多变量数据的统计描述与统计推断(第14章) (2)
统计描述与统计推断
![统计描述与统计推断](https://img.taocdn.com/s3/m/a0b97296e43a580216fc700abb68a98271feaced.png)
统计描述与统计推断统计的主要工作就是对统计数据进行统计描述和统计推断。
统计描述是统计分析的最基本内容,是指应用统计指标、统计表、统计图等方法,对资料的数量特征及其分布规律进行测定和描述;而统计推断是指通过抽样等方式进行样本估计总体特征的过程,包括参数估计和假设检验两项内容。
(一)统计描述1.计量资料的统计描述计量资料的统计描述主要通过编制频数分布表、计算集中趋势指标和离散趁势指标以及统计图表来进行。
(1)集中趋势。
指频数表中频数分布表现为频数向某一位置集中的趋势。
集中趋势的描述指标:1)算术平均数。
直接法:x为观察值,n为个数加权法又称频数表法,适用于频数表资料,当观察例数较多时用。
f为各组段的频数。
2)几何平均数(geometric mean)。
几何平均数用符号G表示。
用于反映一组经对数转换后呈对称分布的变量值在数学上的平均水平。
直接法:加权法又称频数表法,当观察例数n较大时,可先编制频数分布表,用此法算几何平均数:3)百分位数(percentile )与中位数(median )。
百分位数是一种位置坐标,用符号x P 表示常用的百分位数有 2.5P 、5P 、50P 、75P 、95P 、97.5P 等,其中25P 、50P 、75P 又称为四分位数。
百分位数常用于描述一组观察值在某百分位置上的水平,多个百分位结合使用,可更全面地描述资料的分布特征。
中位数是一个特定的百分位数即50P ,用符号M 表示。
把一组观察值按从小到大(或从大到小)的次序排列,位置居于最中央的那个数据就是中位数。
中位数也是反映频数分布集中位置的统计指标,但它只由所处中间位置的部分变量值计算所得,不能反映所有数值的变化,故中位数缺乏敏感性。
中位数理论上可以用于任何分布类型的资料,但实践中常用于偏态分布资料和分布两端无确定值的资料。
其计算方法有直接法和频数表法两种。
直接法:当观察例数n 不大时,此法常用,先将观察值按大小次序排列,选用下列公式求M 。
多元统计分析概述
![多元统计分析概述](https://img.taocdn.com/s3/m/daa4b96c3069a45177232f60ddccda38366be112.png)
多元统计分析概述多元统计分析是一种统计学方法,用于研究多个变量之间的关系和模式。
它可以帮助我们理解和解释数据中的复杂关系,从而提供有关变量之间相互作用的深入洞察。
在本文中,我们将概述多元统计分析的基本概念、常用方法和应用领域。
一、基本概念1. 变量:在多元统计分析中,我们研究的对象是多个变量。
变量可以是数值型(如年龄、收入)或分类型(如性别、教育程度)。
2. 样本和总体:多元统计分析通常基于样本数据进行推断。
样本是从总体中抽取的一部分观察值。
通过对样本数据进行分析,我们可以推断总体的特征和关系。
3. 相关性和因果关系:多元统计分析可以帮助我们确定变量之间的相关性,即它们之间的关联程度。
然而,相关性并不意味着因果关系。
因果关系需要更深入的研究和实验证实。
二、常用方法1. 相关分析:相关分析用于衡量两个或多个变量之间的相关性。
常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
2. 回归分析:回归分析用于建立变量之间的数学模型,并预测一个或多个因变量的值。
线性回归和逻辑回归是常用的回归分析方法。
3. 主成分分析:主成分分析用于降低数据维度,并找到解释数据变异最多的主要成分。
它可以帮助我们理解数据中的模式和结构。
4. 判别分析:判别分析用于确定一个或多个自变量对于区分不同组别的因变量的重要性。
它常用于分类和预测问题。
5. 聚类分析:聚类分析用于将样本分成不同的群组,使得同一群组内的样本相似度较高,而不同群组之间的相似度较低。
三、应用领域多元统计分析在各个领域都有广泛的应用,包括社会科学、医学、市场研究、金融等。
以下是一些常见的应用领域:1. 社会科学:多元统计分析可以帮助研究人类行为和社会现象。
例如,它可以用于分析教育水平与收入之间的关系,或者研究不同人群的消费行为。
2. 医学研究:多元统计分析可以用于研究疾病的风险因素和预测模型。
例如,它可以用于确定吸烟和肺癌之间的关系,或者预测患者的生存率。
3. 市场研究:多元统计分析可以帮助企业了解消费者行为和市场趋势。
统计学(第六版)期末考试考点梳理
![统计学(第六版)期末考试考点梳理](https://img.taocdn.com/s3/m/b0e109c8a48da0116c175f0e7cd184254b351bb0.png)
统计学(第六版)期末考试考点梳理统计学(第六版)期末考试考点梳理第⼀章导论1.1.1 什么是统计学统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。
