数学物理方程的基本知识复习课程
数学物理方程知识点
数学物理方程知识点
Chapter 1:绪论
1.偏微分方程的基本概念名词
2.三大类方程的典型物理模型:弦振动、热传导、
3.二阶方程的标准简化:用坐标变换化简二阶项、用v=ue!"!!"化简一次项
Chapter 2:波动方程
1.D’Alembert公式——Cauchy 初值问题:
半区域用延拓法或特征线法、非齐次方程右端用叠加原理、
2.分离变量法——矩形区域混合初边值问题:
方程分离、特征值与特征函数求解、初值用特征函数展开确定系数
非齐次方程右端用叠加原理、叠加原理一般公式
非齐次边界先化成齐次边界、边界条件最先考虑
3.三维波动方程球平均法——Cauchy 初值问题
三维积分公式的一般表达、极坐标表达
4.二维波动方程降维法——Cauchy 初值问题
二维积分公式的一般表达、极坐标表达
5.能量积分——解的唯一性和稳定性
6.解的无穷远渐进形态
Chapter 3:热传导方程
1.Fourier 变换法——Cauchy 初值问题:1 维或n 维公式
2.分离变量法——矩形混合初边值问题:
place 变换法
4.圆域上的热传导方程、极坐标、Bessel 函数
5.能量积分——解的唯一性和稳定性
6.极值原理——解的唯一性和稳定性
Chapter 4:调和方程
1.分离变量法——Drichlet 问题
圆域内外(内外Poisson 公式)、扇形区域、环形区域、矩形区域、球形区域
非齐次问题先齐次化,或用特征函数法
2.Green 公式、能量积分、变分原理、基本解、基本积分公式、平均值公式、极值原理、唯
一性和稳定性。
3.Green 函数:上班平面、球形区域。
《数学物理方程讲义》课程教学大纲
《数学物理方程讲义》课程教学大纲第一部分大纲说明一、课程的作用与任务本课程教材采用的是由高等教育出版社出版第二版的《数学物理方程讲义》由姜礼尚、陈亚浙、刘西垣、易法槐编写《数学物理方程讲义》课程是中央广播电视大学数学与应用数学专业的一门限选课。
数学物理方程是工科类及应用理科类有关专业的一门基础课。
通过本课程的学习,要求学生了解一些典型方程描述的物理现象,使学生掌握三类典型方程定解问题的解法,重点介绍一些典型的求解方法,如分离变量法、积分变换法、格林函数法等。
本课程涉及的内容在流体力学、热力学、电磁学、声学等许多学科中有着广泛的应用。
为学习有关后继课程和进一步扩大数学知识面奠定必要的数学基础。
该课程所涉内容,不仅为其后续课程所必需,而且也为理论和实际研究工作广为应用。
它将直接影响到学生对后续课的学习效果,以及对学生分析问题和解决问题的能力的培养。
数学物理方程又是一门公认的难度大的理论课程。
二、课程的目的与教学要求1 了解下列基本概念:1) 三类典型方程的建立及其定解问题(初值问题、边值问题和混合问题)的提法,定解条件的物理意义。
2) 偏微分方程的解、阶、维数、线性与非线性、齐次与非齐次的概念,线性问题的叠加原理。
3) 调和函数的概念及其基本性质(极值原理、边界性质、平均值定理)。
2 掌握下列基本解法1) 会用分离变量法解有界弦自由振动问题、有限长杆上热传导问题以及矩形域、圆形域内拉普拉斯方程狄利克雷问题;会用固有函数法解非齐次方程的定值问题,会用辅助函数和叠加原理处理非齐次边值问题;2) 会用行波法(达郎贝尔法)解无界弦自由振动问题,了解达郎贝尔解的物理意义;了解齐次化原理及其在解无界弦强迫振动问题中的应用;3) 会用傅立叶变换法及拉普拉斯变换法解无界域上的热传导问题及弦振动问题;4) 了解格林函数的概念及其在求解半空间域和球性域上位势方程狄利克雷问题中的应用;5)掌握二阶线性偏微分方程的分类二、课程的教学要求层次教学要求层次:有关定义、定理、性质等概念的内容按“知道、了解、理解”三个层次要求;有关计算、解法、公式和法则等方法的内容按“会、掌握、熟练掌握” 三个层次要求。
数学物理方程知识点归纳
数学物理方程知识点归纳数学物理方程是数学和物理学两门学科的交叉领域,其涉及到许多重要的知识点。
