中考数学专题复习 一元二次方程根与系数的关系
中考数学复习《一元二次方程根的判别式、根与系数的关系》
专题 1.3 一元二次方程根的判别式、根与系数的关系(3个考点八大题型)【题型1 由根的判别式判断方程根的情况】【题型2 由方程方程根的情况求字母的取值范围】【题型3 由根的判别式证明方程求根的必然情况】【题型4 由根与系数的关系求代数式(直接)】【题型5 由根与系数的关系求代数式(代换)】【题型6 由根与系数的关系求代数式(降次)】【题型7 构造一元二次方程求代数式的值】【题型8 已知方程根的情况判断另一个根】【题型1 由根的判别式判断方程根的情况】1.(2023春•南岗区校级期中)一元二次方程x2﹣2x﹣3=0根的情况是()A.有两个相等的实数根B.无实数根C.有一个实数根D.有两个不等的实数根2.(2023•平顶山二模)定义运算:a※b=a2b+ab﹣1,例如:2※3=22×3+2×3﹣1=17,则方程x※1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根3.(2023•柘城县二模)一元二次方程x2+2x﹣5=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根4.(2023•桂林二模)一元二次方程2x2﹣5x+6=0的根的情况为()A.无实数根B.只有一个实数根C.有两个相等的实数根D.有两个不等的实数根5.(2023•东城区一模)关于x的一元二次方程x2﹣(k+3)x+2k+1=0根的情况是()A.无实根B.有实根C.有两个不相等实根D.有两个相等实根6.(2023•新郑市模拟)一元二次方程2x2﹣mx﹣1=0的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.无法确定7.(2023•三门峡一模)一元二次方程(x﹣1)2=x+3的根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根8.(2023春•瑞安市期中)关于x的一元二次方程x2+kx+k﹣1=0的根的情况,下列说法中正确的是()A.有两个实数根B.有两个不相等的实数根C.有两个相等的实数根D.无实数根【题型2 由方程方程根的情况求字母的取值范围】9.(2023•洛阳二模)已知关于x的一元二次方程x2+4x+k=0有两个实数根,则k的值为()A.k=4B.k=﹣4C.k≤4D.k<4 10.(2023•济源一模)若关于x的一元二次方程x2+4x+m+5=0有实数根,则m 的取值范围是()A.m≤1 B.m≤﹣1 C.m<﹣1D.m≥﹣1且m≠0 11.(2023•东莞市校级一模)已知方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值()A.k>﹣1B.k>1C.k>1且k≠0D.k>﹣1且k≠0 12.(2023春•洞头区期中)关于x的一元二次方程x2﹣6x+c=0有两个相等的实数根,则c的值是()A.﹣36B.﹣9C.9D.36 13.(2023•阿克苏市一模)若关于x的一元二次方程(k﹣2)x2+2x+3=0有两个实数根,则k的取值范围()A.B.C.k<且k≠2D.且k≠2 14.(2023•贵阳模拟)若关于x的一元二次方程x2﹣4x﹣k=0没有实数根,则k的值可以是()A.﹣5B.﹣4C.﹣3D.2【题型3 由根的判别式证明方程求根的必然情况】15.(2023春•蜀山区校级期中)已知关于x的一元二次方程x2+(2k﹣1)x﹣k ﹣1=0.(1)求证:无论k取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1、x2,且x1+x2﹣4x1x2=2,求k的值.16.(2023春•庐阳区校级期中)已知关于x的一元二次方程x2﹣(m+2)x+m ﹣1=0.(1)求证:无论m取何值,方程总有两个不相等的实数根.(2)若a和b是这个一元二次方程的两个根,且a2+b2=9,求m的值.17.(2023•门头沟区二模)已知关于x的一元二次方程x2﹣2kx+k2﹣1=0.(1)求证:方程有两个不相等的实数根;(2)如果此方程的一个根为1,求k的值.18.(2023•金溪县模拟)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若方程的两根分别是等腰△ABC两边AB、AC的长,其中BC=10,求k 值.19.(2023•长安区校级一模)已知关于x的一元二次方程x2﹣2mx+m2﹣4=0.(1)求证:方程有两个不相等的实数根;(2)若该方程的一个根为x=0,且m为正数,求m的值.20.(2022秋•东城区期末)已知关于x的一元二次方程x2+(2m+1)x+m﹣2=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)当该方程的判别式的值最小时,写出m的值,并求出此时方程的解.【题型4 由根与系数的关系求代数式(直接)】21.(2023•红桥区模拟)若一元二次方程x2+4x﹣12=0的两个根分别为x1,x2,则x1+x2的值等于()A.﹣4B.4C.﹣12D.12 22.(2023•五华县校级开学)设一元二次方程x2﹣12x+3=0的两个实根为x1和x2,则x1x2=()A.﹣2B.2C.﹣3D.3 23.(2023•六盘水二模)已知x1、x2是一元二次方程x2+4x+3=0的两根,则x1+x2+2x1x2的值为()A.﹣2B.﹣1C.1D.2 24.(2023•长丰县模拟)若m,n是方程x2﹣2x﹣3=0的两个实数根,则m+n ﹣mn的值是()A.5B.﹣5C.1D.﹣1【题型5 由根与系数的关系求代数式(代换)】25.(2023•南山区三模)若关于x的一元二次方程x2﹣4x+3=0有两个不相等的实数根x1、x2,则的值是()A.B.C.D.26.(2023•潍城区二模)若x1、x2是关于x的一元二次方程x2﹣3x﹣5=0的两根,则的值为()A.19B.9C.1D.﹣1 27.(2023•汉阳区校级模拟)若实数m,n满足条件:m2﹣2m﹣1=0,n2﹣2n ﹣1=0,则的值是()A.2B.﹣4C.﹣6D.2或﹣6 28.(2023•兴庆区校级二模)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.﹣10B.10C.3D.0 29.(2022秋•南安市期末)已知一元二次方程x2﹣3x+1=0的两根分别是x1、x2,则x2+x1的值是()A.﹣2B.2C.﹣3D.3 30.(2023•临沭县一模)已知m,n是一元二次方程x2+2x﹣2023=0的两个实数根,则代数式m2+4m+2n的值等于()A.2023B.2022C.2020D.2019【题型6 由根与系数的关系求代数式(降次)】31.(2023•河东区一模)已知x1,x2是方程x2﹣x﹣2023=0的两个实数根,则代数式的值是()A.4047B.4045C.2023D.1 32.(2022秋•嘉陵区校级期末)如果m,n是一元二次方程x2+x=3的两个根,那么多项式m3+4n﹣mn+2022的值等于()A.2018B.2012C.﹣2012D.﹣2018【题型7 构造一元二次方程求代数式的值】33.(2023•安丘市模拟)已知方程x2+2023x﹣5=0的两根分别是α和β,则代数式α2+β+2024α的值为()A.0B.﹣2018C.﹣2023D.﹣2024 34.(2023•肥城市一模)已知m、n是一元二次方程x2﹣x﹣2024=0的两个实数根,则代数式m2﹣2m﹣n的值为()A.2020B.2021C.2022D.2023 35.(2023•鼓楼区校级模拟)已知a、b是关于x的方程x2+3x﹣2010=0的两根,则a2﹣a﹣4b的值是()A.2020B.2021C.2022D.2023 36.(2023•东港区校级一模)已知m、n是一元二次方程x2﹣x﹣2022=0的两个实数根,则代数式m2﹣2m﹣n的值等于()A.2020B.2021C.2022D.2023 37.(2023春•江岸区校级月考)设α、β是方程x2+2019x﹣2=0的两根,则(α2+2022α﹣1)(β2+2022β﹣1)的值为()A.6076B.﹣6074C.6040D.﹣6040 38.(2022秋•莲池区校级期末)若m,n是一元二次方程x2+4x﹣9=0的两个根,则m2+5m+n的值是()A.4B.5C.6D.12【题型8 已知方程根的情况判断另一个根】39.(2023•阿克苏市二模)若x=2是方程x2﹣x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.2 40.(2020秋•甘井子区期末)关于x的方程x2﹣4x+m=0有一个根为﹣1,则另一个根为()A.﹣2B.2C.﹣5D.5 41.(2020春•宣城期末)关于x的一元二次方程2x2+kx﹣4=0的一个根x1=﹣2,则方程的另一个根x2和k的值为()A.x2=1,k=2B.x2=2,k=2C.x2=1,k=﹣1D.x2=2,k=﹣1 42.(2023•诸暨市模拟)关于x的一元二次方程x2+mx﹣2=0有一个解为x=1,则该方程的另一个解为()A.0B.﹣1C.2D.﹣2 43.(2023•洛阳一模)已知关于x的一元二次方程x2+kx﹣2=0有一个根是﹣2,则另一个根是()A.1B.﹣1C.2D.﹣2。
