高一数学第二章第六节指数函数.ppt

合集下载

【课件】指数函数的概念+课件高一上学期数学人教A版(2019)必修第一册

【课件】指数函数的概念+课件高一上学期数学人教A版(2019)必修第一册

问题2
根据已知条件,当 2
1
1
1- p 5730 1 ,1 p 1 5730 , p 1 1 5730
2
2
2
像这样,衰减率为常数的变化方式,我们称为 指数衰减。
二指二、数、背函背景数景研概研究念究
追问1:像 y
1.11x
,
y
1 2
1 5730
x
这类函数与我们
问题1
表格给出了A, B两地景区2001 年至2015年的游 客人次以及逐年 增加量.
9
31
11
35
11
39
10
44
9
48
11
53
10
60
10
67
10
74
11
82
9
92
10
102
11
113
11
126
问题1
探究一 根据表 格信息,你们发 现了怎样的变化 规律?
9
31
11
35
11
39
10
44
9
48
11
死亡1年后,生物体内碳14含量为_1_-__p______;
死亡2年后,生物体内碳14含量为___1_-_p__2___; 死亡3年后,生物体内碳14含量为_____1_-_p__3 _;
……
死亡x年后,生物体内碳14含量为______1_-_p__x ;
设死亡x年后,生物体内碳14含量为y,则
y 1 px x 0,
问题1
探究三 类比A景区 的研究过程,B景 区是否也存在类似 “增加量”这样的不 变量?
9
31
11
35

高一数学指数函数ppt课件

高一数学指数函数ppt课件

与对数式的转换、对数运算的性质等。
拓展延伸:挑战更高难度题目
复杂指数函数的性质研究
引入更复杂的指数函数形式,如复合指数函 数、分段指数函数等,探讨它们的性质和应 用。
指数函数在实际问题中的应 用
结合实际问题,如复利计算、人口增长等,展示指 数函数的应用价值,并引导学生运用所学知识解决 实际问题。
指数函数与其他数学知识 的综合应用
指数函数图像特征
当a>1时,图像在x轴上方,且随着x 的增大,y值迅速增大;当0<a<1时, 图像在x轴上方,但随着
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函数在R 上是减函数。
指数函数的值域
指数函数的值域为(0, +∞)。
在解题时,要注意判断题目所给 条件是否满足对称性,以便更好
地应用这一性质。
05 复杂问题解决方 法与策略
分段讨论法在处理复杂问题时应用
分段讨论法概念
将复杂问题按照一定条件分成若 干段,每一段内问题相对简单,
易于解决。
分段讨论法应用
在处理指数函数问题时,当自变量 在不同区间内取值时,函数性质可 能发生变化,此时可以采用分段讨 论法。
数形结合思想概念
将数学中的“数”与“形”结合起来,通过图形 直观展示数量关系,帮助理解问题本质。
数形结合思想应用
在处理指数函数问题时,可以通过绘制函数图像 来观察函数性质,如单调性、周期性等。
数形结合思想优势
通过数形结合可以更加直观地理解问题,提高解 题准确性。
06 总结回顾与拓展 延伸
关键知识点总结回顾
幂的乘方规则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。

高一数学人必修件指数函数的图象和性质

高一数学人必修件指数函数的图象和性质
生物繁殖
在生物学领域,指数函数用于描述生物种群的繁殖速度。某 些生物种群的增长符合指数函数的规律,如细菌繁殖、昆虫 数量增长等。
其他领域应用案例
放射性衰变
在物理学中,指数函数用于描述放射性物质的衰变过程。放射性元 素的原子数量随时间呈指数减少。
化学反应速率
化学领域中,指数函数可用于描述某些化学反应的速率。反应速率 与反应物浓度的关系可以用指数函数表示。
同底数幂相乘
幂的乘方
底数不变,指数相加。即$a^m times a^n = a^{m+n}$。
底数不变,指数相乘。即$(a^m)^n = a^{m times n}$。
同底数幂相除
底数不变,指数相减。即$a^m div a^n = a^{m-n}$。
幂的乘方法则
1 2
正整数指数幂的乘法
$(a^m)^n = a^{m times n}$,其中$m, n$为 正整数。
指数函数图像与坐标轴交点
指数函数的图像与x轴没有交点,与y轴的交点是(0,1)。
指数函数性质总结
指数函数的单调性
当a>1时,指数函数在定义域 内单调递增;当0<a<1时,指 数函数在定义域内单调递减。
指数函数的奇偶性
指数函数既不是奇函数也不是 偶函数。
指数函数的值域
指数函数的值域是(0, +∞)。
形如y=a^x(a>0且a≠1)的函 数叫做指数函数。
指数函数表达式
y=a^x,其中a是自变量,x是指 数,y是因变量。
指数函数图像特征
指数函数图像形状
指数函数的图像是一条从坐标原点出发,向右上方或右下方无限 延伸的曲线。
指数函数图像位置
当a>1时,图像位于第一象限和第二象限;当0<a<1时,图像位于 第一象限和第四象限。