数据分析所⽤的⽅法分为描述统计⽅法和推断统计⽅法。
1.2 统计数据的类型1.2.1 分类数据、顺序数据、数值型数据按照所采⽤的计算尺度不同,可以将统计数据分为分类数据、顺序数据、数值型数据。
分类数据:只能归于某⼀类别的⾮数字型数据,它是对事物进⾏分类的结果,数据表现为类别,是⽤⽂字来表⽰。
例如:⽀付⽅式、性别、企业类型等。
顺序数据:只能归于某⼀有序类别的⾮数字型数据。
例如:员⼯对改⾰措施的态度、产品等级、受教育程度等。
数值型数据:按数字尺度测量的观测值,其结果表现为具体的数值。
例如:年龄、⼯资、产量等。
统计数据⼤体上可分为品质数据(定性数据)和数量数据(定量数据、数值型数据)。
1.2.2 观测数据和实验数据按照统计数据的收集⽅法,可以分为观测数据和实验数据。
观测数据:通过调查或观测⽽收集的数据。
例如:降⾬量、GDP、家庭收⼊等。
实验数据:在实验中控制实验对象⽽收集到的数据。
例如:医药实验数据、化学实验数据等。
1.2.3 截⾯数据和时间序列数据按照被描述的现象与时间的关系,可分类截⾯数据和时间序列数据。
截⾯数据:在相同或近似相同的时间点上收集的数据。
例如:2012年我国各省市的GDP。
时间序列数据:同⼀现象在不同的时间收集的数据。
例如:2000-2012年湖北省的GDP。
1.3.1 总体和样本总体:包含所研究的全部个体(数据)的集合。
样本:从总体中抽取的⼀部分元素的集合。
1.3.2 参数和统计量参数:⽤来描述总体特征的概括性数字度量。
统计量:⽤类描述样本特征的概括性数字度量。
例如:某研究机构准备从某乡镇5万个家庭中抽取1000个家庭⽤于推断该乡镇所有农村居民家庭的年⼈均纯收⼊。
这项研究的总体是5万个家庭;样本是1000个家庭;参数是5万个家庭的⼈均纯收⼊;统计量是1000个家庭的⼈均纯收⼊。
统计学第五版课后习题答案(完整版)
![统计学第五版课后习题答案(完整版)](https://img.taocdn.com/s3/m/645265976529647d27285273.png)
统计学(第五版)课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
资料的统计分析——双变量及多变量分析
![资料的统计分析——双变量及多变量分析](https://img.taocdn.com/s3/m/b44ea62626d3240c844769eae009581b6bd9bd2e.png)
资料的统计分析——双变量及多变量分析双变量及多变量分析是指在统计分析中,同时考察两个或多个变量之间的关系。
通过对多个变量进行综合分析,可以更全面地了解变量之间的相互作用和影响。
双变量分析是指考察两个变量之间的关系,常用的方法包括相关分析和回归分析。
相关分析是用来评价两个变量之间的线性关系的强度和方向。
常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于两个变量都为连续型变量的情况,而斯皮尔曼相关系数适用于至少一个变量为有序分类变量或者两个变量都为有序分类变量的情况。
回归分析是用来探究一个变量(因变量)与一个或多个变量(自变量)之间的关系的强度和方向。
常用的回归分析方法有简单线性回归分析和多元线性回归分析。
简单线性回归分析是用来研究一个自变量与一个因变量之间的线性关系的情况,而多元线性回归分析则可以同时研究多个自变量与一个因变量之间的关系。
在进行双变量分析之前,需要先进行数据的描述性分析。
描述性分析是对数据的基本特征进行总结和描述,包括样本数量、均值、方差、最小值、最大值等。
多变量分析是指同时考虑多个变量之间的关系。
常用的方法包括多元方差分析、聚类分析和因子分析。
多元方差分析是用来比较多个因素对于一个或多个因变量的影响的强度和方向。
聚类分析是用来将样本按照其中一种相似度划分为不同的群组,从而研究变量之间的内部关系。
因子分析是用来探究多个变量之间的潜在结构,从而找出变量之间的共性和差异。
除了以上方法,还可以采用交叉表分析、卡方检验和回归分析等方法来研究多个变量之间的关系。
在进行双变量及多变量分析时,需要注意以下几个问题:首先,需要选择合适的统计方法,根据变量的类型和变量之间的关系特点来选择合适的分析方法。
其次,需要注意变量之间的相关性,避免多重共线性的问题。
此外,还需要注意样本的选择和样本量的大小,以及结果的解释和推断的注意事项。
总之,双变量及多变量分析是一种重要的统计方法,可以帮助我们更全面地了解变量之间的相互作用和影响。
贾俊平统计学 第七版 课后思考题
![贾俊平统计学 第七版 课后思考题](https://img.taocdn.com/s3/m/ec0ee552e2bd960591c67767.png)
第一章导论1.什么是统计学?统计学是搜集、处理、分析、解释数据并从中得出结论的科学。
2.解释描述统计与推断统计。