一元二次方程根与系数之间的关系
中考数学辅导之—一元二次方程根与系数之间的关系从暑假开始,我们系统的学习了一元二次方程的解法及一元二次根的判别式和一元二次方程根与系数之间的关系.本次,我们全面复习前面所学内容,下次,我们将学习几何中的第六章解直角三角形. 一、基本内容1.一元二次方程含义:含有一个未知数,且未知数的次数最高是2的整式方程叫一元二次方程.2.一般形式:ax 2+bx+c=0(a ≠0)3.解法:①直接开平方法:形如x 2=b(b ≥0)和(x+a)2=b(b ≥0)的形式可直接开平方.如(3x-1)2=5两边开平方得:513±=-x 513±=x 351,35121-=+=∴x x ②配方法:例:01232=--x x 解:1232=-x x 31322=-x x 913191322+=+-x x 94)31(2=-x 3231±=-x3231±=x 31,121-==∴x x此类解法在解一元二次方程时,一般不用.但要掌握,因为很多公式的推导用这种方法.③公式法:)0(2)0(02≥∆∆±-=≠=++ab x ac bx ax 的求根公式是 ④因式分解法:方程右边为零.左边分解成(ax+b)(cx+d)的形式,将一元二次方程转化成ax+b=0,cx+d=0的形式,变成两个一元一次方程来解.4.根的判别式:△=b 2-4acb 2-4ac>0 方程有两个不相等实根. b 2-4ac=0 方程有两个相等实根. b 2-4ac<0 方程无实根. b 2-4ac ≥0 方程有实根. 有三种应用:①不解方程确定方程的根的情况.②利用方程的根的条件(如有两个不相等实根,无实根,有实根等) 利用Δ建立不等式求m 或k 的取值范围.③证明Δ必小于零,或Δ必大于零来证明方程无实根或一定有实根,将Δ化成完全平方式,叙述不论m(或k)无论取何值,一定有Δ>0或Δ<0来证.5.根与系数间的关系,某x 1,x 2是ax 2+bx+c=0(a ≠0)的根,则ac x x a b x x =⋅-=+2121,.应用:①不解方程,求方程中m 或k 的值或另一根. ②不解方程,求某些代数式的值.③利用两根的关系,求方程中m 或k 的取值范围. ④建立一个方程,使它与原方程有某些关系. ⑤一些杂题.二、本次练习: (一)填空题:1.关于x 的方程mx mx m x x -=-+2223是一元二次方程,则m=____.2.将方程4x 2-kx+k=2x-1化成一元二次方程的形式是____.其一次项系数是____,常数项是____.3.代数式(x+2)2+(x-2)2的值与8(x 2-2)的值相等,则x=____.4.x x 252-+( )=(x- )25.方程2x 2+(k-1)x-6=0的一个根是2,则k=____.6.已知方程3x 2-2x-1=0的两根是x 1,x 2,则2221x x +=____;2112x x x x +=____; 3231x x +=____;2111x x +=____;||21x x -=____. 7.已知2x 2-(2m+1)x+m+1=0的两根之比是2:3,则m=____.8.以3和32-为根的方程是____.9.以235,235-+为根的方程是____. 10.以2x 2-3x-1=0的两根平方和及倒数和为根的方程是____.11.以2x 2-5x+1=0的两根平方根的方程是____.12.以比3x 2-2x-4=0的两根大3的数为根的方程是____. 13.以2x 2-3x-1=0的两根的相反数为根的方程是____.14.已知8x 2-(m-1)x+m-7=0的两根异号,且正根的绝对值大,则m 的取值范围是____.若它的两根互为相反数,则m=____.若m 互为倒数,则m=____.15.关于x 的一元二次方程x 2+2x+m=0的两根差的平方是16,则m=____.16.已知关于x 的方程2x 2-(4k+1)x+2k 2=1有两个不相等实根,则k 的取值范围是____. 17.关于x 的方程(k-2)x 2-(2k-1)x+k=0有两个不相等实根,则k 的取值范围是____. 18.已知方程kx 2-2kx+k=x 2-x+3有两个不相等实根,则k 的取值范围是____. 19.关于x 的方程2x(kx-4)-x 2+6=0无实根,则k 的最小整数值是____.知2x 2+(2m+1)x-m=0的两根平方和是413,则m=____.21.设x 1,x 2是关于x 的方程x 2+4k+3=0的两实根.y 1,y 2是关于y 的方程y 2-k 2y+p=0的根.若x 1-y 1=2,x 2-y 2=2则k=____,p=____.22.已知关于x 的方程2x 2+2x+c=0的根是x 1,x 2,则3||21=-x x ,那么c 的值是____.(二)解下列方程 1.030222=-+x x 2.0532=--x x 3.)5(2)5(32x x -=-4.8)12(212=-x5.)(02722用配方法=+-x x6.0432=+-x x7.04)(22=--+ab x b a x8.013482=--x x9.)1(2322+=x x 10.0)(222=---ab x b a abx 11.0)23(22=-+--n n m x m x三、本期答案 (一)填空题1.3≠m2.-(k+2),k+13.2±=x4.45,1625 5.0 6.92,34,2,2726,310,910--- 7.12112-或 8.3x 2-7x-6=0 9.015222=+-x x 10.4x 2-x-39=0 11.4y 2-21y+1=0 12.3y 2-9=013.2x 2+3x-1=0 14.1<m<7 15.-3 16.89->k 17.241≠->k k 且18.11211≠>k k 且 19.2 3或1 21.k=-2,p=-9 22.-1(二)解答题 1.225,23- 2.2293±=x 3.513,521==x x 4.23,2521-==x x5.4337,433721-=+=x x 6.无解 7.x 1=-2a,x 2=2b 8.453±=x 9.226± 10.abb a -, 11.2m+n,m-n。
九年级数学一元二次方程的根与系数的关系
九年级数学一元二次方程的根与系数的关系一、一元二次方程的根与系数的关系在我们生活中,有很多问题都可以用一元二次方程来解决。
那么,什么是一元二次方程呢?简单来说,就是形如ax^2+bx+c=0的方程,其中a、b、c是已知的常数,x 是未知数。
而这个方程的解,就是我们要找的那个未知数x。
那么,如何求解这个方程呢?这就需要我们了解一元二次方程的根与系数的关系。
我们来看一下一元二次方程的一般形式:ax^2+bx+c=0。
在这个方程中,a、b、c 是已知的常数,而x是未知数。
我们的目标就是求出x的值。
为了实现这个目标,我们需要先了解一下一元二次方程的根与系数的关系。
二、一元二次方程的根与系数的关系1. 根的概念在一元二次方程中,x是未知数,而a、b、c是已知的常数。
我们的目标就是求出x的值。
为了实现这个目标,我们需要先了解一下根的概念。
根是指一个数与其对应的幂次相乘所得的结果等于原方程。
