∴= ,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴= ,∵FC=FG,∴= ,解得:FC= ,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.3.(2018?山东淄博?4 分)如图,P 为等边三角形ABC内的一点,且P 到三个顶点A,B,C 的距离分别为3,4,5,则△ABC的面积为()2A .B .C .D .【考点】 R2:旋转的性质; KK :等边三角形的性质; KS :勾股定理的逆定理.【分析】 将△ BPC 绕点 B 逆时针旋转 60°得△ BEA ,根据旋转的性质得 BE=BP=4, AE=PC=5, ∠PBE=60°,则△ BPE 为等边三角形,得到 PE=PB=4,∠ BPE=60°,在△ AEP 中, AE=5,延长 BP ,作 AF ⊥ BP 于点 FAP=3, PE=4,根据勾股定理的逆定理可得到△APE 为直角三角形,且∠ APE=90°,即可得到∠ APB 的度数,在直角△ APF 中利用三角函数求得 AF 和 PF 的长,则在直角△ ABF 中利用勾股定理求得 AB 的长,进而求得三角形 ABC 的面积.【解答】 解:∵△ ABC 为等边三角形, ∴BA=BC ,可将△ BPC 绕点 B 逆时针旋转 60°得△ BEA ,连 EP ,且延长 BP ,作 AF ⊥ BP 于点 F .如图,∴BE=BP=4, AE=PC=5,∠ PBE=60°, ∴△ BPE 为等边三角形, ∴PE=PB=4,∠ BPE=60°,在△ AEP 中, AE=5,AP=3, PE=4,2 2 2∴AE =PE+PA ,∴△ APE 为直角三角形,且∠ APE=90°, ∴∠ APB=90° +60°=150°. ∴∠ APF=30°,∴在直角△ APF 中, AF= AP= , PF=AP=.22222∴在直角△ ABF 中, AB =BF +AF =( 4+) +( ) =25+12 .则△ ABC 的面积是 ?AB = ?( 25+12 )=. 故选: A .22【点评】 本题考查了等边三角形的判定与性质、 勾股定理的逆定理以及旋转的性质: 旋转前后的两个图形全等, 对应点与旋转中心的连线段的夹角等于旋转角, 对应点到旋转中心的距离相等.4.(2018?江苏扬州? 3 分)如图,点 A 在线段 BD 上,在 BD 的同侧做等腰 Rt △ ABC 和等腰 Rt △ ADE , CD 与 B E 、AE 分别交于点 P , M .对于下列结论: ①△ BAE ∽△ CAD ;② MP?MD=MA?;M ③E 2CB=CP?C .M 其中正确的是()A .①②③B .①C .①②D .②③【分析】( 1)由等腰 Rt △ ABC 和等腰 Rt △ ADE 三边份数关系可证;(2) 通过等积式倒推可知,证明△PAM ∽△ EMD 即可;(3)2CB 转化为 AC2,证明△ ACP ∽△ MCA ,问题可证.【解答】 解:由已知: AC=AB , AD=AE∴∵∠ BAC=∠EAD ∴∠ BAE=∠CAD ∴△ BAE ∽△ CAD 所以①正确 ∵△ BAE ∽△ CAD ∴∠ BEA=∠CDA ∵∠ PME=∠AMD ∴△ PME ∽△ AMD∴∴MP?MD=MA?ME 所以②正确 ∵∠ BEA=∠CDA ∠PME=∠ AMD∴P 、E 、D 、 A 四点共圆 ∴∠ APD=∠EAD=90°22 ∵∠ CAE=18°0 ﹣∠ BAC ﹣∠ EAD=90°∴△ CAP ∽△ CMA ∴AC=CP?CM ∵AC=AB∴2CB=CP?CM 所以③正确故选: A .【点评】 本题考查了相似三角形的性质和判断. 在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.5.( 2018 ·湖南省常德 ·3 分) 如图, 已知 BD 是△ ABC 的角平分线, ED 是 BC 的垂直平分线, ∠BAC=90°, AD=3,则 CE 的长为()A . 6B . 5C . 4D . 3【分析】 根据线段垂直平分线的性质得到DB=DC ,根据角平分线的定义、三角形内角和定理求出∠ C=∠DBC=∠ABD=30°,根据直角三角形的性质解答. 【解答】 解:∵ ED 是 BC 的垂直平分线, ∴DB=DC , ∴∠ C=∠ DBC ,∵BD 是△ ABC 的角平分线, ∴∠ ABD=∠DBC ,∴∠ C=∠ DBC=∠ABD=30°, ∴BD=2AD=6, ∴CE=CD × cos ∠ C=3 ,故选: D .【点评】 本题考查的是线段垂直平分线的性质、 直角三角形的性质, 掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6.( 2018·台湾·分)如图,锐角三角形ABC 中, BC > AB > AC ,甲、乙两人想找一点P ,使得∠ BPC 与∠ A 互补,其作法分别如下:(甲)以 A 为圆心, AC 长为半径画弧交 AB 于 P 点,则 P 即为所求;(乙)作过 B 点且与 AB 垂直的直线 l ,作过 C 点且与 AC 垂直的直线,交 l 于 P 点,则 P 即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=18°0,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=18°0∴∠BPC+∠ACP=18°0,∴甲错误;乙:如图2,∵ AB⊥ PB,AC⊥ PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.7.(2018?湖北荆门?3 分)如图,等腰Rt △ABC中,斜边AB 的长为2,O 为AB 的中点,P 为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P 从点 A 运动到点 C 时,点M 所经过的路线长为()A.B.C.1 D.2【分析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB 于F,如图,利用等腰直角三角形的性质得AC=BC= ,∠A=∠B=45°,OC⊥AB,OC=OA=OB=,1∠OCB=4°5 ,再证明Rt△AOP ≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到PE= AP= CQ,QF= BQ,所以PE+QF= BC=1,然后证明MH为梯形PEFQ的中位线得到MH= ,即可判定点M到AB 的距离为,从而得到点M的运动路线为△ABC的中位线,最后利用三角形中位线性质得到点M所经过的路线长.【解答】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ ACB为到等腰直角三角形,∴AC=BC= AB= ,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ ACB,OC=OA=OB=,1∴∠OCB=4°5 ,∵∠POQ=9°0 ,∠COA=9°0 ,∴∠AOP=∠COQ,在Rt △ AOP和△ COQ中,∴Rt △AOP≌△COQ,∴AP=CQ,易得△ APE和△ BFQ都为等腰直角三角形,∴PE= AP= C Q,QF= BQ,∴PE+QF= (CQ+BQ)= BC= ×=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH= (PE+QF)= ,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P 从点A 运动到点 C 时,点M所经过的路线长=AB=1.故选:C.【点评】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.8.(2018?河北?3 分)已知:如图4,点P 在线段AB 外,且PA PB . 求证:点P 在线段AB 的垂直平分线上. 在证明该结论时,需添加辅助线,则作法不.正确的是()A.作APB 的平分线PC 交AB 于点CB.过点P 作PC AB 于点C 且AC BCC.取AB 中点C ,连接PCD.过点P 作PC AB ,垂足为C9.(2018 四川省绵阳市) 如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB 的顶点 A 在△ECD的斜边DE 上,若AE= ,AD= ,则两个三角形重叠部分的面积为()A.B.C.D.【答案】 D【考点】三角形的面积,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:连接BD,作CH⊥DE,∵△ ACB和△ ECD都是等腰直角三角形,∴∠ACB=∠ECD=9°0 , ∠ADC=∠CAB=45°,即∠ ACD+∠DCB=∠ACD+∠ACE=90°,∴∠DCB=∠ACE,在△ DCB和△ ECA中,,∴△DCB≌△ECA,∴DB=EA= , ∠CDB=∠E=45°,∴∠CDB+∠ADC=∠ADB=90°,在Rt △ ABD中,∴AB= =2 ,在Rt △ ABC中,2 2∴2AC=AB=8,∴AC=BC=,2在Rt △ ECD中,2 2∴2CD=DE= ,∴CD=CE= +1,∵∠ACO=∠DCA,∠CAO=∠CDA,∴△CAO∽△CDA,∴又∵:== CE = DE·=CH,=4-2 ,∴CH= = ,∴∴= AD·CH= ×=(4-2 )××=3-=.,即两个三角形重叠部分的面积为3- . 故答案为: D.【分析】解:连接BD,作CH⊥DE,根据等腰直角三角形的性质可得∠ACB=∠ECD=9°0 , ∠ADC= ∠CAB=45°, 再由同角的余角相等可得∠DCB=∠ACE;由SAS得△DCB≌△ECA,根据全等三角形的性质知DB=EA= , ∠CDB=∠E=45°, 从而得∠ADB=90°,在Rt △ABD中,根据勾股定理得AB=2 ,同理可得AC=BC=,2 CD=CE= +1;由相似三角形的判定得△CAO∽△CDA,根据相似三角形的性质:面积比等于相似比的平方从而得出两个三角形重叠部分的面积. 二. 填空题1.(2018 四川省泸州市 3 分)如图,等腰△ABC的底边BC=20,面积为120,点 F 在边BC 上,且BF=3FC,EG是腰AC的垂直平分线,若点 D 在EG上运动,则△CDF周长的最小值为18.【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+D,F 可得当A、D、F 共线时,DF+DC的值最小,最小值就是线段AF 的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+D,F∴当A、D、F 共线时,DF+DC的值最小,最小值就是线段AF的长,∵?BC?AH=12,0∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=1,0∵BF=3FC,∴CF=FH=5,∴AF= = =13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.2.(2018?广西桂林?3 分)如图,在ΔABC中,∠A=36°,AB=AC,BD 平分∠ABC,则图中等腰三角形的个数是【答案】 3详解:∵ AB=AC,∴△ ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.BD平分∠ ABC交AC于D,∴∠ABD=∠DBC=3°6,∵∠A=∠ABD=36°,∴△ ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△ BDC是等腰三角形.∴共有 3 个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.3.(2018·新疆生产建设兵团· 5 分)如图,△ABC 是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ ABC 是等边三角形,∴∠C=60°,根据圆周角定理可得∠ AOB=∠2 C=120°,∴阴影部分的面积是= π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.4.(2018·四川宜宾· 3 分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S= 2 .(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO为等边三角形,根据等边三角形的性质结合OM 的长度可求出AB 的长度,再利用三角形的面积公式即可求出S 的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM= ,∴AB= ,∴S=6S△ABO=6×××1=2 .故答案为: 2 .【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.5.(2018·天津·3 分)如图,在边长为 4 的等边中,,分别为,的中点,于点,为的中点,连接,则的长为.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E 分别是AB、BC的中点,∴DE∥AC,DE= AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠F EC=30°,EF=∴∠DEG=180°-60 °-30 °=90°∵G是EF的中点,∴EG= .在Rt ΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.6.(2018·湖北省武汉·3 分)如图.在△ABC中,∠ACB=60°,AC=1,D 是边AB 的中点,E 是边BC上一点.若DE平分△ABC的周长,则DE的长是.【分析】延长BC至M,使CM=C,A 连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE= AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ ABC的周长,∴ME=EB,又AD=DB,∴DE= AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=6°0,AN=M,N∴AN=AC?sin∠ACN= ,∴AM= ,∴DE= ,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.7.(2018?北京?2 分)右图所示的网格是正方形网格,BACDAE .(填“”,“”或“”)【答案】【解析】如下图所示,EBG E DBD C AFC A△ AFG 是等腰直角三角形,∴FAG BAC 45 ,∴BAC DAE .另:此题也可直接测量得到结果.【考点】等腰直角三角形8. (2018?江苏盐城? 3 分)如图,在直角中,,,,、分别为边、上的两个动点,若要使是等腰三角形且是直角三角形,则.16. 【答案】或【考点】等腰三角形的判定与性质,相似三角形的判定与性质【解析】【解答】解:当△ BPQ是直角三角形时,有两种情况:∠ BPQ=90度,∠BQP=90度。

