一元一次不等式应用题汇总

合集下载

中考复习 一元一次(组)不等式应用(四大类型)

中考复习 一元一次(组)不等式应用(四大类型)

中考复习一元一次(组)不等式应用(四大类型)考点1 盈利问题1.(2021春•饶平县校级期末)八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.D.2.(磁县期末)现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.3.把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.()A.27本,7人B.24本,6人C.21本,5人D.18本,4人考点2 行程问题4.(2020春•嘉祥县期末)某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑()A.3分钟B.4分钟C.4.5分钟D.5分钟5.(2020春•濮阳期末)爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米或70米以外),下面是已知的一些数据,人员撤离速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,请问这次爆破的导火索至少多长才能确保安全?()A.100厘米B.101厘米C.102厘米D.103厘米6.(春•番禺区期末)张翔上午7:30出发,从学校骑自行车去县城,路程全长20km,中途因道路施工步行一段路他步行的平均速度是5km/h.(1)若张翔骑车的平均速度是15km/h,当天上午9:00到达县城,则他骑车与步行各用多少时间?(2)若张翔必须在当天上午9:00之前赶到县城,他的步行平均速度不变,则他骑车的平均速度应在什么范围内?7.(市北区二模)小颖和小华进行百米赛跑,小颖的平均速度是7m/s,小华的平均速度是6m/s,小颖让小华先跑10米.(1)求小颖何时追上小华;(2)求从什么时间开始,小颖到终点的距离不超过16米;(3)求小颖何时和小华相距5米.考点3 经济问题8.(春•金水区校级月考)某商品进价是6000元,标价是9000元,商店要求利润率不低于5%,需按标价打折出售,最低可以打()A.8折B.7折C.7.5折D.8.5折9.(2021•金水区校级开学)某商品进价是400元,标价是500元,商店要求利润不低于10%,需按标价打折出售,最多可以打()A.8折B.7折C.7.5折D.8.8折10.(春•荷塘区期末)已知某品牌的饮料有大瓶与小瓶装之分.某超市花了2100元购进一批该品牌的饮料共800瓶,其中,大瓶和小瓶饮料的进价及售价如表所示.大瓶小瓶进价(元/瓶) 3 2售价(元/瓶) 5 3(1)问:该超市购进大瓶和小瓶饮料各多少瓶?(2)当大瓶饮料售出了200瓶,小瓶饮料售出了100瓶后,商家决定将剩下的小瓶饮料的售价降低0.5元销售,并把其中一定数量的小瓶饮料作为赠品,在顾客一次性购买大瓶饮料时,每满2瓶就送1瓶小瓶饮料,送完即止.请问:超市要使这批饮料售完后获得的利润为1075元,那么小瓶饮料作为赠品送出多少瓶?11.(防城港)蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?青菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤)4 4.5(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)考点4 方案问题12.(武汉模拟)某自行车专卖店销售A,B两种型号的自行车,其进价与售价如表进价(元/辆)售价(元/辆)自行车A200250自行车B160200(1)一季度,自行车专卖店购进这两种型号的自行车共30辆,用去了5600元,并且全部售完,该自行车专卖店在该买卖中赚了元;(2)为了满足市场需求,二季度自行车专卖店决定用不超过9000元的资金采购A、B 两种型号的自行车共50辆,且自行车A的数量不少于自行车B的数量的,问自行车专卖店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案自行车专卖店赚钱最多?13.(资阳)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.14.(黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?培优特训专项2.2 一元一次(组)不等式应用(四大类型)考点1 盈利问题1.(2021春•饶平县校级期末)八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.D.【答案】D【解答】解:(x﹣1)位同学植树棵数为9(x﹣1),∵有1位同学植树的棵数不到8棵.植树的总棵数为(7x+9)棵,∴可列不等式组为:.故选:D.2.(磁县期末)现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.【答案】D【解答】解:∵若每间住4人,则还有19人无宿舍住,∴学生总人数为(4x+19)人,∵一间宿舍不空也不满,∴学生总人数﹣(x﹣1)间宿舍的人数在1和5之间,∴列的不等式组为:故选:D.3.把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.()A.27本,7人B.24本,6人C.21本,5人D.18本,4人【答案】C【解答】解:设有x名同学,则就有(3x+6)本书,由题意,得:0≤3x+6﹣5(x﹣1)<3,解得:4<x≤5.5,∵x为非负整数,∴x=5.∴书的数量为:3×5+6=21.故选:C.考点2 行程问题4.(2020春•嘉祥县期末)某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑()A.3分钟B.4分钟C.4.5分钟D.5分钟【答案】B【解答】解:设这人跑了x分钟,则走了(18﹣x)分钟,根据题意得:210x+90(18﹣x)≥2100,解得:x≥4,答:这人完成这段路程,至少要跑4分钟.故选:B.5.(2020春•濮阳期末)爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米或70米以外),下面是已知的一些数据,人员撤离速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,请问这次爆破的导火索至少多长才能确保安全?()A.100厘米B.101厘米C.102厘米D.103厘米【答案】D【解答】解:设这次爆破的导火索需要xcm才能确保安全,•7≥70x≥103.这次爆破的导火索至少103cm才能确保安全.故选:D.6.(春•番禺区期末)张翔上午7:30出发,从学校骑自行车去县城,路程全长20km,中途因道路施工步行一段路他步行的平均速度是5km/h.(1)若张翔骑车的平均速度是15km/h,当天上午9:00到达县城,则他骑车与步行各用多少时间?(2)若张翔必须在当天上午9:00之前赶到县城,他的步行平均速度不变,则他骑车的平均速度应在什么范围内?【答案】(1)骑车用了1.25小时,步行用了0.25小时,(2)大于15km/h.【解答】解:(1)设他骑车用了x小时,步行用了y小时,依题意得:,解得,答:他骑车用了1.25小时,步行用了0.25小时,(2)设骑车的平均速度为vkm/h,依题意得:1.25v+5×0.25>20,解得:v>15,答:骑车的平均速度大于15km/h.7.(市北区二模)小颖和小华进行百米赛跑,小颖的平均速度是7m/s,小华的平均速度是6m/s,小颖让小华先跑10米.(1)求小颖何时追上小华;(2)求从什么时间开始,小颖到终点的距离不超过16米;(3)求小颖何时和小华相距5米.【答案】(1)10秒(2)12秒开始(3)5秒【解答】解:(1)设经过x秒小颖追上小华,由题意得7x﹣6x=10解得:x=10答:经过10秒小颖追上小华.(2)设经过y秒后,小颖到终点的距离不超过16米,由题意得0≤100﹣7y≤16解得:12≤y≤14答:从12秒开始,小颖到终点的距离不超过16米.(3)设小颖追上小华之前,经a秒小颖和小华相距5米,7a﹣6a=10﹣5解得:a=5设小颖追上小华之后,经b秒小颖和小华相距5米,7b﹣6b=10+5解得:b=15(不合题意,舍去)答:经5秒小颖和小华相距5米.考点3 经济问题8.(春•金水区校级月考)某商品进价是6000元,标价是9000元,商店要求利润率不低于5%,需按标价打折出售,最低可以打()A.8折B.7折C.7.5折D.8.5折【答案】B【解答】解:设商店可以打x折出售此商品,根据题意可得:,解得:x≥7,故选:B.9.(2021•金水区校级开学)某商品进价是400元,标价是500元,商店要求利润不低于10%,需按标价打折出售,最多可以打()A.8折B.7折C.7.5折D.8.8折【答案】D【解答】解:设可以打x折,根据题意可得:500×﹣400≥400×10%,解得:x≥8.8,故选:D.10.(春•荷塘区期末)已知某品牌的饮料有大瓶与小瓶装之分.某超市花了2100元购进一批该品牌的饮料共800瓶,其中,大瓶和小瓶饮料的进价及售价如表所示.大瓶小瓶进价(元/瓶) 3 2售价(元/瓶) 5 3(1)问:该超市购进大瓶和小瓶饮料各多少瓶?(2)当大瓶饮料售出了200瓶,小瓶饮料售出了100瓶后,商家决定将剩下的小瓶饮料的售价降低0.5元销售,并把其中一定数量的小瓶饮料作为赠品,在顾客一次性购买大瓶饮料时,每满2瓶就送1瓶小瓶饮料,送完即止.请问:超市要使这批饮料售完后获得的利润为1075元,那么小瓶饮料作为赠品送出多少瓶?【答案】(1)大瓶饮料500瓶,小瓶饮料300瓶(2)50瓶【解答】解:(1)设该超市购进大瓶饮料x瓶,小瓶饮料y瓶,依题意,得:,解得:.答:该超市购进大瓶饮料500瓶,小瓶饮料300瓶.(2)设小瓶饮料作为赠品送出m瓶,依题意,得:(5﹣3)×500+(3﹣2)×100+(3﹣0.5﹣2)×(300﹣100﹣m)﹣2m=1075,解得:m=50.答:小瓶饮料作为赠品送出50瓶.11.(防城港)蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?青菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤)4 4.5(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)【答案】(1)赚250元钱(2)不低于4.5元/市斤【解答】解:(1)设批发青菜x市斤,西兰花y市斤;根据题意得:,解得:,即批发青菜100市斤,西兰花100市斤,∴100×(4﹣2.8)+100×(4.5﹣3.2)=120+130=250(元);答:当天售完后老王一共能赚250元钱;(2)设给青菜定售价为a元/市斤;根据题意得:100×(1﹣10%)a+100×4.5﹣600≥250,解得:a≥≈4.44;答:给青菜定售价为不低于4.5元/市斤.考点4 方案问题12.(武汉模拟)某自行车专卖店销售A,B两种型号的自行车,其进价与售价如表进价(元/辆)售价(元/辆)自行车A200250自行车B160200(1)一季度,自行车专卖店购进这两种型号的自行车共30辆,用去了5600元,并且全部售完,该自行车专卖店在该买卖中赚了元;(2)为了满足市场需求,二季度自行车专卖店决定用不超过9000元的资金采购A、B 两种型号的自行车共50辆,且自行车A的数量不少于自行车B的数量的,问自行车专卖店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案自行车专卖店赚钱最多?【答案】(1)1400 (2)三种方案(3)当a=25时,W最大,此时购进自行车A、自行车B各25台.【解答】解:(1)设自行车专卖店购进自行车Ax辆,自行车By辆,依题意得,解得,所以,20×(250﹣200)+10×(200﹣160)=1400(元).答:自行车专卖店在该买卖中赚了1400元;(2)设购买自行车Aa台,则购买自行车B(50﹣a)台,依题意得,解得22≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①购买自行车A23台,则购买自行车B27台;②购买自行车A24台,则购买自行车B26台;③购买自行车A25台,则购买自行车B25台.(3)设自行车专卖店赚钱数额为W元,当a=23时,W=23×(250﹣200)+27×(200﹣160)=2230;当a=24时,W=24×(250﹣200)+26×(200﹣160)=2240;当a=25时,W=25×(250﹣200)+25×(200﹣160)=2250;综上所述,当a=25时,W最大,此时购进自行车A、自行车B各25台.故答案为:1400.13.(资阳)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.【答案】(1)一套课桌凳和一套办公桌椅的价格分别为120元、200元(2)略【解答】解:(1)设一套课桌凳和一套办公桌椅的价格分别为x元、y元,得:,解得∴一套课桌凳和一套办公桌椅的价格分别为120元、200元;(2)设购买办公桌椅m套,则购买课桌凳20m套,由题意得:16000≤80000﹣120×20m﹣200×m≤24000,解得:,∵m为整数,∴m=22、23、24,有三种购买方案:方案一方案二方案三课桌凳(套)440460480办公桌椅(套)22232414.(黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【答案】(1)饮用水和蔬菜分别为200件和120件(2)①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.。