例如,对于方程ax^2+bx+c=0,它的两个根分别是:(1)当b^2-4ac≥0时,有两个实数根,分别为:x_1=(-b±√(b^2-4ac))/2ax_2=(-b±√(b^2-4ac))/2a(2)当b^2-4ac<0时,无实数根。
这里我们需要注意的是,当b^2-4ac<0时,方程没有实数根;而当b^2-4ac≥0时,方程有两个实数根。
这两个实数根分别称为一元二次方程的两个根。
2. 系数的概念在一元二次方程中,a、b、c是已知的常数。
它们分别表示了方程中各项的系数。
具体来说,a表示x^2项的系数,b表示x项的系数,c表示常数项的系数。
在求解一元二次方程时,我们需要关注这些系数之间的关系。
三、一元二次方程的解法及步骤在了解了一元二次方程的根与系数的关系之后,我们就可以运用这些知识来求解一元二次方程了。
下面我们来看一下求解一元二次方程的具体步骤:1. 我们需要判断方程是否有实数根。
根据前面我们学过的知识,当b^2-4ac≥0时,方程有实数根;而当b^2-4ac<0时,方程没有实数根。
中考专题一元二次方程根与系数关系解析
中考专题一元二次方程根与系数关系解析1、如果方程ax 2+bx+c=0(a ≠0)的两根是x 1、x 2,那么x 1+x 2= ,x 1·x 2= 。
2、已知x 1、x 2是方程2x 2+3x -4=0的两个根,那么:x 1+x 2= ;x 1·x 2= ;2111x x + ;x 21+x 22= ;(x 1+1)(x 2+1)= ;|x 1-x 2|= 。
3、以2和3为根的一元二次方程(二次项系数为1)是 。
4、如果关于x 的一元二次方程x 2+2x+a=0的一个根是1-2,那么另一个根是 ,a 的值为 。
5、如果关于x 的方程x 2+6x+k=0的两根差为2,那么k= 。
6、已知方程2x 2+mx -4=0两根的绝对值相等,则m= 。
7、一元二次方程px 2+qx+r=0(p ≠0)的两根为0和-1,则q ∶p= 。
8、已知方程x 2-mx+2=0的两根互为相反数,则m= 。
9、已知关于x 的一元二次方程(a 2-1)x 2-(a+1)x+1=0两根互为倒数,则a= 。
10、已知关于x 的一元二次方程mx 2-4x -6=0的两根为x 1和x 2,且x 1+x 2=-2,则m= ,(x 1+x 2)21x x ⋅= 。
11、已知方程3x 2+x -1=0,要使方程两根的平方和为913,那么常数项应改为 。
12、已知一元二次方程的两根之和为5,两根之积为6,则这个方程为 。
13、若α、β为实数且|α+β-3|+(2-αβ)2=0,则以α、β为根的一元二次方程为 。
(其中二次项系数为1)14、已知关于x 的一元二次方程x 2-2(m -1)x+m 2=0。
若方程的两根互为倒数,则m= ;若方程两根之和与两根积互为相反数,则m= 。
15、已知方程x 2+4x -2m=0的一个根α比另一个根β小4,则α= ;β= ;m= 。
16、已知关于x 的方程x 2-3x+k=0的两根立方和为0,则k= 17、已知关于x 的方程x2-3mx+2(m -1)=0的两根为x 1、x 2,且43x 1x 121-=+,则m= 。
中考数学专项练习一元二次方程系数与根的关系(含解析)
中考数学专项练习一元二次方程系数与根的关系(含解析)一、单选题1.若、是一元二次方程的两根,则的值是()A.-2B.2C.3D.12.一元二次方程x2+3x﹣a=0的一个根为﹣1,则另一个根为()A.﹣2B.2C.4D.﹣33.已知方程x2-5x+2=0的两个解分别为m,n,则m+n-mn的值是()A.-7B.-3C.7D.34.若关于x一元二次方程x2﹣x﹣m+2=0的两根x1 ,x2满足(x1﹣1)(x2﹣1)=﹣1,则m的值为()A.3B.-3C.2D.-25.下列方程中:①x2-2x-1=0,②2x2-7x+2=0,③x2-x+1=0两根互为倒数有()A.0个B.1个C.2个D.3个6.设x1 ,x2是一元二次方程-2x-3=0的两根,则=()A.6B.8C.1D.127.一元二次方程x2+x-2=0的两根之积是()A.-1B.-2C.1D.28.方程x2+2x-4=0的两根为x1 ,x2 ,则x1+x2的值为()A.2B.-2C.D.-9.若矩形的长和宽是方程x2﹣7x+12=0的两根,则矩形的对角线之和为()A.5B.7C.8D.1010.假如a,b是一元二次方程x2﹣2x﹣4=0的两个根,那么a3b﹣2a2b 的值为()A.-8B.8C.-16D.1611.假如是一元二次方程的两个实数根,那么的值是()A.B.C.D.二、填空题12.设x1、x2是方程x2-4x+3=0的两根,则x1+x2=________.13.定义新运算“*”,规则:a*b= ,如1*2=2,* .若x2+x﹣1=0的两根为x1 ,x2 ,则x1*x2=________.14.若x1、x2是方程2x2﹣3x﹣4=0的两个根,则x1•x2+x1+x2的值为________.15.若a、b是一元二次方程x2+2x﹣1=0的两个根,则的值是_____ ___.16.写出一个以2和3为两根且二项系数为1的一元二次方程,你写的是________.17.若方程x2﹣3x+1=0的两根分别为x1和x2 ,则代数式x1+x2﹣x 1x2=________.18.若一个一元二次方程的两个根分别是1、3,请写出一个符合题意的一元二次方程________.三、运算题19.已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.20.已知一元二次方程x2﹣6x+4=0的两根分别是a,b,求(1)a2+b2(2)a2﹣b2的值.四、解答题21.已知关于x的方程x2+x+a﹣1=0有一个根是1,求a的值及方程的另一个根.22.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1 ,x2 ,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.请依照该材料解题:已知x1 ,x2是方程x2+6x+3=0的两实数根,求+和x12x2+x1x22的值.答案解析部分一、单选题1.【答案】C【考点】根与系数的关系【解析】【分析】∵一元二次方程的两根分别是、,∴==3.故选C.2.【答案】A【考点】根与系数的关系【解析】【解答】解:设x1、x2是关于x的一元二次方程x2+3x﹣a=0的两个根,则x1+x2=﹣3,又﹣x2=﹣1,解得:x1=﹣2.即方程的另一个根是﹣2.故选:A.【分析】依照一元二次方程根与系数的关系x1+x2=﹣求另一个根即可.3.【答案】D【考点】根与系数的关系【解析】【分析】利用根与系数的关系求出m+n与mn的值,代入所求式子中运算即可求出值.【解答】∵x2-5x+2=0的两个解分别为m,n,∴m+n=5,mn=2,则m+n-mn=5-2=3.故选D【点评】此题考查了根与系数的关系,熟练把握根与系数的关系是解本题的关键.4.【答案】A【考点】根与系数的关系【解析】【解答】解:依照题意得x1+x2=1,x1x2=﹣m+2,∵(x1﹣1)(x2﹣1)=﹣1,∴x1x2﹣(x1+x2)+1=﹣1,∴﹣m+2﹣1+1=﹣1,∴m=3.故选A.【分析】依照根与系数的关系得到x1+x2=1,x1x2=﹣m+2,再变形等式(x 1﹣1)(x2﹣1)=﹣1得到x1x2﹣(x1+x2)+1=﹣1,则有﹣m+2﹣1+1=﹣1,然后解此一元一次方程即可.5.【答案】B【考点】一元二次方程的根与系数的关系【解析】【解答】两根互为倒数则说明两根之积为1且△≥0,即,则a=c,∴只有②是正确的,③没有实数根.故答案为:B【分析】由两根互为倒数则说明两根之积为1且△≥0,可得出答案。
中考专题:一元二次方程的根与系数的关系
( ) ② x12 + x22 = x12 + 2x1x2 + x22 - 2x1x2 = x1 + x2 2 - 2x1x2
③ 1 + 1 = x2 + x1 = x1 + x2 x1 x2 x1 • x2 x1 • x2 x1 • x2
( ) ④ x2 + x1 = x22 + x12 = x12 + x22 = x1 + x2 2 - 2x1x2
.
