数学建模回归分析.ppt

合集下载

回归分析实例PPT课件

回归分析实例PPT课件
通过各种统计检验来评估 模型的拟合效果,如残差 分析、R方检验、F检验等。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值

解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。

《回归分析专题》PPT课件

《回归分析专题》PPT课件

改进阶段
{预测带
} 置信带
C.I. = 置信区间 (95%置信度表示所有数据的平均值都位于此带内) P.I. = 预测区间 (95%置信度表示单个数据点位于此带内)
编辑ppt
19
SIXSSIIGXMASIMIPGLEMMEANT
会话窗口中的信息与早期生成的信息相同……
改进阶段
无法否定Ho: 接受Ha:

编辑ppt
20
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
课堂练习:
您相信我们的家电所占据的展示厅面积的大小会影响销售量。您已经收集了过去12个月内 ,多个零售点销售量与总的占地面积方面的数据。现在,您希望分析这些数据,看占地面 积是否确实与年销售量存在某种关系。
在Minitab输入以下数据:
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
单变量回归
编辑ppt
1
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
单变量回归
目的: 介绍作为实证模型建立方法的回归分析,以模拟具有连续响应变量“ Y” 的过程。 (定义:‘实证’-基于观测值或事实)
目标:
• 确定何时使用回归,以及为什么使用。
改进阶段
附录
编辑ppt
23
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
回归术语
r: R-Sq:
R-Sq(Adj): 估计值的 标准误差 回归均方 (MS回归) F-比率:
p-值:
多重回归的相关系数(r)。越接近+/-1,模型拟合越好。‘ 0’表示无线性关系。
相关系数的平方(R2)。R2的值越接近100%,说明可能存在关系,由模型解释的 变差的百分比越高。

数学建模——线性回归分析82页PPT

数学建模——线性回归分析82页PPT

2019/11/15
zhaoswallow
2
表1 各机组出力方案 (单位:兆瓦,记作MW)
方案\机组 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1
2
3
4
5
6
7
8
120
73
180
80
125
125
81.1
90
133.02 73
180
80
125
125
81.1
90
3 -144.25 -145.14 -144.92 -146.91 -145.92 -143.84 -144.07 -143.16 -143.49 -152.26 -147.08 -149.33 -145.82 -144.18 -144.03 -144.32
4 119.09 118.63 118.7 117.72 118.13 118.43 118.82 117.24 117.96 129.58 122.85 125.75 121.16 119.12 119.31 118.84
5 135.44 135.37 135.33 135.41 135.41 136.72 136.02 139.66 137.98 132.04 134.21 133.28 134.75 135.57 135.97 135.06
6 157.69 160.76 159.98 166.81 163.64 157.22 157.5 156.59 156.96 153.6 156.23 155.09 156.77 157.2 156.31 158.26
ˆ0

ˆ1 xi )2

min
0 ,1

回归分析应用PPT课件

回归分析应用PPT课件

回归分析的应用场景
A
经济预测
通过分析历史数据,预测未来的经济趋势,如 股票价格、GDP等。
市场营销
通过研究消费者行为和购买历史,预测未 来的销售趋势和客户行为。
B
C
医学研究
研究疾病与风险因素之间的关系,预测疾病 的发生概率。
科学研究
在各种科学领域中,如生物学、物理学、化 学等,回归分析被广泛应用于探索变量之间 的关系和预测结果。
06 回归分析的局限性
多重共线性问题
总结词
多重共线性问题是指自变量之间存在高 度相关关系,导致回归系数不稳定,影 响模型预测精度。
VS
详细描述
在回归分析中,如果多个自变量之间存在 高度相关关系,会导致回归系数的不稳定 性,使得模型预测精度降低。这种情况在 数据量较小或者自变量较多的情况下更容 易出现。为了解决这个问题,可以采用减 少自变量数量、使用主成分分析等方法。
预测能力评估
使用模型进行预测,并比较预 测值与实际观测值之间的误差
,评估模型的预测能力。
03 多元线性回归分析
多元线性回归模型
01
确定因变量和自变 量
在多元线性回归模型中,因变量 是我们要预测的变量,而自变量 是影响因变量的因素。
02
建立数学模型
03
模型参数解释
通过最小二乘法等估计方法,建 立因变量与自变量之间的线性关 系式。
回归分析可以帮助我们理解数据的内在规律,预测未来的趋势,并优化决 策。
回归分析的分类
01
一元回归分析
研究一个自变量和一个因变量之间的关系。
02
多元回归分析
研究多个自变量和一个因变量之间的关系。
03
线性和非线性回归分析