一元一次不等式15道应用题

一元一次不等式15道应用题

一、综合题(共15题;共160分)1.(2015•凉山州)2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多亿元.(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案哪种租车方案费用最低,最低费用是多少》2.(2015•攀枝花)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件!(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.3.(2015•钦州)某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.|(1)每个气排球和每个篮球的价格各是多少元(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低最低费用是多少元》4.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案&5.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要万元,购买2台电脑和1台电子白板需要万元.(1)求每台电脑、每台电子白板各多少万元(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低./"6.某超市销售甲、乙两种商品,五月份该超市第一次购进甲商品50件,乙商品30件,用去1400元,第二次购进甲商品40件,乙商品40件,用去1600元.(1)求两种商品进价分别是多少元.(2)由于商品受到市民欢迎,六月份决定再购进甲乙两种商品共80件,且进价不变,甲种商品售价15元,乙种商品售价40元,该超市为使甲、乙两种商品共80件的总利润(利润=售价﹣进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.^7.师生积极为地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,该厂生产的帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程

一元一次不等式解应用题一、某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B 种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。

(1)试确定A种类型店面的数量?(2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间?解:设A种类型店面为a间,B种为80-a间根据题意28a+20(80-a)≥2400×85%28a+1600-20a≥20408a≥440a≥55A型店面至少55间设月租费为y元y=75%a×400+90%(80-a)×360=300a+25920-324a=25920-24a很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:1、每亩地水面组建为500元,。

2、每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;3、每公斤蟹苗的价格为75元,其饲养费用为525元,当年可或1400元收益;4、每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;问题:1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?解:1、水面年租金=500元苗种费用=75x4+15x20=300+300=600元饲养费=525x4+85x20=2100+1700=3800元成本=500+600+3800=4900元收益1400x4+160x20=5600+3200=8800元利润(每亩的年利润)=8800-4900=3900元2、设租a亩水面,贷款为4900a-25000元那么收益为8800a成本=4900a≤25000+250004900a≤50000a≤50000/4900≈10.20亩利润=3900a-(4900a-25000)×10%3900a-(4900a-25000)×10%=366003900a-490a+2500=366003410a=34100所以a=10亩贷款(4900x10-25000)=49000-25000=24000元三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A 型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?解:设还需要B型车a辆,由题意得20×5+15a≥30015a≥200a≥40/3解得a≥13又1/3 .由于a是车的数量,应为正整数,所以x的最小值为14.答:至少需要14台B型车.四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。

一元一次不等式应用题集锦

一元一次不等式应用题集锦

() A.11辆 B.10辆
C.9辆
D.8辆
7、 (2001荆州)在双休日,某公司决定组织48名员工到附近一水上 公园坐船游园,公司先派一个人去了解船只的租金情况,这个人 看到的租金价格表如下:
船型
每只限载人数 (人)
租金 (元)
大船 5
3
小船 3
2
那么,怎样设计租船方案才能使所付租金最少?(严禁超载)
了节约资金应选择哪种方案?
18、 某商店需要购进一批电视机和洗衣机,根据市场调查,决定电 视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的 进价和售价如下表:
类 别
电视机 洗衣机
进价(元/ 台)
1800
1500
售价(元/ 台)
2000
1600
计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800 元.
(1)、求y与x之间的函数关系式,并画出函数的图象。 (2)、求弹簧所挂物体的最大质量是多少?
29、 某人点燃一根长度为25㎝的蜡烛,已知蜡烛每小时缩短5㎝, 设xh后蜡烛剩下的长度为y㎝。(1)、求y与x的函数关系式。 (2)、几个小时以后,蜡烛的长度不足10㎝?
30、 一艘轮船以20km/h的速度从甲港驶往160km远的乙港,2h后, 一艘快艇以40km/h的速度也从甲港驶往乙港。分别列出轮船和 快艇行驶的路程y km与时间x h的函数关系式,并在直角坐标 系中画出函数的图象,观察图象回答下列问题:(1)何时轮 船行驶在快艇的前面?(2)何时快艇行驶在轮船的前面? (3)哪一艘船先驶过60km?哪一艘船先驶过100km?
③每千克蟹苗的价格为75元,其饲养费用为525元,当年可获1 400 元收益;
④每千克虾苗的价格为15元,其饲养费用为85元,当年可获160元 收益.