(全国120套)中考数学试卷分类汇编 等腰三角形

(全国120套)中考数学试卷分类汇编 等腰三角形

等腰三角形2、(2013年临沂)如图,在平面直角坐标系中,点A 1 , A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1A 2B 1B 2其中的任意两点与点..O .为顶点作三角形,所作三角形是等腰三角形的概率是(A ) 3 4. (B) 1 3. (C) 23. (D) 12.答案:D解析:以A 1A 2B 1B 2其中的任意两点与点..O .为顶点作三角形,能作4个,其中A 1B 1O ,A 2B 2O 为等腰三角形,共2个,故概率为: 1 23、(2013年武汉)如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( )A .18°B .24°C .30°D .36°第6题图DCBA答案:A解析:因为AB=AC,所以,∠C=∠ABC=12(180°-36°)=72°,又BD为高,所以,∠DBC=90°72°=18°4、(2013四川南充,3,3分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B. 55°C. 50°D. 40°答案:D解析:因为AB=AC,所以∠C=∠B=70°,∠A=180°-70°-70°=40°5、(2013•宁波)如图,梯形ABCD中,AD∥BC,AB=,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为()6、(2013•攀枝花)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()8、(2013泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8考点:平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.专题:计算题.分析:由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC 中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF 的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.解答:解:∵AE为∠ADB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选B点评:此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.9、(2013•莱芜)在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标10、(2013•德州)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()13、(2013•淮安)若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()14、(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()=,,=,CD=,.15、(2013成都市)如图,在△ABC中,B C∠=∠,AB=5,则AC的长为()A.2B.3C.4D.5答案:D解析:由∠B=∠C,得AC=AB=5(等角对等边),故选D16、(2013•宜昌)如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()17、(2013哈尔滨)如图,在ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为( ).(A)4 (B)3 (C) 52(D)2考点:平行四边形的性质及等腰三角形判定.分析:本题主要考查了平行四边形的性质:平边四边形的对边平行且相等;等腰三角形判定,两直线平行内错角相等;综合运用这三个性质是解题的关键解答:根据CECE 平分∠BCD 得∠BCE=∠ECD,AD ∥BC 得∠BCE=∠DEC 从而△DCE 为等腰三角形,ED=DC=AB,2AB=AD=AE+ED=3+AB,解得AB=3 故选B 18、(2013•毕节地区)已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的20、(2013年广州市)如图5,四边形ABCD 是梯形,AD∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 114 D 4分析:先判断DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,由等腰三角形的性质,可得点F是AC中点,继而可得EF是△CAB的中位线,继而得出EF、DF的长度,在Rt△ADF中求出AF,然后得出AC,tanB的值即可计算.解:∵CA是∠BCD的平分线,∴∠DCA=∠ACB,又∵AD∥BC,∴∠ACB=∠CAD,∴∠DAC=∠DCA,∴DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,∵AB⊥AC,∴DE⊥AC(等腰三角形三线合一的性质),∴点F是AC中点,∴AF=CF,∴EF是△CAB的中位线,∴EF=AB=2,∵==1,∴EF=DF=2,在Rt△ADF中,AF==4,则AC=2AF=8,tanB===2.故选B.点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F是AC中点,难度较大.21、(2013台湾、31)如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE 为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确考点:平行四边形的判定.分析:求出五边形的每个角的度数,求出∠ABP、∠AEP、∠BPE的度数,根据平行四边形的判定判断即可.解答:解:甲正确,乙错误,理由是:如图,∵正五边形的每个内角的度数是=108°,AB=BC=CD=DE=AE,∴∠DEC=∠DCE=×(180°﹣108°)=36°,同理∠CBD=∠CDB=36°,∴∠ABP=∠AEP=108°﹣36°=72°,∴∠BPE=360°﹣108°﹣72°﹣72°=108°=∠A,∴四边形ABPE是平行四边形,即甲正确;∵∠BAE=108°,∴∠BAM=∠EAM=54°,∵AB=AE=AP,∴∠ABP=∠APB=×(180°﹣54°)=63°,∠AEP=∠APE=63°,∴∠BPE=360°﹣108°﹣63°﹣63°≠108°,即∠ABP=∠AEP,∠BAE≠∠BPE,∴四边形ABPE不是平行四边形,即乙错误;故选C.点评:本题考查了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判定的应用,注意:有两组对角分别相等的四边形是平行四边形.22、(2013台湾、20)如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC 长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?()A.20 B.35 C.40 D.55考点:矩形的性质;等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠BCP,然后求出∠MCP,再根据等边对等角求解即可.解答:解:∵以B、M为圆心,分别以BC长、MC长为半径的两弧相交于P点,∴BP=PC,MP=MC,∵∠PBC=70°,∴∠BCP=(180°﹣∠PBC)=(180°﹣70°)=55°,在长方形ABCD中,∠BCD=90°,∴∠MCP=90°﹣∠BCP=90°﹣55°=35°,∴∠MPC=∠MCP=35°.故选B.点评:本题考查了矩形的四个角都是直角的性质,等腰三角形两底角相等的性质以及等边对等角,是基础题.23、(2013•滨州)在等腰△ABC中,AB=AC,∠A=50°,则∠B=65°.为边长的等腰三角形的周长为 5 .25、(2013•黄冈)已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B 为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB= 6 .AC×CO=3,AC×BC=3,AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是12°.27、(2013•黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE= .∴∠DBC=BD==DE=BD=故答案为:△AOP是等腰三角形,则这样的点P共有8 个.29、(2013•荆门)若等腰三角形的一个角为50°,则它的顶角为80°或50°.30、(2013凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.考点:等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系.专题:分类讨论.分析:先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.解答:解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.点评:本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.31、(2013•白银)等腰三角形的周长为16,其一边长为6,则另两边为6,4或5,5 .32、(2013凉山州)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.考点:矩形的性质;坐标与图形性质;等腰三角形的性质;勾股定理.专题:动点型.分析:当△ODP是腰长为5的等腰三角形时,有三种情况,需要分类讨论.解答:解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD﹣DE=5﹣3=2,∴此时点P坐标为(2,4);(2)如答图②所示,OP=OD=5.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===3,∴此时点P坐标为(3,4);(3)如答图①所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD+DE=5+3=8,∴此时点P坐标为(8,4).综上所述,点P的坐标为:(2,4)或(3,4)或(8,4).点评:本题考查了分类讨论思想在几何图形中的应用,符合题意的等腰三角形有三种情形,注意不要遗漏.33、(2013•牡丹江)劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工成一个边长比是1:2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其它顶点均在三角形的边上,则这个平行四边形的较短的边长为 2.4cm或cm .==x=cm∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有()个.35、(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15 度.36、(2013•玉林)如图,在直角坐标系中,O是原点,已知A(4,3),P是坐标轴上的一点,若以O,A,P三点组成的三角形为等腰三角形,则满足条件的点P共有 6 个,写出其中一个点P的坐标是(5,0).37、(2013•宁夏)如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为2a .沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.考点:平行四边形的性质;等腰直角三角形;翻折变换(折叠问题).分析:如图,连接BB′.根据折叠的性质知△BB′E是等腰直角三角形,则BB′=BE.又B′E是BD的中垂线,则DB′=BB′.解答:解:∵四边形ABCD是平行四边形,BD=2,∴BE=BD=1.如图2,连接BB′.根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,则BB′=BE=.又∵BE=DE,B′E⊥BD,∴DB′=BB′=.故答案是:.点评:本题考查了平行四边形的性质,等腰三角形的判定与性质以及翻折变换(折叠的性质).推知DB′=BB′是解题的关键.39、(2013菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP= 12 .考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.40、(2013年江西省)如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.【答案】25°.【考点解剖】本题考查了平行四边形的性质,等腰三角形的判定与性质.【解题思路】已知两个平行四边形的周长相等,且有公共边CD,则有AD=DE,即△ADE为等腰三角形,顶角∠ADE=∠BCF=60°+70°=130°,∴∠DAE=25°.【解答过程】∵□ABCD与□DCFE的周长相等,且有公共边CD,∴AD=DE, ∠ADE=∠BCF=60°+70°=130°.∴∠DAE=11(180)5025 22ADE︒-∠=⨯︒=︒.【方法规律】先要明确∠DAE的身份(为等腰三角形的底角),要求底角必须知道另一角的度数,分别将∠BAD=130°转化为∠BCD=130°,∠F=110°转化为∠DCF=70°,从而求得∠ADE=∠BCF=130°.【关键词】平行四边形等腰三角形周长求角度41、(2013•十堰)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.,即,﹣;的长为43、(2013杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CB D,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3, +2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1, +2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.44、(13年安徽省4分、14)已知矩形纸片ABCD中,AB=1,BC=2,将该纸片叠成一个平面图形,折痕EF不经过A点(E、F是该矩形边界上的点),折叠后点A落在A,处,给出以下判断:(1)当四边形A,CDF为正方形时,EF=2(2)当EF=2时,四边形A,CDF为正方形(3)当EF=5时,四边形BA,CD为等腰梯形;(4)当四边形BA,CD为等腰梯形时,EF=5。