描述统计研究的是数据搜集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计研究的是如何利用样本数据来推断总体特征的统计方法。
3.统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照计量尺度可分为分类数据、顺序数据和数值型数据;按照数据的搜集方法,可以分为观测数据和试验数据;按照被描述的现象与实践的关系,可以分为截面数据和时间序列数据。
4.解释分类数据、顺序数据和数值型数据的含义。
分类数据是只能归于某一类别的非数字型数据;顺序数据是只能归于某一有序类别的非数字型数据;数值型数据是按照数字尺度测量的观测值,其结果表现为具体的数值。
5.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体的集合,样本是从总体中抽取的一部分元素的集合,参数是用来描述总体特征的概括性数字度量,统计量是用来描述样本特征的概括性数字度量,变量是用来说明现象某种特征的概念。
6.变量可分为哪几类?变量可分为分类变量、顺序变量和数值型变量。
分类变量是说明书屋类别的一个名称,其取值为分类数据;顺序变量是说明十五有序类别的一个名称,其取值是顺序数据;数值型变量是说明事物数字特征的一个名称,其取值是数值型数据。
7.举例说明离散型变量和连续型变量。
离散型变量是只能去可数值的变量,它只能取有限个值,而且其取值都以整位数断开,如“产品数量”;连续性变量是可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举,如“温度”等。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关、由别人调查和试验而来、已经存在并会被我们所利用的资料为二手资料。
使用时要评估资料的原始搜集人、搜集目的、搜集途径、搜集时间且使用时要注明数据来源。
2.比较概率抽样和非概率抽样的特点。
举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
描述统计学与推断统计学名词解释
![描述统计学与推断统计学名词解释](https://img.taocdn.com/s3/m/bf518b3403768e9951e79b89680203d8ce2f6af2.png)
描述统计学与推断统计学名词解释描述统计学(Descriptive Statistics)是统计学的一个分支,主要研究如何通过数据收集、处理、分析和解释,来描述和总结所观察到的现象的基本统计信息。
它包括统计数据的收集方法、数据的加工处理方法、数据的显示方法、数据分布特征的概括与分析方法等。
描述统计学通过数理统计方法来反映数据的特点,并通过图表形式对所收集的数据进行必要的可视化,进一步综合、概括和分析得出数据的客观规律。
推断统计学(Inferential Statistics)也是统计学的一个分支,主要研究如何根据样本数据去推断总体数量特征的方法。
它是在对样本数据进行描述的基础上,对统计总体的未知数量特征做出以概率形式表述的推断。
推断统计学通常用于对总体参数的估计和假设检验,其结果通常是为了得到下一步的行动策略。
描述统计学和推断统计学是统计学的两个重要分支,二者相辅相成。
描述统计学是推断统计学的基础,而推断统计学则是描述统计学的进一步发展。
在实际应用中,需要根据具体的研究目的和数据情况来选择合适的统计方法。
统计学中的多变量分析方法
![统计学中的多变量分析方法](https://img.taocdn.com/s3/m/b9630cc6a1116c175f0e7cd184254b35effd1a55.png)
统计学中的多变量分析方法多变量分析是统计学中一个重要的分析方法,用于研究多个变量之间的关系以及它们对观察结果的影响。
多变量分析可以帮助我们从多个维度来解释数据,揭示隐藏在数据背后的规律和结构。
在统计学中,常见的多变量分析方法主要包括回归分析、主成分分析、聚类分析和因子分析等。
下面将对这些方法进行详细介绍。
回归分析是一种用于研究因变量和自变量之间关系的方法。
它通过建立一个数学模型来描述这种关系,并根据数据推断模型的参数。
回归分析可以用于预测因变量的取值,也可以用于确定自变量对因变量的影响程度。
常见的回归分析方法有线性回归、多元线性回归、逻辑回归等。
主成分分析(PCA)是一种通过线性组合将多个相关变量转换为少数几个无关变量的方法。
它可以帮助我们发现数据中的主要结构和模式。
主成分分析的输出是一组新的变量,称为主成分,它们是原始变量的线性组合。
主成分分析可以用于数据降维、数据压缩和特征提取等。
聚类分析是一种将相似的个体或对象归类为一组的方法。
聚类分析基于样本之间的相似性或距离度量,将样本划分为不同的簇。
聚类分析可以用于数据分类、观察群体相似性和发现群组之间的关系等。
常用的聚类分析方法有层次聚类和k均值聚类等。
因子分析是一种用于解释变量之间关系的方法。
它通过将多个观测变量解释为少数几个潜在因子,来揭示数据背后的结构。
