07-13年广东高考数学理科数列真题(含答案)
2007年高考数学广东卷(理科)-带答案
2007 年高考数学广东卷(理科)参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B )球的体积公式 如果事件A 在一次试验中发生的概率是P .334R V π=那么n 次独立重复试验中恰好发生k 次的概其中R 表示球的半径率k n kk n n P P C k P --=)1()(第 I 卷 (选择题 共40分)一.选择题:本大题共8小题,每小题5分,共40分. 1.设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=A .[0,2]B .[1,2]C .[0,4]D .[1,4] 2.已知=+-=+ni m i n m ni im是虚数单位,则是实数,,,其中11 A .1+2i B . 1–2i C .2+i D .2–i 3.已知0<a <1,log log 0a a m n <<,则A .1<n <mB . 1<m <nC .m <n <1D .n <m <1 4.若α是第二象限的角,且2sin 3α=,则=αcosA .13 B . 13- C . D . 5.等差数列{}n a 中,12010=S ,那么29a a +的值是 A . 12 B . 24 C .16 D . 486.三棱锥D —ABC 的三个侧面分别与底面全等,且AB =AC =3,BC =2,则二面角A —BC —D 的大小为A . 300B . 450C .600D .900 7. 已知变量a ,b 已被赋值,要交换a 、b 的值,采用的算法是A .a=b, b=aB .a=c, b=a, c=bC .a=c, b=a, c=aD .c=a, a=b, b=c8.已知点M (-3,0),N (3,0),B (1,0),圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为A .221(1)8y x x -=<- B .)1(1822>=-x y xC .1822=+y x (x > 0) D .221(1)10y x x -=>第 Ⅱ 卷 (非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分。
13年广东高考理科数学试题及答案OK
正视图 俯视图侧视图图1绝密★启用前 试卷类型:A2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21题,满分150分。
考试用时120分钟。
注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。
不按以上要求作答的答案无效。
4、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5、考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:台体的体积公式121(3V S S h =++,其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高。
一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合{}R x x x x M ∈=+=,022 {}R x x x x N ∈=-=,022,则M N = ( )A 、{}0B 、{}2,0C 、{}0,2-D 、{}2,0,2-2、定义域为R 的四个函数3x y =,x y 2=,12+=x y ,x y sin 2=中,奇函数的个数是( )A 、4B 、3C 、2D 、1 3、若复数z 满足i iz 42+=,则在复平面内,z 对应的点的坐标是( )A 、)4,2(B 、)4,2(-C 、)2,4(-D 、)2,4( 4、已知离散型随机变量X 的分布列为则X 的数学期望=)(X E ( )5 )A 、4B 、314 C 、316D 、6D6、设n m ,是两条不同的直线,βα,是两个不同的平面,下列命题正确的是( ) A 、若m n αβαβ⊥⊂⊂,,, 则m n ⊥ B 、若m n αβαβ⊂⊂∥,,,则m n ∥ C 、若m n m n αβ⊥⊂⊂,,, 则αβ⊥ D 、若m m n n αβ⊥,∥,∥,则αβ⊥7、已知中心在原点的双曲线C 的右焦点为)0,3(F 离心率等于23,则C 的方程是( ) A 、15422=-y x B 、15422=-y x C 、15222=-y x D 、15222=-y x 8、设整数4≥n ,集合{}n X ,,3,2,1 =令集合{}(,,),,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立,若),,(),,(x w z z y x 和都在S中,则下列选项正确的是( )A 、S w y x S w z y ∉∈),,(,),,(B 、 S w y x S w z y ∈∈),,(,),,(C 、S w y x S w z y ∈∉),,(,),,(D 、 w y x S w z y ∉∉),,(,),,(二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20(一)必做题(9-13题)9、不等式022<-+x x 的解集为 .10、若曲线x kx y ln +=在点),1(k 处的切线平行于x 轴,则=k .11、执行图2所示的流程框图,若输入n 的值为4,则输出s 的值为 . 12.在等差数列{}n a 中,已知1083=+a a ,则=+753a a .13、给定区域⎪⎩⎪⎨⎧≥≤+≥+0444:x y x y x D ,令点集{}000000(,),,(,)D T x y D x y Z x y z x y =∈∈=+是在上取得最大值或最小值的点,则T 中的点共确定条不同的直线;(二)选做题(14-15题,考生只能从中选做一题) 14、(坐标系与参数方程选做题)已知曲线C 的参数方程为⎩⎨⎧==)(sin 2cos 2为参数t ty t x ,C 在点)1,1(处的切线为l ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,则l 的极坐标方程为 . 15、(几何证明选讲选做题)如图3,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D ,使BC =CD ,过C 作圆O 的切线交AD 于E ,若AB =6,DE =2,则BC = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16、(本小题满分12分)已知函数()),12f x x π=-x R ∈,(1)求()6f π-的值;(2)若33cos ,(,2)52πθθπ=∈,求(2)3f πθ+17、(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人? (3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.图4BC图6O18、(本小题满分14分)如图5,在等腰直角三角形ABC中,∠A 90=︒,6BC=,D,E分别是AC,AB上的点,CD BE== O为BC的中点.将△ADE沿DE折起,得到如图6所示的四棱椎'A BCDE-,其中'A O=(1)证明:'A O⊥平面BCDE;(2)求二面角'A CD B--平面角的余弦值.19、(本小题满分14分)设数列{}na的前n项和为nS,已知11a=,2*1212,33nnSa n n n Nn+=---∈,(1)求2a的值;(2)求数列{}na的通项公式;(3)证明:对一切正整数n,有1211174na a a++⋅⋅⋅+<.20、(本小题满分14分)已知抛物线C 的顶点为原点,其焦点(0,)(0)F c c >到直线:20l x y --=,设P 为直线l 上的点,过点P 做抛物线C 的两条切线PA ,PB ,其中A ,B 为切点;(1)求抛物线C 的方程;(2)当点00(,)P x y 为直线l 上的定点时,求直线AB ;(3)当点P 在直线l 上移动时,求||||AF BF ⋅的最小值21、(本小题满分14分)设函数2()(1)()x f x x e kx k R =--∈,(1)当1k =时,求函数()f x 的单调区间; (2)当1(,1]2k ∈时,求函数()f x 在[0,]k 上的最大值M2013年普通高等学校招生全国统一考试(广东卷)答案数学(理科)一、选择题1-5:D 、C 、C 、A 、B ; 6-8:D 、B 、B ;二、填空题9、(-2,1) 10、-1 11、7 12、20 13、6 14、2)4(sin =+πθρ 15、32三、解答题16、(1)由题意1222)4cos(2)126cos(2)6(=⨯=-=--=-ππππf (2)∵)2,23(,53cos ππθθ∈=,∴54-sin =θ.∴252453)54(2cos sin 22sin ,2571)53(21-cos 22cos 22-=⨯-⨯==-=-⨯==θθθθθ∴)4sin 2sin 4cos 2(cos 2)42cos(2)1232cos(2)32(πθπθπθππθπθ-=+=-+=+f2517)2524(2572sin 2cos )2sin 222cos 22(2=---=-=-=θθθθ. 17、(1)样本均值为226302521201917=+++++=x . (2)根据题意,抽取的6名员工中优秀员工有2人,优秀员工所占比例为3162=,故12名员工中优秀员工人数为41231=⨯(人).(3)记事件A 为“抽取的工人中恰有一名为优秀员工”,由于优秀员工4人,非优秀员工为8人,故事件A 发生的概率为33166684)(2121814=⨯==C C C A P ,即抽取的工人中恰有一名为优秀员工的概率为3316.18、(1)折叠前连接OA 交DE 于F ,∵折叠前△ABC 为等腰直角三角形,且斜边BC =6, 所以OA ⊥BC ,OA=3,AC =BC =23 又2==BE CD∴BC ∥DE ,22==AE AD∴OA ⊥DE ,22==AE AD ∴AF =2,OF =1 折叠后DE ⊥OF ,DE ⊥A ′F ,OF ∩A ′F =F∴DE ⊥面A ′OF ,又OF A O A '⊂'面 ∴DE ⊥A ′O又A ′F =2,OF =1,A ′O =3∴△A ′OF 为直角三角形,且∠A ′OF =90° ∴A ′O ⊥OF , 又BCDE DE 面⊂,BCDE OF 面⊂,且DE ∩OF =F , ∴A ′O ⊥面BCDE .(2)过O 做OH ⊥交CD 的延长线于H ,连接H A ',∴OH =22AO =223,230)3()223(2222=+=+'='OH O A H A ∵∠A ′HO 即为二面角B CD A --'的平面角,故cos ∠A ′HO=5153023=='H A OH . 19、(1)令*21,32312N n n n a n S n n ∈---=+中n =1得,32131221---=a a ∴42212=+=a a(2)由*21,32312N n n n a n S n n ∈---=+;得)2)(1(612326121231++-=---=++n n n na n n n na S n n n∴)3)(2)(1(612)1(21+++-+=++n n n a n S n n两式相减得)2)(1(2122)1(121++--+=-+++n n na a n S S n n n n∴)2)(1(2122)1(121++--+=+++n n na a n a n n n∴)2)(1(212)2(2)1(12++++=+++n n a n a n n n∴11212++=+++n an a n n ,∴11212=+-+++n a n a n n又由(1)知112,22,111221=-==aa a a∴为公差的等差数列,为首相,是以11⎭⎬⎫⎩⎨⎧n a n ∴n na n =.∴)(*2N n n a n ∈=.(3)∵)1111(21)1)(1(111122+--=+-=-<n n n n n n∴)1111(21)4121(21)311(2111312111111222321+--++-+-+<++++=++++n n na a a a n 47)111(2147)111211(211<++-=+--++=n n n n 20、(1)依题意得0,22322>=--c c ,∴1=c .∴抛物线焦点坐标为(0,1),抛物线解析式为x 2=4y(2)设A (x 1,421x ),B (x 2,422x ),∴可设A 、B 中点坐标为M )82(222121x x x x ++, 所以直线PA :424)(22112111x x x x x x x y -=+-=,直线PB :424)(22222222x x x x x x x y -=+-=两式相减得)2(244202121212221x x x x x x x x x x +--=-+-= ∵21x x ≠,∴0221≠-x x ,0221=+-x x x∴2210x x x +=, ∴0212x x x =+将P (0x ,0x -2)带入PA :42211x x x y -=得4422221212110x x x x x x x =-+=-∴84021-=x x x∴2428168482)(8020020212212221+-=+-=-+=+x x x x x x x x x x ∴A 、B 中点坐标为M (0x ,242020+-x x )∴直线AB 的斜率24)(4021122122x x x x x x x k AB =+=--= 故直线AB 的方程为22242)(20002000+-=+-+-=x x x x x x x x y . (3)由于A 点到焦点F 的距离等于A 点到准线y =-1的距离,∴|AF |=1421+x ,|BF |=1422+x 29)23(2962142)2(14)4()14)(14(200200202022212212221+-=+-=++-+-=+++=++=⋅x x x x x x x x x x x x BF AF∴当230=x 时,BF AF ⋅取最小值29.21、(1)k =1时2)1()(x e x x f x --=∴)2(2)1()(-=--+='x x x e x x e x e x f当x <0时02<-x e ,故0)2()(>-='x e x x f ,)(x f 单调递增;0< x <ln2时02>-x e ,故0)2()(<-='x e x x f ,)(x f 单调递减; x>ln2时02>-x e ,故0)2()(>-='x e x x f ,)(x f 单调递增;综上,)(x f 的单调增区间为)0,(-∞和),2(ln +∞,单调减区间为)2ln ,0(. (2))2(2)1()(k e x kx e x e x f x x x -=--+='∵121≤<k ,∴221≤<k 由(1)可知)(x f 的在(0,ln2k )上单调递减,在(ln2k ,+∞)上单调递增设)121(,2ln )(≤<-=x x x x g ,则xx x g 11221)(-=-=' ∵121≤<x ,∴211<≤x ,∴0111≤-<-x∴x x x g 2ln )(-=在⎥⎦⎤⎝⎛121,上单调递减.∵121≤<k , ∴02ln 1)1()(>-=>g k g ∴02ln >-k k 即k k 2ln > ∴)(x f 的在(0,ln2k )上单调递减,在(ln2k ,k )上单调递增. ∴)(x f 的在[0,k ]上的最大值应在端点处取得. 而1)0(-=f ,1)1(2)1()(3-=<--=f k e k k f k ∴当x =0时)(x f 取最大值1-.。
2013年广东高考理科数学试题及答案解析(图片版)