中考数学复习《等腰三角形与等边三角形》

中考数学复习《等腰三角形与等边三角形》

(B)
A. 5个
B. 4个
C. 3个
D. 2个
6. 如图1-4-4-11,△ABC中,BE平分∠ABC,CE平分∠ACB,DF 经过点E,分别与AB,AC相交于点D,F,且DF∥BC. (1)求证:△DEB是等腰三角形; (2)求证:DF-BD=CF.
证明:(1)∵BE平分∠ABC, ∴∠ABE=∠CBE. ∵DF∥BC,∴∠DEB=∠CBE. ∴∠ABE=∠DEB. ∴BD=DE. ∴△DEB是等腰三角形. (2)∵CE平分∠ACB,∴∠ACE=∠BCE. ∵DF∥BC,∴∠FEC=∠BCE. ∴∠ACE=∠FEC. ∴EF=CF. ∵BD=DE,∴DF-BD=CF.
第一部分 教材梳理
第四章 图形的认识(一) 第4节 等腰三角形与等边三角形
知识梳理
概念定理
1. 等腰三角形 (1)定义:两边相等的三角形叫做等腰三角形. (2)性质 ①性质定理:等腰三角形的两个底角相等(简称:等边对等 角). ②推论:等腰三角形顶角的平分线、底边上的中线及底边上 的高线互相重合(简称:三线合一).
解:(1)∵△ABC是等边三角形, ∴∠B=60°. ∵DE∥AB,∴∠EDC=∠B=60°. ∵EF⊥DE,∴∠DEF=90°. ∴∠F=90°-∠EDC=30°. (2)∵∠ACB=60°,∠EDC=60°, ∴△EDC是等边三角形. ∴ED=DC=2. ∵∠DEF=90°,∠F=30°, ∴DF=2DE=4.
(3)其他性质 ①等腰直角三角形的两个底角相等且等于45°. ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但 顶角可为钝角(或直角).
③等腰三角形的三边关系:设腰长为a,底边长为b,则
________.
④等腰三角形的三角关系:设顶角为∠A,底角为∠B,∠C,

九年级数学全国各地中考数学试题分类汇编(第一期) 专题22 等腰三角形(含解析)

九年级数学全国各地中考数学试题分类汇编(第一期) 专题22 等腰三角形(含解析)