因子分析可以帮助我们压缩数据信息、发现共性因子和解释观测变量之间的关系。
常见的因子分析方法有主成分分析和最大似然法等。
此外,还有其他一些多变量分析方法,比如判别分析、典型相关分析、结构方程模型等,它们也在统计学的研究中得到广泛应用。
这些方法在实际研究中可以结合使用,以更全面地分析数据和解释现象。
总结来说,多变量分析是统计学中重要的分析手段,用于研究多个变量之间的关系。
常见的多变量分析方法包括回归分析、主成分分析、聚类分析和因子分析等。
这些方法可以帮助我们从多个维度来理解数据,揭示数据背后的规律和结构。
多变量关系统计模型
![多变量关系统计模型](https://img.taocdn.com/s3/m/f7bca64078563c1ec5da50e2524de518964bd300.png)
多变量关系统计模型
多变量关系统计模型是一种用于描述和分析多个变量之间关系
的数学模型。
在现实世界中,许多现象都是由多个变量相互影响而
产生的,因此需要建立多变量关系统计模型来揭示它们之间的复杂
关系。
在多变量关系统计模型中,通常会涉及到多个因变量和自变量,它们之间可能存在线性或非线性关系。
通过建立数学方程或者统计
模型,可以揭示这些变量之间的关系,从而帮助人们更好地理解现
象的本质和规律。
多变量关系统计模型在许多领域都有着广泛的应用,比如经济学、社会学、生态学、医学等。
在经济学中,可以利用多变量关系
统计模型来分析不同经济指标之间的关系,从而预测未来的经济发
展趋势;在医学领域,可以利用多变量关系统计模型来分析疾病的
发展规律和治疗效果。
然而,建立多变量关系统计模型并不是一件容易的事情,因为
它涉及到多个变量之间复杂的相互作用。
需要充分的数据支持和统
计分析方法来验证模型的有效性和准确性。
总之,多变量关系统计模型是一种强大的工具,可以帮助人们更好地理解和分析复杂的现实世界中的现象,为决策和预测提供有力的支持。
随着数据分析和数学建模技术的不断发展,相信多变量关系统计模型将会在更多的领域得到广泛的应用。
统计学各章习题及答案
![统计学各章习题及答案](https://img.taocdn.com/s3/m/6612a3e555270722182ef70f.png)
统计学习题目录第一章绪论 _________________________________________________ 2第二章数据的收集与整理 _____________________________________ 4第三章统计表与统计图 _______________________________________ 6第四章数据的描述性分析 _____________________________________ 8第五章参数估计 ____________________________________________ 12第六章假设检验 ____________________________________________ 16第七章方差分析 ____________________________________________ 20第八章非参数检验 __________________________________________ 23第九章相关与回归分析 ______________________________________ 26第十章多元统计分析 ________________________________________ 30第十一章时间序列分析 ______________________________________ 34第十二章指数 ______________________________________________ 37第十三章统计决策 __________________________________________ 41第十四章统计质量管理 ______________________________________ 44第一章绪论习题一、单项选择题1。
推断统计学研究(D)。
A.统计数据收集的方法B.数据加工处理的方法C.统计数据显示的方法D.如何根据样本数据去推断总体数量特征的方法2。
实验数据处理方法统计学方法
![实验数据处理方法统计学方法](https://img.taocdn.com/s3/m/fa307e09842458fb770bf78a6529647d2628347d.png)
实验数据处理方法统计学方法实验数据处理方法是指对实验中所获得的数据进行统计和分析的方法。
统计学方法是处理实验数据的基本方法之一,它可以帮助我们从数据中获取有意义的信息,并进行科学的推断和决策。
下面将具体介绍一些常用的实验数据处理方法统计学方法。
1.描述统计分析:描述统计分析是对收集到的实验数据进行总结和描述的方法。
它可以通过计算数据的中心趋势(如平均值、中位数和众数)、离散程度(如标准差、方差和极差)以及数据的分布情况(如频数分布、百分位数等)等来揭示数据的一般特征。