2013年广东高考理科数学试题与答案解析2013年普通高等学校招生全国统一考试〔广东卷〕数学〔理科〕参考答案一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. DC CA BD BB二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分9. (-2,1) 10.k =-1 11. 7 12.20 13.614.sin 4πρθ⎛⎫+= ⎪⎝⎭15.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.〔本小题满分12分〕[解析](Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+ ⎪⎝⎭cos2sin 2θθ=-72417252525⎛⎫=---=⎪⎝⎭. 17.〔本小题满分12分〕[解析](Ⅰ) 样本均值为1719202125301322266+++++==;(Ⅱ) 由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人.向量法图(Ⅲ) 设事件A:从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A=1148212C CC 1633=.18.〔本小题满分14分〕[解析](Ⅰ) 在图1中,易得3,OC AC AD===连结,OD OE,在OCD∆中,由余弦定理可得OD==由翻折不变性可知A D'=,所以222A O OD A D''+=,所以A O OD'⊥,理可证A O OE'⊥, 又OD OE O=,所以A O'⊥平面BCDE.(Ⅱ) 传统法:过O作OH CD⊥交CD的延长线于H,连结A H',因为A O'⊥平面BCDE,所以A H CD'⊥,所以A HO'∠为二面角A CD B'--的平面角.结合图1可知,H为AC中点,故2OH=,从而2A H'==所以cos5OHA HOA H'∠==',所以二面角A'的平面角的余弦值为.向量法:以O点为原点,建立空间直角坐标系O-则()0,0,3A',()0,3,0C-,()1,2,0D-所以(CA'=,(1,DA'=-设(),,n x y z=为平面A CD'的法向量,则n CAn DA⎧'⋅=⎪⎨'⋅=⎪⎩,即3020yx y⎧=⎪⎨-+=⎪⎩,解得yz=⎧⎪⎨=⎪⎩,令1x=,得(1,1,n=-由(Ⅰ) 知,()0,0,3OA'=为平面CDB的一个法向量,所以3cos,3n OAn OAn OA'⋅'==⋅'即二面角A CD B'--19.〔本小题满分14分〕[解析](Ⅰ) 依题意,12122133S a=---,又111S a==,所以24a=;(Ⅱ) 当2n≥时,32112233n nS na n n n+=---,()()()()321122111133n nS n a n n n-=-------两式相减得()()()2112213312133n n na na n a n n n+=----+---整理得()()111n nn a na n n++=-+,即111n na an n+-=+,又21121a a-=故数列nan⎧⎫⎨⎬⎩⎭是首项为111a=,公差为1的等差数列,所以()111n a n n n=+-⨯=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<;当3n ≥时,()21111111n a n n n n n=<=---,此时222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++<.20.〔本小题满分14分〕[解析](Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=0c >,解得1c =. 所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设A (x 1,y 1), B (x 2,y 2) (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x , 所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点P (x 0,y 0),所以1001220x x y y --=,2002220x x y y --= 所以(x 1,y 1),(x 2,y 2)为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点P (x 0,y 0)在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭ 所以当012y =-时, AF BF ⋅取得最小值,且最小值为92. 21.〔本小题满分14分〕 [解析](Ⅰ) 当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令f'(x )=0,得0x =,ln 2x = 当x 变化时, f'(x ), f (x )的变化如下表:f (x ) 极大值极小值右表可知,函数f (x )的递减区间为(0,ln2),递增区间为(-∞,0), (ln2,+∞). (Ⅱ)()()()1222x x x x f x e x e kx xe kx x e k '=+--=-=-, 令f'(x )=0,得10x =,()2ln 2x k =,令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤ ⎥⎝⎦上递增,所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈所以当()()0,ln 2x k ∈时, f'(x )<0;当()()ln 2,x k ∈+∞时, f'(x )>0;所以()(){}(){}3max 0,max 1,1kM f f k k e k ==--- 令()()311kh k k e k =--+,则()()3kh k k e k '=-,令()3kk e k ϕ=-,则()330kk e e ϕ'=-<-<所以φ(k )在1,12⎛⎤ ⎥⎝⎦上递减,而()()1313022e e ϕϕ⎛⎫⎛⎫⋅=--< ⎪ ⎪⎝⎭⎝⎭ 所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时, φ(k )>0, 当()0,1k x ∈时, φ(k )<0, 所以φ(k )在01,2x ⎛⎫⎪⎝⎭上单调递增,在()0,1x 上单调递减. 因为1170228h e ⎛⎫=-+> ⎪⎝⎭,()10h =, 所以()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=〞.综上,函数f (x )在[0,k ]上的最大值()31kM k e k =--.。
07-13年广东高考数学理科概率统计真题(含答案)
17.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y (吨标准煤)的几组对照数据;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y bx a=+(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤;试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(3×2.5+4×3+5×4+6×4.5=66.5)2008年广东高考文科卷17.(本小题满分13分)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.(1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?17.(本小题满分12分)根据空气质量指数API (为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API 数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图5 (1)求直方图中x 的值;(2)计算一年屮空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率. (结果用分数表示.已知7732738123578125,2128,,36573518253651825182591259125==++++==⨯)2010年广东高考文科卷17.(12分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495】,(495,500】,……,(510,515】,由此得到样本的频率分布直方图,如图4(1)根据频率分布直方图,求重量超过505克的产品数量,(2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列; (3)从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率。
高考广东理科数学试题及答案解析版
2013年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2013年广东,理1,5分】设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则M N =U ( )(A ){}0 (B ){}0,2 (C ){}2,0- (D ){}2,0,2- 【答案】D【解析】易得{}2,0M =-,{}0,2N =,所以M N =U {}2,0,2-,故选D .(2)【2013年广东,理2,5分】定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )(A )4 (B )3 (C )2 (D )1 【答案】C【解析】3y x =,2sin y x =为奇函数;21y x =+为偶函数;2x y =为非奇非偶函数.∴共有2个奇函数,故选C . (3)【2013年广东,理3,5分】若复数z 满足i 24i z =+,则在复平面内,z 对应的点的坐标是( )(A )()2,4 (B )()2,4- (C )()4,2- (D )()4,2 【答案】C【解析】由i 24i z =+,得24i (24i)(i)42i i i (i)z ++⋅-===-⋅-,故z 对应点的坐标为(4)2-,,故选C . (4)【2013年广东,理4,5X X1 2 3 P35310 110 则X 的数学期望EX = (A )32 (B )2 (C )52(D )3【答案】A【解析】33115312351010102EX =⨯+⨯+⨯==,故选A .(5)【2013年广东,理5,5分】某四棱台的三视图如图所示,则该四棱台的体积是( )(A )4 (B )143 (C )163(D )6【答案】B【解析】解法一:由三视图可知,原四棱台的直观图如图所示, 其中上、下底面分别是边长为1,2的正方 形,且1DD ⊥面ABCD ,上底面面积2111S ==,下底面面积2224S ==.又∵12DD =,∴()1122111411()442333V S S S S h =++=+⨯+⨯=台,故选B .解法二:由四棱台的三视图,可知原四棱台的直观图如图所示.在四棱台1111ABCD A B C D -中,四边形ABCD 与四边形A 1B 1C 1D 1都为正方形,2AB =,111A B =,且1D D ⊥平面ABCD ,12D D =.分别延长四棱台各个侧棱交于点O ,设1OD x =,因为11OD C ODC ∆∆∽,所以111OD D C OD DC=, 即122x x =+,解得2x =.111111111114224112333ABCD A B C D O A A B B C O D CD V V V ---=⨯⨯⨯-⨯⨯⨯=-=棱锥棱锥,故选B . (6)【2013年广东,理6,5分】设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )(A )若αβ⊥,m α⊂,n β⊂,则m n ⊥ (B )若//αβ,m α⊂,n β⊂,则//m n (C )若m n ⊥,m α⊂,n β⊂,则αβ⊥ (D )若m α⊥,//m n ,//n β,则αβ⊥【解析】选项A 中,m 与n 还可能平行或异面,故不正确;选项B 中,m 与n 还可能异面,故不正确;选项C 中,α与β还可能平行或相交,故不正确;选项D 中,∵m α⊥,//m n ,n α∴⊥. 又//n β,αβ∴⊥,故选D .(7)【2013年广东,理7,5分】已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )(A)2214x = (B )22145x y -= (C )22125x y -= (D)2212x = 【答案】B【解析】由曲线C 的右焦点为0(3)F ,,知3c =.由离心率32e =,知32c a =,则2a =,故222945b c a =-=-=,所以双曲线C 的方程为22145x y-=,故选B .(8)【2013年广东,理8,5分】设整数4n ≥,集合{}1,2,3,,X n =L .令集合(){,,|,,S x y z x y z X =∈且三条件x y z <<,,y z x z x y <<<<,}恰有一个成立,若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )(A )(),,y z w S ∈,(),,x y w S ∉ (B )(),,y z w S ∈,(),,x y w S ∈ (C )(),,y z w S ∉,(),,x y w S ∈ (D )(),,y z w S ∉,(),,x y w S ∈【答案】B【解析】解法一:特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B . 解法二:由()x y z S ∈,,,不妨取x y z <<,要使()z w x S ∈,,,则w x z <<或x z w <<.当w x z <<时,w x y z <<<,故()y z w S ∈,,,()x y w S ∈,,.当x z w <<时,x y z w <<<,故()y z w S ∈,,,()x y w S ∈,,. 综上可知,()y z w S ∈,,,()x y w S ∈,,,故选B .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13) (9)【2013年广东,理9,5分】不等式220x x +-<的解集为 . 【答案】()2,1-【解析】220x x +-<即()()210x x +-<,解得21x -<<,故原不等式的解集为1{|}2x x -<<. (10)【2013年广东,理10,5分】若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k = . 【答案】1-【解析】1y xk '=+.因为曲线在点(1)k ,处的切线平行于x 轴,所以切线斜率为零,由导数的几何意义得10|x y ='=,故10k +=,即1k =-.(11)【2013年广东,理11,5分】执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为 . 【答案】7【解析】第一次循环后:1,2s i ==;第二次循环后:2,3s i ==;第三次循环后:4,4s i ==;第四次循环后:7,5s i ==;故输出7.(12)【2013年广东,理12,5分】在等差数列{}n a 中,已知3810a a +=,则573a a += .【答案】20【解析】依题意12910a d +=,所以()57111334641820a a a d a d a d +=+++=+=. 或:()57383220a a a a +=+=.(13)【2013年广东,理13,5分】给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈是z x y=+在D 上取得最大值或最小值的点},则T 中的点共确定 条不同的直线.【解析】画出可行域如图所示,其中z x y =+取得最小值时的整点为()0,1,取得最大值时的整点为()0,4,()1,3,()2,2,()3,1及()4,0共5个整点.故可确定516+=条不同的直线.(二)选做题(14-15题,考生只能从中选做一题)(14)【2013年广东,理14,5分】(坐标系与参数方程选做题)已知曲线C 的参数方程为2cos 2sin x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 .【答案】sin 24πρθ⎛⎫+= ⎪⎝⎭【解析】曲线C 的普通方程为222x y +=,其在点()1,1处的切线l 的方程为2x y +=,对应的极坐标方程为cos sin 2ρθρθ+=,即sin 24πρθ⎛⎫+= ⎪⎝⎭. (15)【2013年广东,理15,5分】(几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC = . 【答案】23【解析】依题意易知ABC CDE ∆∆:,所以AB BCCD DE=,又BC CD =,所以212BC AB DE =⋅=,从而23BC =. 三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.(16)【2013年广东,理16,12分】已知函数()2cos 12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(1)求6f π⎛⎫- ⎪⎝⎭的值;(2)若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.解:(1)2cos 2cos 2cos 1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)22cos 22cos 2cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-,所以24sin 22sin cos 25θθθ==-,227cos2cos sin 25θθθ=-=-,所以23f πθ⎛⎫+ ⎪⎝⎭cos2sin2θθ=-72417252525⎛⎫=---= ⎪⎝⎭.(17)【2013年广东,理17,12分】某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. (1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人;(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.解:(1)样本均值为1719202125301322266+++++==.(2)由(1)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人(3)设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A =1148212C C C 1633=. (18)【2013年广东,理18,14分】如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,2CD BE ==,O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中3A O '=.(1)证明:A O '⊥平面BCDE ; (2)求二面角D AF E --的余弦值.