等腰三角形一.选择题1. 1.(2019•浙江衢州•3分)“三等分角”大约是在公元前五世纪由古希腊人提出来的。

借助如图所示的“三等分角仪”能三等分任一角。

这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动,若∠BDE=75°,则∠CDE的度数是()A. 60°B. 65°C. 75°D. 8 0°【答案】D【考点】三角形内角和定理,三角形的外角性质,等腰三角形的性质【解析】【解答】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,设∠O=∠ODC=x,∴∠DCE=∠DEC=2x,∴∠CDE=180°-∠DCE-∠DEC=180°-4x,∵∠BDE=75°,∴∠ODC+∠CDE+∠BDE=180°,即x+180°-4x+75°=180°,解得:x=25°,∠CDE=180°-4x=80°.故答案为:D.【分析】由等腰三角形性质得∠O=∠ODC,∠DCE=∠DEC,设∠O=∠ODC=x,由三角形外角性质和三角形内角和定理得∠DCE=∠DEC=2x,∠CDE=180°-4x,根据平角性质列出方程,解之即可的求得x值,再由∠CDE=180°-4x=80°即可求得答案.2. (2019•湖南长沙•3分)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【分析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B =30°,从而得出答案.【解答】解:在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°,故选:B.【点评】本题主要考查作图﹣基本作图,熟练掌握中垂线的作图和性质是解题的关键.3. (2019•湖南长沙•3分)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.【解答】解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠ABE=90°,∵tanA==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AC,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.故选:B.【点评】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.4. (2019•湖南怀化•4分)怀化是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A.是轴对称图形,不是中心对称图形,故此选项错误;B.是轴对称图形,不是中心对称图形,故此选项错误;C.既是中心对称图形也是轴对称图形,故此选项正确;D.是轴对称图形,但不是中心对称图形,故此选项错误.故选:C.【点评】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.5. (2019•湖南邵阳•3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC =∠C=54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.6. (2019•湖南岳阳•3分)下列命题是假命题的是()A.平行四边形既是轴对称图形,又是中心对称图形B.同角(或等角)的余角相等C.线段垂直平分线上的点到线段两端的距离相等D.正方形的对角线相等,且互相垂直平分【分析】由平行四边形的性质得出A是假命题;由同角(或等角)的余角相等,得出B是真命题;由线段垂直平分线的性质和正方形的性质得出C.D是真命题,即可得出答案.【解答】解:A.平行四边形既是轴对称图形,又是中心对称图形;假命题;B.同角(或等角)的余角相等;真命题;C.线段垂直平分线上的点到线段两端的距离相等;真命题;D.正方形的对角线相等,且互相垂直平分;真命题;故选:A.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.二.填空题1. (2019•湖南怀化•4分)若等腰三角形的一个底角为72°,则这个等腰三角形的顶角为36°.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵等腰三角形的一个底角为72°,∴等腰三角形的顶角=180°﹣72°﹣72°=36°,故答案为:36°.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.2. (2019•湖南邵阳•3分)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是(﹣2,﹣2).【分析】作BH⊥y轴于H,如图,利用等边三角形的性质得到OH=AH=2,∠BOA=60°,再计算出BH,从而得到B点坐标为(2,2),然后根据关于原点对称的点的坐标特征求出点B′的坐标.【解答】解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了等边三角形的性质.3. (2019•湖北天门•3分)如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为14.4m.【分析】作DE⊥AB于E,则∠AED=90°,四边形BCDE是矩形,得出BE=CD=9.6m,∠CDE=∠DEA=90°,求出∠ADC=120°,证出∠CAD=30°=∠ACD,得出AD=CD=9.6m,在Rt△ADE中,由直角三角形的性质得出AE=AD=4.8m,即可得出答案.【解答】解:作DE⊥AB于E,如图所示:则∠AED=90°,四边形BCDE是矩形,∴BE=CD=9.6m,∠CDE=∠DEA=90°,∴∠ADC=90°+30°=120°,∵∠ACB=60°,∴∠ACD=30°,∴∠CAD=30°=∠ACD,∴AD=CD=9.6m,在Rt△ADE中,∠ADE=30°,∴AE=AD=4.8m,∴AB=AE+BE=4.8m+9.6m=14.4m;故答案为:14.4.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题、矩形的判定与性质、等腰三角形的判定;正确作出辅助线是解题的关键.4(2019,四川成都,4分)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点称为“整点”.已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为215,则△OAB 内部(不含边界)的整点的个数为.【解析】此题考查了三角形最值问题如图,已知OA =3,要使△AOB 的面积为215,则△OAB 的高度应为3(如图),当B 点在3 y 这条线段上移动时,点2B 处是以OA 为底的等腰三角形是包含的整点最多,在距离2B 的无穷远处始终会有4个整点,故整点个数有4个5.(2019▪贵州毕节▪5分)如图,以△ABC 的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D ,连接A D .若∠B =40°,∠C =36°,则∠DAC 的大小为 34° .【分析】根据三角形的内角和得出∠BAC =180°﹣∠B ﹣∠C =104°,根据等腰三角形两底角相等得出∠BAD =∠ADB =(180°﹣∠B )÷2=70°,进而根据角的和差得出∠DAC =∠BAC ﹣∠BAD =34°.【解答】解:∵∠B =40°,∠C =36°, ∴∠BAC =180°﹣∠B ﹣∠C =104° ∵AB =BD∴∠BAD =∠ADB =(180°﹣∠B )÷2=70°, ∴∠DAC =∠BAC ﹣∠BAD =34°故答案为:34°.【点评】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.6. (2019•南京•2分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠AC B.若AD=2,BD=3,则AC的长.【分析】作AM⊥BC于E,由角平分线的性质得出==,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出==,NE=x,BE=BN+EN=x,CE=CN﹣EN=x,再由勾股定理得出方程,解方程即可得出结果.【解答】解:作AM⊥BC于E,如图所示:∵CD平分∠ACB,∴==,设AC=2x,则BC=3x,∵MN是BC的垂直平分线,∴MN⊥BC,BN=CN=x,∴MN∥AE,∴==,∴NE=x,∴BE=BN+EN=x,CE=CN﹣EN=x,由勾股定理得:AE2=AB2﹣BE2=AC2﹣CE2,即52﹣(x)2=(2x)2﹣(x)2,解得:x=,∴AC=2x =;故答案为:.【点评】本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.7. (2019•江苏苏州•3分)如图,一块含有45︒角的直角三角板,外框的一条直角边长为10cm,三角板的外框线和与其平行的内框线之间的距离均为2cm,则图中阴影部分的面积为_______cm(结果保留根号)【解答】14162+【解析】如右图:过顶点A作AB⊥大直角三角形底边由题意:2,2CD AC==∴()5222CD=-+=422-∴()()22=52422S--阴影=14162=+8.(2019▪黑龙江哈尔滨▪3分)如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接B D.CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为2.D【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC,BC的长.【解答】解:如图,连接AC交BD于点O∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4,OF=OD﹣DF=2∴OC==2∴BC==2【点评】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.9. (2019•湖北武汉•3分)如图,在▱ABCD中,E.F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为21°.【分析】设∠ADE=x,由等腰三角形的性质和直角三角形得出∠DAE=∠ADE=x,DE =AF=AE=EF,得出DE=CD,证出∠DCE=∠DEC=2x,由平行四边形的性质得出∠DCE=∠BCD﹣∠BCA=63°﹣x,得出方程,解方程即可.【解答】解:设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°;故答案为:21°.【点评】本题考查了平行四边形的性质、直角三角形的性质、等腰三角形的性质等知识;根据角的关系得出方程是解题的关键.10. (2019•湖北武汉•3分)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是2.【分析】(1)在BC上截取BG=PD,通过三角形求得证得AG=AP,得出△AGP是等边三角形,得出∠AGC=60°=∠APG,即可求得∠APE=60°,连接EC,延长BC到F,使CF=P A,连接EF,证得△ACE是等边三角形,得出AE=EC=AC,然后通过证得△APE≌△ECF(SAS),得出PE=PF,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D.E.O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,∠BAG=∠DAP,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴∠AGC=60°=∠APG,∴∠APE=60°,∴∠EPC=60°,连接EC,延长BC到F,使CF=P A,连接EF,∵将△ABC绕点A逆时针旋转60°得到△ADE,∴∠EAC=60°,∠EPC=60°,∵AE=AC,∴△ACE是等边三角形,∴AE=EC=AC,∵∠P AE+∠APE+∠AEP=180°,∠ECF+∠ACE+∠ACB=180°,∠ACE=∠APE=60°,∠AED=∠ACB,∴∠P AE=∠ECF,在△APE和△ECF中∴△APE≌△ECF(SAS),∴PE=PF,∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D.E.O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,最短路径问题,构造等边三角形是解答本题的关键.11. (2019•甘肃武威•4分)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=或.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的底数,要进行判断是底角或顶角,以免造成答案的遗漏.12 ( 2019甘肃省兰州市) (5分)在△ABC中,AB=AC,∠A=400,则∠B=___________. 【答案】700.【考点】等腰三角形性质.【考察能力】空间想象能力.【难度】容易【解析】∵AB=AC,∠A=400,∴∠B=∠C=700.13 (2019甘肃省陇南市)(4分)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=或.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的底数,要进行判断是底角或顶角,以免造成答案的遗漏.三.解答题1. (2019•湖北十堰•8分)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BA C.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【解答】解:(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=∠BAC,∵∠CDE=∠BA C.∴∠CDE=∠CAD,∵OA=OD,∴∠CAD=∠ADO,∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°∴∠ODE=90°又∵OD是⊙O的半径∴DE是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD==2x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴=,即==∴DE=4,x=,∴AC=3x=14,∴⊙O的半径为7.【点评】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.2. (2019•湖北十堰•12分)已知抛物线y=a(x﹣2)2+c经过点A(2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且=m,试确定满足条件的点P的个数.【分析】(1)利用待定系数法,转化为解方程组即可解决问题.(2)可能.分三种情形①当DE=DF时,②当DE=EF时,③当DF=EF时,分别求解即可.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,P B.设P[n,﹣(n﹣2)2+3],构建二次函数求出△PBD的面积的最大值,再根据对称性即可解决问题.【解答】解:(1)由题意:,解得,∴抛物线的解析式为y=﹣(x﹣2)2+3,∴顶点D坐标(2,3).(2)可能.如图1,∵A(﹣2,0),D(2,3),B(6,0),∴AB=8,AD=BD=5,①当DE=DF时,∠DFE=∠DEF=∠ABD,∴EF∥AB,此时E与B重合,与条件矛盾,不成立.②当DE=EF时,又∵△BEF∽△AED,∴△BEF≌△AED,∴BE=AD=5③当DF=EF时,∠EDF=∠DEF=∠DAB=∠DBA,△FDE∽△DAB,∴=,∴==,∵△AEF∽△BCE∴==,∴EB=AD=,答:当BE的长为5或时,△CFE为等腰三角形.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,P B.设P[n,﹣(n﹣2)2+3],则S△PBD=S△PBH+S△PDH﹣S△BDH=×4×[﹣(n﹣2)2+3]+×3×(n﹣2)﹣×4×3=﹣(n﹣4)2+,∵﹣<0,∴n=4时,△PBD的面积的最大值为,∵=m,∴当点P在BD的右侧时,m的最大值==,观察图象可知:当0<m<时,满足条件的点P的个数有4个,当m=时,满足条件的点P的个数有3个,当m>时,满足条件的点P的个数有2个(此时点P在BD的左侧).【点评】本题属于二次函数综合题,考查了待定系数法,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建二次函数解决最值问题,学会用转化的思想思考问题,属于中考压轴题.3 (2019•湖南长沙•10分)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.【分析】(1)令y=0,可得ax(x+6)=0,则A点坐标可求出;(2)①连接PC,连接PB延长交x轴于点M,由切线的性质可证得∠ECD=∠COE,则CE=DE;②设OE=m,由CE2=OE•AE,可得,由∠CAE=∠OBE可得,则,综合整理代入可求出的值.【解答】解:(1)令ax2+6ax=0,ax(x+6)=0,∴A(﹣6,0);(2)①证明:如图,连接PC,连接PB延长交x轴于点M,∵⊙P过O、A.B三点,B为顶点,∴PM⊥OA,∠PBC+∠BOM=90°,又∵PC=PB,∴∠PCB=∠PBC,∵CE为切线,∴∠PCB+∠ECD=90°,又∵∠BDP=∠CDE,∴∠ECD=∠COE,∴CE=DE.②解:设OE=m,即E(m,0),由切割线定理得:CE2=OE•AE,∴(m﹣t)2=m•(m+6),∴①,∵∠CAE=∠CBD,∠CAE=∠OBE,∠CBO=∠EBO,由角平分线定理:,即:,∴②,由①②得,整理得:t2+18t+36=0,∴t2=﹣18t﹣36,∴.【点评】本题是二次函数与圆的综合问题,涉及二次函数图象与x轴的交点坐标、切线的性质、等腰三角形的判定、切割线定理等知识.把圆的知识镶嵌其中,会灵活运用圆的性质进行计算是解题的关键.4 (2019•甘肃武威•10分)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2,求⊙D的半径.【分析】(1)连接AD,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°﹣60°﹣30°=90°,于是得到AC是⊙D的切线;(2)连接AE,推出△ADE是等边三角形,得到AE=DE,∠AED=60°,求得∠EAC =∠AED﹣∠C=30°,得到AE=CE=2,于是得到结论.【解答】(1)证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°﹣60°﹣30°=90°,∴AC是⊙D的切线;(2)解:连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED﹣∠C=30°,∴∠EAC=∠C,∴AE=CE=2,∴⊙D的半径AD=2.【点评】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.5. (2019•广西贵港•10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D ⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接P A,PF,若AB =,求线段P A+PF的最小值.(结果保留根号)【分析】(1)①解直角三角形求出∠A′CD即可解决问题.②连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.首先证明△CF A′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出P A+PF=P A+PB′≥AB′,求出AB′即可解决问题.数学【解答】(1)①解:旋转角为105°.理由:如图1中,∵A′D⊥AC,∴∠A′DC=90°,∵∠CA′D=15°,∴∠A′CD=75°,∴∠ACA′=105°,∴旋转角为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠F A′O=∠OEC=60°,∴△A′OF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴P A+PF=P A+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴P A+PF的最小值为.【点评】本题属于四边形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.6. (2019•湖北天门•10分)已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,D C.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:AB+AC=AD;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.【分析】(1)在AD上截取AE=AB,连接BE,由条件可知△ABE和△BCD都是等边三角形,可证明△BED≌△BAC,可得DE=AC,则AB+AC=AD;(2)延长AB至点M,使BM=AC,连接DM,证明△MBD≌△ACD,可得MD=AD,证得AB+AC=;(3)延长AB至点N,使BN=AC,连接DN,证明△NBD≌△ACD,可得ND=AD,∠N=∠CAD,证△NAD∽△CBD,可得,可由AN=AB+AC,求出的值.【解答】解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠DBE=∠ABC,AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=A D.(2)AB+AC=A D.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥A D.∴AM=,即AB+BM=,∴AB+AC=;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=5,BD=4,∴=.【点评】本题属于圆的综合题,考查了圆周角定理,全等三角形的判定与性质,相似三角形的判定和性质,等边三角形的判定与性质等知识,解题的关键是正确作出辅助线解决问题.7. (2019•湖北武汉•8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=D C.(2)如图1,在边AB上画一点G,使∠AGD=∠BG C.(3)如图2,过点E画线段EM,使EM∥AB,且EM=A B.【分析】(1)作平行四边形AFCD即可得到结论;(2)根据等腰三角形的性质和对顶角的性质即可得到结论;(3)作平行四边形AEMB即可得到结论.【解答】解:(1)如图所示,线段AF即为所求;(2)如图所示,点G即为所求;(3)如图所示,线段EM即为所求.【点评】本题考查了作图﹣应用与设计作图,平行线四边形的判定和性质,等腰三角形的判定和性质,对顶角的性质,正确的作出图形是解题的关键.8 (2019•湖北孝感•8分)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.【分析】由HL证明Rt△ACB≌Rt△BDA得出∠ABC=∠BAD,由等腰三角形的判定定理即可得出结论.【解答】证明:∵∠C=∠D=90°,∴△ACB和△BDA是直角三角形,数学在Rt△ACB和Rt△BDA中,,∴Rt△ACB≌Rt△BDA(HL),∴∠ABC=∠BAD,∴AE=BE.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定;熟练掌握等腰三角形的判定定理,证明三角形全等是解题的关键.9 (2019•湖南衡阳•12分)如图,在等边△ABC中,AB=6cm,动点P从点A出发以lcm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.【分析】(1)当BQ=2BP时,∠BPQ=90°,由此构建方程即可解决问题.(2)如图1中,连接BF交AC于M.证明EF=2EM,由此构建方程即可解决问题.(3)证明DE=AC即可解决问题.(4)如图3中,连接AM,AB′.根据AB′≥AM﹣MB′求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∴当BQ=2BP时,∠BPQ=90°,∴6+t=2(6﹣t),数学∴t=3,∴t=3时,△BPQ是直角三角形.(2)存在.理由:如图1中,连接BF交AC于M.∵BF平分∠ABC,BA=BC,∴BF⊥AC,AM=CM=3cm,∵EF∥BQ,∴∠EFM=∠FBC=∠ABC=30°,∴EF=2EM,∴t=2•(3﹣t),解得t=3.(3)如图2中,作PK∥BC交AC于K.∵△ABC是等边三角形,∴∠B=∠A=60°,∵PK∥BC,∴∠APK=∠B=60°,∴∠A=∠APK=∠AKP=60°,∴△APK是等边三角形,∴P A=PK,∵PE⊥AK,∴AE=EK,∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,∴△PKD≌△QCD(AAS),∴DK=DC,∴DE=EK+DK=(AK+CK)=AC=3(cm).(4)如图3中,连接AM,AB′∵BM=CM=3,AB=AC,∴AM⊥BC,∴AM==3,∵AB′≥AM﹣MB′,∴AB′≥3﹣3,∴AB′的最小值为3﹣3.【点评】本题属于四边形综合题,考查了等边三角形的性质,平行四边形的判定和性质,翻折变换,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