描述统计分析能够为后续的数据处理和推断提供基础。
2.参数统计推断:参数统计推断是根据样本数据对总体特征进行推断的方法。
它基于样本数据对总体参数(如总体均值、总体方差等)进行估计,并使用概率分布等方法进行推断。
参数统计推断涉及到估计(如点估计和区间估计)和假设检验(如t检验、方差分析、卡方分析等)等技术。
通过参数统计推断,可以从样本数据中得出对总体的推断结论,并进行科学的决策。
3.非参数统计推断:非参数统计推断是一种不依赖于总体参数分布形式的方法。
与参数统计推断不同,非参数统计推断通常使用样本自身的顺序、秩次或其他非参数概念进行统计推断。
常见的非参数统计推断方法包括秩次检验(如Wilcoxon秩和检验、Mann-Whitney U检验等)、Kruskal-Wallis检验、Friedman检验和符号检验等。
这些方法在样本数据的分布特征未知或不符合正态分布时具有很高的鲁棒性。
4.方差分析:方差分析是比较多个总体均值差异的统计方法。
在实验数据处理中,方差分析常用于分析影响因素对实验结果的影响程度。
方差分析可以分为单因素方差分析和多因素方差分析两种。
在实验中,通过方差分析可以判断不同因素对实验结果是否存在显著影响,以及不同处理组之间的差异是否具有统计学意义。
5.相关分析:相关分析是研究两个或多个变量之间相互关系的统计方法。
在实验数据处理中,常用的相关分析方法有Pearson相关分析和Spearman秩相关分析。
统计学(第三版)课后答案 袁卫等主编
![统计学(第三版)课后答案 袁卫等主编](https://img.taocdn.com/s3/m/7bb6884c336c1eb91a375dd6.png)
统计学第一章1.什么是统计学?怎样理解统计学与统计数据的关系?答:统计学是一门收集、整理、显示和分析统计数据的科学。
统计学与统计数据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存在意义。
2.简要说明统计数据的来源答:统计数据来源于两个方面:直接的数据:源于直接组织的调查、观察和科学实验,在社会经济管理领域,主要通过统计调查方式来获得,如普查和抽样调查。
间接的数据:从报纸、图书杂志、统计年鉴、网络等渠道获得。
3.简要说明抽样误差和非抽样误差答:统计调查误差可分为非抽样误差和抽样误差。
非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。
抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。
4.答:(1)有两个总体:A品牌所有产品、B品牌所有产品(2)变量:口味(如可用10分制表示)(3)匹配样本:从两品牌产品中各抽取1000瓶,由1000名消费者分别打分,形成匹配样本。
(4)从匹配样本的观察值中推断两品牌口味的相对好坏。
第二章、统计数据的描述思考题1描述次数分配表的编制过程答:分二个步骤:(1)按照统计研究的目的,将数据按分组标志进行分组。
按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合并成一个组,这取决于分组的粗细。
按数量标志进行分组,可分为单项式分组与组距式分组单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间)作为一个组。
统计分组应遵循“不重不漏”原则(2)将数据分配到各个组,统计各组的次数,编制次数分配表。
2.解释洛伦兹曲线及其用途答:洛伦兹曲线是20世纪初美国经济学家、统计学家洛伦兹根据意大利经济学家帕累托提出的收入分配公式绘制成的描述收入和财富分配性质的曲线。
洛伦兹曲线可以观察、分析国家和地区收入分配的平均程度。
3. 一组数据的分布特征可以从哪几个方面进行测度?答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。
(完整版)多元统计分析课后练习答案
![(完整版)多元统计分析课后练习答案](https://img.taocdn.com/s3/m/3df9fdf4168884868662d66b.png)
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
(完整版)统计学贾俊平考研知识点总结
![(完整版)统计学贾俊平考研知识点总结](https://img.taocdn.com/s3/m/8ee09045360cba1aa911da27.png)
统计学重点笔记第一章导论一、比较描述统计和推断统计:数据分析是通过统计方法研究数据,其所用的方法可分为描述统计和推断统计。
(1)描述性统计:研究一组数据的组织、整理和描述的统计学分支,是社会科学实证研究中最常用的方法,也是统计分析中必不可少的一步。
内容包括取得研究所需要的数据、用图表形式对数据进行加工处理和显示,进而通过综合、概括与分析,得出反映所研究现象的一般性特征。