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程1.某水产品市场管理部门计划建造2400平方米的大棚,内设有A种和B种店面各80间。

A种店面的平均面积为28平方米,月租费为400元;B种店面的平均面积为20平方米,月租费为360元。

全部店面的建造面积不低于大棚总面积的85%。

现在要确定A种店面的数量。

解:设A种店面为a间,B种店面为80-a间。

根据题意,28a+20(80-a)≥2400×85%,化简得8a≥440,即a≥55.因此,A种店面至少应有55间。

为使店面的月租费最高,设月租费为y元,根据题意可得y=75%a×400+90%(80-a)×360=300a+-24a=-24a。

因为a≥55,所以当a=55时,y取最大值,即月租费最高为元。

2.水产养殖户XXX计划进行大闸蟹与河虾的混合养殖。

每亩地水面租金为500元,每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗。

每公斤蟹苗的价格为75元,饲养费用为525元,当年可获得1400元收益;每公斤虾苗的价格为15元,饲养费用为85元,当年可获得160元收益。

现在要求出每亩水面虾蟹混合养殖的年利润,并确定XXX应租多少亩水面,向银行贷款多少元,才能使年利润达到元。

解:每亩水面的成本包括水面年租金、苗种费用和饲养费用,即成本=500+75×4+15×20+525×4+85×20=4900元。

每亩水面的收益为1400×4+160×20=8800元。

因此,每亩水面的年利润为8800-4900=3900元。

设租a亩水面,贷款为4900a-元。

根据题意,收益为8800a,成本不超过元,即4900a≤,解得a≤10.2亩。

为使年利润达到元,可列出方程3900a+0.1(4900a-)=,解得a≈13.08亩,即XXX应租13亩水面,向银行贷款约为元。

某手机生产厂家决定对一款原售价为2000元的彩屏手机进行调价,按新单价的八折优惠出售。

一元一次不等式应用题汇总

一元一次不等式应用题汇总

不等式应用练习题1、某商店第一天以每件10元的价格购进某商品15件,第二天又以12元的价格购进同种商品35件,然后以相同的价格卖出,如果销售这些商品时,至少要获得10%的利润,这种商品每件的售价应不低于多少元?2、一家三口准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,小孩按半价优惠”,乙旅行社告知:“家庭旅游可按团体计价,即每人均按全价的8折收费”,若这两家旅行社每人的原价相同,那么可以算出()A.甲比乙优惠B.乙比甲优惠C.甲与乙相同D.与原票价有关3、甲乙两家超市以相同的价格出售同样的商品.为吸引顾客各自推出不同的优惠方案.甲超市累计购买商品超出500元之后.超出部分按原价八五折优惠.在乙超市累计购买商品超出300元之后.超出部分按原价九折优惠.(1)是用含x的代数式分别表示,顾客在两家超市购物所付的费用.(2)试比较顾客到哪家超市购物更优惠,并说明你的理由.4、按国家有关规定,个人发表文章、出版图书获得的稿费的纳税计算方法是:(1)稿费不高于4000元的不纳税;国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:(1)稿费不高于800元的不拿税;(2)稿费高于800元而低于4000元的应缴纳超过800元那部分稿费的14%的税;(3)稿费等于或高于4000元的应缴纳全部稿费的11%的税。

王老师获得一笔稿费,并交纳个人所得税不超过420元,问他这笔稿费最多是多少元?5、今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?6、某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案?7、某射击运动员在一次训练中,打靶10次的成绩为89环,已知前6次射击的成绩为50环,则他第七次射击时,击中的环数至少是______环.8、某县出租车计费规则:2公里以内3元,超过两公里部分另按每公里1.2元收费(不足1公里按1公里收费),李立同学从家出发坐出租车到新华书店购书,下车时付费9元,那么李立家离书店最多有几公里?9、甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊买了两条鱼,平均每条b元,后来他又以每条a+b/2元的价格把鱼全部地卖给了乙,结果发现赔钱,你知道为什么吗?10、为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动.星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序.若每一个路口安排4人,那么剩下78人;若每一个路口安排8人,那么最后一个路口不足8人,但不少于4人,求这个中学共选派值勤学生多少人?共在多少个交通路口安排值勤?11、足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一支足球队在某个赛季比赛共需14场,现已比赛8场,输了一场,得17分,请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛的分析,这支球队打满14场比赛,得分不低于29分,就可达到预期的目的,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期的目标?12、2012年我市某县筹备20周年县庆,园林部门决定利用现有的3 490盆甲种花卉和2 950盆乙种花卉搭配两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个种造型需甲种花卉80盆,乙种花卉40盆,搭配一个种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个种造型的成本是800元,搭配一个种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?13、某园林的门票每张10元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C 三类,A类年票每张120元,持票者进人园林时,无需再购买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式;(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算.14、某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米,每增加1千米,加收2.4元(不足1千米接1千米计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x千米,那么x的最大值是?15、某次数学测验中共有16道题目,评分方法:答对一道得6分,答错一道扣3分,不答得0分.某学生有两道题未答那么这个同学至少要答对多少道题,成绩才能在60分以上?16、娃哈哈矿泉水每瓶售价1.2元,现甲、乙两家超市分别给出优惠政策,甲商场全部九折,乙商场20瓶以上的部分8折,若你是消费者,选哪家商场比较合适?.17、某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数\19、某射击运动员在一次比赛中前8次射击共中72环,如果他要打破89环(10次射击)的记录,第九次射击不能少于多少环?20、学校将若干间宿舍分配给七年级一班女生住宿,已知该班女生人数少于35人。