本文将从微积分、向量、力学、热力学和波动等方面,总结归纳数学物理方程的主要知识点。
一、微积分微积分是数学和物理学中非常重要的一个分支。
其中,微分和积分是微积分的两个基本概念。
微分是研究函数在某一点的变化率,积分则是求解函数的面积、体积或长度等量的方法。
微积分的一些重要公式包括:牛顿-莱布尼茨公式、柯西-黎曼方程、拉普拉斯公式等。
二、向量向量是几何学和物理学中非常重要的概念。
向量具有大小和方向两个属性,可以表示物理量的大小和方向。
向量的一些重要知识点包括:向量的加法和减法、向量的数量积和向量积、向量的投影、向量的夹角等。
三、力学力学是物理学中研究物体运动和相互作用的学科。
其中,牛顿三大定律是力学的基础。
牛顿第一定律指出物体在外力作用下保持静止或匀速直线运动;牛顿第二定律则确定了物体受力的大小和方向与其加速度成正比;牛顿第三定律则描述了力的相互作用。
四、热力学热力学是物理学中研究热量和能量转化的学科。
其中,热力学的一些重要概念包括:热力学系统、热力学过程、热力学态函数、热力学循环等。
热力学中的一些重要公式包括:热力学第一定律、热力学第二定律、热力学方程等。
五、波动波动是物理学中研究波的传播和相互作用的学科。
其中,波动的一些重要概念包括:波长、频率、波速、干涉、衍射、折射等。
波动的一些重要公式包括:波动方程、费马原理、赫兹实验等。
数学物理方程中的知识点非常丰富,包括微积分、向量、力学、热力学和波动等方面。
这些知识点是理解和应用物理学中的方程和定律的基础,对于物理学的学习和科学研究都具有重要的意义。
北师大版四年级数学下册第五单元《认识方程》复习课教案
教案标题:北师大版四年级数学下册第五单元《认识方程》复习课教案教学目标:1. 让学生通过复习,巩固对方程的认识和理解。
2. 培养学生运用方程解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
教学重点:1. 方程的定义和性质。
2. 解方程的方法和步骤。
教学难点:1. 方程的应用问题。
2. 解方程的方法和步骤。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾方程的定义和性质。
2. 提问:什么是方程?方程有什么特点?二、复习方程的基本概念(10分钟)1. 通过课件或黑板,展示方程的例子,引导学生观察和分析。
2. 引导学生总结方程的定义和性质。
3. 解答学生的疑问。
三、解方程的方法和步骤(15分钟)1. 通过课件或黑板,展示解方程的例子,引导学生观察和分析。
2. 引导学生总结解方程的方法和步骤。
3. 解答学生的疑问。
四、练习题(15分钟)1. 发给学生练习题,让学生独立完成。
2. 引导学生互相检查答案,讨论解题方法。
五、小组讨论(15分钟)1. 将学生分成小组,每个小组讨论一道应用题。
2. 每个小组派代表分享解题思路和答案。
六、总结和反思(5分钟)1. 引导学生总结本节课的学习内容和解题方法。
2. 鼓励学生提出疑问,解答学生的疑问。
教学延伸:1. 布置作业,让学生巩固本节课的学习内容。
2. 鼓励学生运用方程解决实际问题。
注意事项:1. 在教学过程中,要注重学生的参与和互动,鼓励学生积极思考和提问。
2. 在解答学生的疑问时,要耐心细致,引导学生理解问题的本质和解题的方法。
3. 在小组讨论时,要注重培养学生的团队合作能力和沟通能力。
教学评价:1. 通过课堂观察,评价学生对方程的认识和理解。
2. 通过练习题和小组讨论,评价学生运用方程解决问题的能力。
3. 通过学生的提问和讨论,评价学生的逻辑思维能力和团队合作能力。
重点关注的细节:解方程的方法和步骤补充和说明:解方程是本节课的重点内容,学生需要掌握解方程的方法和步骤。
认识方程复习课教案
认识方程复习课教案一、教学目标:1. 知识与技能:a. 理解方程的概念和基本性质;b. 掌握解一元一次方程的方法;c. 能够应用所学知识解决实际问题。
2. 过程与方法:a. 通过教师讲解、示范和学生练习相结合的方式,帮助学生理解方程的概念和解题方法;b. 引导学生运用所学知识解决实际问题,培养学生的数学建模能力。