9.如果 x1、x2 是一元二次方程 x2﹣kx+k﹣1=0 的两个实数根,且 x1+x2=3,则 k=
.
10.已知 x1、x2 是一元二次方程 x2+x+m=0 的两个根,且 x1+x2=2+x1x2,则 m=
.
11.(易错题)关于 x 的一元二次方程 x2+(2k+1)x+k2=0 有两个不相等的实数根.设方程的两个实数根分别为 x1,
5.已知 x1,x2 是一元二次方程 2x2﹣3x﹣4=0 的两个实数根,则 x12 x2 + x1x22 的值是 .
6.一元二次方程
x2﹣2x﹣1=0
的两根分别为
x1,x2,则
1 x1
+
1 x2
的值为
.
7.若
x1,x2 是方程
x2﹣2x﹣1=0
的两个实数根,则
x2 x1
+
x2 x2
的值为
.
8.已知 m,n 是一元二次方程 x2﹣4x﹣3=0 的两个实数根,则代数式(m+1)(n+1)的值为
前提:①一般式:ax2 +bx+c = 0 (a≠0);②判别式:∆=b2 - 4ac ≥ 0
中学数学《一元二次方程根与系数的关系》知识点精讲
知识点总结一、一元二次方程根与系数的关系(1)若方程ax2 bx c 0 (a≠0)的两个实数根是x1,x2,则x1+x2= -bc,x1x2= aa(2)若一个方程的两个根为x1,,x2,那么这个一元二次方程为ax2 x1 x2 x x1x2 0 (a≠0)(3)根与系数的关系的应用:① 验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;② 求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数.③ 求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于x1和x2的代数式的值,如;④ 求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式.二、解一元二次方程应用题:它是列一元一次方程解应用题的拓展,解题方法是相同的。
其一般步骤为:1.设:即适当设未知数(直接设未知数,间接设未知数),不要漏写单位名称,会用含未知数的代数式表示题目中涉及的量;2.列:根据题意,列出含有未知数的等式,注意等号两边量的单位必须一致;3.解:解所列方程,求出解来;4.验:一是检验是否为方程的解,二是检验是否为应用题的解;5.答:怎么问就怎么答,注意不要漏写单位名称。
一元二次方程的练习题1、若关于x的二次方程(m+1)x-3x+2=0有两个相等的实数根,则m=__________22、设方程x 3x 4 0的两根分别为x1,x2,则x1+x2=________,x1·x2=__________ 2x1+x2=_________,(x1-x2)=__________,x1+x1x2+3x1=____________23、若方程x-5x+m=0的一个根是1,则m=____________24、两根之和等于-3,两根之积等于-7的最简系数的一元二次方程是_____________25、若关于x的一元二次方程mx+3x-4=0有实数根,则m的值为______________226、方程kx+1=x-x无实根,则k___________导学案【学习目标】1、学会用韦达定理求代数式的值。
中考数学专题复习-一元二次方程的根与系数的关系(含解析)
中考数学专题复习-一元二次方程的根与系数的关系(含解析)一、单选题1.设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A. B. 6 C. -6 D. 152.已知a、b是一元次方程x2﹣2x﹣3=0的两个根,则a2b+ab2的值是()A. -1B. -5C. -6D. 63.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A. ﹣4B. ﹣1C. 1D. 44.设方程的两个根为、,那么的值等于( )。
A. B. C. D.5.已知一元二次方程x2﹣3x﹣3=0的两根为α与β,则的值为()A. -1B. 1C. -2D. 26.设x1、x2是一元二次方程x2+x﹣3=0的两根,则x13﹣4x22+15等于()A. -4B. 8C. 6D. 07.若、是一元二次方程x2+5x+4=0的两个根,则的值是().A. -5B. 4C. 5D. -48.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是( ).A. 1B. 2C. -2D. -19.一元二次方程的两实数根相等,则的值为()A. B. 或 C. D. 或10.若方程x2+x﹣2=0的两个实数根分别是x1、x2,则下列等式成立的是()A. x1+x2=1,x1•x2=﹣2B. x1+x2=﹣1,x1•x2=2C. x1+x2=1,x1•x2=2D. x1+x2=﹣1,x1•x2=﹣211.下列一元二次方程两实数根和为﹣4的是()A. x2+2x﹣4=0B. x2﹣4x+4=0C. x2+4x+10=0D. x2+4x﹣5=012.已知x1,x2是一元二次方程x2+4x﹣3=0的两个实数根,则x1+x2﹣x1x2的值是()A. 6B. 0C. 7D. -113.若方程x2+x﹣1=0的两实根为α、β,那么下列式子正确的是()A. α+β=1B. αβ=1C. α2+β2=2D. =1二、填空题14.写出以2,﹣3为根的一元二次方程是________.15.一元二次方程的两根和是________;16.已知α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α2+2αβ+β2的值为________.17.已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x1﹣1)2+(x2﹣1)2的最小值是________18.若关于x的一元二次方程为ax2+bx+c=0的两根之和为3,则关于x的方程a(x+1)2+b(x+1)+c=0的两根之和为________.三、计算题19.已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.20.设方程4x2﹣7x﹣3=0的两根为x1,x2,不解方程求下列各式的值:(1)x12x2+x1x22.(2)+ .21.已知是方程的两个根,利用根与系数的关系,求下列各式的值:(1);(2)22.已知一元二次方程x2﹣6x+4=0的两根分别是a,b,求(1)a2+b2(2)a2﹣b2的值.23.已知a、b是一元二次方程x2﹣2x﹣1=0的两个根且a2﹣2a﹣1=0,求a2﹣a+b+3ab的值.四、解答题24.关于x的方程(k﹣1)x2﹣x+1=0有实根.(1)求k 的取值范围;(2)设x1、x2是方程的两个实数根,且满足(x1+1)(x2+1)=k﹣1,求实数k的值.25.若关于x的一元二次方程x2+kx+3x+k=0的一个根是﹣2,求方程另一个根和k的值.26.若关于x的方程x2+6x+m=0的一个根为3﹣,求方程的另一个根及m的值.五、综合题27.已知关于x的方程x2﹣5x+3a+3=0(1)若a=1,请你解这个方程;(2)若方程有两个不相等的实数根,求a的取值范围.28.已知抛物线的不等式为y=﹣x2+6x+c.(1)若抛物线与x轴有交点,求c的取值范围;(2)设抛物线与x轴两个交点的横坐标分别为x1,x2.若x12+x22=26,求c的值.(3)若P,Q是抛物线上位于第一象限的不同两点,PA,QB都垂直于x轴,垂足分别为A,B,且△OPA与△OQB全等.求证:c>﹣.答案解析部分一、单选题1.设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A. B. 6 C. -6 D. 15【答案】B【考点】根与系数的关系【解析】【解答】解:设方程x2﹣5x+k=0另一个根为a,则一个根为2a﹣1,则a+2a﹣1=5,解得a=2,2×2﹣1=3因此k=2×3=6.故选:B.【分析】设方程的另一个根为a,则一个根为2a﹣1,根据根与系数的关系得出a+2a﹣1=5,得出a=3,另一个跟为5,进一步利用两根的积得出k的数值即可.2.已知a、b是一元次方程x2﹣2x﹣3=0的两个根,则a2b+ab2的值是()A. -1B. -5C. -6D. 6【答案】C【考点】根与系数的关系【解析】【解答】解:∵a、b是一元次方程x2﹣2x﹣3=0的两个根,∴ab=﹣3,a+b=2,∴a2b+ab2=ab(a+b)=﹣3×2=﹣6,故选C.【分析】根据根与系数的关系,可得出ab和a+b的值,再代入即可.3.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A. ﹣4B. ﹣1C. 1D. 4【答案】C【考点】根与系数的关系【解析】【解答】解:根据题意得x1•x2=1.故选C.【分析】直接根据根与系数的关系求解.4.设方程的两个根为、,那么的值等于( )。