(2)推断统计学:是研究如何利用样本数据对总体的数量特征进行推断的统计学分支。
研究者所关心的是总体的某些特征,但许多总体太大,无法对每个个体进行测量,有时我们得到的数据往往需要破坏性试验,这就需要抽取部分个体即样本进行测量,然后根据样本数据对所研究的总体特征进行推断,这就是推断统计所要解决的问题。
其内容包括抽样分布理论,参数估计,假设检验,方差分析,回归分析,时间序列分析等等。
(3)两者的关系:描述统计是基础,推断统计是主体二、比较分类数据、顺序数据和数值型数据:根据所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。
(1)分类数据是只能归于某一类别的非数字型数据。
它是对事物进行分类的结果,数据表现为类别,是用文字来表达的,它是由分类尺度计量形成的。
(2)顺序数量是只能归于某一有序类别的非数字型数据。
也是对事物进行分类的结果,但这些类别是有顺序的,它是由顺序尺度计量形成的。
(3)数值型数据是按数字尺度测量的观察值。
其结果表现为具体的数值,现实中我们所处理的大多数都是数值型数据。
总之,分类数据和顺序数据说明的是事物的本质特征,通常是用文字来表达的,其结果均表现为类别,因而也统称为定型数据或品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此可称为定量数据或数量数据。
三、比较总体、样本、参数、统计量和变量:(1)总体是包含所研究的全部个体的集合。
通常是我们所关心的一些个体组成,如由多个企业所构成的集合,多个居民户所构成的集合。
统计推断(StatisticalInference)第二版课后习题答案(下)
![统计推断(StatisticalInference)第二版课后习题答案(下)](https://img.taocdn.com/s3/m/ad945a27dcccda38376baf1ffc4ffe473368fdae.png)
统计推断第二版课后习题答案(下)第一章估计与检验的基本概念习题1a.样本均值的估计是样本观测值的算术平均数。
b.估计量的偏差是指样本估计值与总体参数值之间的差异。
c.偏差的绝对估计误差是指估计量与总体参数的差异的绝对值。
习题2a.确定估计量的抽样分布的方法有:–数理统计方法–模拟方法b.方差是指估计量在多次抽样中估计误差的离散程度。
c.中位数是指有50%的估计值小于该值,50%的估计值大于该值。
习题3a.均方根误差衡量了估计方法的总体误差。
b.样本均值的均方误差是样本均值与总体均值之间的差异的平方。
c.均方误差是样本估计量的方差和偏差之和。
习题4a.一个无偏估计的特点是其期望值等于被估计参数的真实值。
b.偏差是指估计量从真实参数值偏离的程度。
c.便宜的估计方法在不同样本下估计值的平均值与总体参数的差异接近于零。
习题5a.置信区间是指总体参数一个区间估计的结果。
b.置信水平是指置信区间的覆盖总体参数的概率。
c.通过增加置信水平,置信区间的宽度将增加。
第二章单样本推断习题1a.在单样本问题中,当总体的分布未知且样本容量较小时,通常使用t分布。
b.当总体的分布未知且样本容量较大时,通常使用标准正态分布。
c.当总体的分布已知时,可以根据总体分布选择相应的抽样分布。
习题2a.在单样本问题中,使用z统计量时,需要知道总体的标准差。
b.当总体的标准差未知且样本容量较小时,通常使用t统计量。
c.t统计量的分布在自由度较大时趋向于标准正态分布。
习题3a.当总体的分布为正态分布时,使用样本均值的标准差作为总体标准差的估计。
b.对于非正态分布的总体,使用样本的中位数可以作为总体位置参数的估计。
c.样本观测值的众数可以作为总体分布的估计。
习题4a.在单样本问题中,使用z统计量时可以构造置信区间。
b.置信水平是指在多次抽样中,置信区间覆盖总体参数的概率。
c.置信区间的宽度与样本容量无关。
a.当总体的分布未知且样本容量较小时,假设检验通常使用t检验。
描述统计 统计推断
![描述统计 统计推断](https://img.taocdn.com/s3/m/2bc8757df011f18583d049649b6648d7c1c708ea.png)
描述统计统计推断
标题,描述统计与统计推断。
描述统计和统计推断是统计学中两个重要的概念,它们在数据
分析和推断中起着至关重要的作用。
本文将简要介绍描述统计和统
计推断的概念及其在实际应用中的重要性。
描述统计是通过对数据的整理、总结和展示来描述数据的特征
和规律。
描述统计的方法包括计算平均值、中位数、众数、标准差、方差等统计量,绘制直方图、饼图、散点图等图表来展示数据的分
布和特征。
描述统计的主要目的是帮助人们更直观地了解数据,从
而对数据进行初步的分析和解释。
而统计推断则是基于样本数据对总体特征进行推断和决策的过程。
统计推断的方法包括假设检验、置信区间估计、方差分析等,
通过对样本数据的分析来推断总体的特征,并对这些推断进行统计
学上的验证。
统计推断的主要目的是通过样本数据对总体的特征进