解:(1)在图1中,易得3,32,22OC AC AD ===,连结,OD OE ,在OCD ∆中,由余弦定理可得222cos 455OD OC CD OC CD =+-⋅︒=,由翻折不变性可知22A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =I ,所以A O '⊥平面BCDE . (2)解法一:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ',因为A O '⊥平面BCDE ,所以A H CD '⊥,A HO '∴∠为二面角A CD B '--的平面角.由图1可知,H 为AC 中点,故32OH =,2230A H OH OA ''=+=, 所以15cos OH A HO A H '∠==',所以二面角A CD B '--的平面角的余弦值为15. 解法二:以O 点为原点,建立空间直角坐标系O xyz -如图所示,则()0,0,3A ',()0,3,0C -,()1,2,0D -,所以()0,3,3CA '=u u u r ,()1,2,3DA '=-u u u u r,设(),,n x y z =r 为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩r u u u rr u u u u r,即330230y z x y z ⎧+=⎪⎨-++=⎪⎩,解得3y x z x =-⎧⎪⎨=⎪⎩,令1x =,得()1,1,3n =-r 由(1)知,()0,0,3OA '=u u u r 为平面CDB 的一个法向量,所以15cos ,35n OA n OA n OA '⋅'==='⋅r u u u rr u u u r r u u u r , 即二面角A CD B '--的平面角的余弦值为15. (19)【2013年广东,理19,14分】设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (1)求2a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有1211174n a a a +++<L . 解:(1)依题意,12122133S a =---,又111S a ==,所以24a =.(2)当2n ≥时,32112233n n S na n n n +=---,()()()()321122111133n n S n a n n n -=-------,两式相减得()()()2112213312133n n n a na n a n n n +=----+---,整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121a a -=,故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列, 所以()111n an n n=+-⨯=,所以2n a n =.(3)当1n =时,11714a =<;当2n =时,12111571444a a +=+=<; 当3n ≥时,()21111111n a n n n n n =<=---,此时222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭L L L 11171714244n n =++-=-<,综上,对一切正整数n ,有1211174n a a a +++<L .(20)【2013年广东,理20,14分】已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为32.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (1)求抛物线C 的方程;(2)当点()00,P x y 为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求AF BF ⋅的最小值.解:(1)依题意,设抛物线C 的方程为24x cy ==结合0c >,解得1c =. 所以抛物线C 的方程为24x y =.(2)抛物线C 的方程为24x y =,即214y x =,求导得12y x '=,设()11,A x y ,()22,B x y (其中221212,44x x y y ==), 则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --=,同理可得切线PB 的方程为22220x x y y --=,因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --=,所以()()1122,,,x y x y为方程00220x x y y --=的两组解.所以直线AB 的方程为00220x x y y --=.(3)由抛物线定义可知11AF y =+,21BF y =+,所以()()()121212111AF BF y y y y y y ⋅=++=+++,联立方程0022204x x y y x y--=⎧⎪⎨=⎪⎩,消去x 整理得()22200020y y x y y +-+=,由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =,所以()221212000121AF BF y y y y y x y ⋅=+++=+-+,又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭,所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.(21)【2013年广东,理21,14分】设函数()()21x f x x e kx =--(其中k ∈R ).(1)当1k =时,求函数()f x 的单调区间;(2)当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .解:(1)当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-, 令()0f x '=,得0x =,ln 2x =,当x 变化时,,f x f x '的变化如下表:(2)()()()1222x x x x f x e x e kx xe kx x e k '=+--=-=-,令()0f x '=,得10x =,()2ln 2x k =,令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤⎥⎝⎦上递增, 所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈,所以当()()0,ln 2x k ∈时, ()0f x '<;当()()ln 2,x k ∈+∞时,()0f x '>;所以()(){}(){}3max 0,max 1,1k M f f k k e k ==---,令()()311k h k k e k =--+,则()()3k h k k e k '=-,令()3k k e k ϕ=-,则()330k k e e ϕ'=-<-<,所以()k ϕ在1,12⎛⎤ ⎥⎝⎦上递减,而()()1313022e ϕϕ⎛⎫⎫⋅=-< ⎪⎪⎝⎭⎭,所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时,()0k ϕ>,当()0,1k x ∈时,()0k ϕ<,所以()k ϕ在01,2x ⎛⎫⎪⎝⎭上单调递增,在()0,1x上单调递减.17028h ⎛⎫=> ⎪⎝⎭,()10h =,()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=”. 综上,函数()f x 在[]0,k 上的最大值()31k M k e k =--.。
2013年全国普通高等学校招生统一考试理科数学(广东卷带解析)
绝密★启用前 2013-2014学年度 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则M N =U ( ) A.{}0 B .{}0,2 C .{}2,0- D .{}2,0,2- 2.定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( ) A . 4 B .3 C .2 D .1 3.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( ) A . ()2,4 B .()2,4- C .()4,2- D .()4,2 则的数学期望 ( ) A . 32 B .2 C .52 D .3 5.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A . 4 B.143C .163 D .66.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥7.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 ( )A . 2214x -=B .22145x y -= C .22125x y -= D .2212x =8.设整数4n ≥,集合{}1,2,3,,X n =L .令集合(){},,|,,,,,S x y z x y z X x y z yz x z x y =∈<<<<<<且三条件恰有一个成立 若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈正视图 俯视图 侧视图第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(题型注释)9.不等式20x x+-<的解集为___________.10.若曲线lny kx x=+在点()1,k处的切线平行于x轴,则k=______.11.执行如图所示的程序框图,若输入n的值为4,则输出s的值为______.12.在等差数列{}n a中,已知3810a a+=,则573a a+=_____.13.给定区域D:,令点集()()000000{,|,,,T x y D x y Z x y=∈∈是z x y=+在D上取得最大值或最小值的点},则T中的点共确定______条不同的直线.14.已知曲线C的参数方程为x ty t⎧=⎪⎨=⎪⎩(t为参数),C在点()1,1处的切线为l,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则l的极坐标方程为_____________.15.如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC CD=,过C作圆O 的切线交AD于E.若6AB=,2ED=,则BC=_________..AEDCBO三、解答题(题型注释) 16.已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R . (Ⅰ) 求6f π⎛⎫- ⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭. 17.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.18.如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE ==O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=.(Ⅰ) 证明:A O '⊥平面BCDE ;(Ⅱ) 求二面角A CD B '--的平面角的余弦值.19.设数列{}n a 的前n 项和为n S .已知11a =,2121233nn S a n n n +=---,*n ∈N .(Ⅰ) 求2a 的值;. C O B D EA CD O BE'A图1 图2 1 7 92 0 1 53 0(Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<L . 20.已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程; (Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值. 21.设函数()()21x f x x e kx =--(其中k ∈R ). (Ⅰ) 当1k =时,求函数()f x 的单调区间; (Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .参考答案1.D【解析】因{}2,0M =-,{}0,2N =,所以M N =U {}2,0,2-,故选D .【考点定位】集合的运算、二次方程的解法2.C【解析】奇函数的为3y x =与2sin y x =,21y x =+和2xy =为非奇非偶函数,故选C . 【考点定位】基本初等函数和奇函数的概念3.C 【解析】2442i z i i+==-对应的点的坐标是()4,2-,故选C . 【考点定位】复数运算和复数的几何意义.4.A 【解析】33115312351010102EX =⨯+⨯+⨯==,故选A . 【考点定位】离散型随机变量的期望5.B【解析】由三视图可知,该四棱台的上下底面边长分别为1和2的正方形,高为2,故()2211412233V =⨯=,故选B . 【考点定位】三视图与四棱台的体积6.D【解析】选项A 中,m 与n 还可能平行或者异面,故错;B 中,m 与n 还可能异面,故错;C 中,,αβ还有可能平行或者相交,故错; D 中,,,,m m n n n ααβαβ⊥∴⊥∴⊥Q Q ∥∥,,故D 正确.【考点定位】考查线面的位置关系7.B【解析】依题意3c =,32e =,所以2a =,从而24a =,2225b c a =-=,故选B . 【考点定位】考查双曲线方程。
2013年高考理科数学广东卷-答案
M N=-{2,0,2}z①,x②,y③三个式子中恰有一个成立;x④,z⑤,w⑥+=条不同的直线.故可确定51612AB DE=,【提示】观察图形,根据已知条件,利用圆的性质,通过相似三角形求距离.cos45OC CD︒=,所以OD OE O⊥交CDCD-的平面角.CD B中点,故OH5A H'5所以(0,3,CA '=,(1,2,DA '=-设(,,)n x y z =00n CA n DA ⎧'=⎪⎨'=⎪⎩,即⎩,得(1,1,n =-由(Ⅰ)知,(0,0,OA '=315,5||||35n OA n OA n OA ''==='22211111111111111434423341n a n n n ⎛⎫⎛⎫⎛⎫++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭14244n n =++-=-< 174n a ++<项的关系式和首项,求第二项;根据题设条件,利用递推公式求通项公1(AF BF y =联立方程24x y⎨=⎪⎩12|||AF BF y y =02y =+,|||AF BF 取得最小值,且最小值为根据两直线的交点,联立两直线求直线方程;由直线与抛物线的位置关系得到关系式,求最小值.ln 21ln ≤-=k <,所以(0,ln(2))k 时,),)k +∞时,max{(0),f f 3e 30-<(1)e ϕ⎫⎛=⎪ ⎭⎝所以存在01,12x ⎛∈ ⎝【考点】利用导数求函数的单调区间,利用函数单调性求最值。
2013年普通高等学校招生全国统一考试数学理试题(广东卷,含答案)
设数列 an 的前 n 项和为 Sn . 已知 a1
(1)求 a2 的值 (2)求数列{ an}的通项公式 a1
2 Sn 1, n
an 1
1 n2 3
n
2 3, n
N* .
11
17
证明 : 对一切正整数 n , 有 a1 a2
an 4 .
20.( 本小题满分 14 分 ) 已知抛物线 c 的顶点为原点,其焦点 F(0,c)( c>0)到直线 L:x-y-2=0 的距离为 . 设
1
a2
,又 2
a1 1
1
故数列
an n
a1 是首项为 1
1 , 公差为 1的等差数列 ,
an 1 所以 n
n1
1
n
,
所以
an
n2 .
1
7
11
15
1
1
(3) 当 n 1 时 , a1
4 ;当 n 2时 , a1 a2
44
11 当 n 3时, an n2
1
11
n 1 n n 1 n , 此时
11 a1 a2
三、解答题:本大题共 6 小题,满分 80 分,解答需写出文字说明。证明过程和演算步骤。 16. (本小题满分 12 分)
f ( x) 2 cos( x )
已知函数
12 , x R
(1)求 f ( - )的值;
(2)若 cosθ = , θE( , 2π),求 f ( 2θ + )。 17.(本小题满分 12 分)
∵ A’ O⊥平面 BCDE,CD 平面 BCDE, ∴CD⊥ A’O
∵ OM A’O=O, ∴ CD⊥平面 A’ OM
∵ A’ M 平面 A’ OM∴ CD⊥ A’ M
07-13年广东省理科数学高考题