3. 情感态度价值观:a. 培养学生对数学的兴趣和自信心;b. 培养学生的合作意识和团队精神。
二、教学重点与难点:1. 重点,方程的概念、一元一次方程的解法、实际问题的建模与解决。
2. 难点,一元一次方程的应用题,如何将实际问题转化为数学问题并解决。
三、教学过程:1. 导入新课。
a. 通过引入一个简单的实际问题,如小明买苹果的例子,引出方程的概念;b. 让学生思考如何用数学语言描述这个问题,引出一元一次方程的概念。
2. 概念讲解。
a. 讲解方程的定义和基本性质;b. 介绍一元一次方程的一般形式和解题方法;c. 举例说明方程的解法。
3. 练习与训练。
a. 让学生做一些简单的练习,巩固所学知识;b. 引导学生分组合作,解决一些实际问题,如两个人同时开车相遇的问题等。
4. 拓展应用。
a. 引入一些复杂的实际问题,如两个水龙头同时放水,问多久能装满一个池塘等;b. 让学生分组讨论并解决这些问题,培养学生的团队合作能力。
5. 总结与反思。
a. 对本节课所学知识进行总结,强调方程的重要性和应用价值;b. 让学生反思本节课的收获和不足之处,为下节课的学习做准备。
四、教学手段:1. 课件,通过PPT展示方程的概念、解题方法和实际应用,提高学生的学习兴趣;2. 黑板,用于讲解和举例说明;3. 教材,辅助教师讲解,帮助学生理解和掌握知识点;4. 小组讨论,让学生分组合作,解决实际问题,培养学生的团队合作能力。
五、教学反思:本节课通过引入实际问题,让学生从生活中感受到方程的重要性和应用价值,激发了学生学习数学的兴趣。
数理方程总结复习及练习要点报告
4
数理方程基本知识
➢ 我们研究的这些定解条件或者约束物理量的特定条 件大体可以分为两大类,一类关乎于环境对物理量 发展过程的约束,这类约束主要体现于物理环境周 围边界的物理状况,即边界条件。另一类关乎于物 理量发展的历史状况,或者说这个物理量之前是什 么样的,这类约束主要体现于时间上我们人为定义 从何时开始针对于物理量的研究,或者说这个物理 量研究初始时的状况,即初始条件。
➢ 数学物理方程研究一些物理量在某些特定条件下 按照物理规律变化的情况。这些物理量所满足的 物理规律具有共性,它反映的是同一类物理现象的 共同规律。物理量受某些特定条件约束,所产生 的物理问题又各具有自身的特殊性,即个性。
3
数理方程基本知识
➢ 具有共性的物理规律可以用偏微分方程的形式描述 ,这些方程在不附加个性条件的情况下称为泛定方 程。
➢ 数学上边界条件和初始条件也统称为定解条件。
5
数理方程基本知识
➢ 由泛定方程、定解条件构成的研究数学物理方程的 问题称为数学物理定解问题,准确地说就是在给定 定解条件下求解数学物理方程。
➢ 偏微分方程的基本概念
-偏微分方程的阶数 最高的求导次数 -偏微分方程的齐次与非齐次 不含有研究函数的非零项 -偏微分方程的线性与非线性
12
数理方程基本知识
➢ Gauss定理
v
v
v
v
对于一般的矢量场 a P(M )i Q(M ) j R(M )k
vv
数学物理方程复习
数学物理方程复习一.三类方程及定解问题(一)方程1.波动方程(双曲型)U tt = a2U xx +f; 0<x<l,t>0U(0,t)= Φ1(t);U(l,t)= Φ2(t);U(x,0)= Ψ1(x);U t(x,0)=Ψ2(x)。
2.热传导方程(抛物型)U t = a2U xx +f; 0<x<l,t>0U(0,t)= Φ1(t);U(l,t)= Φ2(t);U(x,0)= Ψ1(x).3.稳态方程(椭圆型)U xx +U yy =f; 0<x<a;0<y<b;t>0.U(0,x)= Φ1(x);U(b,x)= Φ2(x);U(y,0)= Ψ1(y);U t(y,a)=Ψ2(y)。