回归分析法PPT课件

回归分析法PPT课件

线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。

回归分析学习课件PPT课件

回归分析学习课件PPT课件
03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调

数学建模——回归分析模型 ppt课件

数学建模——回归分析模型  ppt课件

有最小值:
n n i 1 i 1
i
2 2 ( y a bx ) i i i
ppt课件
ˆx ˆi a ˆ b y i
6
数学建模——回归分析模型
一元线性回归模型—— a, b, 2估计
n ( xi x )( yi y ) ˆ i 1 b n ( xi x )2 i 1 ˆ ˆ y bx a
数学建模——回归分析模型
Keep focused Follow me —Jiang
ppt课件
1
数学建模——回归分析模型
• • • • • 回归分析概述 几类回归分析模型比较 一元线性回归模型 多元线性回归模型 注意点
ppt课件
2
数学建模——回归分析模型
回归分析 名词解释:回归分析是确定两种或两种以上变数 间相互赖的定量关系的一种统计分析方法。 解决问题:用于趋势预测、因果分析、优化问题 等。 几类常用的回归模型:
可决系数(判定系数) R 2 为:
可决系数越靠近1,模型对数据的拟合程度越好。 ppt课件 通常可决 系数大于0.80即判定通过检验。 模型检验还有很多方法,以后会逐步接触
15
2 e ESS RSS i R2 1 1 TSS TSS (Yi Y )2
数学建模——回归分析模型
2 i i 1
残差平 方和
13
数学建模——回归分析模型
多元线性回归模型—— 估计 j 令上式 Q 对 j 的偏导数为零,得到正规方程组,
用线性代数的方法求解,求得值为:
ˆ ( X T X )1 X TY
ˆ 为矩阵形式,具体如下: 其中 X , Y ,

回归分析法PPT课件

回归分析法PPT课件
现代应用
随着大数据时代的到来,回归分析法在各个领域的应用越来越广泛,同 时也面临着新的挑战和机遇。
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关 系的数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + cdots + beta_pX_p + epsilon)
解释
非线性回归模型可以用于解释因变量和解释变量之间的关系,通过模型参数和图 形化展示来解释关系。
04
多元回归分析
多元回归模型
01
02
03
多元线性回归模型
描述因变量与多个自变量 之间的关系,通过最小二 乘法估计参数。
非线性回归模型
描述因变量与自变量之间 的非线性关系,通过变换 或使用其他方法实现。
教育研究
在教育学研究中,回归分析法可用于研究教育成果和教育 质量,通过分析学生成绩和教学质量等因素,提高教育水 平。
其他领域的应用案例
市场调研
在市场营销中,回归分析法可用于分析消费者行为和市场趋 势,帮助企业制定更有效的营销策略。
农业研究
在农业研究中,回归分析法可用于研究作物生长和产量影响 因素,提高农业生产效率。
线性回归模型的预测与解释
预测
使用已建立的线性回归模型预测因变量的值。
解释
通过解释模型参数的大小和符号来理解自变量对因变量的影响程度和方向。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
非线性回归模型的定义
线性回归模型在解释变量与因变量之间的 关系时可能不够准确,无法描述它们之间 的非线性关系。

回归分析PPT课件

回归分析PPT课件

(x2 , y2)
(x1 , y1)
} ei = yi-^yi
(xi , yi)
理学院
yˆ aˆ bˆx
.
6
回归分析的主要内容
理学院
①从一组数据出发确定某些变量之间的定量关系式,即建立数学模型 并估计其中的未知参数。估计参数的常用方法是最小二乘法。 ②对这些关系式的可信程度进行检验。 ③在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些) 自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著 的自变量选入模型中,而剔除影响不显著的变量,通常用逐步回归、 向前回归和向后回归等方法。 ④利用所求的关系式对某一生产过程进行预测或控制。回归分析的应 用是非常广泛的,统计软件包使各种回归方法计算十分方便。
.
11
1.回归模型
一元线性回归分析
理学院
若两个变量x, y之间有线性相关关系,其回归模型为:
yi abixi
y 称为因变量,x 称为自变量, 称为随机误差,a, b 称为待估计的回
归参数,下标 i 表示第 i 个观测值。
对于回归模型,我们假设: i ~N(0,2),i1,2, ,n E(ij)0,i j
.
4
回归分析的分类
理学院
涉及的自变量的多少——分为回归和多重回归分析; 因变量的多少——分为一元回归分析和多元回归分析; 自变量和因变量之间的关系类型——分为线性回归分析和非线性回归分析
一元线性回归——最简单的情形是只包括一个自 变量和一个因变量,且它们大体上有线性关系, 这叫一元线性回归,即模型为Y=a+bX+ε,这里X 是自变量,Y是因变量,ε是随机误差。 正态线性模型——若进一步假定随机误差遵从正 态分布,就叫做正态线性模型。