绝密★启用前 试卷类型:B2007年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分,考试时间120分钟.参考公式:锥体的体积公式sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 如果事件A、B 互斥,那么)()()(B P A P B A P +=+. 如果事件A 、B 相互独立,那么)()()(B P A P B A P •=•.用最小二乘法求线性同归方程系数公式1221ˆˆˆ,ni ii ni i x y nx ybay bx x nx==-==--∑∑. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合要求的. 1.已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则M N =A .{}1x x >-B .{}1x x <C .{}11x x -<<D .∅2.若复数)2)(1(i bi ++是纯虚数(i 是虚数单位,b 是实数)则b =A .2B .21C .21-D .-23.若函数21()sin (),()2f x x x f x =-∈R 则是A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数C .最小正周期为π2的偶函数D .最小正周期为π的偶函数4.客车从甲地以60km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶1小时到达丙地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是5.已知数{}n a 的前n 项和29n S n n =-,第k 项满足58k a <<,则k=A .9B .8C .7D .66.图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1、A 2、…、A 10(如A 2表示身高(单位:cm )(150,155)内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是A .i<6B . i<7C . i<8D . i<9 7.图3是某汽车维修公司的维修点环形分布图,公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件,在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为A .15B .16C .17D .188.设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的a,b ∈S ,对于有序元素对(a,b ),在S 中有唯一确定的元素a*b 与之对应),若对任意的a,b ∈S,有a*(b*a)=b,则对任意的a,b ∈S,下列等式中不恒成立的是 A .(a*b )*a=a B .[a*(b*a)]*(a*b)=a C .b*(b*b)=b D .(a*b)* [b*(a*b)]=b二、填空题:本大题共7小题,每小题5分,满分30分,其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前两题得分.9.甲、乙两个袋中均装有红、白两种颜色的小球,这些小球除颜色外完全相同.其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球. 现分别从甲、乙两袋中各随机取出一个球,则取出的两球都是红球的概率为 .(答案用分数表示) 10. 若向量a 、b 满足|a |=|b |=1,a 与b 的夹角为120,则a a +=a b .11.在平面直角坐标系xOy 中,有一定点A (2,1),若线段OA 的垂直平分线过抛物线22(0)y px p =>的焦点,则该抛物线的准线方程是 .12.如果一个凸多面体n 棱锥,那么这个凸多面体的所有顶点所确定的直线共有 条.这些直线中共有)(n f 对异面直线,则)4(f =; )(n f = .(答案用数字或n 的解析式表示)13.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线l 的参数方程为3()3x t t y t =+⎧∈⎨=-⎩R 参数,圆C 的参数方程为[])20(2sin 2cos 2πθθθ,参数∈⎩⎨⎧+==y x ,则圆C 的圆心坐标为 ,圆心到直线l 的距离为 . 14.(不等式选讲选做题)设函数)2(,312)(-++-=f x x x f 则= ;若()5f x ≤,则x 的取值范围是 . 15.(几何证明选讲选做题)如图5所法,圆O 的直径6=AB ,C 为圆周上一点,3=BC ,过C 作圆的切线l ,过A 作l 的垂线AD ,AD 分别与直线l 、圆交于点D 、E ,则∠DAC = ,线段AE 的长为 .三、解答题:本大题共有6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知△ABC 顶点的直角坐标分别为)0,()0,0()4,3(c C B A 、、.(1)若5=c ,求sin ∠A 的值;(2)若∠A 是钝角,求c 的取值范围.17.(本题满分12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生 产能耗y (吨标准煤)的几组对照数据x3 4 56y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bxa =+; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性 同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=) 18.(本小题满分14分)在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y=x 相切于坐标原点O .椭圆9222y ax +=1与圆C 的一个交点到椭圆两焦点的距离之和为10.(1)求圆C 的方程.(2)试探求C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由. 19.(本小题满分14分) 如图6所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记 BE =x ,V (x )表示四棱锥P-ACFE 的体积.(1)求V (x )的表达式;(2)当x 为何值时,V (x )取得最大值?(3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值20.(本小题满分14分)已知a 是实数,函数2()223f x ax x a =+--.如果函数()y f x =在区间[1,1]-上有零点,求a 的取值范围. 21.(本小题满分14分)已知函数2()1f x x x =+-,α、β是方程()0f x =的两个根(αβ>),()f x '是()f x 的导数,设11a =,1()()n n n n f a a a f a +=-',(1,2,)n =. (1)求α、β的值;(2)证明:任意的正整数n ,都有n a α>; (3)记ln n n n a b a βα-=-,(1,2,)n =,求数列{n b }的前n 项和n S .2007年普通高等学校全国招生统一考试 (广东卷)数学(理科)参考答案一、选择题二、填空题9.19 10.12 11.54x =- 12.()12n n +,12,()()122n n n --13.(0,2), 14.6,[]1,1- 15.30,3三、解答题16.解:(1)∵()3,4A ,()0,0B , ∴5AB =,4sin 5B =. 当5c =时,5BC =,AC ==根据正弦定理,得sin sin BC ACA B=, ∴sin 5A =.(2)∵()3,4A ,()0,0B ,(),0C c ,∴5AB =,AC =BC c =.根据余弦定理,得222cos 2AB AC BCA AB AC+-=.若A ∠为钝角,则cos 0A <,即2220AB AC BC +-<,即()22225340c c ⎡⎤+-+-<⎣⎦,解得253c >.17.解:(1)如下图(2)y x i ni i ∑=1=3⨯2.5+4⨯3+5⨯4+6⨯4.5=66.5,x =46543+++=4.5,y =2.534 4.54+++=3.5,222221345686ni ix ==+++=∑,b =266.54 4.5 3.50.7864 4.5-⨯⨯=-⨯, a =3.5-0.7⨯4.5=0.35.故线性回归方程为y =0.7x +0.35.(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为 0.7⨯100+0.35=70.35,故耗能减少了90-70.35=19.65(吨)18.解:(1)设圆心坐标为(m ,n )(m <0,n >0),则该圆的方程为()()228x m y n -+-=,已知该圆与直线y =x 相切,那么圆心到该直线的距离等于圆的半径,则2n m -=22.即n m -=4 ① 又圆与直线切于原点,将点(0,0)代入,得m 2+n 2=8. ② 联立方程①和②组成方程组解得⎩⎨⎧=-=22n m ,故圆的方程为()()22228x y ++-=. (2)a =5,∴a 2=25,则椭圆的方程为221259x y +=. 其焦距c =925-=4,右焦点为(4,0),那么OF =4.要探求是否存在异于原点的点Q ,使得该点到右焦点F 的距离等于OF 的长度4,我们可以转化为探求以右焦点F 为顶点,半径为4的圆()2248x y -+=与(1)所求的圆的交点数.通过联立两圆的方程解得x =54,y =512. 即存在异于原点的点Q (54,512),使得该点到右焦点F 的距离等于OF 的长.19.解:(1)∵EF AB ⊥,∴EF PE ⊥.又∵PE AE ⊥,EF AE E =,且PE 在平面ACFE 外, ∴PE ⊥平面ACFE .∵EF AB ⊥,CD AB ⊥, ∴EF CD .∴6EF x CD EF x x CD BD BD =⇒==. 所以四边形ACFE 的面积2211322612ACFE ABC BEF S S S x x ∆∆=-=⨯-⨯=.∴四棱锥P ACFE -的体积3136336P ACFE ACFE V S PE x -==-.即()336V x x =-(0x <<.(2)由(1)知()212V x x '=. 令()0V x '=,解得6x =.∵当06x <<时,()0V x '>,当6x <<()0V x '<,∴当6BE x ==时,()V x 有最大值,最大值为()6V = (3)(解法1)过点F 作FG AC 交AE 于点G ,连接PG ,则PFG ∠为异面直线AC 与PF 所成的角.∵ABC ∆是等腰三角形, ∴GBF ∆也是等腰三角形.于是FG BF PF ====从而PG =在GPF ∆中,根据余弦定理,得2221cos 27PF FG PG PFG PF FG +-∠==⋅. 故异面直线AC 与PF 所成的角的余弦值为17.(解法2)以点E 为坐标原点,向量EA ,EF ,EP 分别为x ,y ,z 轴的正向建立空间直角坐标系,则()0,0,0E ,()0,0,6P ,()0,6,0F ,()6,0,0A,()6,3,0C . 于是()AC =-,()0,6PF =-. 异面直线AC 与PF 所成角θ的余弦为1cos 733AC PF AC PFθ===,故异面直线AC 与PF 所成的角的余弦值为17. 20.解:当a =0时,函数为()23f x x =-,其零点x =32不在区间[-1,1]上. 当a ≠0时,函数()f x 在区间[-1,1]分为两种情况: ①方程()0f x =在区间[]1,1-上有重根.此时()4830a a ∆=++=,解得32a -±=. 当32a -=时,()0f x =的重根[]31,12x =∈-. ②函数在区间[─1,1]上只有一个零点,但不是()0f x =的重根.此时()()110f f -≤,即()()510a a --≤,解得15a ≤≤. ③函数在区间[─1,1]上有两个零点,此时()()0,111,2110.a f f ⎧∆>⎪⎪-<-<⎨⎪⎪-≥⎩解得32a -<或5a ≥. 综上所述,如果函数在区间[─1,1]上有零点,那么实数a 的取值范围为[)1,⎛-∞+∞⎝⎦.21.解:(1)解方程x 2+x -1=0得x =251±-, 由αβ>,知α=β=.(2)∵()21f x x '=+,∴1()()n n n n f a a a f a +=-'2121n n a a +=+. ()()2222212121212121n n n n n n n n n a a a a a a a a a αααααααα+-+-+---+--===+++.下面用数学归纳法证明,当1n ≥时,0n a α->成立.①当1n =时,110a αα-=-=>,命题成立. ②假设n k =(1k ≥)时命题成立,即0k a α->,此时0k a α>>.则当1n k =+时,()21021kk k a a a αα+--=>+,命题成立.根据数学归纳法可知,对任意的正整数n ,有0n a α->. (3)根据(2),同理可得()2121nn n a a a ββ+--=+.∵n a αβ>>(1,2,3,n =),且11a =,∴11ln b -=14ln 2. ln n n n a b a βα-=-()()2111211ln 2ln 2n n n n n a a b a a ββαα-------===--, 即数列{}n b 为首项为1b ,公比为2的等比数列. 故数列{}n b 前n 项和()()()121211214ln24ln1222n n n n b S +-==-⋅=--.2008年普通高等学校招生全国统一考试 (广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟. 参考公式:如果事件A B ,互斥,那么()()()P A B P A P B +=+.已知n 是正整数,则1221()()nnn n n n a b a b a a b ab b -----=-++++ .一、选择题:本大题共8小题,每小题5分,满分40分。
2013年普通高等学校招生全国统一考试(广东卷) 数学(理科) (有答案)
2013年普通高等学校招生全国统一考试(广东卷)数学(理科)逐题详解参考公式:台体的体积公式()1213V S S h =+,其中12,S S 分别是台体的上、下底面积,h 表示台体的高.一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A . {}0B .{}0,2C .{}2,0-D .{}2,0,2-2.定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .13.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( )A . ()2,4B .()2,4-C .()4,2-D .()4,24.已知离散型随机变量X 的分布列为X 12 3 P35310 110则X 的数学期望EX = ( )A .32 B .2 C .52D .3 5.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A . 4B .143C .163D .66.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥7.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 A .2214x = B .22145x y -= C .22125x y -= D.2212x = 8.设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈俯视侧视第5题图.AED CBO第15题图1 7 92 0 1 53 0第17题图C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈二、填空题:本题共7小题,考生作答6小题,每小题5分,共30(一)必做题(9~13题)9.不等式220x x +-<的解集为___________.10.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______. 11.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为______. 12. 在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.13. 给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定______ 条不同的直线.(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14.(坐标系与参数方程选讲选做题)已知曲线C 的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.15. (几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上, 延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC =_________.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、 证明过程或演算步骤. 16.(本小题满分12分)已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求6f π⎛⎫-⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀 工人的概率.18.(本小题满分14分)如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=(Ⅰ) 证明:A O '⊥平面BCDE ;(Ⅱ) 求二面角A CD B '--的平面角的余弦值.19.(本小题满分14分)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<. 