(完整word)一元二次方程根与系数的关系
12。
4一元二次方程的根与系数的关系中考考点1.理解一元二次方程的根与系数的关系(韦达定理).2.会运用根与系数的关系,由已知的一元二次方程的一个根求出另一个根与未知系数.3.会求一元二次方程两个根的倒数和与平方和。
考点讲解1.若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=—,x1·x2=。
2.以x1,x2为根的一元二次方程是(x-x1)(x—x2)=0,展开代入两根和与两根积,仍得到方程ax2+bx+c=0 (a≠0).3.对二次项系数为1的方程x2+px+q=0的两根为x1,x2时,那么x1+x2=—p,x1·x2=q。
反之,以x1,x2为根的一元二次方程是:(x-x1)(x—x2)=0,展开代入两根和与两根积,仍得到方程:x2+px+q=0。
4.一元二次方程的根与系数关系的应用主要有以下几方面:(1)已知一元二次方程的一个根,求另一个根,可用两根和或两根积的关系求另一个根。
(2)已知含有字母系数的一元二次方程的一个根,求另一个根及字母系数的值。
可用根与系数关系式,一个关系式求得另一个根,再用另一个关系式求得字母系数的值。
(3)已知一元二次方程,不解方程,可求与所给方程两根和、两根积的某些代数式的值。
如,方程2x2-3x+1=0的两根为x1,x2,不解方程,求x12+x22的值。
[∵x1+x2=,x1·x2=,∴x12+x22=(x1+x2)2—2x1x2=()2-2×=](4)验根、求根、确定根的符号.(5)已知两根,求作一元二次方程(注意最后结果要化为整系数方程).(6)已知两数和与积,求这两个数.(7)解特殊的方程或方程组.考题评析1.(北京市东城区)如果一元二次方程x2+3x-2=0的两个根为x1,x2,那么x1+x2与x1·x2的值分别为()(A)3,2 (B)-3,—2 (C)3,-2 (D)-3,2考点:一元二次方程的根与系数关系。
初三数学一元二次方程根和系数关系解析
初三数学一元二次方程根和系数关系解析一元二次方程是我们初中数学中非常重要的内容,它的根和系数之间存在着一些有趣的关系。
在本文中,我们将对一元二次方程的根和系数之间的关系进行深入分析。
一、一元二次方程的一般形式一元二次方程一般可以写成如下形式:ax² + bx + c = 0,其中a、b和c分别是方程的系数,其中a≠0。
这里的a决定了方程的开口方向,b决定了方程的对称轴位置,c决定了方程与x轴的交点。
二、一元二次方程的根和系数之间的关系1. 判别式一元二次方程的判别式可以用来判断方程的根的情况。
判别式的计算公式为Δ = b² - 4ac,其中Δ表示判别式。
①当Δ > 0时,方程有两个不相等的实根。
②当Δ = 0时,方程有两个相等的实根。
③当Δ < 0时,方程没有实根,但可能有共轭复根。
2. 根与系数之间的关系通过解一元二次方程,我们可以得到根与系数之间一些有趣的关系。
①根的和与系数的关系设方程的两个根为x₁和x₂,则有:x₁ + x₂ = -b/a。
我们可以通过求和的方式得到方程中b和a之间的关系。
②根的积与系数的关系设方程的两个根为x₁和x₂,则有:x₁ * x₂ = c/a。
我们可以通过求积的方式得到方程中c和a之间的关系。
三、例题分析现在,我们通过一个例题来更好地理解一元二次方程的根和系数之间的关系。
例题:已知一元二次方程 x² - 4x + k = 0 的两个根互为相反数,求k 的值。
解析:根据题意可知,设方程的两个根为x₁和-x₁,则有:x₁ + (-x₁) = 4/a,即 -2x₁ = 4/a。
由于根互为相反数,可以把方程改写成2x₁² - 4x₁ + k = 0。
根据根和系数的关系可知:2x₁² - 4x₁ + k = 0 中的系数-4与k之间存在关系 k = 2/a。
综上,根据题意可以得出k = 2/a。
通过这个例题,我们可以清楚地看到根和系数之间的关系以及如何利用根与系数之间的关系解题。
专题:一元二次方程的根与系数的关系
九年级数学专题一:一元二次方程的根与系数的关系一、知识要点:一元二次方程20 (0)ax bx c a ++=≠的两个根为:12,22b b x x a a-+--==所以:12b x x a+=+=-,12244ac c x x a a⋅====定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么: 12x x +=______________, 12x x =______________.说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为韦达定理.上述定理成立的前提是0∆≥.二、例题讲解类型一、一元二次方程的两个根的有关计算例1.设x 1,x 2是方程x 2+2x ﹣3=0的两个实数根,求x 12+x 22的值. 解:∵x 1,x 2是方程x 2+2x ﹣3=0的两个实数根,∴x 1+x 2=﹣2,x 1•x 2=﹣3,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=(﹣2)2﹣2×(﹣3)=10;例2.设x 1与x 2为一元二次方程x 2+3x +2=0的两根,求(x 1﹣x 2)2的值. 解:由题意可知:x 1+x 2=﹣6,x 1x 2=4,∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2 =(﹣6)2﹣4×4=36﹣16=20,练习1:(1)设a ,b 是方程x 2﹣x ﹣2021=0的两个实数根,则a +b ﹣ab 的值为( )A .2022B .﹣2022C .2020D .﹣2020(2)已知方程x 2+2x +6=10x +2的两实数根分别为x 1,x 2,则的值为( ) A .﹣2 B .2 C . D .﹣(3)设x 1,x 2是方程x 2﹣3x ﹣3=0的两个实数根,则x 12x 2+x 1x 22的值为( )A .9B .﹣9C .1D .﹣1(4)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 .(5)已知a 、b 是方程x 2+5x +3=0的两个根,则的值是( )A .B .C .D . 练习2:若12,x x 是方程2220090x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.类型二、由已知一元二次方程的一个根求出它的另一个根及未知系数例3.关于x的方程x2+mx+3=0的一个根为1,则方程的另一个根与m的值.解:设方程的另一根为x=p.∵关于x的方程x2+mx+3=0的一个根为1,∴x=1满足关于x的一元二次方程x2+mx+3=0,∴1+m+3=0,解得m=﹣4;又由根与系数的关系知:1•p=3,解得p=3.