回归分析数学建模.ppt

回归分析数学建模.ppt

125
81.1
90
120
73
180
87.258 125
125
81.1
90
120
73
180
97.824 125
125
81.1
90
120
73
180
80
150.71 125
81.1
90
18
120
73
180
80
141.58 125
81.1
90
19
120
73
180
80
132.37 125
81.1
90
20
120
32
164.69
143.84
-150.34
121.34
135.12
157.64
1、模型的分析
仔细分析题目,可以发现,该问题就是要找 出各线路上有功潮流与8台发电机出力的函数关 系,这在数学上是一个函数拟合问题。
对函数拟合,可以采用线性函数,也可以采 用非线性函数,比如多项式函数,三角函数,指 数函数等等。在给出具体问题的具体数据时,首 先想到的还是最简单的方法下手,采用最简单的 函数去拟合,也就是线性函数来表达。
通常采用最小二乘估计来做,也即选取0 , 1的估 计值ˆ0 , ˆ1使其随机误差的平方和达到最小,即
n
n
i1
( yi

ˆ0

ˆ1 xi )2

min
0 ,1
i 1
(
yi

0

1xi )2
一元线性回归

n
Q(0 , 1 ) ( yi 0 1 xi )2

数学建模回归分析例题 ppt课件

数学建模回归分析例题 ppt课件

1075.3 1434.8 5
1107.5 2035.6 6
1171.1 2360.8 5.6
1235
2043.9 4.9
1217.8 1331.9 5.6
1202.3 1160
8.5
1271
1535
7.7
1332.7 1961.8 7
1399.2 2009.3 6
1431.6 1721.9 6
1480.7 1298
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
10.4.2 银行是否批准抵押贷款申请?
1981 1982 1983 1984 1985 1986 1987
393.3 249 1988 419.14 267 1989 460.86 289 1990 544.11 329 1991 668.29 406 1992 737.73 451 1993 859.97 513数学建模回归分析例题
1068.8 643 1169.2 699 1250.7 713 1429.5 803 1725.9 947 2099.5 1148
(百平方尺)
房屋税 1.9 2.4 1.4 1.4 1.5 1.8 2.4 4.0 2.3 2.6 2.1
(百元)
游泳池(1 为有,0为 无)
销售价格
(千元)
10001000010
145 228 150 130 160 114 142 265 140 149 135
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 2 的无偏估计
n
记 Qe Q(ˆ0 , ˆ1 )
yi ˆ0 ˆ1xi 2 n ( yi yˆi )2
i 1
i 1
称 Qe 为残差平方和或剩余平方和(SSE).
2 的无偏估计为
ˆ
2 e
Qe
(n 2)

ˆ
2 e
为剩余方差(残差的方差),
ˆ
2 e
分别与
ˆ0

ˆ1
独立.
ˆ e 称为剩余标准差.
0 和 1 置信水平为 1-α的置信区间分别为
ˆ
0
t 1 2
(n
2)ˆ e
1 n
x2 Lxx
,
ˆ0
t
1 2
(n
2)ˆ e
1
x2
n Lxx

ˆ1
t
1 2
(n
2)ˆ e
/
Lxx
,
ˆ1
t
1
(n
2)ˆ e
/
2
Lxx
2 的置信水平为 1- 的置信区间为
Qe
2 1
(n
2
2)
,
2
2
Qe (n
故 F> F1 (1, n 2) ,拒绝 H 0 ,否则就接受 H 0 .
检验
r 检验
n
(xi x)( yi y)