20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值..CO BD EA CDOB'A图1图221.(本小题满分14分)设函数()()21xf x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间; (Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .CD OBE'AH2013年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.DC CA B D BB二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分9. ()2,1- 10. 1k =- 11. 7 12.20 13. 614.sin 4πρθ⎛⎫+= ⎪⎝⎭ 15. 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)【解析】(Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=---== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=-所以23f πθ⎛⎫+ ⎪⎝⎭cos 2sin 2θθ=-72417252525⎛⎫=---= ⎪⎝⎭. 17.(本小题满分12分)【解析】(Ⅰ) 样本均值为1719202125301322266+++++==;(Ⅱ) 由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人.(Ⅲ) 设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A =1148212C C C 1633=.18.(本小题满分14分)【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE ,在OCD ∆中,由余弦定理可得OD 由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥, 理可证A O OE '⊥, 又ODOE O =,所以A O '⊥平面BCDE .(Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.结合图1可知,H 为AC 中点,故2OH =,从而2A H '==所以cos OH A HO A H '∠==',所以二面角A CD B '--向量法:以O 点为原点,建立空间直角坐标系O xyz -则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,n =- 由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,3n OA n OA n OA '⋅'==⋅'即二面角A CD B '--19.(本小题满分14分)【解析】(Ⅰ) 依题意,12122133S a =---,又111S a ==,所以24a =; (Ⅱ) 当2n ≥时,32112233n n S na n n n +=---,()()()()321122111133n n S n a n n n -=-------两式相减得()()()2112213312133n n n a na n a n n n +=----+---整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121a a-=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以()111na n n n=+-⨯=,所以2n a n =.(Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<; 当3n ≥时,()21111111n a n n n n n =<=---,此时 222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++<. 20.(本小题满分14分)【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,=0c >, 解得1c =. 所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,P A P B 的斜率分别为112x ,212x , 所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92. 21.(本小题满分14分)【解析】(Ⅰ) 当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表:右表可知,函数f x 的递减区间为0,ln 2,递增区间为,0-∞,ln 2,+∞.(Ⅱ)()()()1222x x x xf x e x e kx xe kx x e k '=+--=-=-,令()0f x '=,得10x =,()2ln 2x k =,令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤ ⎥⎝⎦上递增,所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈ 所以当()()0,ln 2x k ∈时,()0f x '<;当()()ln 2,x k ∈+∞时,()0f x '>;所以()(){}(){}3max 0,max 1,1k M f f k k e k ==---令()()311k h k k e k =--+,则()()3kh k k e k '=-,令()3k k e k ϕ=-,则()330kk e e ϕ'=-<-<所以()k ϕ在1,12⎛⎤ ⎥⎝⎦上递减,而()()1313022e ϕϕ⎛⎫⎫⋅=-< ⎪⎪⎝⎭⎭ 所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时,()0k ϕ>,当()0,1k x ∈时,()0k ϕ<, 所以()k ϕ在01,2x ⎛⎫ ⎪⎝⎭上单调递增,在()0,1x 上单调递减.因为17028h ⎛⎫=> ⎪⎝⎭,()10h =, 所以()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=”.综上,函数()f x 在[]0,k 上的最大值()31kM k e k =--.。
2013年普通高等学校招生全国统一考试(广东卷) 数学(理科) 及答案
2013年普通高等学校招生全国统一考试(广东卷)数学(理科)逐题详解参考公式:台体的体积公式()1213V S S h =+,其中12,S S 分别是台体的上、下底面积,h 表示台体的高.一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A . {}0B .{}0,2C .{}2,0-D .{}2,0,2-2.定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .13.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( )A . ()2,4B .()2,4-C .()4,2-D .()4,24.已知离散型随机变量X 的分布列为X 12 3 P35310 110则X 的数学期望EX = ( )A .32 B .2 C .52D .3 5.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A . 4B .143C .163D .66.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥7.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 A .2214x = B .22145x y -= C .22125x y -= D.2212x = 8.设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈俯视侧视第5题图.AED CBO第15题图1 7 92 0 1 53第17题图C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈二、填空题:本题共7小题,考生作答6小题,每小题5分,共30(一)必做题(9~13题)9.不等式220x x +-<的解集为___________.10.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______. 11.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为______. 12. 在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.13. 给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定______ 条不同的直线.(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14.(坐标系与参数方程选讲选做题)已知曲线C 的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.15. (几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上, 延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC =_________.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、 证明过程或演算步骤. 16.(本小题满分12分)已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求6f π⎛⎫-⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示, 其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;。
07-13年广东高考数学理科数列真题(含答案)
2007年XX高考理科卷5.已知数列{a n}的前n项和29Snn,第k项满足5a8,则knkA.9B.8C.7D.621.(本小题满分14分)已知函数2f(x)xx1,、是方程f(x)0的两个根(),f(x)是f(x)的导数.设f(a)na1,aa(n1,2,)1n1nf(a)n,(1)求、的值;(2)证明:对任意的正整数n,都有a;na(3)记lnn(1,2,)bnnan,求数列{b n}的前n项和S n.2008年XX高考理科卷12.记等差数列{}a的前n项和为S n,若a1,S420,则S6()n2A.16B.24C.36D.4821.(本小题满分12分)设p,q为实数,,是方程20xpxq的两个实根,数列{x n}满足x1p,2 xpq,2 x pxqx(n3,4,⋯).nn1n2(1)证明:p,q;(2)求数列{}x的通项公式;n(3)若p1,1q,求{x n}的前n项和S n.42009年XX高考理科卷4.巳知等比数列{}a满足a n0,n1,2,,且n2na5a252(n3),则当n1时,nlogalogaloga n()2123221A.n(2n1)B.2(n1)C.2nD.2(n1)21.(本小题满分14分)已知曲线22C:x2nxy0(n1,2,).从点P(1,0)向曲线C n引斜率为nk(k0)的切线l n,切点为P n(x n,y n).nn(1)求数列{}{}x与y的通项公式;nn(2)证明:xxxx1352n1 11x xnn2sin xynn2010年XX 高考理科卷4.已知{}a 为等比数列, nS 是它的前n 项和.若 na aa,且 2321a 与2a 7的等差中项为 45 4,则 S5 A.35B.33C.31D.292011年XX 高考理科卷11.等差数列前9项的和等于前4项的和.若a na 11,a k a 40,则 k=____________.20.(本小题共14分) 设b>0,数列a 满足a1=b ,nnban1a(n2) na2n2 n1.(1)求数列a 的通项公式;n(2)证明:对于一切正整数n ,n b a nn21 11.2012年XX高考理科卷11.已知递增的等差数列2aaa,则a_____________11,324a满足nn19.(本小题满分14分)设数列{an}的前n项和为S n,满足2Sn=an+1-21,a2+5,a3成等差数列。
2013年高考理科数学广东卷-答案
M N=-{2,0,2}z①,x②,y③三个式子中恰有一个成立;x④,z⑤,w⑥+=条不同的直线.故可确定51612AB DE=,【提示】观察图形,根据已知条件,利用圆的性质,通过相似三角形求距离.cos45OC CD︒=,所以OD OE O⊥交CDCD-的平面角.CD B中点,故OH5A H'5所以(0,3,CA '=,(1,2,DA '=-设(,,)n x y z =00n CA n DA ⎧'=⎪⎨'=⎪⎩,即⎩,得(1,1,n =-由(Ⅰ)知,(0,0,OA '=315,5||||35n OA n OA n OA ''==='22211111111111111434423341n a n n n ⎛⎫⎛⎫⎛⎫++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭14244n n =++-=-< 174n a ++<项的关系式和首项,求第二项;根据题设条件,利用递推公式求通项公1(AF BF y =联立方程24x y⎨=⎪⎩12|||AF BF y y =02y =+,|||AF BF 取得最小值,且最小值为根据两直线的交点,联立两直线求直线方程;由直线与抛物线的位置关系得到关系式,求最小值.ln 21ln ≤-=k <,所以(0,ln(2))k 时,),)k +∞时,max{(0),f f 3e 30-<(1)e ϕ⎫⎛=⎪ ⎭⎝所以存在01,12x ⎛∈ ⎝【考点】利用导数求函数的单调区间,利用函数单调性求最值。
2013广东高考理科数学试卷及答案
2013年广东省高考数学试卷〔理科〕2013年广东省高考数学试卷〔理科〕一、选择题:本大题共8小题,每题5分,总分值40分,在每题给出的四个选项中,只有一项是符合题目要求的.1.〔5分〕〔2013•广东〕设集合M={x|x2+2x=0,x∈R},N={x|x2﹣2x=0,x∈R},则M∪N=〔〕A.{0} B.{0,2} C.{﹣2,0} D.{﹣2,0,2}2.〔5分〕〔2013•广东〕定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是〔〕A.4B.3C.2D.13.〔5分〕〔2013•广东〕假设复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是〔〕A.〔2,4〕B.〔2,﹣4〕C.〔4,﹣2〕D.〔4,2〕4.〔5分〕〔2013•广东〕已知离散型随机变量X的分布列为X 1 2 3P则X的数学期望E〔X〕=〔〕A.B.2C.D.35.〔5分〕〔2013•广东〕某四棱台的三视图如下图,则该四棱台的体积是〔〕A.4B.C.D.66.〔5分〕〔2013•广东〕设m,n是两条不同的直线,α,β是两个不同的平面,以下命题中正确的选项是〔〕A.假设α⊥β,m⊂α,n⊂β,则m⊥n B.假设α∥β,m⊂α,n⊂β,则m∥nC.假设m⊥n,m⊂α,n⊂β,则α⊥βD.假设m⊥α,m∥n,n∥β,则α⊥β7.〔5分〕〔2013•广东〕已知中心在原点的双曲线C的右焦点为F〔3,0〕,离心率等于,则C的方程是〔〕A.B.C.D.8.〔5分〕〔2013•广东〕设整数n ≥4,集合X={1,2,3,…,n}.令集合S={〔x ,y ,z 〕|x ,y ,z ∈X ,且三条件x <y <z ,y <z <x ,z <x <y 恰有一个成立}.假设〔x ,y ,z 〕和〔z ,w ,x 〕都在S 中,则以下选项正确的选项是〔 〕A . 〔y ,z ,w 〕∈S ,〔x ,y ,w 〕∉SB . 〔y ,z ,w 〕∈S ,〔x ,y ,w 〕∈SC . 〔y ,z ,w 〕∉S ,〔x ,y ,w 〕∈SD . 〔y ,z ,w 〕∉S ,〔x ,y ,w 〕∉S二、填空题:本大题共7小题,考生作答6小题,每题5分,总分值30分.9.〔5分〕〔2013•广东〕不等式x 2+x ﹣2<0的解集为 _________ .10.〔5分〕〔2013•广东〕假设曲线y=kx+lnx 在点〔1,k 〕处的切线平行于x 轴,则k= _________ .11.〔5分〕〔2013•广东〕执行如下图的程序框图,假设输入n 的值为4,则输出s 的值为 _________ .12.〔5分〕〔2013•广东〕在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7= _________ .13.〔5分〕〔2013•广东〕给定区域D :.令点集T={〔x 0,y 0〕∈D|x 0,y 0∈Z ,〔x 0,y 0〕是z=x+y 在D 上取得最大值或最小值的点},则T 中的点共确定 _________ 条不同的直线.14.〔5分〕〔2013•广东〕〔坐标系与参数方程选做题〕已知曲线C 的参数方程为〔t 为参数〕,C 在点〔1,1〕处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 _________ .15.