中考数学专题复习试题分类汇编三等腰三角形和直角三角形

中考数学专题复习试题分类汇编三等腰三角形和直角三角形

中考数学专题复习试题分类汇编三等腰三角形和直角三角形学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知线段AB,按如下步骤作图:①作射线AC,使AC AB⊥;①作BAC∠的平分线AD;①以点A为圆心,AB长为半径作弧,交AD于点E;①过点E作EP AB⊥于点P,则:AP AB=()A.1:5B.1:2C.1:3D.1:22.如图,在ABC中,45,60,B C AD BC∠=︒∠=︒⊥于点D,3BD=.若E,F分别为AB,BC的中点,则EF的长为()A.33B.32C.1D.623.如图,在Rt ABC△纸片中,90,4,3ACB AC BC∠=︒==,点,D E分别在,AB AC 上,连结DE,将ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD 平分EFB∠,则AD的长为()252515204.如图,正三角形ABC的边长为3,将①ABC绕它的外心O逆时针旋转60°得到①A'B'C',则它们重叠部分的面积是()A.23B.334C.332D.35.如图,在Rt①ABC中,①ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.46.①BDE和①FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.①ABC的周长B.①AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长7.如图,等腰直角三角形ABC中,①ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH①CP交CP的延长线于点H,连结AP,则①P AH的度数()B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小8.已知直线m n,将一块含45︒角的直角三角板ABC按如图方式放置,其中斜边BC 与直线n交于点D.若125∠=︒,则2∠的度数为()A.60︒B.65︒C.70︒D.75︒9.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC CD DE==,点D,E可在槽中滑动,若75BDE∠=︒,则CDE∠的度数是()A.60°B.65°C.75°D.80°10.在ABC中,若一个内角等于另外两个角的差,则()A.必有一个角等于30B.必有一个角等于45︒C.必有一个角等于60︒D.必有一个角等于90︒评卷人得分二、填空题11.如图,在①ABC中,①ACB=90°,AC<BC.分别以点A,B为圆心,大于12AB的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=3,则①AFH的周长为_____.12.如图,在ABC中,AB AC=,70B∠=︒,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则BAP∠的度数是_______.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是_____ .评卷人得分三、解答题14.如图,在四边形ABCD中,AB=AD=20,BC=DC=102(1)求证:①ABC①①ADC;(2)当①BCA=45°时,求①BAD的度数.15.问题:如图,在①ABD中,BA=BD.在BD的延长线上取点E,C,作①AEC,使EA=EC,若①BAE=90°,①B=45°,求①DAC的度数.答案:①DAC=45°思考:(1)如果把以上“问题”中的条件“①B=45°”去掉,其余条件不变,那么①DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“①B=45°”去掉,再将“①BAE=90°”改为“①BAE=n°”,其余条件不变,求①DAC的度数.16.如图,在△ABC和△DCE中,AC=DE,①B=①DCE=90°,点A,C,D依次在同一直线上,且AB①DE.(1)求证:△ABC①①DCE;(2)连结AE,当BC=5,AC=12时,求AE的长.17.如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂长AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,30AD =,10DM =.(1)在旋转过程中:①当,,A D M 三点在同一直线上时,求AM 的长;②当,,A D M 三点在同一直角三角形的顶点时,求AM 的长.(2)若摆动臂AD 顺时针旋转90︒,点D 的位置由ABC 外的点1D 转到其内的点2D 处,连结12D D ,如图2,此时2135AD C ∠=︒,260CD =,求2BD 的长.18.如图,在76⨯的方格中,ABC 的顶点均在格点上,试按要求画出线段EF (E ,F 均为格点),各画出一条即可.19.如图,在ABC中,AC AB BC.①已知线段AB的垂直平分线与BC边交于点P,连结AP,求证:2APC B;①以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连结AQ,若B,求B的度数.3AQC参考答案:1.D【解析】【分析】由题意易得①BAD =45°,AB =AE ,进而可得①APE 是等腰直角三角形,然后根据等腰直角三角形的性质可求解.【详解】解:①AC AB ⊥,①90CAB ∠=︒,①AD 平分BAC ∠,①①BAD =45°,①EP AB ⊥,①①APE 是等腰直角三角形,①AP =PE ,①222AE AP PE AP =+=,①AB =AE ,①2AB AP =,①:1:2AP AB =;故选D .【点睛】本题主要考查等腰直角三角形的性质与判定、勾股定理及角平分线的定义,熟练掌握等腰直角三角形的性质与判定、勾股定理及角平分线的定义是解题的关键.2.C【解析】【分析】根据条件可知①ABD 为等腰直角三角形,则BD =AD ,①ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC 。

中考数学黄金知识点系列专题15等腰三角形

中考数学黄金知识点系列专题15等腰三角形

专题15 等腰三角形 聚焦考点☆温习理解一、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A ∠-︒ 2、等腰三角形的判定等腰三角形的判定定理及推论: 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