r
i 1
n
n
(xi x)2 ( yi y)2
i 1
i 1
当|r|> r1 时,拒绝 H0;否则就接受 H0.
其中 r1
1
1 n 2 F1 1, n 2
检验
回归系数的置信区间
先对两个变量 x 和 y 作 n 次试验观察得 (xi , yi ), i 1,2,..., n 画出散点图,
根据散点图确定须配曲线的类型.然后由 n 对试验数据确定每一类曲线的未知 参数 a 和 b.采用的方法是通过变量代换把非线性回归化成线性回归,即采用 非线性回归线性化的方法.
通常选择的六类曲线如下:
解答
102
100
98
y 0 1x (1)
96
94
92
90
88
86
84
140
145
150
155
160
165
散点图
一般地,称由(1)确定的模型为一元线性回归模型,
记为
y 0 1x E 0, D 2
固定的未知参数 0 、 1 称为回归系数,自变量 x 也称为回归变量.
Y 0 1x ,称为 y 对 x 的回归直线方程.
数学建模
回归分析
回归分析
统计工具箱中的回归分析命令
一元线性回归
多元线性回归
* *
* *
数 学 模 型 及 定 义
模 型 参 数 估 计
检 验
性可 回线 归性
(化
曲的
线一
回元
归非
)线
数 学 模 型 及 定 义
模 型 参 数 估 计
检 验多 与元 预线 测性
回 归
逐 步 回 归 分 析


一、数学模型
返回
由此 aˆ eAˆ 11.6789
1.1107
最后得 y 11.6789e x
一、数学模型及定义
一般称
Y X
例1 测16名成年女子的身高与腿长所得数据如下:
身高
143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164
(cm)
腿长
88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102
(cm)
以身高x为横坐标,以腿长y为纵坐标将这些数据点(xi,yi) 在平面直角坐标系上标出.
解得
ˆ0 y ˆ1x
ˆ1
xy x2
xy x2
n
xi x yi y
或 ˆ1 i1 n
xi x2
i 1
其中 x
1 n
n i 1
xi , y
1 n
n i 1
yi
, x2
1 n
n i 1
xi 2 , xy
1 n
n i 1
xi yi
.
(经验)回归方程为:
yˆ ˆ0 ˆ1x y ˆ1(x x)
使用次数
10 11 12 13 14 15 16
增大容积
10.49 10.59 10.60 10.80 10.60 10.90 10.76
解答
11
曲线回归 10.5 10
9.5
9
8.5

8

7.5

7
6.5
6
2
4
6
8
10
12
14
16
此即非线性回归或曲线回归 问题(需要配曲线) 配曲线的一般方法是:
检验
F 检验
当 H 0 成立时,
F/(n 2)
n
其中 U yˆi y 2 (回归平方和)(SSR) i 1
n
记 Qe Q(ˆ0 , ˆ1 )
yi ˆ0 ˆ1xi 2 n ( yi yˆi )2
i 1
i 1
称 Qe 为残差平方和或剩余平方和(SSE).
2)
四、可线性化的一元非线性回归 (曲线回归)
例2 出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀, 容积不断增大.我们希望知道使用次数与增大的容积之间的关 系.对一钢包作试验,测得的数据列于下表:
使用次数
2 3 4 5 6 7 8 9
增大容积
6.42 8.20 9.58 9.50 9.70 10.00 9.93 9.99

yi 0 x1 i ,i 1, 2,..., n
E
i
0,
D i
2
且1 2 ,..., n相互独立
n
n

Q Q(0 , 1)
2 i
yi 0 1xi 2
i 1
i 1
最小二乘法就是选择 0 和 1 的估计 ˆ0 , ˆ1 使得
Q(ˆ0
,
ˆ1 )
min
0 ,1
Q( 0
,
1 )
一元线性回归分析的主要任务是:
1.用试验值(样本值)对 0 、 1 和 作点估计;
2.对回归系数 0 、 1 作假设检验;
3.在 x= x0 处对 y 作预测,对 y 作区间估计.
返回
二、模型参数估计
1.回归系数的最小二乘估计
有 n 组独立观测值(x1,y1),(x2,y2),…,(xn,yn)
(1)双曲线 1 a b
y
x
(2)幂函数曲线 y=a x b , 其中 x>0,a>0
(3)指数曲线 y=a ebx 其中参数 a>0.
(4)倒指数曲线 y=a eb / x 其中 a>0,
(5)对数曲线 y=a+blog x,x>0
(6)S
型曲线
y
a
1 bex
解例 2.由散点图我们选配到指数曲线 y=a eb / x 根据线性化方法,算得 bˆ 1.1107 , Aˆ 2.4587
返回
检验
1.回归方程的显著性检验
对回归方程 Y 0 1x 的显著性检验,归结为对假设 H0 : 1 0; H1 : 1 0
进行检验. 假设 H0 : 1 0 被拒绝,则回归显著,认为 y 与 x 存在线性关
系,所求的线性回归方程有意义;否则回归不显著,y 与 x 的关系 不能用一元线性回归模型来描述,所得的回归方程也无意义.
相关文档
最新文档