〔2013•广东〕〔几何证明选讲选做题〕如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC=CD ,过C 作圆O 的切线交AD 于E .假设AB=6,ED=2,则BC= _________ .三、解答题:本大题共6小题,总分值80分.解答须写出文字说明、证明过程和演算步骤.16.〔12分〕〔2013•广东〕已知函数,x∈R.〔1〕求的值;〔2〕假设,,求.17.〔12分〕〔2013•广东〕某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如下图,其中茎为十位数,叶为个位数.〔1〕根据茎叶图计算样本均值;〔2〕日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?〔3〕从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.18.〔14分〕〔2013•广东〕如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱椎A′﹣BCDE,其中A′O=.〔1〕证明:A′O⊥平面BCDE;〔2〕求二面角A′﹣CD﹣B的平面角的余弦值.19.〔14分〕〔2013•广东〕设数列{a n}的前n项和为S n,已知a1=1,,n∈N*.〔1〕求a2的值;〔2〕求数列{a n}的通项公式;〔3〕证明:对一切正整数n,有.20.〔14分〕〔2013•广东〕已知抛物线C的顶点为原点,其焦点F〔0,c〕〔c>0〕到直线l:x﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.〔1〕求抛物线C的方程;〔2〕当点P〔x0,y0〕为直线l上的定点时,求直线AB的方程;〔3〕当点P在直线l上移动时,求|AF|•|BF|的最小值.21.〔14分〕〔2013•广东〕设函数f〔x〕=〔x﹣1〕e x﹣kx2〔k∈R〕.〔1〕当k=1时,求函数f〔x〕的单调区间;〔2〕当时,求函数f〔x〕在[0,k]上的最大值M.2013年广东省高考数学试卷〔理科〕参考答案与试题解析一、选择题:本大题共8小题,每题5分,总分值40分,在每题给出的四个选项中,只有一项是符合题目要求的.1.〔5分〕〔2013•广东〕设集合M={x|x2+2x=0,x∈R},N={x|x2﹣2x=0,x∈R},则M∪N=〔〕A.{0} B.{0,2} C.{﹣2,0} D.{﹣2,0,2}考点:并集及其运算.专题:计算题.分析:根据题意,分析可得,M={0,﹣2},N={0,2},进而求其并集可得答案.解答:解:分析可得,M为方程x2+2x=0的解集,则M={x|x2+2x=0}={0,﹣2},N为方程x2﹣2x=0的解集,则N={x|x2﹣2x=0}={0,2},故集合M∪N={0,﹣2,2},故选D.点评:此题考查集合的并集运算,首先分析集合的元素,可得集合的意义,再求集合的并集.2.〔5分〕〔2013•广东〕定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是〔〕A.4B.3C.2D.1考点:函数奇偶性的判断.专题:函数的性质及应用.分析:根据函数奇偶性的定义及图象特征逐一盘点即可.解答:解:y=x3的定义域为R,关于原点对称,且〔﹣x〕3=﹣x3,所以函数y=x3为奇函数;y=2x的图象过点〔0,1〕,既不关于原点对称,也不关于y轴对称,为非奇非偶函数;y=x2+1的图象过点〔0,1〕关于y轴对称,为偶函数;y=2sinx的定义域为R,关于原点对称,且2sin〔﹣x〕=﹣2sinx,所以y=2sinx为奇函数;所以奇函数的个数为2,故选C.点评:此题考查函数奇偶性的判断,属基础题,定义是解决该类题目的基本方法,要熟练掌握.3.〔5分〕〔2013•广东〕假设复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是〔〕A.〔2,4〕B.〔2,﹣4〕C.〔4,﹣2〕D.〔4,2〕考点:复数代数形式的乘除运算.专题:计算题.分析:由题意可得z=,再利用两个复数代数形式的乘除法法则化为4﹣2i,从而求得z对应的点的坐标.解答:解:复数z满足iz=2+4i,则有z===4﹣2i,故在复平面内,z对应的点的坐标是〔4,﹣2〕,故选C.点评:此题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.4.〔5分〕〔2013•广东〕已知离散型随机变量X的分布列为X 1 2 3P则X的数学期望E〔X〕=〔〕A.B.2C.D.3考点:离散型随机变量的期望与方差.专题:概率与统计.分析:利用数学期望的计算公式即可得出.解答:解:由数学期望的计算公式即可得出:E〔X〕==.故选A.点评:熟练掌握数学期望的计算公式是解题的关键.5.〔5分〕〔2013•广东〕某四棱台的三视图如下图,则该四棱台的体积是〔〕A.4B.C.D.6考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:由题意直接利用三视图的数据求解棱台的体积即可.解答:解:几何体是四棱台,下底面是边长为2的正方形,上底面是边长为1的正方形,棱台的高为2,并且棱台的两个侧面与底面垂直,四楼台的体积为V==.故选B.点评:此题考查三视图与几何体的关系,棱台体积公式的应用,考查计算能力与空间想象能力.6.〔5分〕〔2013•广东〕设m,n是两条不同的直线,α,β是两个不同的平面,以下命题中正确的选项是〔〕A.假设α⊥β,m⊂α,n⊂β,则m⊥n B.假设α∥β,m⊂α,n⊂β,则m∥nC.假设m⊥n,m⊂α,n⊂β,则α⊥βD.假设m⊥α,m∥n,n∥β,则α⊥β考点:命题的真假判断与应用;空间中直线与平面之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析: 由α⊥β,m ⊂α,n ⊂β,可推得m ⊥n ,m ∥n ,或m ,n 异面;由α∥β,m ⊂α,n ⊂β,可得m ∥n ,或m ,n异面;由m ⊥n ,m ⊂α,n ⊂β,可得α与β可能相交或平行;由m ⊥α,m ∥n ,则n ⊥α,再由n ∥β可得α⊥β. 解答: 解:选项A ,假设α⊥β,m ⊂α,n ⊂β,则可能m ⊥n ,m ∥n ,或m ,n 异面,故A 错误;选项B ,假设α∥β,m ⊂α,n ⊂β,则m ∥n ,或m ,n 异面,故B 错误;选项C ,假设m ⊥n ,m ⊂α,n ⊂β,则α与β可能相交,也可能平行,故C 错误;选项D ,假设m ⊥α,m ∥n ,则n ⊥α,再由n ∥β可得α⊥β,故D 正确.故选D点评: 此题考查命题真假的判断与应用,涉及空间中直线与平面的位置关系,属基础题.7.〔5分〕〔2013•广东〕已知中心在原点的双曲线C 的右焦点为F 〔3,0〕,离心率等于,则C 的方程是〔 〕A .B .C .D .考点: 双曲线的标准方程.专题: 压轴题;圆锥曲线的定义、性质与方程.分析: 设出双曲线方程,利用双曲线的右焦点为F 〔3,0〕,离心率为 ,建立方程组,可求双曲线的几何量,从而可得双曲线的方程.解答:解:设双曲线方程为 〔a >0,b >0〕,则∵双曲线C 的右焦点为F 〔3,0〕,离心率等于 ,∴,∴c=3,a=2,∴b 2=c 2﹣a 2=5∴双曲线方程为 .故选B .点评: 此题考查双曲线的方程与几何性质,考查学生的计算能力,属于基础题.8.〔5分〕〔2013•广东〕设整数n ≥4,集合X={1,2,3,…,n}.令集合S={〔x ,y ,z 〕|x ,y ,z ∈X ,且三条件x <y <z ,y <z <x ,z <x <y 恰有一个成立}.假设〔x ,y ,z 〕和〔z ,w ,x 〕都在S 中,则以下选项正确的选项是〔 〕A . 〔y ,z ,w 〕∈S ,〔x ,y ,w 〕∉SB . 〔y ,z ,w 〕∈S ,〔x ,y ,w 〕∈SC . 〔y ,z ,w 〕∉S ,〔x ,y ,w 〕∈SD . 〔y ,z ,w 〕∉S ,〔x ,y ,w 〕∉S考点: 进行简单的合情推理.专题: 证明题;压轴题.分析: 特殊值排除法,取x=1,y=2,z=4,w=3,可排除错误选项,即得答案.解答: 解:特殊值排除法,取x=1,y=2,z=4,w=3,显然满足〔x ,y ,z 〕和〔z ,w ,x 〕都在S 中,此时〔y ,z ,w 〕=〔2,4,3〕∈S ,〔x ,y ,w 〕=〔1,2,3〕∈S ,故A 、C 、D 均错误;只有B 成立,故选B点评: 此题考查简单的合情推理,特殊值验证法是解决问题的关键,属基础题.二、填空题:本大题共7小题,考生作答6小题,每题5分,总分值30分.9.〔5分〕〔2013•广东〕不等式x2+x﹣2<0的解集为〔﹣2,1〕.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:先求相应二次方程x2+x﹣2=0的两根,根据二次函数y=x2+x﹣2的图象即可写出不等式的解集.解答:解:方程x2+x﹣2=0的两根为﹣2,1,且函数y=x2+x﹣2的图象开口向上,所以不等式x2+x﹣2<0的解集为〔﹣2,1〕.故答案为:〔﹣2,1〕.点评:此题考查一元二次不等式的解法,属基础题,深刻理解“三个二次”间的关系是解决该类题目的关键,解二次不等式的基本步骤是:求二次方程的根;作出草图;据图象写出解集.10.〔5分〕〔2013•广东〕假设曲线y=kx+lnx在点〔1,k〕处的切线平行于x轴,则k=﹣1.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:先求出函数的导数,再由题意知在1处的导数值为0,列出方程求出k的值.解答:解:由题意得,y′=k+,∵在点〔1,k〕处的切线平行于x轴,∴k+1=0,得k=﹣1,故答案为:﹣1.点评:此题考查了函数导数的几何意义应用,难度不大.11.〔5分〕〔2013•广东〕执行如下图的程序框图,假设输入n的值为4,则输出s的值为7.考点:程序框图.专题:图表型.分析:由已知中的程序框图及已知中输入4,可得:进入循环的条件为i≤4,即i=1,2,3,4.模拟程序的运行结果,即可得到输出的S值.解答:解:当i=1时,S=1+1﹣1=1;当i=2时,S=1+2﹣1=2;当i=3时,S=2+3﹣1=4;当i=4时,S=4+4﹣1=7;当i=5时,退出循环,输出S=7;故答案为:7.点评:此题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理.12.〔5分〕〔2013•广东〕在等差数列{a n}中,已知a3+a8=10,则3a5+a7=20.考点:等差数列的通项公式.专题:计算题;等差数列与等比数列.分析:根据等差数列性质可得:3a5+a7=2〔a5+a6〕=2〔a3+a8〕.解答:解:由等差数列的性质得:3a5+a7=2a5+〔a5+a7〕=2a5+〔2a6〕=2〔a5+a6〕=2〔a3+a8〕=20,故答案为:20.点评:此题考查等差数列的性质及其应用,属基础题,准确理解有关性质是解决问题的根本.13.〔5分〕〔2013•广东〕给定区域D:.令点集T={〔x0,y0〕∈D|x0,y0∈Z,〔x0,y0〕是z=x+y在D 上取得最大值或最小值的点},则T中的点共确定6条不同的直线.考点:简单线性规划的应用.专题:不等式的解法及应用.分析:先根据所给的可行域,利用几何意义求最值,z=x+y表示直线在y轴上的截距,只需求出可行域直线在y 轴上的截距最值即可,从而得出点集T中元素的个数,即可得出正确答案.解答:解:画出不等式表示的平面区域,如图.作出目标函数对应的直线,因为直线z=x+y与直线x+y=4平行,故直线z=x+y过直线x+y=4上的整数点:〔4,0〕,〔3,1〕,〔2,2〕,〔1,3〕或〔0,4〕时,直线的纵截距最大,z最大;当直线过〔0,1〕时,直线的纵截距最小,z最小,从而点集T={〔4,0〕,〔3,1〕,〔2,2〕,〔1,3〕,〔0,4〕,〔0,1〕},经过这六个点的直线一共有6条.即T中的点共确定6条不同的直线.故答案为:6.点评:此题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.14.〔5分〕〔2013•广东〕〔坐标系与参数方程选做题〕已知曲线C的参数方程为〔t为参数〕,C在点〔1,1〕处的切线为l,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则l的极坐标方程为ρcosθ+ρsinθ﹣2=0〔填或也得总分值〕.考点:参数方程化成普通方程;点的极坐标和直角坐标的互化.专题:压轴题.分析:先求出曲线C的普通方程,再利用直线与圆相切求出切线的方程,最后利用x=ρcosθ,y=ρsinθ代换求得其极坐标方程即可.解答:解:由〔t为参数〕,两式平方后相加得x2+y2=2,…〔4分〕∴曲线C是以〔0,0〕为圆心,半径等于的圆.C在点〔1,1〕处的切线l的方程为x+y=2,令x=ρcosθ,y=ρsinθ,代入x+y=2,并整理得ρcosθ+ρsinθ﹣2=0,即或,则l的极坐标方程为ρcosθ+ρsinθ﹣2=0〔填或也得总分值〕.…〔10分〕故答案为:ρcosθ+ρsinθ﹣2=0〔填或也得总分值〕.点评:此题主要考查极坐标方程、参数方程及直角坐标方程的转化.普通方程化为极坐标方程关键是利用公式x=ρcosθ,y=ρsinθ.15.〔2013•广东〕〔几何证明选讲选做题〕如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.假设AB=6,ED=2,则BC=.考点:与圆有关的比例线段.专题:压轴题;直线与圆.分析:利用AB是圆O的直径,可得∠ACB=90°.即AC⊥BD.又已知BC=CD,可得△ABD是等腰三角形,可得∠D=∠B.再利用弦切角定理可得∠ACE=∠B,得到∠AEC=∠ACB=90°,进而得到△CED∽△ACB,利用相似三角形的性质即可得出.解答:解:∵AB是圆O的直径,∴∠ACB=90°.即AC⊥BD.又∵BC=CD,∴AB=AD,∴∠D=∠ABC,∠EAC=∠BAC.∵CE 与⊙O 相切于点C ,∴∠ACE=∠ABC .∴∠AEC=∠ACB=90°. ∴△CED ∽△ACB .∴,又CD=BC ,∴.点评: 此题综合考查了圆的性质、弦切角定理、等腰三角形的性质、相似三角形的判定与性质等基础知识,需要较强的推理能力.三、解答题:本大题共6小题,总分值80分.解答须写出文字说明、证明过程和演算步骤. 16.〔12分〕〔2013•广东〕已知函数,x ∈R .〔1〕求的值; 〔2〕假设,,求.考点:二倍角的正弦;两角和与差的余弦函数. 专题: 三角函数的求值;三角函数的图像与性质. 分析:〔1〕把x=﹣直接代入函数解析式求解. 〔2〕先由同角三角函数的基本关系求出sin θ的值以及sin2θ,然后将x=2θ+代入函数解析式,并利用两角和与差公式求得结果. 解答:解:〔1〕〔2〕因为,所以所以所以=点评: 此题主要考查了特殊角的三角函数值的求解,考查了和差角公式的运用,属于知识的简单综合,要注意角的范围. 17.〔12分〕〔2013•广东〕某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如下图,其中茎为十位数,叶为个位数.〔1〕根据茎叶图计算样本均值;〔2〕日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?〔3〕从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.考点:众数、中位数、平均数;茎叶图;古典概型及其概率计算公式.专题:概率与统计.分析:〔1〕茎叶图中共同的数字是数字的十位,这是解决此题的突破口,根据所给的茎叶图数据,代入平均数公式求出结果;〔2〕先由〔1〕求得的平均数,再利用比例关系即可推断该车间12名工人中有几名优秀工人的人数;〔3〕设“从该车间12名工人中,任取2人,恰有1名优秀工人”为事件A,结合组合数利用概率的计算公式即可求解事件A的概率.解答:解:〔1〕样本均值为〔2〕抽取的6名工人中有2名为优秀工人,所以12名工人中有4名优秀工人〔3〕设“从该车间12名工人中,任取2人,恰有1名优秀工人”为事件A,所以,即恰有1名优秀工人的概率为.点评:此题主要考查茎叶图的应用,古典概型及其概率计算公式,属于容易题.对于一组数据,通常要求的是这组数据的众数,中位数,平均数,题目分别表示一组数据的特征,考查最基本的知识点.18.〔14分〕〔2013•广东〕如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱椎A′﹣BCDE,其中A′O=.〔1〕证明:A′O⊥平面BCDE;〔2〕求二面角A′﹣CD﹣B的平面角的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角;空间向量及应用.分析:〔1〕连接OD,OE.在等腰直角三角形ABC中,∠B=∠C=45°,,AD=AE=,CO=BO=3.分别在△COD与△OBE中,利用余弦定理可得OD,OE.利用勾股定理的逆定理可证明∠A′OD=∠A′OE=90°,再利用线面垂直的判定定理即可证明;〔2〕方法一:过点O作OF⊥CD的延长线于F,连接A′F.利用〔1〕可知:A′O⊥平面BCDE,根据三垂线定理得A′F⊥CD,所以∠A′FO为二面角A′﹣CD﹣B的平面角.在直角△OCF中,求出OF即可;方法二:取DE中点H,则OH⊥OB.以O为坐标原点,OH、OB、OA′分别为x、y、z轴建立空间直角坐标系.利用两个平面的法向量的夹角即可得到二面角.解答:〔1〕证明:连接OD,OE.因为在等腰直角三角形ABC中,∠B=∠C=45°,,CO=BO=3.在△COD中,,同理得.因为,.所以A′O2+OD2=A′D2,A′O2+OE2=A′E2.所以∠A′OD=∠A′OE=90°所以A′O⊥OD,A′O⊥OE,OD∩OE=O.所以A′O⊥平面BCDE.〔2〕方法一:过点O作OF⊥CD的延长线于F,连接A′F因为A′O⊥平面BCDE.