解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习(80 题、附答案)(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)x ﹣≤2﹣.(3)2(x﹣1)+2<5﹣3(x+1)(4).(5)﹣<1;(6)3﹣(3y﹣1)≥(3+y)(7)x ﹣≥﹣1(8)﹣>﹣1 (9)﹣1≤.(10)﹣3x+2≤8.(11)﹣3x﹣4≥6x+2.(12)﹣8x﹣6≥4(2﹣x)+3.(13)(14)(15).(16)2(x﹣1)<﹣3(1﹣x)(17)≤﹣1 (18)10﹣3(x﹣2)≤2(x+1)(19)﹣2≤.(20)﹣3x>2(21)x >﹣x﹣2(22)3(x+1)<4(x﹣2)﹣3 (23)≤1.(24)≥;(25)﹣>﹣2.(26)5x﹣4>3x+2(27)4(2x﹣1)>3(4x+2)(28)≤(29)﹣2≥.(30)4(x﹣1)+3≥3x;(31)2x﹣3<;(32)≤1.(33)3[x﹣2(x﹣2)]>6+3 (34)(35)(36).(37)3(x+2)﹣8≥1﹣2(x﹣1);(38)>;(39)≤;(40)<.(41)3(2x﹣3)≥2(x﹣4)(42)≥0(43)7(1﹣2x)>10﹣5(4x﹣3)(44).(45)﹣<0;(46)1﹣≤﹣x.(47)5x﹣12≤2(4x﹣3);(48)≥x﹣2.(49)4x﹣2(3+x)<0 (50)﹣≥0.(51)3x﹣2<﹣4(x﹣5);(52)﹣1<<2.(53);(54).(55)5x+15>4x﹣13(56)≤.(57)7(4﹣x)﹣2(4﹣3x)<4x;(58)10﹣4(x﹣3)≥2(x﹣1);(59)3[x﹣2(x﹣2)]>x﹣3(x﹣3);(60)(2x﹣1)+x﹣1+(1﹣2x)≤0;(61)﹣y ﹣;(62).(63)x(x+1)>(x﹣2)2;(64).(65)3(y﹣3)<7y﹣4(66)﹣21<6﹣3x≤9.(67);(68);(69)0.5x+3(1﹣0.2x)≥0.4x﹣0.6;(70)x ﹣<1﹣;(71)2[x﹣(x﹣1)+2]<1﹣x;(72).(73)3x﹣7<5x﹣3;(74).(75)(76)(77)≤.(78)3x﹣9≤0;(79)2x﹣5<5x﹣2;(80)2(﹣3+x)>3(x+2);参考答案:(1)3(x+2)﹣8≥1﹣2(x﹣1),3x+6﹣8≥1﹣2x+2,3x+2x≥1+2﹣6+8,5x≥5,x≥1;(2)x ﹣≤2﹣,6x﹣3(x﹣1)≤12﹣2(x+2),6x﹣3x+3≤12﹣2x﹣4,3x+2x≤8﹣3,5x≤5,x≤1(3)2(x﹣1)+2<5﹣3(x+1)2x﹣2+2<5﹣3x﹣3,2x+3x<5﹣3+2﹣2,5x<2,x,(4),3(1+x)≤2(2x﹣1)+6,3+3x≤4x﹣2+6,3x﹣4x≤﹣2+6﹣3,﹣x≤1,x≥﹣1(5)去分母得,2x﹣3(x﹣1)<6,去括号得,2x﹣3x+3<6,移项、合并同类项得,﹣x<3,把x的系数化为1得,x>﹣3.(6)去分母得,24﹣2(3y﹣1)≥5(3+y),去括号得,24﹣6y+2≥15+5y,移项、合并同类项,﹣11y≥﹣11,把x的系数化为1得,y≤1(7)去分母得,6x﹣2(2x﹣1)≥3(2+x)﹣6去括号得,6x﹣4x+2>6+3x﹣6,移项得,6x﹣8x﹣3x>6﹣6﹣2,合并同类项得,﹣5x>﹣2,把x的系数化为1得,x <﹣,(8)去分母得,6(2x﹣1)﹣4(2x+5)>3(6x﹣1),去括号得,12x﹣6﹣8x﹣20>18x﹣3,移项得,12x﹣8x﹣18x>﹣3+6+20,合并同类项得,﹣14x>23,把x的系数化为1得,x <﹣,(9)分子与分母同时乘以10得,﹣1≤,去分母得,2(2x﹣1)﹣6≤3(5x+2),去括号得,4x﹣2﹣6≤15x+6,移项得,4x﹣15x≤6+2+6,合并同类项得,﹣11x≤14,把x的系数化为1得,x ≥﹣(10)移项合并得:﹣3x≤6,解得:x≥﹣2,(11)移项合并得:9x≤﹣6,解得:x ≤﹣,(12)去括号得:﹣8x﹣6≥8﹣4x+3,移项合并得:﹣4x≥17,解得:x ≤﹣(13)去分母得:4x﹣8>6x+2,移项合并得:﹣2x>10,解得:x<﹣5;(14)去分母得:2x﹣4x+1<3,移项合并得:﹣2x<2,解得:x>﹣1;(15)去分母得:12+3x﹣6≥8x+8,移项合并得:5x≥﹣2,解得:x ≤﹣(16)去括号得,2x﹣2≤﹣3+3x,移项得,2x﹣3x≤﹣3+2,合并同类项得,﹣x≤﹣1把x的系数化为1得,x≥1,(17)去分母得,3(2﹣3x)≤2x﹣1﹣6,去括号得,6﹣9x≤3x﹣7,移项得,﹣9x﹣3x≤﹣7﹣6,合并同类项得,﹣12x≤13,x的系数化为1得,x ≥﹣,(18)去括号得,10﹣3x+6≤2x+2,移项得,﹣3x﹣2x≤2﹣10﹣6,合并同类项得,﹣5x≤﹣24把x的系数化为1得,x ≥﹣,(19)去分母得,2(1﹣5x)﹣24≤3(3﹣x)去括号得,2﹣10x﹣24≤9﹣3x,移项得,﹣10x+3x≤9﹣2+24,合并同类项得,﹣7x≤31,x的系数化为1得,x ≥﹣(20)﹣3x>2,解得:x <﹣;(21)去分母得:x>﹣2x﹣6,解得:x>﹣2;(22)去括号得:3x+3<4x﹣8﹣3,解得:x>14;(23)去分母得:2(2x﹣1)﹣3(5x+1)≤6,去括号得: 4x﹣2﹣15x﹣3≤6,解得: x≥﹣1(24)去分母得,3(x+4)≥﹣2(2x+1),去括号得,3x+12≥﹣4x﹣2,移项、合并同类项得,7x≥﹣14,把x的系数化为1得,x ≥﹣.(25)去分母得,4(x﹣1)﹣3(2x+5)>﹣24,去括号得,4x﹣4﹣6x﹣15>﹣24,移项、合并同类项得,﹣2x>﹣5,把x的系数化为1得,x <(26)移项得,5x﹣3x>2+4,合并同类项得,2x>6,把x的系数化为1得,x>3.(27)去括号得,8x﹣4>12x+6,移项得,8x﹣12x>6+4,合并同类项得,﹣4x>10,把x的系数化为1得,x<﹣.(28)去分母得,3(4x﹣1)≤1﹣5x,去括号得,12x﹣3≤1﹣5x,移项得,12x+5x≤1+3,合并同类项得,17x≤4,把x的系数化为1得,x ≤.(29)去分母得,2(5x+1)﹣24≥3(x﹣5),去括号得,10x+2﹣24≥3x﹣15,移项得,10x﹣3x≥﹣15﹣2+24,合并同类项得,7x≥7,把x的系数化为1得,x≥1(30)去括号得,4x﹣4+3≥3x,移项得,4x﹣3x≤4﹣3,合并同类项得,x≤1,(31)去分母得,3(2x﹣3)<x+1,去括号得,6x﹣9<x+1,移项得,6x﹣x<1+9,合并同类项得,5x<10,x的系数化为1得,x<2,(32)去分母得,2(2x﹣1)﹣(9x+2)≤6,去括号得,4x﹣2﹣9x﹣2≤6,移项得,4x﹣9x≤6+2+2,合并同类项得,﹣5x≤10,x的系数化为1得,x≥﹣2(33)3[x﹣2(x﹣2)]>6+3x解:去小括号,3[x﹣3x+4]>6+3x合并,3[﹣x+4]>6+3x去中括号,﹣3x+12>6+3x移项,合并,﹣6x>﹣6化系数为1,x<1.(34)解:去分母,2(2x﹣5)≤3(3x+1)﹣8x去括号,4x﹣10≤9x+3﹣8x移项合并,3x≤13化系数为1,x ≤.