行推断,并对这些推断进行科学的验证,从而为决策提供依据。
描述统计和统计推断在实际应用中有着广泛的应用。
在医学领
域,通过对患者的病历数据进行描述统计和统计推断,可以对疾病的发病规律和治疗效果进行分析和推断;在市场营销领域,通过对消费者的购买行为数据进行描述统计和统计推断,可以对产品的市场需求和销售趋势进行分析和预测;在财务领域,通过对企业的财务数据进行描述统计和统计推断,可以对企业的经营状况和盈利能力进行分析和评估。
综上所述,描述统计和统计推断在数据分析和推断中起着不可替代的作用,它们为人们提供了一种科学的方法来对数据进行分析和推断,从而为决策提供科学的依据。
因此,深入理解和掌握描述统计和统计推断的概念及方法对于提高数据分析和推断的准确性和科学性具有重要意义。
统计学(贾俊平第八版)课后思考题及答案
![统计学(贾俊平第八版)课后思考题及答案](https://img.taocdn.com/s3/m/5f0a1df168dc5022aaea998fcc22bcd127ff4260.png)
统计学(贾俊平第八版)课后思考题及答案第一章:统计学基本概念和方法思考题1:什么是统计学?统计学的研究对象是什么?统计学是从观察数据的现象和规律出发,运用数理统计方法进行概括、分析和推断的科学。
统计学研究的对象是数据的概括和整体行为特征,即基本统计量和统计分布。
答案:统计学是一门应用数学的学科,其研究范围包括数据的收集、整理、描述、分析和推断等方面。
统计学通过运用数理统计方法,帮助我们从观察到的数据中发现其中的规律和趋势,从而对现象和问题作出合理的判断和推断。
统计学的研究对象主要包括两个方面。
一方面,统计学关注数据的概括和整体行为特征,例如对数据集的中心趋势(平均数、中位数)和离散程度(标准差、方差)进行描述和分析,这些统计量可以帮助我们对数据进行概括和比较。
另一方面,统计学研究数据的统计分布,即数据的分布形状和特征,例如正态分布、偏态分布等,这些分布有助于我们根据数据的特点进行进一步的推断和推测。
第二章:统计学的数据描述思考题2:试举例说明数据分为哪些类型?数据分为定性数据和定量数据两种类型。
答案:数据可以分为定性数据和定量数据两种类型。
定性数据是指不能用数字表示的数据,其特征主要是描述性的,例如性别、喜好等。
定性数据通常采用文字或符号进行记录和表达。
定量数据是指可以用数字表示的数据,其特征主要是数量性的,例如身高、体重等。
定量数据可以进行数学运算和统计分析。
举例来说,一个学生调查问卷中的“性别”以及“对某个电影的评价(好、中、差)”是属于定性数据;而问卷中的“年龄”和“观看该电影的次数”则是属于定量数据。
第三章:概率与概率分布思考题3:什么是概率?请以一个例子来解释。
概率是指某个事件发生的可能性。
它在统计学中用于描述随机现象的规律性和不确定性。
答案:概率是描述某个事件发生的可能性的数值。
概率可以从0到1之间的任何一个数值,其中0表示不可能发生,1表示肯定会发生。
举个例子来说明,假设有一个标准的骰子,每个面上有1到6的数字。
定量资料的分析
![定量资料的分析](https://img.taocdn.com/s3/m/bed4b0b690c69ec3d4bb7519.png)
定量资料的研究分析借助的是各种统 计分析方法。按统计分析的性质的不同, 定量资料的分析可分为描述统计和推断统 计;按统计分析涉及变量的多少,定量资 料的分析可分为单变量统计分析、双变量 统计分析和多变量统计分析。
一、 描述统计与推断统计
描述统计(descriptive statistics)是用图形、表格和概括性 的数字对数据进行描述的统计方法,即用直观的图形、汇总的表格 和概括性的数字(如平均数)表示数据的分布、形状等特征。
描述统计是所有统计分析的基础,推断统计则是实际工 作中定量资料分析的主要内容。而且,推断统计的地位和作 用也越来越重要,已成为统计分析的核心内容,这是因为在 对现实问题的研究中所获得的数据主要是样本数据。但这并 不等于说描述统计不重要,如果没有描述统计搜集可靠的统 计数据并提供有效的样本信息,再科学的统计推断方法也难 以得出切合实际的结论。从描述统计学到推断统计学反映了 统计学发展的巨大成就,是统计学发展成熟的重要标志。
根据未分组数据或分组数据计算众数时,只需要找 出出现次数最多的变量值即可。
【例11-1】
某次考试中考生的年龄分别为34,25,41,37,37, 29,35,37,30,34,40,求众数。
解:考生年龄的众数即为频数最高的年龄37。
【例11-2】
根据某单位员工职业资格等级分组资料(见表11-2)求众数。
要确定未分组资料的中位数,就要先将总体中各标志值 按数值大小排列,如有n个数值,则确定中位数的位置点公式 为Om=(n+1)/2。如果n是奇数,则居于中间位置的那个标 志值就是中位数;如果n是偶数,中位数则是中间两个位置的 标志值的算术平均数。
【例11-3】
二、 单变量、双变量和多变量统计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