高一数学指数函数及其性质

高一数学指数函数及其性质
新课标人教版课件系列
《高中数学》
必修1
2.1.2《指数函数及其性质》
教学目标
1 .掌握指数函数的概念,图象和性质; 2 .能由指数函数图象归纳出指数函数的性质; 3 .指数函数性质的简单运用。 教学重点与难点 重点:指数函数的概念及它的图象和性质。 难点:底数a对于函数值变化的影响。 教学方法:导学法
创设问题情景,由一个智力故事激发学生进一步学习的兴趣,引出
了指数函数的定义, 而后用多媒体展示y=2x 和
画法,引导观察图象,归纳性质。接着再利用几何画板动态演示 指数函数的图象,使学生得到一般问题的结论,渗透了由特殊到 一般研究问题的方法,通过对a>1 和0 < a <1的讨论,渗透了分类
1 x y ( ) 的具体 2
情景设计
指数函数
此题即求第x格上麦粒数的个数y 分析:
表达式: y 2
研究:
x
由表达式知道,引起指数上的函数就是指数函数。
类推: 指数函数的定义
引入定义
指数函数
叫做指数函数。
函数
y a x (a 0且a 1)
例1:下列函数中指数函数的个数是: x 1 x 1) 3)
性质应用
指数函数
例1:比较大小:
(3)1.5 0.3,0.81.2
解:由指数函数的性质知1.50.3 > 1.50 =1,而 0.81.2 < 0.80 =1 所以 1.50.3 > 0.81.2
性质应用
m n
指数函数
例题2 若(0.7) (0.7) , 则m和n的关系(B) A:m n B:m n y (0.7) 在(,)为减函数 又 (0.7) (0.7) m n C:m n D:m n

高一数学指数函数00ppt课件

高一数学指数函数00ppt课件
化学反应速率
在化学中,某些化学反应的速率与反应物的浓度成正比。当反应物浓度较高时,反应速率也较快;反之则较慢。 这种关系可以用指数函数来描述,其中反应速率常数与反应温度、压力等因素有关。
05
指数函数与对数函数关系 探讨
对数函数定义及图像特征回顾
对数函数定义
对于任意正实数a(a≠1),函数y=logax(x>0)叫做对数 函数,其中x是自变量,函数的定义域是(0,+∞)。
利用对数运算性质化 简得 $x = 3$。
两边取对数得 $x = log_2 8$。
一元二次指数方程求解
• 定义与性质:一元二次指数方程是指形如 $a^x + b^x = c$ 的方程,其中 $a > 0$,$b > 0$,$c > 0$。
一元二次指数方程求解
求解步骤 观察方程形式,尝试通过换元法将其转化为一元一次或一元二次方程。
高一数学指数函数00ppt课件
contents
目录
• 指数函数基本概念与性质 • 指数运算规则与技巧 • 指数方程求解方法 • 指数函数在生活中的应用举例 • 指数函数与对数函数关系探讨 • 课堂小结与拓展延伸
01
指数函数基本概念与性质
指数函数定义及图像特征
指数函数定义
形如 y = a^x (a > 0, a ≠ 1) 的函 数称为指数函数。
深入探讨了指数函数的四则运算,包 括加法、减法、乘法和除法。
学生自我评价报告分享
01
知识掌握情况
大部分学生表示能够理解和掌握指数函数的基本概念和性质,以及相关
的运算方法。
02
学习困难与挑战
部分学生反映在解决复杂问题和应用指数函数时仍存在一定困难,需要

高中数学《指数函数》ppt课件

高中数学《指数函数》ppt课件

01
02
03
乘法法则
$a^m times a^n = a^{m+n}$,同底数幂相 乘,底数不变,指数相加 。
除法法则
$a^m div a^n = a^{mn}$,同底数幂相除,底 数不变,指数相减。
幂的乘方法则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。
不同底数指数运算法则
常见指数函数类型及其特点
自然指数函数
幂指数函数
对数指数函数
复合指数函数
底数为e(约等于2.71828) 的指数函数,记为y=e^x。 其图像上升速度最快,常用 于描述自然增长或衰减现象