(35)解:去分母,3(2﹣x)﹣3(x﹣5)>2(﹣4x+1)+8 去括号,6﹣9x﹣3x+15>﹣8x+2+8移项合并,﹣4x>﹣11化系数为1,x <.(36)解:利用分数基本性质化小数分母为整数去括号,4x﹣1﹣10x+7>2﹣4x移项合并,﹣2x>﹣4化系数为1,x<2(37)去括号,得:3x+6﹣8≥1﹣2x+2,移项、合并同类项,得:5x≥5,系数化成1得:x≥1;(38)去分母,得:3(x﹣3)﹣6>2(x﹣5),去括号,得:3x﹣9﹣6>2x﹣10,移项、合并同类项得:x>5;(39)去分母,得:6x﹣3(x﹣1)≤12﹣2(x+2),去括号,得:6x﹣3x+3≤12﹣2x﹣4,移项、合并同类项得:5x≤5系数化成1得:x≤1;(40)去分母,得:6x﹣3x<6+x+8﹣2(x+1),去括号,得:6x﹣3x<6+x+8﹣2x﹣2,移项得:6x﹣3x﹣x+2x<6﹣2+8合并同类项得:4x<12系数化成1得:x<3(41)去括号,得6x﹣9≥2x﹣8,移项,得6x﹣2x≥﹣8+9,合并同类项,得4x≥1,两边同除以4,得x ≥,(42)去分母,得4﹣8x≥0,移项得﹣8x≥﹣4,两边同除以﹣8,得x ≤,(43)去括号,得7﹣14x>10﹣20x+15,移项,得﹣14x+20x>10+15﹣7,合并同类项得6x>18,两边同除以6得x>3,(44)去分母,得2x+6<﹣6x﹣3(x+10),去括号,得2x+6<﹣6x﹣3x﹣30,移项,得2x+6x+3x<﹣30﹣6,合并同类项,得11x<﹣36,两边同除以11得x <﹣(45)去分母得:2(2x+1)﹣(5﹣2x)<0,去括号得:4x+2﹣5+2x<0,移项合并得:6x<3,解得:x <,表示在数轴上,如图所示:;(46)去分母得:6﹣2(x﹣1)≤3(2x+3)﹣6x,去括号得:6﹣2x+2≤6x+9﹣6x,移项合并得:﹣2x≤1,解得:x ≥﹣(47)去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6,x的系数化为1得,x≥﹣2;(48)去分母得,x﹣3≥2(x﹣2),去括号得,x﹣3≥2x﹣4,移项得,x﹣2x≥﹣4+3,合并同类项得,﹣x≥﹣1,x的系数化为1得,x≤1(49)去括号得4x﹣6﹣2x<0,移项、合并同类项得2x<6,系数化为1得x<3;这个不等式的解集在数轴上表示如图1:(50)去分母得3(2x﹣3)﹣4(x﹣2)≥0,去括号得6x﹣9﹣4x+8≥0,移项、合并同类项得2x≥1,系数化为1得x≥0.5(51)3x﹣2<﹣4(x﹣5);去括号得3x﹣2<﹣4x+20,移项得3x+4x<20+2合并同类项得7x<22未知项的系数化为1得x <,(52)﹣1<<2,去分母得﹣3<2﹣x<6,移项得﹣3﹣2<﹣x<6﹣2,合并同类项得﹣5<﹣x<4未知项的系数化为1得﹣4<x<5(53)去分母得,2(x﹣1)﹣3(x+4)>﹣12,去括号得,2x﹣2﹣3x﹣12>﹣12,移项、合并同类项得﹣x<2,化系数为1得x<﹣2.(54)去分母得,(x﹣2)﹣3(x﹣1)<3,去括号得,x﹣2﹣3x+3<3,移项、合并同类项得﹣2x<2,化系数为1得x>﹣120.解:(55)移项,得:5x﹣4x>﹣13﹣15,合并同类项,得:x>﹣28;(56)去分母,得:2(2x﹣1)≤3x﹣4,去括号,得:4x﹣2≤3x﹣4,移项,得:4x﹣3x≤﹣4+2,合并同类项,得:x≤﹣2(57)去括号得,28﹣7x﹣8+6x<4x,移项得,﹣7x+6x﹣4x<8﹣28,合并同类项得,﹣5x<﹣20,系数化为1得,x>4.(58)去括号得,10﹣4x+12≥2x﹣2,移项得,﹣4x﹣2x≥﹣2﹣10﹣12,合并同类项得,﹣6x≥﹣24,系数化为1得,x≤4.(59)去括号得,3x﹣6x+12>x﹣3x+9,移项得,x﹣6x﹣x+4x>9﹣12,合并同类项得,﹣3x>﹣3,系数化为1得,x<1.(60)去分母得,(2x﹣1)+3x﹣3+(1﹣2x)≤0,去括号得,2x﹣1+3x﹣3+1﹣2x≤0,移项得,2x+3x﹣2x≤3+1﹣1,合并同类项得,3x≤3,系数化为1得,x>1.(61)去分母得,﹣10y﹣5(y﹣1)≥20﹣2(y+2),去括号得,﹣10y﹣5y+5≥20﹣2y﹣4,移项得,﹣10y﹣5y+2y≥20﹣4﹣5,合并同类项得,﹣13y≥11,系数化为1得,y ≤﹣.(62)去分母得,2(3x+2)﹣(7x﹣3)>16,去括号得,6x+4﹣7x+3>16,移项得,6x﹣7x>16﹣4﹣3,合并同类项得,﹣x>9,系数化为1得,x<﹣9(63)由原不等式,得x2+x>x2﹣4x+4,移项、合并同类项,得5x>4,不等式两边同时除以5,得x >,即原不等式的解集是x >;(64)由原不等式,得﹣17x+1<12﹣10x,移项、合并同类项,得﹣7x<11,不等式两边同时除以﹣7(不等号的方向发生改变),得x >﹣,即原不等式的解集是x >﹣(65)去括号,得:3y﹣9<7y﹣4,移项,得:3y﹣7y<9﹣4,即﹣4y<5,;(66)﹣21<6﹣3x≤9两边同时减去6再除以﹣3,不等号的方向改变,得:﹣1≤x<9(67)去分母得,2(1﹣2x)≥4﹣3x,去括号得,2﹣4x≥4﹣3x,移项得,﹣4x+3x≥4﹣2,合并同类项得,﹣x≥2,化系数为1得,x≤﹣2;(68)去分母得,2(x+4)﹣3(3x﹣1)<6,去括号得,2x+8﹣9x+3<6,移项得,2x﹣9x<6﹣8﹣3,合并同类项得,﹣7x<﹣5,化系数为1得,x >;(69)去括号得,0.5x+3﹣0.6x≥0.4x﹣0.6,移项得,0.5x﹣0.6x﹣0.4x≥﹣0.6﹣3,合并同类项得,﹣0.5x≥﹣3.6,化系数为1得,x≤7.2.(70)去分母得,6x﹣3x﹣(x+8)<6﹣2(x+1),去括号得,6x﹣3x﹣x﹣8<6﹣2x﹣2,移项得,6x﹣3x﹣x+2x<6﹣2+8,合并同类项得,4x<12,化系数为1得,x<3;(71)去括号得,2x﹣2x+2+4<1﹣x,移项得,2x﹣2x+x<1﹣2﹣4,合并同类项得,x<﹣5;(72)去分母得,2(2x﹣1)﹣3(5x+1)≤6,去括号得,4x﹣2﹣15x﹣3≤6,移项得,4x﹣15x≤6+2+3,合并同类项得,﹣11x≤11,化系数为1得,x≥﹣1(73)移项合并得:﹣2x<4,解得:x>﹣2;(74)去分母得:3(x+5)﹣2(2x+3)≥12,去括号得:3x+15﹣4x﹣6≥12,移项合并得:﹣x≥3,解得:x≤﹣3(75)原不等式的两边同时乘以6,得2x+6>21﹣3x,移项,合并同类项,得5x>15,不等式的两边同时除以5,得x>3,∴原不等式的解集是x>3.(76)原不等式的两边同时乘以6,得8x+2≤14﹣x,移项,合并同类项,得9x≤16,不等式的两边同时除以9,得x≤;所以,原不等式的解集是x≤;(77)原不等式的两边同时乘以6,得8﹣2x≤9,移项,合并同类项,得﹣2x≤1,不等式的两边同时除以﹣2,得x≥﹣,所以,原不等式的解集是x≥﹣(78)移项得,3x≤9,x的系数化为1得,x≤3.(79)移项得,2x﹣5x<﹣2+5,合并同类项得,﹣3x<3,把x的系数化为1得,x>﹣1.。