二.等边三角形1.定义三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°3.判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三.线段垂直平分线1.定义垂直一条线段,并且平分这条线段的直线叫作这条线段的垂直平分线.2.性质线段垂直平分线上的一点到这条线段的两端距离相等3.判定到一条线段两端点距离相等的点,在这条线段的垂直平分线上.名师点睛☆典例分类考点典例一、等腰三角形的性质【例1】(2016山东滨州第6题)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50° B.51° C.51.5°D.52.5°【答案】D.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.【点睛】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.【举一反三】(2016山东枣庄第4题)如图,在△ABC中,AB = AC,∠A = 30°,E为BC延长线上一点,∠ABC 与∠ACE的平分线相交于点D,则∠D等于A.15° B.17.5° C.20° D.22.5°B第4题图【答案】A.【解析】考点:等腰三角形的性质;三角形的内角和定理.考点典例二、等腰三角形的多解问题【例2】(2016湖南怀化第8题)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm【答案】C.【解析】试题分析:分当腰长为4cm或是腰长为8cm两种情况:①当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故答案选C.考点:等腰三角形的性质;三角形三边关系.【点睛】题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.【举一反三】(2016湖南湘西州第14题)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【答案】C.【解析】考点:等腰三角形的性质;三角形三边关系.考点典例三、等边三角形的性质与判定【例3】(2016年福建龙岩第15题)如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC= .【答案】2.【解析】试题分析:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=BC,∵BD平分∠ABC,∴∠DBC=∠E=30°,BD⊥AC,∴∠BDC=90°,∴BC=2DC,∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,∴CD=CE=1,∴BC=2CD=2. 考点:等边三角形.【点睛】本题主要考查了等边三角形的判定和性质,解题的关键是利用性质和判定解决.【举一反三】(2016四川达州第15题)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.3.【答案】24+9【解析】考点:旋转的性质;等边三角形的性质;全等三角形的判定及性质.考点典例四、线段垂直平分线的性质运用【例3】(2016湖南长沙第17题)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.【答案】13.【解析】试题分析:已知DE是AB的垂直平分线,根据线段的垂直平分线的性质得到EA=EB,所以△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,考点:线段的垂直平分线的性质.【点睛】本题考查了线段垂直平分线的性质,熟记性质是解题的关键.【举一反三】(2016山东威海第10题)如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A.=B.AD,AE将∠BAC三等分C.△ABE≌△ACD D.S△ADH=S△CEG【答案】A.【解析】考点:黄金分割;全等三角形的判定与性质;线段的垂直平分线的综合运.课时作业☆能力提升一、选择题1.(2016湖南湘西州第14题)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【答案】C.【解析】试题分析:分4cm为等腰三角形的腰和5cm为等腰三角形的腰两种情况:①当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,周长为13cm;②当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,周长为14cm,故答案选C.考点:等腰三角形的性质;三角形三边关系.2. (2016四川甘孜州第9题)如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为()A.2 B.3 C.4 D.5【答案】C.【解析】考点:等腰三角形的判定与性质;平行线的性质.3. (2016辽宁营口第8题)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于12AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.下列结论错误的是()A.AD=CD B.∠A=∠DCE C.∠ADE=∠DCB D.∠A=2∠DCB【答案】D.【解析】试题分析:∵DE是AC的垂直平分线,∴DA=DC,AE=EC,故A正确,∴DE∥BC,∠A=∠DCE,故B正确,∴∠ADE=∠CDE=∠DCB,故C正确,故选D.考点:作图—基本作图;线段垂直平分线的性质.4. (2016河南第6题)如图,在△ABC中,∠ACB=90°,AC=8,AB=10. DE垂直平分AC交AB于点E,则DE的长为【】(A)6 (B)5 (C)4 (D)3【答案】D.【解析】考点:勾股定理;三角形的中位线定理.5.(2016河北第16题)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()第16题图A.1个B.2个C.3个D.3个以上【答案】d.【解析】试题分析:M、N分别在AO、BO上,一个;M、N其中一个和O点重合,2个;反向延长线上,有一个,故答案选D.考点:等边三角形的判定.6.在平面直角坐标系中,点A,B(,动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为()A.2 B.3 C.4 D.5【答案】B.【解析】考点:1.等腰三角形的判定;2.坐标与图形性质;3.分类讨论;4.综合题;5.压轴题.7.(2016山东滨州第6题)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50° B.51° C.51.5°D.52.5°【答案】D.【解析】考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.二、填空题8. (2016贵州遵义第14题)如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD= 度.【答案】35.【解析】试题分析:∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠ABD=∠A=35°,故答案为:35.考点:线段垂直平分线的性质.9.(2016江苏苏州第17题)如图,在△A BC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.【答案】27.【解析】试题分析:过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是等边三角形,∵△B ′DE ≌△BDE ,∴B ′F=12B ′E=BE=2,DF=23,∴GD=B ′F=2,∴B ′G=DF=23,∵AB=10,∴AG=10﹣6=4,∴AB ′=27.考点:1轴对称;2等边三角形.10. (2016湖北随州第12题)已知等腰三角形的一边长为9,另一边长为方程x 2﹣8x+15=0的根,则该等腰三角形的周长为 .【答案】19或21或23.【解析】考点:一元二次方程的解法;三角形三边关系;等腰三角形的性质.11. (2016广西河池第18题)如图的三角形纸片中,AB =AC ,BC =12cm ,∠C =30°,折叠这个三角形,使点B 落在AC 的中点D 处,折痕为EF ,那么BF 的长为 cm .【答案】143. 【解析】试题分析:过D 作DH ⊥BC ,过点A 作AN ⊥BC 于点N ,∵AB =AC ,∴∠B =∠C =30°,根据折叠可得:D F =BF ,∠EDF =∠B =30°,∵AB =AC ,BC =12cm ,∴BN =NC =6cm ,∵点B 落在AC 的中点D 处,AN ∥DH ,∴NH =HC =3cm ,∴DH =3tan cm ),设BF =DF =xcm ,则FH =12﹣x ﹣3=9﹣x (cm ),故在Rt △DFC 中,222DF DH FH =+,故222(9)x x =+-,解得:x =143,即BF 的长为:143cm .故答案为:143.考点:翻折变换(折叠问题).12. (2016内蒙古通辽第14题)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为 .【答案】69°或21°.【解析】考点:等腰三角形的性质;分类讨论.13. (2016福建南平第16题)如图,等腰△ABC 中,CA =CB =4,∠ACB =120°,点D 在线段AB 上运动(不与A 、B 重合),将△CAD 与△CBD 分别沿直线CA 、CB 翻折得到△CAP 与△CBQ ,给出下列结论: ①CD =CP =CQ ;②∠PCQ 的大小不变;③△PCQ ; ④当点D 在AB 的中点时,△PDQ 是等边三角形,其中所有正确结论的序号是 .【答案】①②④.【解析】③如图,过点Q 作QE ⊥PC 交PC 延长线于E ,∵∠PCQ =120°,∴∠QCE =60°,在Rt △QCE 中,tan ∠QCE =QE CQ ,∴QE =CQ ×tan ∠QCE =CQ ×tan 60°=,∵CP =CD =CQ ,∴S △PCQ =12CP ×QE =12CP ×=22,∴CD 最短时,S △PCQ 最小,即:C D ⊥AB 时,CD 最短,过点C 作CF ⊥AB ,此时CF 就是最短的CD ,∵AC =BC =4,∠ACB =120°,∴∠ABC =30°,∴CF =12BC =2,即:C D 最短为2,∴S △PCQ 最小222=误;④∵将△CAD 与△CBD 分别沿直线CA 、CB 翻折得到△CAP 与△CBQ ,∴AD =AP ,∠DAC =∠PAC ,∵∠DAC =30°,∴∠APD=60°,∴△APD是等边三角形,∴PD=AD,∠ADP=60°,同理:△BDQ是等边三角形,∴DQ=BD,∠BDQ=60°,∴∠PDQ=60°,∵当点D在AB的中点,∴AD=BD,∴PD=DQ,∴△DPQ是等边三角形,∴④正确,故答案为:①②④.考点:几何变换综合题;定值问题;最值问题;综合题;翻折变换(折叠问题).14. (2016四川达州第15题)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.【答案】24+93.【解析】考点:旋转的性质;等边三角形的性质;全等三角形的判定及性质.15.(2016湖南长沙第17题)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.【答案】13.【解析】考点:线段的垂直平分线的性质.16.(2016湖南娄底第17题)如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为.【答案】13.【解析】试题分析:将△ABC沿直线DE折叠后,使得点A与点C重合,由折叠的性质可得AD=CD,由AB=7,BC=6,可得△BCD的周长=BC+BD+CD=BC+BD+AD=BC+AB=7+6=13.考点:翻折变换(折叠问题).三、解答题17. (2016山东淄博第22题)(8分)如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).【答案】(1)详见解析;(2)详见解析.【解析】∴BE=21BG=21(BA+AG )=21(AB+AC ).考点:三角形中位线定理;等腰三角形的判定与性质.18. (2016湖南怀化第17题)如图,已知AD=BC ,AC=BD .(1)求证:△ADB≌△BCA;(2)OA 与OB 相等吗?若相等,请说明理由.【答案】(1)详见解析;(2)OA=OB,理由详见解析.【解析】考点:全等三角形的判定与性质;等腰三角形的判定.19.(2016广西河池第21题)如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.【答案】(1)作图见解解析;(2)AB=AD=BC.【解析】考点:作图—基本作图;作图题.20.(2016辽宁营口第25题)已知:如图①,将∠D=60°的菱形ABCD沿对角线AC剪开,将△ADC沿射线DC方向平移,得到△BCE,点M为边BC上一点(点M不与点B、点C重合),将射线AM绕点A逆时针旋转60°,与EB的延长线交于点N,连接MN.(1)①求证:∠ANB=∠AMC;②探究△AMN的形状;(2)如图②,若菱形ABCD变为正方形ABCD,将射线AM绕点A逆时针旋转45°,原题其他条件不变,(1)中的①、②两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.【答案】(1)①证明见解析;②△AMN是等边三角形;(2)①成立,②不成立,△AMN是等腰直角三角形.【解析】(2)①如图2,∠ANB=∠AMC成立,理由是:在正方形ABCD中,∴∠BAC=∠DAC=∠BCA=45°,∵∠NAM=45°,∴∠NAB=∠MAC,由平移得:∠EBC=∠CAD=45°,∵∠ABC=90°,∴∠ABN=180°﹣90°﹣45°=45°,∴∠ABN=∠ACM=45°,∴△ANB∽△AMC,∴∠ANB=∠AMC;②如图2,不成立,△AMN是等腰直角三角形,理由是:∵△ANB∽△AMC,∴AN ABAM AC=,∴AN AMAB AC=,∵∠NAM=∠BAC=45°,∴△NAM∽△BAC,∴∠ANM=∠ABC=90°,∴△AMN是等腰直角三角形.考点:四边形综合题;探究型;压轴题.。

全国各地中考数学试题分类汇编(第2期)专题22 等腰三角形(含解析)

全国各地中考数学试题分类汇编(第2期)专题22 等腰三角形(含解析)

等腰三角形选择题1. (2016·浙江省湖州市·3分)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B. C.3D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B .2.(2016·广西百色·3分)如图,正△ABC 的边长为2,过点B 的直线l ⊥AB ,且△ABC 与△A′BC′关于直线l 对称,D 为线段BC′上一动点,则AD+CD 的最小值是( )A .4B .32C .23D .2+3【考点】轴对称-最短路线问题;等边三角形的性质.【分析】连接CC′,连接A′C 交y 轴于点D ,连接AD ,此时AD+CD 的值最小,根据等边三角形的性质即可得出四边形CBA′C′为菱形,根据菱形的性质即可求出A′C 的长度,从而得出结论.【解答】解:连接CC′,连接A′C 交l 于点D ,连接AD ,此时AD+CD 的值最小,如图所示.∵△ABC 与△A′BC′为正三角形,且△ABC 与△A′BC′关于直线l 对称,∴四边形CBA′C′为边长为2的菱形,且∠BA′C′=60°, ∴A′C=2×23A′B=23.故选C .3.(2016·广西桂林·3分)已知直线y=﹣3x+3与坐标轴分别交于点A ,B ,点P 在抛物线y=﹣ (x ﹣ 3 )2+4上,能使△ABP 为等腰三角形的点P 的个数有( )A.3个 B.4个 C.5个 D.6个【考点】二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰三角形的判定.【分析】以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,由直线y=﹣x+3可求出点A、B的坐标,结合抛物线的解析式可得出△ABC等边三角形,再令抛物线解析式中y=0求出抛物线与x轴的两交点的坐标,发现该两点与M、N重合,结合图形分三种情况研究△ABP为等腰三角形,由此即可得出结论.【解答】解:以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数y=﹣x+3中x=0,则y=3,∴点A的坐标为(0,3);令一次函数y=﹣x+3中y=0,则﹣x+3,解得:x=,∴点B的坐标为(,0).∴AB=2.∵抛物线的对称轴为x=,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等边三角形.令y=﹣(x﹣)2+4中y=0,则﹣(x﹣)2+4=0,解得:x=﹣,或x=3.∴点E的坐标为(﹣,0),点F的坐标为(3,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故选A.4.(2016·贵州安顺·3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.5. (2016·湖北武汉·3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【考点】等腰三角形的判定;坐标与图形性质【答案】A【解析】构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。

中考数学5月试卷分类汇编等腰三角形

中考数学5月试卷分类汇编等腰三角形

等腰三角形一、选择题一、( 聊城莘县模拟)如图,等边三角形的边长为3,点为边上一点,且,点为边上一点,若,则的长为( ).A .B .C .D .1答案:B二、( 惠州市惠城区模拟)等腰三角形两边长别离为4和8,则那个等腰三角形的周长为( ) B.18 C. 20 D. 16或20 答案:C3、(2013浙江永嘉一模)10.如图,在△ABC 中,AB =BC ,将△ABC 绕点B 顺时针旋转α度,取得△A 1BC 1,A 1B 交AC 于点E ,A 1C 1别离交AC ,BC 于点D ,F ,下列结论:①∠CDF =α;②A 1E =CF ;③DF =FC ;④BE =BF . 其中正确的有( ▲ )A .②③④B .①③④C .①②④D .①②③ 【答案】C4、(2013重庆一中一模)11.如图,在等腰ABC Rt ∆中,︒=∠90C ,6=AC , D 是AC 上一点.若51tan =∠DBA ,那么AD 的长为A . 2B .3C .2D . 1【答案】A5. (2013江西饶鹰中考模拟)如图,将矩形ABCD对折,得折痕PQ ,再(第1 题图)FED C 1CBAA 1第2题图 A BD ′CDM N E C ′QF第6题C A P B D沿MN 翻折,使点C 恰好落在折痕PQ 上的点C ′处,点D 落在D ′处,其中M 是BC 的中点.连接AC ′,BC ′,则图中共有等腰三角形的个数是( ) A .1 B.2 答案:C六、( 湖北省武汉市中考全真模拟)如图,等腰△ABC 中,AB=AC ,P 为其底角平分线的交点,将△BCP 沿CP 折叠,使B 点恰好落在AC 边上的点D 处,若DA=DP ,则∠A 的度数为( ).° ° ° °D7、 ( 江苏无锡崇安一模)如图,在五边形ABCDE 中,∠BAE =120°,∠B =∠E =90°,AB =BC =1,AE =DE =2,在BC 、DE 上别离找一点M 、N ,使△AMN 的周长最小,则△AMN 的最小周长为…( ▲ ) A .2 6 B .27 C .4 2D .5答案:B二、填空题1、( 安徽模拟二)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为 .答案:42.( 安徽初中毕业考试模拟卷一)如图,ABC ∆为等边三角形,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则四个结论正确的是 .(把所有正确答案的序号都填写在横线上) ①AP 平分∠BAC ;②AS =AR ;③QP ∥AR ;④BRP ∆≌△QSP .3、( 安徽省模拟六)如图,等边三角形ABC 中,D 、E 别离在AB 、BC 边上,且AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G .下列结论:①AE =CD ;②∠AFC =1200;③⊿ADF 是正三角形;④12FG AF =.其中正确的结论是 (填所有正确答案的序号). 答案:①②④4、( 福州市初中毕业班质量检查)如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°取得FC ,连接DF .则在点E 运动进程中,DF 的最小值是____ .7.( 江苏无锡崇安一模)在直角△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,若CD =4,则点D 到斜边AB 的距离为 ▲ .第1题图第1题第3题图 ABCDEF第4题图答案:47.(2013浙江东阳吴宇模拟题)如图,C 、D 、B 的坐标别离为(1, 0)(9, 0)(10, 0),点P (t ,0)是CD 上一个动点,在x 轴上方作等边△OPE 和△BPF ,连EF ,G 为EF 的中点。