(二)解题的步骤1.建立数学模型,写出方程及定解条件2.解方程3.解的实定性问题(检验)(三)写方程的定解条件1.微元法:物理定理2.定解条件:初始条件及边界条件(四)解方程的方法1.分离变量法(有界区域内)2.行波法(针对波动方程,无界区域内)3.积分变换法(Fourier变换Laplace变换)Fourier变换:针对整个空间奇:正弦变换偶:余弦变换Laplace变换:针对半空间4.Green函数及基本解法5.Bessel函数及Legendre函数法例一:在弦的横震动问题中,若弦受到一与速度成正比的阻尼,试导出弦阻尼振动方程。
解:建立如图所示的直角坐标系,设位移函数为U(x,t),取任意一小段△x进行受力分析,由题设,单位弦所受阻力为b U t(b为常数),在振动过程中有△x所受纵向力为:(T2COSa2-T1COSa1)横向力为:(T2SINa2-T1SINa1-b U t(x+n△x))(0<n<1). T2,T1为△x弦两端所受的张力,又因为弦做横振动而无纵振动,由牛顿定律有T-T1COSa1=0,T2SINa2-T1SINa1-b(x+n△x)U t=p U tt(x+n△x) 2COSa2△x在小的振动下SINa1≈TANa1=U x(x,t), SINa2≈TANa2=U x(x+△x,t), COSa2≈COSa1≈1,T=T1=T2.(ρ是密度)即(T/ρ)[ U x(x+△x,t)- U x(x,t)]/ △x-(b/ρ) U t(x+n△x,t) 即令△x→0时有:U tt+ aU t=a2U xx例二:设扩散物质的源强(即单位时间内单位体积所产生的扩散物质)为F(x,y,z,t),试导出扩散方程。
数学物理方程复习
数学物理方程复习一.三类方程及定解问题(一)方程1.波动方程(双曲型)Utt = a2Uxx+f; 0<x<l,t>0U(0,t)= Φ1(t);U(l,t)= Φ2(t);U(x,0)= Ψ1(x);Ut (x,0)=Ψ2(x)。
2.热传导方程(抛物型)Ut = a2Uxx+f; 0<x<l,t>0U(0,t)= Φ1(t);U(l,t)= Φ2(t);U(x,0)= Ψ1(x).3.稳态方程(椭圆型)Uxx +Uyy=f; 0<x<a;0<y<b;t>0.U(0,x)= Φ1(x);U(b,x)= Φ2(x);U(y,0)= Ψ1(y);Ut (y,a)=Ψ2(y)。
(二)解题的步骤1.建立数学模型,写出方程及定解条件2.解方程3.解的实定性问题(检验)(三)写方程的定解条件1.微元法:物理定理2.定解条件:初始条件及边界条件(四)解方程的方法1.分离变量法(有界区域内)2.行波法(针对波动方程,无界区域内)3.积分变换法(Fourier变换Laplace变换)Fourier变换:针对整个空间奇:正弦变换偶:余弦变换Laplace变换:针对半空间4.Green函数及基本解法5.Bessel函数及Legendre函数法例一:在弦的横震动问题中,若弦受到一与速度成正比的阻尼,试导出弦阻尼振动方程。
解:建立如图所示的直角坐标系,设位移函数为U(x,t),取任意一小段△x进行受力分析,由题设,单位弦所受阻力为b U t(b为常数),在振动过程中有△x所受纵向力为:(T2COSa2-T1COSa1)横向力为:(T2SINa2-T1SINa1-b U t(x+n△x))(0<n<1). T2,T1为△x弦两端所受的张力,又因为弦做横振动而无纵振动,由牛顿定律有T2COSa2-T1COSa1=0,T2SINa2-T1SINa1-b(x+n△x)U t=p U tt(x+n△x)△x在小的振动下SINa1≈TANa1=Ux(x,t), SINa2≈TANa2=Ux(x+△x,t),COSa2≈COSa1≈1,T=T1=T2.(ρ是密度)即(T/ρ)[ Ux (x+△x,t)- Ux(x,t)]/ △x-(b/ρ) U t(x+n△x,t)即令△x→0时有:U tt+ aU t=a2U xx例二:设扩散物质的源强(即单位时间内单位体积所产生的扩散物质)为F (x,y,z,t),试导出扩散方程。
数学物理方程---_1_数学建模与基本原理介绍 105页PPT文档
学
定解问题的完整提法:
建 模