一元一次不等式应用题专题

一元一次不等式应用题专题

一元一次不等式应用题专题(附答案)1、某校王校长暑假将带领该校市级三好学生去北京旅游。

甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元) ①设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式) ②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。

解:设设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,根据题意,得①y甲=1200+1200×50%×x=1200+600xy乙=(x+1)×1200×60%=720(x+1)=720x+720②当学生数是多少时,两家旅行社的收费一样?当y甲=y乙时,即1200+600x=720x+720120x=480x=4所以,当学生数为4人时,两家旅行社的收费一样!③就学生数x讨论哪家旅行社更优惠。

若y甲>y乙,即1200+600x>720x+720120x<480x<4,此时乙旅行社便宜。

若y甲<y乙,即1200+600x<720x+720解得,x>4,此时甲旅行社便宜。

答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠。

2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。

解:设到第x个月李明的存款超过王刚的存款,根据题意,得600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=5答:到第5个月李明的存款超过王刚的存款。

3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。

一元一次不等式组应用题专题

一元一次不等式组应用题专题

• • • • •
解:依题意,甲店B型产品有(70﹣x)件,乙店A型有(40﹣x)件,B型有(x﹣10)件,则 (1)W=200x+170(70﹣x)+160(40﹣x)+150(x﹣10)=20x+16800. 解 得10≤x≤40.(2分) 由
• • • • • • • • • • •
(2)由W=20x+16800≥17560, ∴x≥38 . ∵ 10≤x≤40 ∴38≤x≤40,x=38,39,40. ∴有三种不同的分配方案. ①x=38时,甲店A型38件,B型32件,乙店A型2件,B型28件; ②x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件; ③x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件. (3)依题意:W=(200﹣a)x+170(70﹣x)+160(40﹣x)+150(x﹣10)=(20﹣a) x+16800. ①当0<a<20时,x=40,即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达 到最大; ②当a=20时,10≤x≤40,符合题意的各种方案,使总利润都一样; ③当20<a<30时,x=10,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达 到最大.(8分)
• 3、(2013•湛江)某工厂现有甲种原料280kg, 乙种原料190kg,计划用这两种原料生产A,B 两种产品50件,已知生产一件A产品需甲种原料 7kg、乙种原料3kg,可获利40可获利350 元. • (1)请问工厂有哪几种生产方案? • (2)选择哪种方案可获利最大,最大利润是多 少?
• • • •
解:(1)60﹣x﹣y; (2)由题意,得900x+1200y+1100(60﹣x﹣y)=61000, 整理得y=2x﹣50. (3)①由题意,得P=1200x+1600y+1300(60﹣x﹣y) ﹣61000﹣1500, • 整理得P=500x+500. • ②购进C型手机部数为:60﹣x﹣y=110﹣3x.根据题意列不等

一元一次不等式组应用题及答案

一元一次不等式组应用题及答案

一元一次不等式组应用题及答案一元一次不等式应用题一.分配问题:6.一群女生住若干家间宿舍,每间住4人,剩下191.把若干颗花生分给若干只猴子。

如果每只猴子分3人无房住;每间住6人,有一间宿舍住不满。

颗,就剩下8颗;如果每只猴子分5颗,那么最后一(1)如果有x间宿舍,那么可以列出关于x的不等式组:只猴子虽分到了花生,但不足5颗。

问猴子有多少只,花生有多少颗?2.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼缺乏3只。

问有笼多少个?有鸡多少只?5.用若干辆载重量为8吨的汽车运一批货色,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8 吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?(2)可能有多少间宿舍、多少逻辑学生?你得到几个解?它符合题意吗?2、其他问题1.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40,求这个两位数2.一次知识竞赛共有15道题。

竞赛规则是:答对1题记8分,答错1题扣4分,不答记分。

XXX有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题?3.某公司需刻录一批光盘(总数不超过100张),若请专业公司刻录,每张需10元(包括空白光盘费);若公司自刻,除设备租用费200元以外,每张还需成本5元(空白光盘费)。

问刻录这批光盘,是请专家公司刻录费用省,还是自刻费用省?4.考试共有25道选择题,做对一题得4分,做错一题减2分,不做得分,若XXX想确保考试成绩在60分以上,那么,他至少做对X题,应满足的不等式是什么?5.有红、白颜色的球若干个,已知白球的个数比红球少,但白球的两倍比红球多,若把每个白球都记作数2,每一个红球都记作数3,则总数为60,求白球和红球各几个?三、方案选择与设计1.某厂有甲、乙两种原料配制成某种饮料,已知这两种质料的维生素C含量及购买这两种质料的价格如下表:原料甲种原维生素C及价格料乙种原料维生素C/(单位/千克)原料价格/(元/千克)84现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求购买甲、乙两种原料的费用不超过72元,(1)设需用x千克甲种原料,写出x应满足的不等式组。

一元一次不等式(销售问题)应用题专题(附答案)

一元一次不等式(销售问题)应用题专题(附答案)

一元一次不等式(销售问题)应用题专题(销售问题)1、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。

(1)试求该商品的进价和第一次的售价;(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?解:(1)设进价是x元, (一件商品)(1-10%)×(x+30)=x+18x=90第一次的售价x+30=90+30=120该商品的进价和第一次的售价分别是90元和120元(2)设剩余商品售价应不低于y元,(90+30)×m×65%+(90+18)×m×25%+y×m×(1-65%-25%)≥90×(1+25%) ×my≥75剩余商品的售价应不低于75元2.水果店进了某中水果1t,进价是7元/kg。

售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售。

如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?解:方法一:设按原价的x折出售所以:1000×1/2×10+1000×1/2×10×x/10>=7×1000+20005000+500x>=90005x>=40x>=8所以至多打8折方法二:1.货款:7.00*1000=7000.00元2、已销售产生的利润:(10.00*500)-(7.00*500)=5000.00-3500.00=1500.00元3、剩余商品需要产生的利润:2000-1500.00=500.00元4、产生利润需要的单价:7.00+500/500=8元5、需要在10元基础上打折:8/10=0.8,也就是八折3.“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克1.5元,销售中有6%的苹果损耗,商家把售价至少定为每kg多少元,才能避免亏本?解:设这批苹果有 a千克,商家把售价至少定为每千克 x元a(1-6%)×x≥a×1.5解得:x≥1.60(哟等于)2、某电影院暑假向学生优惠开放,每张票2元。

一元一次不等式(组)应用题及练习(含答案)

一元一次不等式(组)应用题及练习(含答案)

一元一次不等式组的典型应用题例1.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.2、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。

一元一次不等式组应用题汇总

一元一次不等式组应用题汇总

一元一次不等式组应用题汇总1、某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:沼气池修建费用(万元/个)可供使用户数(户/个)占地面积(m2/个)A型 3 20 48B型 2 3 6 政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)用含有x的代数式表示y;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.2、学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:一等奖二等奖三等奖1盒福娃和1枚徽章1盒福娃1枚徽章用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:(1)求一盒“福娃”和一枚徽章各多少元?(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?3.某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。

(1)若该超市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案。

4.惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.① 3名驾驶员开甲种货车,6名驾驶员开乙种货车,能否将救灾物资一次性地运往灾区?②要使救灾物资一次性地运往灾区,共有哪几种运货方案?5.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨. 现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.(1) 将这些货物一次性运到目的地,有几种租用货车的方案?(2) 若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?6. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车x辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.7.某超市销售甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.8. 某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。

(完整版)一元一次不等式应用题分类专题(10种)

(完整版)一元一次不等式应用题分类专题(10种)

一元一次不等式应用题专题(分配问题)1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。

2、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?(积分问题)1、一次知识竞赛有15道题。

规则是:对1题记8分,错1题扣4分,不答0分。

神箭队2道题没答,飞艇队全答了,两队的成绩都超过了90分,两队分别至少答对了几道题?2、在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次?(比较问题)1、某校校长暑假将带领该校“三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。

已知两家旅行社的全票价都是240元,至少要多少名学生选甲旅行社比较好?2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。

(行程问题)1、爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2、王凯家到学校2.1千米,现在需要在18分钟内走完这段路。

已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?(工程问题)1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?3.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?(浓度问题)1、在1千克含有40克食盐的海水中,在加入食盐,使他成为浓度不底于20%的食盐水,问:至少加入多少食盐?(增减问题)1、一根长20cm的弹簧,一端固定,另一端挂物体。

一元一次不等式试题(大全5篇)

一元一次不等式试题(大全5篇)

一元一次不等式试题(大全5篇)第一篇:一元一次不等式试题10.(2012湖北随州4分)若不等式组⎨⎧x-b<0⎩x+a>0的解集为2A.-2,3B.2,-3C.3,-2D.-3,2【答案】A。

【考点】解一元一次不等式组【分析】∵解不等式x-b<0得:x<b,解不等式x+a>0得:x >-a,∴不等式组的解集是:-a<x<b,∵不等式组⎨⎧x-b<0 ⎩x+a>0解集为2<x<3,∴-a=2,b=3,即a=-2,b=3。

故选A。

11.(2012湖北孝感3分)若关于x的一元一次不等式组⎨范围是【】⎧x-a>0⎩1-2x>x-2无解,则a的取值A.a≥1B.a>1C.a≤-1D.a<-1【答案】A。