1.06
2.56
1.93
2
0.98
2.42
1.80
3
0.85
2.35
1.68
4
0.96
2.55
1.34
5
0.98
2.65
2.55
13
1.05
2.85
2.42
14
1.20
3.02
2.55
15
1.03
3.25
2.33
Xi
1.020
S
2 i
0.0058
2.729 0.0886
2.043
0.1870
2
2
0.98
2.42
1.80
3
0.85
2.35
1.68
4
0.96
2.55
1.34
5
0.98
2.65
2.55
13
1.05
2.85
2.42
14
1.20
3.02
2.55
15
1.03
3.25
2.33
Xi
1.020
S
2 i
0.0058
2.729 0.0886
2.043
0.1870
8
X
' 1
=(X11
X12
= 0.284
0.456
1.000
rjk
l jk
l jjl kk
S0j.k623 S jjSkk
rjj 1
rjk rkj 0.284 0.623
14
总体均数向量
μ' (1
2
)
3
总体协方差矩阵
11 12 ··· 1m
Σ
21
22 ··· 2m
m1 m2 ··· mm 15
多元正态分布密度函数
Smmn
0.0802
Sjj
S
2 j
Xij Xi 2 / n 1 方差
n i1
0.0093 0.0802
Sjk Xij Xj Xij Xk /n 1 协方差
i1
0.1870
13
相关矩阵
r11 r12 …r1m
1.000 0.456
R= r21 r22 …r2m
rm1 rm2… rmm
f Χ
1
2
Σ 1 m
2
1 2
exp
1 2
Χ μΣ1 Χ μ
16
17
第一节 描述统计量
一、均数向量与离差矩阵 二、协方差矩阵 三、相关矩阵 四、多元正态分布
18
Thank you! 19
7
3.20
50
2
4.10
50
8
3.00
46
3
3.50
53
9
3.00
45
4
3.64
50
10
3.35
47
5
3.60
52
11
2.60
50
6
4.00
55
12
3.55
52
13
3.55
52
一个处理因素,观测指标为多变量。
5
第一节 描述统计量
一、均数向量与离差矩阵 二、协方差矩阵 三、相关矩阵 四、多元正态分布
X
X2
24 120 4400
44 220 11200
28 140 4800
52 260 14400
二个处理因素,观测指标为单变量。
740
3480 0
4
同一日出生的 13 名顺产婴儿生长发育状况
婴儿编号
孕期保健教育组 体重(kg) 身长(cm)
婴儿编号
对照组 体重(kg) 身长(cm)
1
3.05
50
1.123
n
l jj Xij Xj 2 离均差0.平13方0和1.123
i1
n
l jk
Xij Xj
Xij X2.k616 离均差积和
i1
12
协方差矩阵
S11 S12 …S1m 0.0058 0.0103
S= S21 S22 …S2m = 0.0093
Sm1 Sm2…
0.0103 0.0886
X13)=(1.06
2.56
1.93)
X1.8'2=0)(X21 X22 X23)=(0.98 2.42
Χ’(X1 X2 X3)=(1.020 2.729 2.043)
9
原始数据矩阵(matrix)
X11 X12 … X1m
X = X21 X22 … X2m
Xn1 Xn2 … Xnm
10
X=
X1
第14章
多变量数据 的统计描述与统计推断
Statistical Description & Inference
of Multivariate Data
第二军医大学卫生统计学教研室 张罗漫
1
表 14-1
15 名正常成年男子的血脂含量(mmol/L)
序号 甘油三脂(X1) 总胆固醇(X2) 高密度脂蛋白胆固醇(X3)
X2
X3
1.06 2.56 1.93
0.98 2.42 1.80
1.03 3.25 2.33
Χ’ (X1 X2 X3)=(1.020 2.729 2.043)
11
离差矩阵
l11 l12 … l1m
0.081 0.144
L= l21 l22 … l2m = 0.130
0.144 1.241
lm1 lm2… lmm
6
向量: n个随机变量X1,X2,…,Xn的整 体称n维向量
X1
X
X2
Xn
X ' X1 X1 Xn
转置(t正常成年男子的血脂含量(mmol/L)
序号 甘油三脂(X1) 总胆固醇(X2) 高密度脂蛋白胆固醇(X3)
1
1.06
2.56
1.93
处理
受
因素
试
单因素
对
多因素
象
观测 指标
单变量 多变量
3
家兔神经损伤缝合后的轴突通过率(%)
A(缝合方法) B(缝合后时间)
外膜缝合(a1)
1月(b1) 10
2月(b2) 30
10
30
40
70
50
60
10
30
束膜缝合(a2)
1月(b1) 10
2月(b2) 50
20
50
30
70
50
60
30
30
合计
x