中考数学模拟试卷精选汇编:等腰三角形答案

中考数学模拟试卷精选汇编:等腰三角形答案

等腰三角形一.选择题1.(2015·江苏江阴长泾片·期中)在△ABC 中,∠ABC =30°,∠BAC =70°。

在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A .7条B .8条C .9条D .10条答案:C2.(2015·安徽省蚌埠市经济开发·二摸)如图所示,在33⨯的网格中,每个网格线的交点称为格点,已知图中A 、B 为两格点,请在图中再寻找另一格点C ,使ABC ∆成为等腰三角形.则满足条件的C 点的个数为【】第10题图A .10个B .8个C .6个D .4个答案:B3.(2015•山东潍坊广文中学、文华国际学校•一模)已知一个等腰三角形的两边长a 、b 满足方程组2a b 3a b 3-=⎧⎨+=⎩则此等腰三角形的周长为()A .5B .4C .3D .5或4答案:A ;4.(2015·山东省东营区实验学校一模)如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC =10,则PQ 的长为()A.32B.52C .3D .4答案:C5.(2015.河北博野中考模拟)如图所示,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y =xk在第一象限的图象经过点B ,若2218OA AB -=,则k 的值为【】A .12B .9C .8D .6答案:B6.(2015.河北博野中考模拟)如图,在△ABC 中,已知∠C =90°,AC =BC =4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE =CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①四边形CEDF 有可能成为正方形②△DFE 是等腰直角三角形③四边形CEDF 的面积是定值④点C 到线段EF其中正确的结论是【】A .①④B .②③C .①②④D .①②③④(第6题图)CE ADBF答案:D7.(2015•山东东营•一模)如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC =10,则PQ 的长为()A.32B.52C .3D .4答案:C8.(2015•山东济南•一模)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是()A.2B.2C.4D.4答案:A9.(2015·江苏无锡崇安区·一模)等腰三角形的两边长分别是4和8,则这个等腰三角形的周长为…………………(▲)A.16B.18C.20D.16或20答案:C二.填空题1.(2015·吉林长春·二模)答案:402.(2015·江苏江阴长泾片·期中)如图,在△ABC中,AB=AC,AB的垂直平分线交AC 点E,垂足为点D,连接BE,若BE=BC,则∠EBC的度数为.AB CD E答案:36°图1图23.(2015•山东滕州东沙河中学•二模)如图1,点P (a ,a )是反比例函数y =x16在第一象限内的图象上的一个点,以点P 为顶点作等边△PAB ,使A ,B 落在x 轴上,则△POA 的面积是____.答案:8-338;4.(2015•山东滕州东沙河中学•二模)若一个圆锥的轴截面是一个腰长为6cm ,底边长为2cm 的等腰三角形,则这个圆锥的表面积为____cm 2.答案:7π;5.(2015•山东滕州东沙河中学•二模)如图2,已知在Rt △ABC 中,AB =AC =32,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD ,PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段耐的中点Q ,在△QHI 内作第三个内接正方形;……依次进行下去,则第2014个内接正方形的边长为____.答案:2012216.(2015·江西省·中等学校招生考试数学模拟)有一直角三角形纸片ACB ,30A ∠=︒,90ACB ∠=︒,2BC =,点D 是AC 边上一动点,过点D 沿直线DE 方向折叠三角形纸片,使点A 落在射线AB 上的点F 处,当以点F 、B 、C 为顶点的三角形为等腰三角形时,AD 的长为.答案:233或31分,填对两个给3分,多填或错填不给分)命题思路:渗透分类讨论思想,考查空间想象能力.7.(2015·呼和浩特市初三年级质量普查调研)一个等腰但不等边的三角形,它的角平分线、高、中线的总条数为_________条.答案:78.(2015·广东中山·4月调研)如图,等边△ABC 中,点D 、E 分别为边AB 、AC 的中点,则∠DEC 的度数为_________.答案:19.(2015·江苏南菁中学·期中)如图,在△ABC 中,∠B =∠C ,AD ⊥BC 于点D ,若AB =6,CD =4,则△ABC 的周长是▲.第9题图答案:2010.(2015·江苏扬州宝应县·一模)如图,已知AB =AC ,DE 垂直平分AB 分别交AB 、AC 于D 、E 两点,若∠A =40º,则∠EBC =▲°.AEDCB(第10题)答案:30三.解答题1.(2015·江苏常州·一模)(本题满分6分)△ABC 中,∠C 是最小内角.若过顶点B 的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC 的关于点B 的伴侣分割线.例如:如图1,△ABC 中,∠A =90°,∠C =20°,若过顶点B 的一条直线BD 交AC 于点D ,且∠DBC =20°,则直线BD 是△ABC 的关于点B 的伴侣分割线.ABC DAB C图2图1⑴如图2,△ABC 中,∠C =20°,∠ABC =110°.请在图中画出△ABC 关于点B 的伴侣分割线,并注明角度;⑵△ABC 中,设∠B 的度数为y ,最小内角∠C 的度数为x .试探索y 与x 应满足什么要求时,△ABC 存在关于点B 的伴侣分割线.26.解:⑴画图正确,角度标注正确----------------------------------------------------------1′图3⑵考虑直角顶点,只有点A ,B ,D 三种情况当点A 为直角顶点时,如图,此时y =90-x .当点B 为直角顶点时,再分两种情况:若∠DBC =90°,如图,此时y =90+21(90-x )=135-21x.若∠ABD =90°,如图,此时y =90+x .当点D 为直角顶点时,又分两种情况:若△ABD 是等腰三角形,如图,此时y =45+(90-x )=135-x .若△DBC 是等腰三角形,如图,此时x =45,45<y <90.注:共5种情况,每种情况各1分.2.(2015•山东潍坊广文中学、文华国际学校•一模)如图3,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO 为矩形,AB =16,点D 与点A 关于y 轴对称,tan ∠ACB =43,点E 、F 分别是线段AD 、AC 上的动点(点E 不与点A 、D 重合),且∠CEF =∠ACB .(1)求AC 的长和点D 的坐标;(2)说明△AEF 与△DCE 相似;(3)当△EFC 为等腰三角形时,求点E 的坐标.答案:解:(1)∵四边形ABCO 为矩形,∴∠B =90°tan ∠ACB =43,在Rt △ACB 中,设BC =3k ,AB =4k ,由勾股定理,AC =5K ,∵AB =4k =16,∴k =4,∴AC =20,OA =BC ==3k =12,∴点A 的坐标为(-12,0),而点D 与点A 关于y 轴对称,∴点D 的坐标为(12,0)-------4分(2)∵∠CEF =∠ACB ,且∠ACB =∠CAE ,又∵点A 与点D 关于y 轴成轴对称∴∠FAE =∠D ,∴∠CEF =∠D-------------------6分又∵∠CEA =∠CEF +∠FEA =∠D +∠DCE ,∴∠FEA =∠DCE ,∴△AEF ∽△DCE ---------8分(3)①当CE =EF 时,由△AEF ∽△DCE 则△AEF ≌△DCE ,∴AE =CD ,即AO +OE =CD设E (x ,0),有12+x =20,∴x =8此时,点E 的坐标为(8,0)②当EF =FC 时,∵∠FCE =∠FEC =∠ACB =∠CAE ,∴AE =CE 设E (a ,0)∴OE 2+OC 2=CE 2=AE 2=(OA +OE )2即:222)12(16a a +=+,解得a =314此时,点E 的坐标为(314,0);③当CE =CF 时,E 与D 重合与题目矛盾.------------------12分3.(2015·江西省·中等学校招生考试数学模拟)如图1,我们定义:在四边形ABCD 中,若AD BC =,且︒=∠+∠180BCA ADB ,则把四边形ABCD 叫做互补等对边四边形.(1)如图2,在等腰ABE ∆中,四边形ABCD 是互补等对边四边形,求证:12ABD BAC AEB ∠=∠=∠;(2)如图3,在非等腰ABE ∆中,若四边形ABCD 仍是互补等对边四边形,试问12ABD BAC AEB ∠=∠=∠是否仍然成立,若成立,请加以证明;若不成立,请说明理由.解:(1) ABE ∆是等腰三角形,∴BE AE =,EBA EAB ∠=∠∴,又四边形ABCD 是互补等对边四边形,∴AD BC =,AB BA =,∴ABD ∆≌()BAC SAS ∆,∴BCA ADB ∠=∠,又 ︒=∠+∠180BCA ADB ,∴︒=∠=∠90BCA ADB ,在ABE ∆中, AEB AEB EBA EAB ∠-︒=∠-︒=∠=∠21902180,图1图2图3第2题∴119090(90)22ABD EAB AEB AEB ∠=︒-∠=︒-︒-∠=∠,同理:12BAC AEB ∠=∠,12ABD BAC AEB ∴∠=∠=∠;(2)如图,过点A 、B 分别作BD 的延长线与AC 的垂线于点G 、F ,四边形ABCD 是互补等对边四边形,∴AD BC =,︒=∠+∠180BCA ADB ,又︒=∠+∠180ADG ADB ,∴ADG BCA ∠=∠,又 ,AG BD BF AC ⊥⊥,∴︒=∠=∠90BFC AGD ,∴AGD ∆≌()BFC AAS ∆,∴AG BF =,又AB BA =∴ABG ∆≌()BAF HL ∆,∴ABD BAC ∠=∠, ︒=∠+∠180BCA ADB ,∴︒=∠+∠180ECA EDB ,∴︒=∠+∠180DHC AEB ,︒=∠+∠180HC B DHC ,∴BHC AEB ∠=∠,又 ABD BAC BHC ∠+∠=∠,ABD BAC ∠=∠,12ABD BAC AEB ∴∠=∠=∠.第2题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010中考数学分类汇编一、选择题 1.(2010浙江宁波) 如图,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是△ABC 、△BCD 的角平分线,则图中的等腰三角形有(A)5个 (B)4个 (C)3个 (D)2个【答案】A 2.(2010 浙江义乌)如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段P A =5,则线段PB 的长度为( ▲ )A .6B .5C .4D .3 【答案】B3.(2010江苏无锡)下列性质中,等腰三角形具有而直角三角形不一定具有的是 ( )A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180° 【答案】B4.(2010 黄冈)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定第15题图ABC DPE D CBA(第10题)【答案】B . 5.(2010山东烟台)如图,等腰△ ABC 中,AB=AC ,∠A=20°。