【考点】解一元一次不等式组。

【分析】解出两个不等式,再根据“大大小小找不到”的原则解答即可:⎧x-a>0①,由①得:x>a,由②得:x<1。

⎨1-2x>x-2②⎩∵不等式组无解,∴a≥1。

故选A。

12.(2012湖北襄阳3分)若不等式组⎨⎧1+x>a⎩2x-4≤0有解,则a的取值范围是【】A.a≤3B.a<3C.a<2D.a≤2【答案】B。

【考点】解一元一次不等式组。

【分析】先求出不等式的解集,再不等式组有解根据“同大取大,同小取小,大小小大中间找,大大小小解不了(无解)”即可得到关于a的不等式,求出a的取值范围即可:由1+x>a得,x>a﹣1;由2x-4≤0得,x≤2。

∵此不等式组有解,∴a﹣1<2,解得a<3。

故选B。

20.(2012四川凉山4分)设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】A.c<b<aB.b<c<aC.c<a<bD.b<a<c【答案】A。

30.(2012山东淄博4分)若a>b,则下列不等式不一定成立的是【】(A)a+m>b+m(B)a(m2+1)>b(m2+1)(C)-a2<-b2(D)a2>b2x+2⎧4+x>⎪32的解集为x<2,则a的取值范9.(2012湖北鄂州3分)若关于x的不等式组⎪⎨⎪x+a<0⎪⎩2围是▲.12.(2012四川广安3分)不等式2x+9≥13.(2012四川达州3分)若关于x、y的二元一次方程组⎨⎧2x+y=3k-1⎩x+2y=-2的解满足x+y>1,则k的取值范围是▲.3(x+2)的正整数解是14.(2012四川绵阳4分)如果关于x的不等式组:⎨⎧3x-a≥0⎩2x-b≤0,的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有▲个。

八年级上册数学-一元一次不等式应用题集锦

八年级上册数学-一元一次不等式应用题集锦

八年级上册数学-一元一次不等式应用题集锦.1、一元一次不等式应用题集锦1.1、混合糖果问题甲种糖果每千克价格为20元,乙种糖果每千克价格为18元。

现在要将8千克甲种糖果和若干千克乙种糖果混合,使得总价不超过400元,且糖果总量不少于15千克。

问:混合的乙种糖果最多是多少?最少是多少?1.2、安排宿舍问题某中学为八年级寄宿学生安排宿舍。

每间宿舍可以住4人或8人。

如果每间住4人,则会有20人无法安排宿舍;如果每间住8人,则会有一间宿舍不满也不空。

问:这个中学有多少间宿舍?可以安排多少名学生住宿?1.3、水产养殖问题一块水面每亩年租金为500元,每亩水面可以混合投入4千克蟹苗和20千克虾苗。

蟹苗每千克价格为75元,饲养费用为525元,当年可获得1,400元收益;虾苗每千克价格为15元,饲养费用为85元,当年可获得160元收益。

问:1)租用n亩水面的年租金共需多少元?2)每亩水面混合养殖蟹虾的年利润是多少?(利润=收益-成本)3)XXX现有资金25,000元,他准备向银行贷款不超过25,000元,用于蟹虾混合养殖。

已知银行贷款的年利率为8%。

问:XXX应该租多少亩水面,向银行贷款多少元,才能使年利润超过35,000元?1.4、课外读物问题某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。

如果每人送3本,则还有8本余下;如果每人送5本,最后一人得到的课外读物不足3本。

设该校买了m本课外读物,有x名学生获奖。

问:1)用含x的代数式表示m;2)该校获奖人数和所买课外读物的本数分别是多少?1.5、蔬菜种植问题有10名菜农,每人可以种3亩甲种蔬菜或2亩乙种蔬菜。

已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元。

现在要使总收入不低于15.6万元,应该如何安排人员?1.6、出租车费用问题某出租车起价为10元,行驶路程在5公里以内需付10元车费。

超过5公里后,每增加1公里加价1.2元(不足1公里按1公里计算)。

完整整理一元一次不等式组应用题练习含答案

完整整理一元一次不等式组应用题练习含答案

一元一次不等式组应用题练习A1、我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?解:设住房有x间,住宿的学生有5x+12人,根据题意:0<(5x+12)-8(x-1)<826<x 4<36,x=5 ∵x为整数,∴克,造一140、一玩具厂生产甲、乙两种玩具,已知造一个甲种玩具需用金属80克,塑料2克,计划用6440若工厂有金属4600克,塑料100克,塑料120克.个乙种玩具需用金属. 件,求甲种玩具件数的取值范围两种材料生产甲、乙两种玩具共50 根据题意得:)件.x件,则甲种玩具为(50-x 解:设甲种玩具为4600?x)100(50?80x???6440)?(50?x?140x120?22x≤解得:20≤ 22个答:甲种玩具不少于20个,不超过、已知这列货车挂在A吨和乙种货物880吨用一列货车运往某地,3、现计划把甲种货物1240型车厢每节B型车厢每节费用为6000元,使用B两种不同规格的货车厢共40节,使用A.元费用为8000节,试定出用车厢节x A型车厢1()设运送这批货物的总费用为y万元,这列货车挂.的公式表示总费用y数x型车厢最多吨,每节B型车厢最多可装甲种货物35吨和乙种货物152 ()如果每节A两种车厢的节数,那么共B、35吨,装货时按此要求安排A可装甲种货物25吨和乙种货物有哪几种安排车厢的方案?2000x-=32000(解:1)y节、2615节或2524、B两种车厢的节数分别为节、16节或节、A2 ()共有三种方案, 14节4、为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:A型 B型价格(万元/台) 12 10200240处理污水量(吨/月)年消耗费(万元/台) 1 1经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)解:(1)共有三种购买方案,A、B两种型号的设备分别为0台、10台或1台、9台或2台、8台.(2)A、B两种型号的设备分别1台、9台;(3)10年节约资金42.8万元5、某厂计划2004年生产一种新产品,下面是2003年底提供的信息,人事部:明年生产工人不多于800人,每人每年可提供2400个工时;市场部:预测明年该产品的销售量是10000~12000件;技术部:该产品平均每件需要120个工时,每件要4个某种主要部件;供应部:2003年低库存某种主要部件6000个.预测明年能采购到这种主要部件60000个.根据上述信息,明年产品至多能生产多少件?解:设明年可生产产品x件,根据题意得:120x?800?2400??10000?x?12000解得: 10000≤x≤12000 ??4x?6000?60000?6、某宾馆底层客房比二楼少5间,某旅行团有48人.若全部住底层,每间4人,房间不够;每间住5人,有房间没有住满5人.若全部安排在二楼,每间住3人,房间不够;每间住4人,有房间没有住满4人.问该宾馆底层有客房多少间?解:设宾馆底层有客房x间,则二楼有客房(x+5)间.根据题意得:4x?48??5x?48?解得:9.6<x<11 ?3(x?5)?48??4(x?5)?48?所以: x = 10答:该宾馆底层有客房x间.年眉山市)某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一7、(200734批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里个.两种型号沼气池每个修建费型、B型沼气池共20万元,不足部分由村民集资.修建A 用、可供使用户数、修建用地情况如下表:2/个)个)占地面积(m沼气池修建费用(万元/个)可供使用户数(户/48 型A 3 2062B型 3政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)用含有x的代数式表示y;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.y?3x?2(20?x)?x?40)解:(1(2)由题意可得20x?3(20?x)≥264①??②≤708?6(20?x)48x?解①得x≥12解②得x≤14∴不等式的解为12≤x≤14Qx是正整数∴x的取值为12,13,14即有3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个x y的增加而增加,要使费用最少,则x=40中,12 随x(3)∵y=+∴最少费用为y=x+40=52(万元)村民每户集资700元与政府补助共计:700×264+340000=524800>520000∴每户集资700元能满足所需要费用最少的修建方案8、(2007年常州市)学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:一等奖二等奖三等奖1枚徽章1盒福娃 11盒福娃和枚徽章用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:(1)求一盒“福娃”和一枚徽章各多少元?(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?x y元,根据题意得元,一枚徽章1)设一盒“福娃”(解:2x?y?315x?150??解得??x?3y?195y?15??答:一盒“福娃”150元,一枚徽章15元.(2)设二等奖m名,则三等奖(10—m)名,2?165?150m?15(10?m)≥1000??2?165?150m?15(10?m)≤1100?104124≤m≤解得.2727Qm是整数,∴m=4,∴10-m=6.答:二等奖4名,三等奖6名.。