故方程的另一根是3.练习3:(1)关于x的一元二次方程2x2﹣kx+12=0的一个根x1=2,则方程的另一个根x2和k的值为()A.x2=3,k=10B.x2=﹣3,k=﹣10C.x2=3,k=﹣10D.x2=﹣3,k=10(2)已知方程x2+bx+3=0的一根为+,则方程的另一根为.(3)若x=﹣1是方程x2+x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.2(4)已知关于x的方程x2+mx+3=0的一个根为x=1,则实数m的值为()A.4B.﹣4C.3D.﹣3(5)已知关于x的一元二次方程x2﹣4x﹣m2=0,若该方程的两实根x1、x2满足x1+2x2=9,求m的值.三、构造一元二次方程例4.已知实数x1,x2满足x1+x2=3,x1x2=﹣4,则以x1,x2为根的一元二次方程是()A.x2﹣3x﹣4=0B.x2﹣3x+4=0C.x2+3x﹣4=0D.x2+3x+4=0解:∵实数x1,x2满足x1+x2=3,x1x2=﹣4,∴以x1,x2为根的一元二次方程是x2﹣3x﹣4=0.故选:A.练习4:(1)在解一元二次方程x2+px+q=0时,小明看错了常数项,得到方程的两个根是﹣3、﹣1,胖何看错了一次项系数p,得到方程的两个根是5、﹣4,则原来的方程是()A.x2+4x﹣3=0B.x2+4x﹣20=0C.x2﹣4x﹣20=0D.x2﹣4x﹣3=0(2)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;例5.已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求a bb a的值;解:∵a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,∴a,b是x2﹣15x﹣5=0的解,当a≠b时,a+b=15,ab=﹣5,====﹣47.当a=b时,原式=2;练习5:若实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,则+的值为.练习6:已知实数a,b满足:2a4﹣7a2+1=0,2b4﹣7b2+1=0且a≠b,求a4+b4的值.练习7:已知实数a≠b,且满足(a+1)2=3﹣3(a+1),(b+1)2=3﹣3(b+1),则的值为()A.23B.﹣23C.﹣2D.﹣13练习8:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求①4s2﹣5s+t;②的值.例6.已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,四、利用一元二次方程中的根降次例7.设a,b是方程x2+x﹣2023=0的两个实数根,则a2+2a+b的值为()A.2024B.2021C.2023D.2022解:∵a是方程x2+x﹣2023=0的实数根,∴a2+a﹣2023=0,∴a2=﹣a+2023,∴a2+2a+b=﹣a+2023+2a+b=2023+a+b,∵a,b是方程x2+x﹣2023=0的两个实数根,∴a+b=﹣1,∴a2+2a+b=2023+(﹣1)=2022.故选:D.练习9:(1)设a,b是方程x2+x﹣2022=0的两个实数根,则a+b﹣ab的值为()A.2023B.﹣2021C.2021D.﹣2023(2)已知m,n是方程x2+2016x+7=0的两个根,则(m2+2015m+6)(n2+2017n+8)=()A.2008B.8002C.2009D.2020(3)已知x1,x2是一元二次方程x2﹣x﹣1=0的两根,则的值为()A.0B.2C.1D.﹣1(4)若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.(5)已知α、β是方程x2﹣3x﹣1=0的两个根,则α2﹣5α﹣2β+7=.例8.如果m、n是一元二次方程x2+x=3的两个实数根,那么多项式m3+2n2﹣mn﹣6m+2022的值是()A.2022B.2023C.2029D.2030解:∵m、n是一元二次方程x2+x=3的两个实数根,∴m2+m﹣3=0,n2+n﹣3=0,∴m2=﹣m+3,n2=﹣n+3,∴m3=m(﹣m+3)=﹣m2+3m=﹣(﹣m+3)+3m =4m﹣3,∴m3+2n2﹣mn﹣6m+2022=4m﹣3+2(﹣n+3)﹣mn﹣6m+2022=﹣2(m+n)﹣mn+2025,∵m、n是一元二次方程x2+x﹣3=0的两个实数根,∴m+n=﹣1,mn=﹣3,∴原式=﹣2×(﹣1)﹣(﹣3)+2025=2030.故选:D.练习10:(1)若a,b为一元二次方程x2﹣7x﹣1=0的两个实数根,则a3+3ab+8b﹣42a值是()A.﹣52B.﹣46C.60D.66(2)已知x1,x2是方程x2﹣x﹣2022=0的两个实数根,则代数式x13﹣2022x1+x22的值是()A.4045B.4044C.2022D.1(3)已知方程x2﹣2021x+1=0的两根分别为x1,x2,则x12﹣的值为()A.1B.﹣1C.2021D.﹣2021五、利用两根的性质解决有关的问题例9.已知关于x的一元二次方程x2+(2m﹣3)x+m2=0有两个不相等的实数根x1,x2.(1)求实数m的取值范围;(2)若x1+x2=6﹣x1x2,求m的值.解:(1)Δ=(2m﹣3)2﹣4m2=4m2﹣12m+9﹣4m2=﹣12m+9,∵△≥0,∴﹣12m+9≥0,∴m≤,∴实数m的取值范围是m≤;(2)由题意可得,x1+x2=﹣(2m﹣3)=3﹣2m,x1x2=m2,又∵x1+x2=6﹣x1x2,∴3﹣2m=6﹣m2,∴m2﹣2m﹣3=0,解得m1=3,m2=﹣1,又∵m≤,∴m=﹣1,即m的值为﹣1.练习11.已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.练习12.已知关于x 的一元二次方程x 2+2mx +m 2+m =0有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为x 1、x 2,且x 12+x 22=12,求m 的值.练习13.若方程22(1)30x k x k -+++=的两根之差为1,求k 的值.练习14.已知关于x 的一元二次方程x 2+(2m +1)x +m 2﹣2=0.(1)若该方程有两个实数根,求m 的最小整数值;(2)若方程的两个实数根为x 1,x 2,且(x 1﹣x 2)2+m 2=21,求m 的值.例10.关于x 的方程x 2﹣(2k ﹣1)x +k 2﹣2k +3=0有两个不相等的实数根.(1)求实数k 的取值范围;(2)设方程的两个实数根分别为x 1、x 2,存不存在这样的实数k , 使得|x 1|﹣|x 2|=?若存在,求出这样的k 值;若不存在,说明理由. 解:(1)∵方程有两个不相等的实数根,∴Δ=[﹣(2k ﹣1)]2﹣4(k 2﹣2k +3)=4k ﹣11>0,解得:k >;(2)存在,∵x 1+x 2=2k ﹣1,x 1x 2=k 2﹣2k +3=(k ﹣1)2+2>0,∴将|x 1|﹣|x 2|=两边平方可得x 12﹣2x 1x 2+x 22=5,即(x 1+x 2)2﹣4x 1x 2=5, 代入得:(2k ﹣1)2﹣4(k 2﹣2k +3)=5,解得:4k ﹣11=5,解得:k =4.练习15.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.练习16.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.例11.已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.解:∵该一元二次方程有两个实数根,∴Δ=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.练习17.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.。