根据三垂线定理,有A′F⊥CD.所以∠A′FO为二面角A′﹣CD﹣B的平面角.在Rt△COF中,.在Rt△A′OF中,.所以.所以二面角A′﹣CD﹣B的平面角的余弦值为.方法二:取DE中点H,则OH⊥OB.以O为坐标原点,OH、OB、OA′分别为x、y、z轴建立空间直角坐标系.则O〔0,0,0〕,A′〔0,0,〕,C〔0,﹣3,0〕,D〔1,﹣2,0〕=〔0,0,〕是平面BCDE 的一个法向量.设平面A′CD的法向量为n=〔x,y,z〕,.所以,令x=1,则y=﹣1,.所以是平面A′CD的一个法向量设二面角A′﹣CD﹣B的平面角为θ,且所以所以二面角A′﹣CD﹣B的平面角的余弦值为点评:此题综合考查了等腰直角三角形的性质、余弦定理、线面垂直的判定与性质定理、三垂线定哩、二面角、通过建立空间直角坐标系利用法向量的夹角求二面角等基础知识与方法,需要较强的空间想象能力、推理能力和计算能力.19.〔14分〕〔2013•广东〕设数列{a n}的前n项和为S n,已知a1=1,,n∈N*.〔1〕求a2的值;〔2〕求数列{a n}的通项公式;〔3〕证明:对一切正整数n,有.数列与不等式的综合;等差数列与等比数列的综合.考点:等差数列与等比数列.专题:分〔1〕利用已知a1=1,,n∈N*.令n=1即可求出;析:〔2〕利用a n=S n﹣S n﹣1〔n≥2〕即可得到na n+1=〔n+1〕a n+n〔n+1〕,可化为,.再利用等差数列的通项公式即可得出;〔3〕利用〔2〕,通过放缩法〔n≥2〕即可证明.解解:〔1〕当n=1时,,解得a2=4答:〔2〕①当n≥2时,②①﹣②得整理得na n+1=〔n+1〕a n+n〔n+1〕,即,当n=1时,所以数列{}是以1为首项,1为公差的等差数列 所以,即所以数列{a n }的通项公式为,n ∈N *〔3〕因为〔n ≥2〕所以=点评: 熟练掌握等差数列的定义及通项公式、通项与前n 项和的关系a n =S n ﹣S n ﹣1〔n ≥2〕、裂项求和及其放缩法等是解题的关键.20.〔14分〕〔2013•广东〕已知抛物线C 的顶点为原点,其焦点F 〔0,c 〕〔c >0〕到直线l :x ﹣y ﹣2=0的距离为,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. 〔1〕求抛物线C 的方程;〔2〕当点P 〔x 0,y 0〕为直线l 上的定点时,求直线AB 的方程; 〔3〕当点P 在直线l 上移动时,求|AF|•|BF|的最小值.考点:抛物线的标准方程;利用导数研究曲线上某点切线方程;抛物线的简单性质. 专题:压轴题;圆锥曲线的定义、性质与方程. 分析:〔1〕利用焦点到直线l :x ﹣y ﹣2=0的距离建立关于变量c 的方程,即可解得c ,从而得出抛物线C 的方程; 〔2〕先设,,由〔1〕得到抛物线C 的方程求导数,得到切线PA ,PB 的斜率,最后利用直线AB 的斜率的不同表示形式,即可得出直线AB 的方程; 〔3〕根据抛物线的定义,有,,从而表示出|AF|•|BF|,再由〔2〕得x 1+x 2=2x 0,x 1x 2=4y 0,x 0=y 0+2,将它表示成关于y 0的二次函数的形式,从而即可求出|AF|•|BF|的最小值. 解答:解:〔1〕焦点F 〔0,c 〕〔c >0〕到直线l :x ﹣y ﹣2=0的距离,解得c=1所以抛物线C 的方程为x 2=4y〔2〕设,由〔1〕得抛物线C 的方程为,,所以切线PA ,PB 的斜率分别为,所以PA :①PB :②联立①②可得点P 的坐标为,即,又因为切线PA 的斜率为,整理得直线AB 的斜率所以直线AB 的方程为 整理得,即因为点P 〔x 0,y 0〕为直线l :x ﹣y ﹣2=0上的点,所以x 0﹣y 0﹣2=0,即y 0=x 0﹣2 所以直线AB 的方程为 〔3〕根据抛物线的定义,有,所以=由〔2〕得x 1+x 2=2x 0,x 1x 2=4y 0,x 0=y 0+2 所以=所以当时,|AF|•|BF|的最小值为点评: 此题以抛物线为载体,考查抛物线的标准方程,考查利用导数研究曲线的切线方程,考查计算能力,有一定的综合性.21.〔14分〕〔2013•广东〕设函数f 〔x 〕=〔x ﹣1〕e x ﹣kx 2〔k ∈R 〕. 〔1〕当k=1时,求函数f 〔x 〕的单调区间; 〔2〕当时,求函数f 〔x 〕在[0,k ]上的最大值M .考点: 利用导数研究函数的单调性;利用导数求闭区间上函数的最值. 专题: 压轴题;导数的综合应用.分析: 〔1〕利用导数的运算法则即可得出f ′〔x 〕,令f ′〔x 〕=0,即可得出实数根,通过列表即可得出其单调区间;〔2〕利用导数的运算法则求出f ′〔x 〕,令f ′〔x 〕=0得出极值点,列出表格得出单调区间,比较区间端点与极值即可得到最大值.解答: 解:〔1〕当k=1时,f 〔x 〕=〔x ﹣1〕e x ﹣x 2f'〔x 〕=e x +〔x ﹣1〕e x ﹣2x=x 〔e x ﹣2〕令f'〔x 〕=0,解得x 1=0,x 2=ln2>0 所以f'〔x 〕,f 〔x 〕随x 的变化情况如下表: x 〔﹣∞,0〕 0 〔0,ln2〕 ln2 〔ln2,+∞〕 f'〔x 〕 + 0 ﹣ 0 +f 〔x 〕 ↗ 极大值 ↘ 极小值↗ 所以函数f 〔x 〕的单调增区间为〔﹣∞,0〕和〔ln2,+∞〕,单调减区间为〔0,ln2〕〔2〕f〔x〕=〔x﹣1〕e x﹣kx2,x∈[0,k],.f'〔x〕=xe x﹣2kx=x〔e x﹣2k〕f'〔x〕=0,解得x1=0,x2=ln〔2k〕令φ〔k〕=k﹣ln〔2k〕,,所以φ〔k〕在上是减函数,∴φ〔1〕≤φ〔k〕<φ,∴1﹣ln2≤φ〔k〕<<k.即0<ln〔2k〕<k所以f'〔x〕,f〔x〕随x的变化情况如下表:x 〔0,ln〔2k〕〕l n〔2k〕〔ln〔2k〕,k〕f'〔x〕﹣0 +f〔x〕↘极小值↗f〔0〕=﹣1,f〔k〕=〔k﹣1〕e k﹣k3f〔k〕﹣f〔0〕=〔k﹣1〕e k﹣k3+1=〔k﹣1〕e k﹣〔k3﹣1〕=〔k﹣1〕e k﹣〔k﹣1〕〔k2+k+1〕=〔k﹣1〕[e k﹣〔k2+k+1〕]因为,所以k﹣1≤0对任意的,y=e x的图象恒在y=k2+k+1下方,所以e k﹣〔k2+k+1〕≤0所以f〔k〕﹣f〔0〕≥0,即f〔k〕≥f〔0〕所以函数f〔x〕在[0,k]上的最大值M=f〔k〕=〔k﹣1〕e k﹣k3.点评:熟练掌握导数的运算法则、利用导数求函数的单调性、极值与最值得方法是解题的关键.参与本试卷答题和审题的老师有:孙佑中;minqi5;wyz123;gongjy;wubh2011;caoqz;qiss;lincy〔排名不分先后〕菁优网2014年5月16日。
07-13年广东高考数学理科函数应用真题(含答案)
20.(本题满分14分)已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间[-1,1]上有零点,求实数a 的取值范围。
2008年广东高考文科卷19.(本小题满分14分)设k ∈R,函数111()1x x f x x ⎧<⎪-=⎨⎪⎩,≥,()()F x f x kx =-,x ∈R ,试讨论函数()F x 的单调性.20.(本小题满分14分)已知二次函数()y g x =的导函数的图像与直线2y x =平行,且()y g x =在1x =-处取得极小值1(0)m m -≠.设()()g x f x x =.(1)若曲线()y f x =上的点P 到点(0,2)Q,求m 的值; (2)()k k R ∈如何取值时,函数()y f x kx =-存在零点,并求出零点 .2010年广东高考文科卷21.(本小题满分14分)设12(,)A x y ,22(,)B x y 是平面直角坐标系xOy 上的两点,现定义由点A 到点B 的一种折线距离(,)p A B 为2121(,)||||.p A B x x y y =-+-对于平面xOy 上给定的不同的两点12(,)A x y ,22(,)B x y ,(1)若点(,)C x y 是平面xOy 上的点,试证明(,)(,)(,);p A C p C B p A B +≥ (2)在平面xOy 上是否存在点(,)C x y ,同时满足 ①(,)(,)(,)p A C p C B p A B +=②(,)(,)p A C p C B = 若存在,请求出所有符合条件的点,请予以证明.2011年广东高考文科卷21.(本小题满分14分)在平面直角坐标系xOy 上,给定抛物线实数p ,q 满足,x 1,x 2是方程 (1L 的切线教y 轴于点B. 证明:对线段AB 上任一点Q(p ,q) (2)设M(a ,b)是定点,其中a ,b 满足a 2-4b>0,a≠0. 过M(a ,b)作L 的两条切线,,与y 轴分别交与F,F'。
高考真题理科数学(广东卷)及答案(精校版).doc
绝密★启用前 试卷类型:A2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:台体的体积公式11221()3V S S S S h =++,其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设集合2{|20,}M x x x x =+=∈R ,2{|20,}N x x x x =-=∈R ,则M N =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-2. 定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是A .4B .3C .2D .13. 若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是A .(2,4)B .(2,4)-C .(4,2)-D .(4,2)4. 已知离散型随机变量X 的分布列为X 1 2 3P35310 110则X 的数学期望()E X = A .32B .2C .52D .3图1 正视图 俯视图侧视图2 21 1 1i n ≤是图2输出s 结束否输入n开始 1,1i s ==1i i =+(1)s s i =+- 图3DABCO E5. 某四棱台的三视图如图1所示,则该四棱台的体积是A .4B .143C .163D .6 6. 设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A .若α⊥β,m ⊂α,n ⊂β,则m ⊥nB .若α∥β,m ⊂α,n ⊂β,则m ∥nC .若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD .若m ⊥α,m ∥n ,n ∥β,则α⊥β7. 已知中心在原点的双曲线C 的右焦点为F (3,0),离心率 等于32,则C 的方程是 A .22145x y -= B .22145x y -= C .22125x y -= D .22125x y -= 8. 设整数4n ≥,集合{1,2,3,,}X n =. 令集合{(,,)|,,,S x y z x y z X =∈且三条件x y z <<,y z x <<,z x y <<恰有一个成立}. 若(,,)x y z 和(,,)z w x 都在S 中,则下列选项正确的是 A .(,,)y z w ∈S ,(,,)x y w ∉S B .(,,)y z w ∈S ,(,,)x y w ∈S C .(,,)y z w ∉S ,(,,)x y w ∈S D .(,,)y z w ∉S ,(,,)x y w ∉S二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 13题)9. 不等式220x x +-<的解集为 .10. 若曲线ln y kx x =+在点(1,)k 处的切线平行于x 轴,则k = . 11. 执行如图2所示的程序框图,若输入n 的值为4,则输出s 的值 为 .12. 在等差数列{}n a 中,已知3810a a +=,则573a a += .13. 给定区域D :4440x y x y x +⎧⎪+⎨⎪⎩≥≤≥. 令点集0000{(,)|,T x y D x y =∈∈Z ,00(,)x y 是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定 条不同的直线.(二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知曲线C 的参数方程为2cos 2sin x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正 半轴为极轴建立极坐标系,则l 的极坐标方程为 .15.(几何证明选讲选做题)如图3,AB 是圆O 的直径,点C 在圆O 上, 延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E . 若6AB =, 2ED =,则BC = .图41 7 92 0 1 53 0图6A 'ABC ED图5O ∙OCDEB三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()2cos()12f x x π=-,x ∈R .(1)求()6f π-的值;(2)若3cos 5θ=,3(,2)2πθπ∈,求(2)3f πθ+.17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人. 根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.18.(本小题满分14分)如图5,在等腰直角三角形ABC 中,90A ∠=,6BC =,D ,E 分别是AC ,AB 上的点,2CD BE ==,O 为BC 的中点. 将△ADE 沿DE 折起,得到如图6所示的四棱椎A BCDE '-,其中3A O '=.(1)证明:A O '⊥平面BCDE ;(2)求二面角A CD B '--的平面角的余弦值.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,已知11a =,2121233n n S a n n n +=---,*n ∈N . (1)求2a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有1211174n a a a +++<.20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点(0,)F c (0)c >到直线:20l x y --=的距离为322,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点00(,)P x y 为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求||||AF BF ⋅的最小值.21.(本小题满分14分)设函数2()(1)xf x x e kx =--()k ∈R . (1)当1k =时,求函数()f x 的单调区间;(2)当1(,1]2k ∈时,求函数()f x 在[0,]k 上的最大值M .图41 7 92 0 1 53 02013年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.题号 1 2 3 4 5 6 7 8 答案DCCABDBB二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 13题)9. (2,1)- 10. 1- 11. 7 12. 20 13.5 (二)选做题(14 ~ 15题,考生只能从中选做一题) 14.cos sin 20ρθρθ+-=(填sin()24πρθ+=或cos()24πρθ-=也得满分) 15.23 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数()2cos()12f x x π=-,x ∈R .(1)求()6f π-的值;(2)若3cos 5θ=,3(,2)2πθπ∈,求(2)3f πθ+. 16. 解:(1)2()2cos()2cos()21661242f ππππ-=--=-=⨯= (2)因为3cos 5θ=,3(,2)2πθπ∈所以24sin 1cos 5θθ=--=-所以4324sin 22sin cos 2()5525θθθ==⨯-⨯=-2222347cos 2cos sin ()()5525θθθ=-=--=-所以(2)2cos(2)2cos(2)cos 2sin 233124f ππππθθθθθ+=+-=+=-72417()252525=---=17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人. 根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率. 17. 解:(1)样本均值为171920212530226+++++=图6A 'ABCED图5O ∙OCDEBA 'OC DEBFA 'OCDEB H xyz(2)抽取的6名工人中有2名为优秀工人,所以12名工人中有4名优秀工人 (3)设“从该车间12名工人中,任取2人,恰有1名优秀工人”为事件A ,所以118421216()33C C P A C ==,即恰有1名优秀工人的概率为1633 18.(本小题满分14分)如图5,在等腰直角三角形ABC 中,90A ∠=,6BC =,D ,E 分别是AC ,AB 上的点,2CD BE ==,O 为BC 的中点. 将△ADE 沿DE 折起,得到如图6所示的四棱椎A BCDE '-,其中3A O '=.(1)证明:A O '⊥平面BCDE ;(2)求二面角A CD B '--的平面角的余弦值.18. 