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程

一元一次不等式解应用题1.某水产品市场管理部门规划建造面积为2400平方米的大棚.大棚设A 种类型和B种类型的店面共80间.每间A种类型的店面的平均面积为28平方米.月租费为400元.每间B种类型的店面的平均面积为20平方米..月租费为360元.全部店面的建造面积不低于大棚总面积的85%。

(1) 试确定A种类型店面的数量?(2)该大棚管理部门通过了解.A种类型店面的出租率为75%.B种类型店面的出租率为90%.为使店面的月租费最高.应建造A种类型的店面多少间?. . . 资料. .解:设A种类型店面为a间.B种为80-a间根据题意28a+20(80-a)≥2400×85%28a+1600-20a≥20408a≥440a≥55 A型店面至少55间设月租费为y元y=75%a×400+90%(80-a)×360=300a+25920-324a=25920-24a很明显.a≥55.所以当a=55时.可以获得最大月租费为25920-24x55=24600元. . . 资料. .二、水产养殖户大爷准备进行大闸蟹与河虾的混合养殖.他了解到情况:每亩地水面组建为500元;每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;每公斤蟹苗的价格为75元.其饲养费用为525元.当年可获1400元收益;每公斤虾苗的价格为15元.其饲养费用为85元.当年可获160元收益;问题:1、水产养殖的成本包括水面年租金.苗种费用和饲养费用.求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);2、大爷现有资金25000元.他准备再向银行贷款不超过25000元.用于蟹虾混合养殖.已知银行贷款的年利率为10%.试问大爷应租多少亩水面.并向银行贷款多少元.可使年利润达到36600元?. . . 资料. .解:1、水面年租金=500元苗种费用=75x4+15x20=300+300=600元饲养费=525x4+85x20=2100+1700=3800元成本=500+600+3800=4900元收益1400x4+160x20=5600+3200=8800元利润(每亩的年利润)=8800-4900=3900元2、设租a亩水面.贷款为4900a-25000元那么收益为8800a成本=4900a≤25000+250004900a≤50000a≤50000/4900≈10.20亩利润=3900a-(4900a-25000)×10%3900a-(4900a-25000)×10%=36600. . . 资料. .3900a-490a+2500=366003410a=34100所以a=10亩贷款(4900x10-25000)=49000-25000=24000元三、某物流公司.要将300吨物资运往某地.现有A、B两种型号的车可供调用.已知A型车每辆可装20吨.B型车每辆可装15吨.在每辆车不超载的条件下.把300吨物资装运完.问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?解:设还需要B型车a辆.由题意得20×5+15a≥30015a≥200a≥40/3解得a≥13又1/3 .. . . 资料. .由于a是车的数量.应为正整数.所以x的最小值为14.答:至少需要14台B型车.四、某城市平均每天产生生活垃圾700吨.全部由甲.乙两个垃圾厂处理.已知甲厂每小时处理垃圾55吨.需费用550元;乙厂每小时处理垃圾45吨.需费用495元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式应用练习题
1、某商店第一天以每件10元的价格购进某商品15件,第二天又以12元的价格购进同种商品35件,然后以相同的价格卖出,如果销售这些商品时,至少要获得10%的利润,这种商品每件的售价应不低于多少元?
3、甲乙两家超市以相同的价格出售同样的商品.为吸引顾客各自推出不同的优惠方案.甲超市累计购买商品超出500元之后.超出部分按原价八五折优惠.在乙超市累计购买商品超出300元之后.超出部分按原价九折优惠.
(1)是用含x的代数式分别表示,顾客在两家超市购物所付的费用.
(2)试比较顾客到哪家超市购物更优惠,并说明你的理由.
4、按国家有关规定,个人发表文章、出版图书获得的稿费的纳税计算方法是:(1)稿费不高于4000元的不纳税;
国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:(1)稿费不高于800元的不拿税;(2)稿费高于800元而低于4000元的应缴纳超过800元那部分稿费的14%的税;(3)稿费等于或高于4000元的应缴纳全部稿费的11%的税。

王老师获得一笔稿费,并交纳个人所得税不超过420元,问他这笔稿费最多是多少元?
5、今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货
车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?
6、某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.
(1)该校初三年级共有多少人参加春游?
(2)请你帮该校设计一种最省钱的租车方案?
7、某射击运动员在一次训练中,打靶10次的成绩为89环,已知前6次射击的成绩为50环,则他第七次射击时,击中的环数至少是______环.
8、某县出租车计费规则:2公里以3元,超过两公里部分另按每公里1.2元收费(不足1公里按1公里收费),立同学从家出发坐出租车到新华书店购书,下车时付费9元,那么立家离书店最多有几公里?
9、甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊买了两条鱼,平均每条b元,后来他又以每条a+b/2元的价格把鱼全部地卖给了乙,结果发现赔钱,你知道为什么吗?
10、为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动.星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序.若每一个路口安排4人,那么剩下78人;若每一个路口安排8人,那么最后一个路口不足8人,但不少于4人,求这个中学共选派值勤学生多少人?共在多少个交通路口安排值勤?
11、足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一支足球队在某个赛季比赛共需14场,现已比赛8场,输了一场,得17分,请问:(1)前8场比赛中,这支球队共胜了多少场?
(2)这支球队打满14场比赛,最高能得多少分?
(3)通过对比赛的分析,这支球队打满14场比赛,得分不低于29分,就可达到预期的目的,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期的目标?
12、2012年我市某县筹备20周年县庆,园林部门决定利用现有的3 490盆甲种花卉和2 950盆乙种花卉搭配两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个种造型需甲种花卉80盆,乙种花卉40盆,搭配一个种造型需甲种花卉50盆,乙种花卉90盆.
(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.
(2)若搭配一个种造型的成本是800元,搭配一个种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?
13、某园林的门票每10元,一次性使用.考虑到人们的不同需求,也为了吸引
更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C 三类,A类年票每120元,持票者进人园林时,无需再购买门票;B类年票每60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每40元,持票者进入该园林时,需再购买门票,每次3元.
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式;
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算.
14、某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米,每增加1千米,加收2.4元(不足1千米接1千米计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x千米,那么x的最大值是?
15、某次数学测验中共有16道题目,评分方法:答对一道得6分,答错一道扣3分,不答得0分.某学生有两道题未答那么这个同学至少要答对多少道题,成绩才能在60分以上?
16、娃哈哈矿泉水每瓶售价1.2元,现甲、乙两家超市分别给出优惠政策,甲商场全部九折,乙商场20瓶以上的部分8折,若你是消费者,选哪家商场比较合适?.
17、某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m;
(2)求出该校的获奖人数及所买课外读物的本数
\
19、某射击运动员在一次比赛中前8次射击共中72环,如果他要打破89环(10次射击)的记录,第九次射击不能少于多少环?
20、学校将若干间宿舍分配给七年级一班女生住宿,已知该班女生人数少于35人。

若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也住不满。

问:有多少间宿舍?有多少名女生?
21、国庆期间两名家长计划带几个孩子去旅游,他们联系了报价均为500元的两家旅行社.经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是:家长、学生都打八折优惠.假设这两名家长带领x 名学生去旅游,他们应该选择哪家旅行社?
22、
在“5•12震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.
(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30m2或乙种板材20m 2.问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?
(2)某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:
板房型号甲种板材乙种板材安置人数
A型板房54m226m2 6
B型板房78m241m29
问:这400间板房最多能安置多少灾民?
23、
某班到毕业时共结余班费1800元. 班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品. 已知每件T恤比每本影集贵9元,用200 元恰好可以买到2件T恤和5本影
集.
(1)求每件T恤和每本影集的价格分别为多少元?
(2)有几种购买T恤和影集的方案?。

相关文档
最新文档