一元二次方程根与系数的关系
一元二次方程综合 12.4 一元二次方程的根与系数的关系中考考点 1.理解一元二次方程的根与系数的关系(韦达定理)。
2.会运用根与系数的关系,由已知的一元二次方程的一个根求出另一个根与未知系数。
3.会求一元二次方程两个根的倒数和与平方和。
考点讲解 1.若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=-,x1?x2=。
2.以x1,x2为根的一元二次方程是(x-x1)(x-x2)=0,展开代入两根和与两根积,仍得到方程ax2+bx+c=0(a≠0)。
3.对二次项系数为1的方程x2+px+q=0的两根为x1,x2时,那么x1+x2=-p,x1?x2=q。
反之,以x1,x2为根的一元二次方程是:(x-x1)(x-x2)=0,展开代入两根和与两根积,仍得到方程:x2+px+q=0。
4.一元二次方程的根与系数关系的应用主要有以下几方面:(1)已知一元二次方程的一个根,求另一个根,可用两根和或两根积的关系求另一个根。
(2)已知含有字母系数的一元二次方程的一个根,求另一个根及字母系数的值。
可用根与系数关系式,一个关系式求得另一个根,再用另一个关系式求得字母系数的值。
(3)已知一元二次方程,不解方程,可求与所给方程两根和、两根积的某些代数式的值。
如,方程2x2-3x+1=0的两根为x1,x2,不解方程,求x12+x22的值。
[∵x1+x2=,x1?x2=,∴x12+x22=(x1+x2)2-2x1x2=()2-2×=] (4)验根、求根、确定根的符号。
(5)已知两根,求作一元二次方程(注意最后结果要化为整系数方程)。
(6)已知两数和与积,求这两个数。
(7)解特殊的方程或方程组。
考题评析 1.(北京市东城区)如果一元二次方程x2+3x-2=0的两个根为x1,x2,那么x1+x2与x1?x2的值分别为()(A)3,2 (B)-3,-2 (C)3,-2 (D)-3,2 考点:一元二次方程的根与系数关系。
数学中考复习用资料一元二次方程根与系数之间的关系
2,12)21(222121-=⋅-=-=+m x x m m x x 一元二次方程根与系数之间的关系 1、 已知关于x 的一元二次方程.x 2-2(m -1/2)x+m 2-2 =0的两根是x 1x 2,且x 12-x 1x 2+x 22=12,求m 的值。
解:1232,1221222121222121=-++=+-x x x x x x x x x x1,5,05401263144012)2(3)12(123)(212222221221-==∴=--=-+-+-=----=-+m m m m m m m m m x x x x02)21(2,522=-+--=m x m x m 时但当是x 2-9x+23=0此时Δ=(-9)2-4×23=81-92=-11<0方程无实根 ∴m=-112,1:222121=+--=x x x x m 时当答2、 已知一元二次方程x 2-2kx-5+2k=0的两根是x 1,x 2且24||21=-x x 求k 的值.解:由韦达定理得:x 1+x 2=2k,x 1·x 2=2k-524)(,24||22121=-∴=-x x x x 两边平方得:(x 1-x 2)2=321,3032012840322084032)52(4)2(0324)(32423222122222122121222121222121-==∴=--=--=-+-=---=--+=-++=+-k k k k k k k k k k x x x x x x x x x x x x x x经检验k 1=3和k 2=-1都适合题意.3、 已知m 是正实数,关于x 的方程2x 2-mx-30=0的两根是x 1,x 2,且5x 1+3x 2=0且5x 1+3x 2=0求m 的值.解:由根与系数间的关系可得221mx x =+ ①1521-=⋅x x ②由已知条件5x 1+3x 2=0 ③解:①③组成的方程组 03522121=+=+x x mx x 解得:m x m x 454321=-=将方程组的解代入②得m=4或m=-4 ∵m 是正实数 ∴m=4 上述三个例题的已知条件都有一个:例1中是12222121=+-x x x x ;例2有条件24||21=-x x ;例3中有5x 1+3x 2=0.但每题都有隐含条件即2121x x x x ⋅=+.这样每题匀有三个条件,将这三个条件很好运用,就可求出m 或k.此种应用是根与系数间的关系习题中经常遇到的,应很好掌握.4、求一个一元二次方程,使它的两根分别是:①212,313- ②253,253-+ 5、 已知方程02362=--x x求作一个新方程,使它的根分别是原方程的根的平方.分析:x 1,x 2是原方程02362=--x x 的根,则31,212121-=⋅=+x x x x 设新方程的根是y 1,y 2(注意设新方程的极是y 1,y 2是因为要与原方程的根x 1,x 2有所区别.)解:设新方程的极是y 1,y 2,由题意得 222211,x y x y ==(新方程的根是原方程根的平方)以y 1,y 2为根的方程是y 2-(y 1+y 2)y+y 1·y 2=01615161515)45()43(22=-=--⋅-m m m m91)31()(1211)31(2)21(2)(0)(222122212212212221222122212=-==⋅=-⨯-=-+=+=⋅++-x x x x x x x x x x x x y x x y 043336091121122=+-=+-∴y y y y 即所求方程是 6、 已知方程5x 2+2x=3求作一个方程,使它的根是原方程根的负倒数.解:设原方程根是53,52,,212121-=⋅-=+x x x x x x新方程的根是2211211,1,,x y x y y y -=-=则 所求方程是0)(21212=⋅++-y y y y y y523035320531535201011)11(0)1()1()11(22221212122121221212=-+=-+=-+--+=+++=⋅+++=-⋅-+---y y y y y y x x y x x x x y x x y x x y x x y x x y 即7、设x 1,x 2是关于x 的方程x 2+4k+3=0的两实根.y 1,y 2是关于y 的方程y 2-k 2y+p=0的根.若x 1-y 1=2,x 2-y 2=2则k=____,p=____.8、已知12x x ,是方程220x x a -+=的两个实数根,且1223x x +=(1)求12x x ,及a 的值; (2)求32111232x x x x -++的值.9、设方程4x 2-2x-3=0的两个根是α和β,求4α2+2β的值. 10、已知α,β分别是方程x 2+x-1=0的两个根,求2α5+5β3的值.11、已知x 1,x 2是一元二次方程4x 2-(3m-5)x-6m 2=12、已知实数x ,y ,z 满足x=6-y ,z 2=xy-9,求证:x=y .证 因为x +y=6,xy=z 2+9,所以x ,y 是二次方程t 2-6t+(z 2+9)=0的两个实根,于是这方程的判别式△=36-4(z 2+9)=-4z 2≥0, 即z 2≤0.因z 为实数,显然应有z 2≥0.要此两式同时成立,只有z=0,从而△=0,故上述关于t 的二次方程有等根,即x=y . 13、 若a ,b ,c 都是实数,且a +b +c=0,abc=1,证 由a +b +c=0及abc=1可知,a ,b ,c 中有一个正数、两个负数,不妨设a 是正数,由题意得于是根据韦达定理知,b ,c 是方程的两个根.又b ,c 是实数,因此上述方程的判别式因为a >0,所以a 3-4≥0,a 3≥4,14、知x 1,x 2是方程4ax 2-4ax+a+4=0的两个实根.解 (1)显然a ≠0,由△=16a 2-16a(a+4)≥0,得a <0.由韦达定理知所以所以a=9,这与a <0矛盾.故不存在a,使(2)利用韦达定理所以(a+4)|16,即a+4=±1,±2,±4,±8,±16.结合a <0,得a=-2,-3,-5,-6,-8,-12,-20.15、 若ab ≠1,且有52001902a a ++=及92001502b b ++=,则ab的值是( )A.95 B. 59 C. -20015 D. -20019解:由92001502b b ++=(显然b ≠0)得: 5120011902bb ++= 故a 与1b 都是方程52001902x x ++=的根,但a b≠1,由△>0,得a 与1b是此方程的相异实根,从而a b ·195=,选A 。