解:(1)连结OD ,OE因为在等腰直角三角形ABC 中,45B C ∠=∠=,2CD BE ==,3CO BO ==所以在△COD 中,222cos455OD CO CD CO CD=+-⋅=,同理得5OE =因为22AD A D A E AE ''====,3A O '= 所以222A O OD A D ''+=,222A O OE A E ''+=所以90A OD A OE ''∠=∠=所以A O OD '⊥,A O OE '⊥,OD OE O = 所以A O '⊥平面BCDE(2)方法一:过点O 作OF CD ⊥的延长线于F ,连接A F ' 因为A O '⊥平面BCDE根据三垂线定理,有A F CD '⊥所以A FO '∠为二面角A CD B '--的平面角在Rt △COF 中,32cos 452OF CO ==在Rt △A OF '中,22302A F AO OF '=+= 所以15cos 5OF A FO A F '∠==' 所以二面角A CD B '--的平面角的余弦值为155方法二: 取DE 中点H ,则OH OB ⊥以O 为坐标原点,OH 、OB 、OA '分别为x 、y 、 z 轴建立空间直角坐标系则(0,0,0),(0,0,3),(0,3,0),(1,2,0)O A C D '--(0,0,3)OA '=是平面BCDE 的一个法向量设平面A CD '的法向量为(,,)x y z =n(0,3,3)CA '=,(1,1,0)CD =所以330CA y z CD x y ⎧'⋅=+=⎪⎨⋅=+=⎪⎩n n ,令1x =,则1y =-,3z =所以(1,1,3)=-n 是平面A CD '的一个法向量设二面角A CD B '--的平面角为θ,且(0,)2πθ∈所以315cos 535OA OA θ'⋅===⨯'⋅n n所以二面角A CD B '--的平面角的余弦值为15519.(本小题满分14分)设数列{}n a 的前n 项和为n S ,已知11a =,2121233n n S a n n n +=---,*n ∈N .(1)求2a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有1211174n a a a +++<. 19. 解:(1)当1n =时,11221221133S a a ==---,解得24a = (2)32112233n n S na n n n +=--- ①当2n ≥时,321122(1)(1)(1)(1)33n n S n a n n n -=------- ②①-②得212(1)n n n a na n a n n +=----整理得1(1)(1)n n na n a n n +=+++,即111n n a a n n +=++,111n n a an n+-=+ 当1n =时,2121121a a -=-= 所以数列{}n a 是以1为首项,1为公差的等差数列 所以na n n=,即2n a n = 所以数列{}n a 的通项公式为2n a n =,*n ∈N(3)因为211111(1)1n a n n n n n=<=---(2n ≥) 所以222212111111111111111()()()123423341n a a a n n n+++=++++<++-+-++-- 11171714244n n =++-=-<20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点(0,)F c (0)c >到直线:20l x y --=的距离为322,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点00(,)P x y 为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求||||AF BF ⋅的最小值.20. 解:(1)焦点(0,)F c (0)c >到直线:20l x y --=的距离2232222c cd --+===,解得1c = 所以抛物线C 的方程为24x y =(2)设2111(,)4A x x ,2221(,)4B x x 由(1)得抛物线C 的方程为214y x =,12y x '=,所以切线PA ,PB 的斜率分别为112x ,212x所以PA :211111()42y x x x x -=- ①PB :222211()42y x x x x -=- ② 联立①②可得点P 的坐标为1212(,)24x x x x +,即1202x x x +=,1204x xy =又因为切线PA 的斜率为2011011142y x x x x -=-,整理得201011124y x x x =- 直线AB 的斜率221201212114442x x x x x k x x -+===- 所以直线AB 的方程为210111()42y x x x x -=-整理得20101111224y x x x x x =-+,即0012y x x y =-因为点00(,)P x y 为直线:20l x y --=上的点,所以0020x y --=,即002y x =-所以直线AB 的方程为00122y x x x =-+(3)根据抛物线的定义,有21114AF x =+,22114BF x =+所以2222221212121111||||(1)(1)()144164AF BF x x x x x x ⋅=++=+++22212121211[()2]1164x x x x x x =++-+ 由(2)得1202x x x +=,1204x x y =,002x y =+所以2222220000000001||||(48)121(2)214AF BF y x y x y y y y y ⋅=+-+=+-+=++-+22000192252()22y y y =++=++所以当012y =-时,||||AF BF ⋅的最小值为9221.(本小题满分14分)设函数2()(1)xf x x e kx =--()k ∈R . (1)当1k =时,求函数()f x 的单调区间;(2)当1(,1]2k ∈时,求函数()f x 在[0,]k 上的最大值M . 21. 解:(1)当1k =时,2()(1)xf x x e x =--()(1)2(2)x x x f x e x e x x e '=+--=-令()0f x '=,解得10x =,2ln 20x => 所以(),()f x f x '随x 的变化情况如下表:x (,0)-∞ 0 (0,ln 2) ln 2(ln 2,)+∞()f x ' +0 -0 +()f x↗极大值↘极小值↗所以函数()f x 的单调增区间为(,0)-∞和(ln 2,)+∞,单调减区间为(0,ln 2) (2)2()(1)xf x x e kx =--,[0,]x k ∈,1(,1]2k ∈()2(2)x x f x xe kx x e k '=-=-()0f x '=,解得10x =,2ln(2)x k =令()ln(2)k k k ϕ=-,1(,1]2k ∈11()10k k k k ϕ-'=-=≤ 所以()k ϕ在1(,1]2上是增函数所以11()()022k ϕϕ>=>,即0ln(2)k k <<所以(),()f x f x '随x 的变化情况如下表:x (0,ln(2))kln(2)k(ln(2),)k k()f x ' -0 +()f x↘极小值↗(0)1f =-,3()(1)k f k k e k =--()(0)f k f -=332(1)1(1)(1)(1)(1)(1)k k k k e k k e k k e k k k --+=---=---++2(1)[(1)]k k e k k =--++因为1(,1]2k ∈,所以10k -≤对任意的1(,1]2k ∈,xy e =的图象恒在21y k k =++下方,所以2(1)0k e k k -++≤所以()(0)0f k f -≥,即()(0)f k f ≥所以函数()f x 在[0,]k 上的最大值3()(1)kM f k k e k ==--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
07-13年广东高考数学理科数列真题(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN5.已知数列{a n }的前n 项和29n S n n =-,第k 项满足58k a <<,则k = A. 9 B. 8 C. 7 D. 621.(本小题满分14分)已知函数2()1, f x x x αβ=+-、是方程()0f x =的两个根()αβ>,()f x '是()f x 的导数.设11()1,(1,2,)()n n n n f a a a a n f a +==-=', (1)求αβ、的值;(2)证明:对任意的正整数n ,都有n a α>; (3)记ln(1,2,)n n n a b n a βα-==-,求数列{}n b 的前n 项和n S .2.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( )A .16B .24C .36D .4821.(本小题满分12分)设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 满足1x p =,22x p q =-,12n n n x px qx --=-(34n =,,…). (1)证明:p αβ+=,q αβ=; (2)求数列{}n x 的通项公式; (3)若1p =,14q =,求{}n x 的前n 项和n S .4.巳知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=( )A.(21)n n - B.2(1)n + C.2n D.2(1)n -21.(本小题满分14分)已知曲线22:20(1,2,)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证明:13521n n nxx x x x y -⋅⋅⋅⋅<<4.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=, 且4a 与72a 的等差中项为54,则5S =A.35B.33C.31D.292011年广东高考理科卷11. 等差数列{}n a 前9项的和等于前4项的和. 若141,0k a a a =+=,则k=____________.20.(本小题共14分) 设b>0,数列{}n a 满足a 1=b ,11(2)22n n n nba a n a n --=≥+-.(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,11 1.2n n n b a ++≤+11.已知递增的等差数列{}n a 满足21321,4a a a ==-,则n a =_____________19. (本小题满分14分)设数列{a n }的前n 项和为S n ,满足2S n =an+1-2n+1,n ∈N ﹡,且a 1,a 2+5,a 3成等差数列。
求a 1的值;求数列{a n }的通项公式。
证明:对一切正整数n ,有121113 (2)n a a a +++<.答案解析2007年广东高考理科卷5. 答案为:B解析:由29n S n n =-,可根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩.解得210n a n =-.再根据5<2k -10<8,解得7.5<k <9,∴k =8.21.解:(1) 由 210x x +-=得12x -±=α∴=β= (2)(数学归纳法)①当1n =时,11a =>命题成立; ②假设当*(1,)n k k k N =≥∈时命题成立,即k a >21511118221212222k kk k k a a a a a α+++∴==+-≥=++,又等号成立时k a=k a ∴>时,1k a β+>1n k ∴=+时命题成立; 由①②知对任意*n N ∈均有n a α>.(3) ()21f x x '=+ 221112121n n n n n n n a a a a a a a ++-+∴=-=++ 1n a β+∴-=22221()(1)()212121n n n n n n a a a a a a βββββ+--+---==+++ 同理 1n a α+∴-=2()21n n a a α-+21111()ln 2ln n n n n n n n n a a a a a a a a ββββαααα++++----∴=∴=---- ∴ 12n n b b += 又1111ln4ln2a b a βα-===-∴数列{}n b 是一个首项为4ln公比为2的等比数列; ∴)()14ln12242112n n n S +-==--.2008年广东高考理科卷2.答案为: D【解析】20624=+=d S ,3=∴d ,故481536=+=d S21.解:(1)由求根公式,不妨设<αβ,得αβ∴+==p αβ,==q αβ(2)设112()----=-n n n n x sx t x sx ,则12()--=+-n n n x s t x stx ,由12n n n x px qx --=-得,+=⎧⎨=⎩s t pst q ,消去t ,得20-+=s ps q ,∴s 是方程20x px q -+=的根,由题意可知,12,==s s αβ ①当≠αβ时,此时方程组+=⎧⎨=⎩s t pst q的解记为1212==⎧⎧⎨⎨==⎩⎩s s t t ααββ或 112(),---∴-=-n n n n x x x x αβα112(),----=-n n n n x x x x βαβ即{}11--n n x t x 、{}21--n n x t x 分别是公比为1=s α、2=s β的等比数列, 由等比数列性质可得2121()---=-n n n x x x x ααβ,2121()---=-n n n x x x x ββα, 两式相减,得2212121()()()----=---n n n x x x x x βααββα221,=-=x p q x p ,222∴=++x αβαβ,1=+x αβ 22221()--∴-==n n n x x αββββ,22221()---==n n n x x βαααα1()-∴-=-nnn x βαβα,即1--∴=-n n n x βαβα,11++-∴=-n n n x βαβα②当=αβ时,即方程20x px q -+=有重根,240∴-=p q , 即2()40+-=s t st ,得2()0,-=∴=s t s t ,不妨设==s t α,由①可知2121()---=-n n n x x x x ααβ,=αβ,2121()--∴-=-=n n n n x x x x αααα即1-∴=+n n n x x αα,等式两边同时除以n α,得111--=+nn nn x x αα,即111---=nn nn x x αα∴数列{}nn x α是以1为公差的等差数列,12(1)111∴=+-⨯=+-=+n nx x n n n αααα∴=+n n n x n αα,综上所述,11,(),()++⎧-≠⎪=-⎨⎪+=⎩n n n n n x n βααββααααβ (3)把1p =,14q =代入20x px q -+=,得2104-+=x x ,解得12==αβ 11()()22∴=+n n n x n ,232311111111()()()...()()2()3()...()22222222n n n S n ⎛⎫⎛⎫=+++++++++ ⎪ ⎪⎝⎭⎝⎭ 23111111()()2()3()...()22222n n n ⎛⎫=-+++++ ⎪⎝⎭111111()2()()3(3)()2222n n n n n n -=-+--=-+.2009年广东高考理科卷4. 答案为: C解:在25252(3)n n a a n -⋅=≥中,令n=5,得251025)2(2==a ,令n=3,得6152=⋅a a ,又0,1,2,n a n >=,所以552=a ,21=a ,从而解得,公比2=q ,n n a 2=,12122--=n n a ,12log 122-=-n a n ,所以2123221log log log n a a a -+++=1+3+…+(2n-1)=22)121(n n n =-+21.(1)解:曲线22:20(1,2,)n C x nx y n -+==可化为222)(n y n x =+-, 所以,它表示以)0,(n C n 为圆心,以n 为半径的圆,切线n l 的方程为)1(+=x k y n ,联立⎩⎨⎧=+-+=02)1(22y nx x x k y n ,消去y 整理,得0)22()1(2222=+-++n n n k x n k x k ,① 222222)12(44)1(4)22(n n n n k n n k k n k +-=+--=∆,0>n k 令0=∆,解得1222+=n n k n, 12+=n nk n此时,方程①化为012)2122()121(2222=++-++++n n x n n n x n n整理,得[]0)1(2=-+n x n ,解得1+=n nx x , 所以 121)11(12++=+++=n n n n n n ny n ,∴数列}{n x 的通项公式为1+=n n x x ,数列}{n y 的通项公式为121++=n n ny n 。
(2)证明:∵121111111+=+++-=+-n n n n n x x n n ,121214)12(4)12(2122222+-=--<-=-n n n n n n n n ∴121275533121265432112531+-⨯⨯⨯⨯<-⨯⨯⨯⨯=⋅⋅⋅⋅-n n n n x x x x n=121+n =n n x x +-11, ∵121+=n y x n n =n n x x +-11,又4311210π<≤+<n 令x y x n n =,则40π<<x ,要证明n n n n y x y x sin 2<, 只需证明当40π<<x 时,x x sin 2<恒成立即可。