形如y=x^n(n为实数)的函 数,当n>0时图像上升,当 n<0时图像下降。特别地,当 n=1时,幂指数函数退化为线
高中数学《指数函数》ppt 课件
目录
• 指数函数基本概念与性质 • 指数函数运算规则与技巧 • 指数函数在生活中的应用举例 • 指数函数与对数函数关系探讨 • 指数方程和不等式求解技巧 • 总结回顾与拓展延伸
01 指数函数基本概 念与性质
指数函数定义及图像特点
指数函数定义
形如y=a^x(a>0且a≠1)的函 数称为指数函数。
在生物学领域,指数函 数和对数函数被用于描 述生物种群的增长和衰 减过程;
在物理学领域,指数函 数和对数函数被用于描 述放射性衰变等物理现 象。
05 指数方程和不等 式求解技巧
一元一次、二次指数方程求解方法
01
一元一次指数方程:形如 $a^x = b$ ($a > 0, a neq 1$)的方程。求解方法
利用对数性质将指数方程转化为代数 方程进行求解。

人教版高一数学课件-指数函数的概念

人教版高一数学课件-指数函数的概念

时,y=a(1+α)x
是增函数.


ቤተ መጻሕፍቲ ባይዱ

启 强
*
鞏固練習
1.[指数增长类型]某城市房价(均价)经过 6 年时间从 1 200 元/m2
增加到了 4 800 元/m2,则这 6 年间平均每年的增长率是( A )
A. 3 2 -1 B. 3 2 +1 C.50% D.600 元
解析:这 6 年间平均每年的增长率为 x,则 1 200(1+x)6=


启 强
*
典型例題
例 2.已知指数函数 f(x)=ax(a>0,且 a≠1),且 f(3)=π,求 f(0),f(1),f(-3)的值.
解:因为 f(x)=ax(a>0,且 a≠1),且 f(3)=π,
1
所以 a3=π,解得 a 3 ,
1
x
于是 f (x) ( 3 )x 3
所以 f(0)= 0 1,f(1)= 3 ,f(-3)= 1 .
讲 课 人


启 强
*
典型例題
例 3(1)指数函数 y=f(x)的图象经过点-2,41,那
么 f(4)f(2)= ( )
A.8
B.16
C.32
D.64
(2)若指数函数 f(x)的图象经过点(2,9),求 f(x)的解
析式及 f(-1)的值.
解 :(1)指数函数 y= f(x)=ax(a>0,且 a≠1)的图 象经过点
到底需要多少粒小麥呢?這是一個20位數,
一個天文數字。這個數字的小麥折算成重量,
約為2587億噸。即使現在,全世界小麥年
產量也達不到這個數字。有人說,用80立方

人教版高中数学课件:2.6指数函数

人教版高中数学课件:2.6指数函数

当a﹤0时 不一定有意义。 当a=1时 y=1x =1是常量。
因此为了避免上述的情况,并保证定义域 是全体实数,我 们规定a﹥ 0,且a≠1。
三、指数函数的图象和性质
1、画出指数函数Y=2x和Y=(1/2)x图象
x
y=
-3
0.13 8
-2
0.25 4
-1
0
1
2
2
4
3
8 0.13
2x
0.5 1 2 1
(2) 1.70.3 , 0.93.1 。 解:由指数函数 的性质知
1.70.3 ﹥1.70 =1,
0.93.1 ﹤ 0.90 =1, 即1.70.3 ﹥1, 0.93.1 ﹤ 1, ∴ 1.70.3 ﹥0.93.1
五、作业 P78 1,2
y= (1/2)x
0.5 0.25
y= (1/2)x
y= 2x
问题2:两函数图象有什么共同点,又有什么不同特征? 问题3:影响函数图象特征的主要因素是什么?
2、
定义 图象 (a>1)
指数函数的图象和性质
定义域 值域 奇偶性 单调性
y=ax (a>0,a ≠1)叫 做指 数函 数
y∈R+ 非奇非偶 a>增 x∈R 0<a<1,减
1.8
秦皇岛市职业技术学校 李天乐
一、观察实例------细胞的分裂过程
第一次 第二次 第三次

第x次
. . .
. . .
细胞个 数和分 裂次数 的函数 关系: Y=2x
2个
4个
8个
2x 个
二、指数函数定义
函数y= ax(a>0,且a≠1)叫做指数函数,其中x是 自变量。函数的定义域是R.