在给定的边界条件和初始条件下,根据已知的物理规律,在及其
给定的区域里解出某个物理量u,即求u(x,y,z,t)。
基 本
原
定解条件:边界条件和初始条件的总体。它反映了问题的
理 介
特殊性,即个性。
绍
泛定方程:不带有边界和初始条件的方程称为泛定方程。
西安交通大学理学院它反映了问题的共性。
T ( u xx d x u xx ) f 0 (x ,t) d x (d x ) u tt
数 学 物 理 方 程
T u xx d d x x u xx f0 (x ,t) T u x x f0 (x ,t)u tt
令 a2 T /
f(x,t)f0(x,t)/
学
建
模
及
其
基
本
原
理
介
绍
8
西安交通大学理学院
设:均匀柔软的细弦沿x轴绷紧,在平衡位置附近
产生振幅极小的横振动
数
第
学 物 理 方
u(x,t): 坐标为x 的点在t时刻沿垂线方向的位移
一 章
程
求:细弦上各点的振动规律
数 学
建
以弦线所处的平衡位置为x轴,垂直于弦线且通过弦
模 及
线的一个端点的直线为u轴建立坐标系。
u(x)
F
u+u
如考虑弦的重量: T2 2 沿x-方向,不出现平移
u
数
1
B
学
物 理
T1
gdx
0 方
程
x
x+x
T 2co s2 T 1co s10 (1第)
数学物理方程总复习
⎤ ⎥⎦
−
ρ
gdx
≈
ρ
∂ 2u ( x, ∂t 2
t)
dx
T
⎡ ⎢⎣
∂u(x + dx,t) ∂x
−
∂u( x, t ) ∂x
⎤ ⎥⎦
−
ρ
gdx
≈
ρ
∂ 2u( x, t ) ∂t 2
dx
∂u ( x,t )
由于x产生dx的变化而引起的 用微分近似代替,即
∂x
的改变量,可
∂u(x + dx,t) ∂x
现在考虑弧段MM’在t时刻的受力情况
由于假定弦是柔软的,所以在任一点张力 的方向总是沿着弦在该点的切线方向。
t时刻 位移NM记作u u(x,t)
弧段 Mq M ' 两端
所受的张力记作T,T’
根据牛顿第二定律 F = ma
在x轴方向弧段 Mq M ' 受力的总和为
T 'cos a '− T cos a = 0
行的外力,且假定在时刻t弦上x点处的外力密度为F(x,t),
显然
T 'cos a '− T cos a = 0
Fds
−
T
sin
a
+
T
'
sin
a
'−
ρ
gds
≈
ρ
ds
∂2u ∂t 2
弦的强迫振动方程
∂2u ∂t 2
=
a2
∂2u ∂x2
+
f
( x, t )
弦的强迫振动方程
∂2u ∂t 2
=
a2
∂2u ∂x2
dx
数学物理方程复习资料
l0
l
0,1, 2,3, ).
3. Fourier 变换的微分性质
若函数 f (x) 的傅里叶变换为 f (x) ,且其导函数 f ′(x) 的傅里叶变换存在,则有 f ′(x) = iλ f (x) , 即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 iλ 。更一般地,若 f (x) 的 n 阶导数 f (n) (x)
x
)(x
∈
C),
其中
∫ = an
1= l f (x) cos nπ xdx (n
l −l
l
1, 2,3, ),
∫ = bn
1= l f (x) sin nπ xdx (n
l −l
l
1, 2,3,).
=C
= x f (x)
1[ 2
f
(x−) +
f
(x+ )]
∑ ∫ 当 f (x) 为奇= 函数时, f (x)
uxx = (iλ)2 u (x, t) = −λ 2U (λ, t)
∫ = [ ∂u ] = ∞ ∂u e−iλxdx ∂ [ u(x, t)]
∂t −∞ ∂t
∂t
同理,[ ∂∂2tu2 ]
=
∂2 ∂t 2
[ u( x, t )]
M3 特征线法 写出二阶偏微分方程的特征方程 解特征方程得到两族积分曲线 作特征变换,求通解 代入边界条件求解
二阶线性偏微分方程
A
∂2u ∂x2
+
2B
∂2u ∂x∂y
+
C
∂2u ∂y 2
+D
∂u ∂x
+E
∂u ∂y
+Fu
= 0