线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于 A 、80° B 、 70° C 、60° D 、50°【答案】C6.(2010江西)已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是( )A .8B .7C . 4D .3【答案】B 7.(2010湖北武汉)如图,△ABC 内有一点D ,且DA=DB=DC ,若∠DAB=20°,∠DAC=30°,则∠BDC 的大小是( )DA.100°B.80°C.70°D.50° 【答案】A 8.(2010山东威海)如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点, 连接BD .若BD 平分∠ABC ,则下列结论错误的是A .BC =2BEB .∠A =∠EDAC .BC =2ADADBECD .BD ⊥AC【答案】C9.(2010 湖南株洲)如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是A .6B .7C .8D .9【答案】C 10.(2010云南楚雄)已知等腰三角形的一个内角为70°,则另外两个内角的度数是( )A .55°,55°B .70°,40°C .55°,55°或70°,40°D .以上都不对 【答案】C 11.(2010湖北随州)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定第15题图【答案】B12.(2010湖北襄樊)已知:一等腰三角形的两边长x 、y 满足方程组2-3,328,x y x y =⎧⎨+=⎩则此等腰三角形的周长为( )A .5B .4C .3D .5或4 【答案】A 13.(2010 山东东营)如图,点C 是线段AB 上的一个动点,△ACD 和△BCE 是在AB 同侧的两个等边三角形,DM ,EN 分别是△ACD 和△BCE 的高,点C 在线段AB 上沿着从点A 向点B 的方向移动(不与点A ,B 重合),连接DE ,得到四边形DMNE .这个四边形的面积变化情况为( )(A )逐渐增大 (B) 逐渐减小 (C) 始终不变 (D) 先增大后变小B A第8题图【答案】C14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30. 二、填空题1.如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是__________________。

(把所有正确答案的序号都填写在横线上) ①∠BAD =∠ACD ②∠BAD =∠CAD , ③AB+BD =AC+CD ④AB-BD =AC-CD【答案】﹝2﹞﹝3﹞﹝4﹞ 2.(2010广东广州,16,3分)如图4,BD 是△ABC 的角平分线,∠ABD =36°,∠C =72°,则图中的等腰三角形有_____个.AD【答案】3 3.(2010江苏无锡)如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A =30°,∠ACB =80°,则∠BCE = ▲ °.【答案】50° 4.(2010江苏泰州)等腰△ABC 的两边长分别为2和5,则第三边长为 . 【答案】5 5.(2010四川眉山)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,(第16题)EDCBA……图③图②图①得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.【答案】17 6.(2010浙江绍兴)做如下操作:在等腰三角形ABC 中,AB = AC ,AD 平分∠BAC , 交BC 于点D .将△ABD 作关于直线AD 的轴对称变换,所得的 像与△ACD 重合.对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线、底边上的中线和高互相重合.由上述操作可得出的是 (将正确结论的序号都填上).【答案】②③ 7.(2010江苏淮安)已知周长为8的等腰三角形,有一个腰长为3,则最短的一条串位线长为 . 【答案】1.5 8.(2010 山东滨州)如图,等边△ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E是AC 边上一点.若AE=2,EM+CM 的最小值为 .【答案】79.(2010四川内江)下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形有4个,图2中以格点为顶点的等腰直角三角形有 个,图3中以格点为顶点的等腰直角三角形有 个,图4中以格点为顶点的等腰直角三角形有 个.第15题图【答案】10,28,50 10.11.12.13.14.15.16.17.18.19.20. 21.22.23.24.25.26.27.28.29.30.三、解答题 1.(2010辽宁丹东市)如图, 已知等边三角形ABC 中,点D ,E ,F 分别为边AB ,AC ,BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时, △DMN 也随之整体移动) .(1)如图①,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?都请直接....写出结论,不必证明或说明理由; (2)如图②,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.【答案】(1)判断:EN 与MF 相等 (或EN=MF ),点F 在直线NE 上, ······ 3分(说明:答对一个给2分)(2)成立. ······························ 4分 证明:法一:连结DE ,DF . ·························· 5分∵△ABC 是等边三角形, ∴AB =AC =BC . 又∵D ,E ,F 是三边的中点,∴DE ,DF ,EF 为三角形的中位线.∴DE =DF =EF ,∠FDE =60°. 又∠MDF +∠FDN =60°, ∠NDE +∠FDN =60°,∴∠MDF =∠NDE . ··························· 7分图2 图1 图4图3 图① 图②图③第25题图A·BCD EF··N MFEDCB ANMF EDCBA·在△DMF 和△DNE 中,DF =DE ,DM =DN , ∠MDF =∠NDE , ∴△DMF ≌△DNE . ··························· 8分 ∴MF =NE . ·························· 9分法二:延长EN ,则EN 过点F . ······················· 5分∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点, ∴EF =DF =BF . ∵∠BDM +∠MDF =60°, ∠FDN +∠MDF =60°,∴∠BDM =∠FDN . ···························· 7分 又∵DM =DN , ∠ABM =∠DFN =60°,∴△DBM ≌△DFN . ···························· 8分 ∴BM =FN .∵BF =EF , ∴MF =EN . ·························· 9分 法三:连结DF ,NF . ····························· 5分 ∵△ABC 是等边三角形, ∴AC =BC =AC .又∵D ,E ,F 是三边的中点, ∴DF 为三角形的中位线,∴DF =21AC =21AB =DB . 又∠BDM +∠MDF =60°, ∠NDF +∠MDF =60°,∴∠BDM =∠FDN . ··························· 7分 在△DBM 和△DFN 中,DF =DB ,DM =DN , ∠BDM =∠NDF ,∴△DBM ≌△DFN .∴∠B =∠DFN =60°. ··························· 8分 又∵△DEF 是△ABC 各边中点所构成的三角形, ∴∠DFE =60°. ∴可得点N 在EF 上,∴MF =EN . ·························· 9分 (3)画出图形(连出线段NE ), ····················· 11分MF 与EN 相等的结论仍然成立(或MF =NE 成立). ·············· 12分NCA BFMD E NCABFMD E2.(2010 福建晋江)(13分)如图,在等边ABC ∆中,线段AM 为BC 边上的中线. 动点D在直线..AM 上时,以CD 为一边且在CD 的下方作等边CDE ∆,连结BE .(1) 填空:______ACB ∠=度;(2) 当点D 在线段..AM 上(点D 不运动到点A )时,试求出BEAD的值; (3)若8=AB ,以点C 为圆心,以5为半径作⊙C 与直线BE 相交于点P 、Q 两点,在点D 运动的过程中(点D 与点A 重合除外),试求PQ 的长.(1)603分) (2)∵∆∴AC ︒=∠=60DCE ACB ∴BCE DCB DCB ACD ∠+∠=∠+∠∴BCE ACD ∠=∠……………………………(5分) ∴ACD ∆≌BCE ∆()SAS∴BE AD =,∴1=BEAD.………………………(7分) (3)①当点D 在线段AM 上(不与点A 重合)时,由(2)可知ACD ∆≌BCE ∆,则︒=∠=∠30CAD CBE ,作BE CH ⊥于点H ,则HQ PQ 2=,连结CQ ,则5=CQ .在CBH Rt ∆中,︒=∠30CBH ,8==AB BC ,则421830sin =⨯=︒⋅=BC CH . CAB 备用图(1) AB 备用图(2)在CHQ Rt ∆中,62==HQ PQ .②当点D 在线段DEC ∆∴BC AC =,CD ∴DCB ACB ∠+∠∴BCE ACD ∠=∠ ∴ACD ∆≌BCE ∆(∴∠=∠CBE 6=PQ .③当点D 在线段MA ∵ABC ∆与DEC ∆∴BC AC =,CD ∴∠+∠ACE ACD ∴BCE ACD ∠=∠ ∴ACD ∆≌BCE ∆(∴CAD CBE ∠=∠ ∵︒=∠30CAM∴∠=∠CAD CBE ∴︒=∠30CBQ . 同理可得:6=PQ .综上,PQ 的长是6. ………………………(13分)3.(2010 山东济南)(1)如图,已知AB AC AD AE ==,.求证BD CE =.【答案】证明:∵AB =AC∴∠B =∠C ∵AD =AE ∴∠ADE =∠AEC∴180O -∠ADE =180O -∠AEC 即∠ADB =∠AEC 在△ABD 和△ACE 中ACED B∵AB =AC ∠B =∠C∠ADB =∠AEC∴△ABD ≌△ACE∴BD =CE4.(2010湖南衡阳)已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使 CE = CD .求证:BD = DE .、【答案】∵△ABC 是等边三角形,∴∠ABC=∠ACB=60°,∵D 为AC 中点,∴∠DBC=30°,∵CE = CD ,∴∠E=30°,∴∠DBC=∠E ,∴BD = DE .5.(2010 山东省德州)如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O . (1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.【答案】证明:(1)∵BE =CF ,∴BE +EF =CF +EF , 即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ), ∴AB =DC . (2)△OEF 为等腰三角形 理由如下:∵△ABF ≌△DCE , ∴∠AFB =∠DEC .ADB EF C O第18题图ADE F O∴OE =OF .∴△OEF 为等腰三角形.6.(2010江苏常州)如图,在△ABC 中,点D 、E 分别在边AC 、AB 上,BD=CE , ∠DBC=∠ECB 。

相关文档
最新文档