高一数学:指数函数及其性质

高一数学:指数函数及其性质
高一数学:指数函数及其性质
目录
• 引言 • 指数函数的基本性质 • 指数函数的运算性质 • 指数函数的应用举例 • 指数函数的深入探究 • 复习与总结
01
引言
Chapter
指数函数的概念
指数函数是一种特殊的函数形式,形如$y=a^x$( $a>0$,$a≠1$)的函数叫做指数函数。
指数函数中的自变量$x$位于指数位置,而底数$a$是一 个大于0且不等于1的常数。
指数函数与对数函数的关系
01
互为反函数
指数函数和对数函数是一对互为反函数的函数,它们的图像关于直线
y=x对称。这意味着对于任意的x和y,如果y是指数函数的结果,那么x
就是对数函数的结果;反之亦然。
02
转换关系
通过指数函数和对数函数之间的转换关系,可以将一些复杂的问题简化
。例如,在解决与复利、放射性衰变等相关的问题时,可以利用对数性
02
掌握运算法则
熟练掌握指数运算法 则,并能够灵活运用 。
03
多做练习题
通过多做练习题来加 深对知识点的理解和 记忆,提高解题能力 。
04
及时复习总结
学习完一个知识点后 要及时复习总结,形 成自己的知识体系。
THANKS
感谢观看
,即(am)n=am×n。
幂的开方
对于指数函数的开方运算,一般需 先计算出指数函数的值再进行开方 运算,但也可通过换元法或其他技 巧进行简化计算。
复合幂运算
对于复杂的幂运算,如幂的乘方再 开方等,需根据运算优先级和结合 律进行计算,也可通过换元法或其 他技巧进行简化计算。
04
指数函数的应用举例
Chapter
指数函数的除法运算

高一数学:2《指数函数的概念与图象》课件 公开课一等奖课件

高一数学:2《指数函数的概念与图象》课件  公开课一等奖课件

上海 2006 高考 理科 状元-武亦 文
武亦文 格致中学理科班学生 班级职务:学习委员 高考志愿:复旦经济 高考成绩:语文127分 数学142分 英语144分 物理145分 综合27分 总分585分
“一分也不能少”
“我坚持做好每天的预习、复习,每 天放学回家看半小时报纸,晚上10: 30休息,感觉很轻松地度过了三年 高中学习。”当得知自己的高考成 绩后,格致中学的武亦文遗憾地说 道,“平时模拟考试时,自己总有 一门满分,这次高考却没有出现, 有些遗憾。”
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试 成绩就否定自己。高三的几次模拟考试中,她的 成绩一直稳定在年级前5名左右。
y=3x 0.11 0.19 0.33 0.58 1 1.732 3 5.20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 函数
2.6 指数函数
一、指数函数的概念
x f ( x ) a (a 0, a 1)的函数称为指数函数. 1.定义:形如
2.几点说明: (1)关于对 a 的规定: 若 a 0 对于 x 0, a x 都无意义 x 若 a 1 则 1 无论 x 取何值,它总是1,对它没有研究的必要.
2003.10
(1)1.3
2.7
与1.3
2.5
(3)
2 3
与 1
2 2 (2)( ) 与( ) 2 2
4 3
3 2
说明: (1)构造函数并指明函数的单调区间及相应的单调性.
(2)自变量的大小比较.
(3)函数值的大小比较.
例2.比较下列各组数的大小.
1 0 .8 1 1 .8 (1) ( ) 与( ) 4 2
2
x
0,
3.奇偶性:既不是奇函数也不是偶函数 4.截距:在 x 轴上没有,在 y 轴上为1.
二.图象与性质
1.图象的画法:性质指导下的列表描点法.
2.草图:
观察指数函数 f ( x) a x (a 1)
性质
(1) 无论 a为何值,指数函数
值域为 0, ,都过点(0,1).
f ( x) a
x
都有定义域为R
(2)
a 1 时,
f ( x) a x 在定义域内为增函数;
x
0 a 1 时, f ( x) a 在定义域内为减函数.
(3)
a 1 时,
x 0 y 1
x 0 0 a 1 时, y 1
简单应用
利用指数函数单调性比大小. 例1.比较下列各组数的大小
8 7 (2) ( ) 与( ) 7 8

3 7
5 12
(3)
1.08 与0.98
0.3
3.1
小结比较大小的方法:
1.构造函数的方法: 数的特征是同底不同指 (包括可转化为同底的) 2. 搭桥比较法: 用特殊的数1或 0.
课堂小结
1.指数函数的概念 2.指数函数的图象和性质
3.简单应用
中央电教馆资源中心制作
(2)关于指数函数的定义域:定义域为 R
(3)关于是否是指数函数的判断
请看下面函数是否是指数函数: (1) (3)
y
x
(2)ห้องสมุดไป่ตู้
3 x
y 0.3
x2
y ( 3)
x
3 2x ) (4) y 2 ( 4
1 1 (5) y 4 4
归纳性质
函数 y 1.定义域: R 2.值 域:
相关文档
最新文档