中考数学总复习9.根与系数的关系
一、复习目标9、一元二次方程(根与系数的关系)了解一元二次方程的根与系数的关系二、知识要点1.若关于x 的一元二次方程ax2 +bx +c = 0(a ≠ 0) 有两根分别为x ,x ,1 2那么x1 +x2 = ,x1 ⋅x2 =..........2.若关于x 的一元二次方程ax2 +bx +c = 0(a ≠ 0) 有两根分别为x ,x ,则暗含的前提条件是:① 根的1 2判别式b2 - 4ac 0;② 二次项系数a 0。
所以运用一元二次方程根与系数时,求出来的值往往要,即能否使方程有意义且有解.4.若关于x 的一元二次方程ax2 +bx +c = 0(a ≠ 0) 有两根分别为x ,x ,整体运用求代数式的值时,常见1 2的几种代数式的恒等变形:①x 2 +x 2 = (x +x )2 -2x x ;②1±1=;x1x2③ (x -x )2 =;④ x x 2 +x 2 x =;1 2 1 2 1 2⑤ x2 -x1 = = ............................................................5.由一元二次方程根与系数的关系可知,关于x 的一元二次方程ax2 +bx +c = 0(a ≠ 0) 有一根为 0,则 c= ;有互为相反数的两根,则有...................................6.二次函数y=ax2+bx+c(a≠ 0) 与x 轴的两个交点分别为A(x1,0),B(x2,0),则以点A、点B为端点的线段AB= ......................... (用含a、b、c 的代数式表示)【例题分析】例1.① 如果关于x 的一元二次方程x2+px+q=0 的两根分别为x1=2,x2=1,那么p,q 的值分别是.................②若关于x 的一元二次方程x2 +px +q = 0 的两根同为负数,则 p 0,q 0(填不等号).③已知方程x2 - 5x + 2 = 0 的两个解分别为x 、x ,则x +x -x ⋅x 的值为.1 2 1 2 1 2④已知α.β是一元二次方程x2 - 4x - 3 = 0 的两实数根,则代数式α2 - 5α-β的值为.............⑤设x , x 是方程3x2 - 4x - 2 = 0 的两个根,则x +x =,x x =,x -1 +x -1 = ..........1 2 1 2 1 2 1 2⑥关于x 的方程x2 - 6 x +k -1 = 0,当它有相等两根时,k= ;当它有一根为时 0,可以求得k= ;当它的两根互为倒数时,k= ..........例 2.已知关于x 的方程x2-(a+b)x+ab-1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2.则正确结论的序号是.例3.已知关于x 的方程x2- 2(k- 3)x+k2- 4k-1= 0 .(1)若这个方程有一个根为1,求k的值及另一根;(2)若以方程x2- 2(k- 3)x+k2- 4k-1= 0 的两个根为横坐标、纵坐标的点恰在反比例函数y =mx的图象上,求满足条件的m 的最小值.例 4. 已知 x1,x2 是关于 x 的一元二次方程 x2﹣2(a+1)x+a2+3=0 的两实数根.(1)若(x1﹣1)(x2﹣1)=10,求a的值;(2)已知等腰△ABC 的一边为6,另外两边的长都是整数且恰好是方程x2﹣2(a+1)x+a2+3=0 的根,求这个三角形的周长.1 2 1 21 2 1 2例 5.已知:关于 x 的方程x 2 + 2(a -1)x + a 2 - 7a - 4 = 0 的两根为 x 、x ,且满足x x - 3x - 3x - 2 = 0 .121 212求: (1+4) ⋅ a +2 的值. a 2 - 4 a【课后练习】1. 一元二次方程 x 2-5x+6=0 的两根分别是 x ,x ,则 x +x 等于 ( )A. 5B. 6C. -5D. -62. 已知方程 x2- 5x + 2 = 0 的两个解分别为 x 、 x ,则 x + x - x ⋅ x 的 值 为 ( )121212A . -7B . -3C .7D .33. 设 x ,x 是一元二次方程 x2- 3x - 2 = 0的两个实数根,则 x 2 + 3x x + x 2的值为.1211 224.方程 x 2-2x-1=0 的两个实数根分别为 x ,x ,则(x -1)(x -1)=.5. 两圆的圆心距 d = 1 ,它们的半径分别是一元二次方程 x2- 5x +1 = 0 的两个根,这两圆的位置关系是 .........6. 若关于 x 的方程 x 2+6x+m=0 的一个根为 3﹣,求方程的另一个跟及m 的值.7. 已知 x 1,x 2 是方程 x 2﹣(k ﹣2)x+k 2+3k+5=0 的实数根(x 1,x 2 可相等)(1) 证明方程的两根都小于 0;2 2 1 2(2) 当实数 k 取何值时 x 12+x 2最大?并求出最大值.8. 关于 x 的一元二次方程 x2- mx + 2m -1 = 0 的两个实数根分别是 x 、x ,且x 2 + x 2 = 7 ,求(x - x )2 的121 2 1 2值.9. 已知: x ,x 是方程 x 2 - 2x + a = 0 的两个实数根,且 x + 2x = 3 - .1 21 2 (1)求 x ,x 及 a 的值; (2)求 x 3 - 3x 2 + 2x + x 的值.12 1 1 1 210. 已知关于 x 的一元二次方程 x 2﹣2kx+k 2+2=2(1﹣x )有两个实数根 x 、x .(1) 求实数 k 的取值范围;(2) 若方程的两实数根 x 1、x 2 满足|x 1+x 2|=x 1x 2﹣1, 求k 的值.1. 已知:一元二次方程1 x2 + kx + k - 1= 0 . 2 2(1)求证:不论k 为何实数时,此方程总有两个实数根;(2)设k < 0 ,当二次函数y =1x 2 +kx +k -1的图象与x 轴的两个交点A 、B 间的距离为 4 时,求此2 2二次函数的解析式;(3)在(2)的条件下,若抛物线的顶点为C ,过y 轴上一点M (0,m) 作y 轴的垂线l ,当m 为何值时,直线l 与△ABC 的外接圆有公共点?。
一元二次方程的根与系数的关系
一元二次方程的根与系数的关系解一元二次方程的根可以通过求根公式得到,即 x = (-b ± √(b^2 - 4ac)) / 2a。
根据这个公式,我们可以看到根与系数之间有以下几个关系。
1.一元二次方程的根与a的关系:系数a出现在求根公式的分母位置,因此当a为0时,求根公式中将出现分母为零的情况,方程则不再是二次方程。
而当a不为0时,方程为一元二次方程,并且a的绝对值越大,求根公式的分母则越大,从而根的倒数也越大,因此a的变化会影响根的大小。
2.一元二次方程的根与b的关系:系数b出现在求根公式的分子位置,因此b的变化将直接影响根的值。
当b为正数时,根的值有两种可能:一种是两个实数根都为正数,另一种是两个实数根中一个为正数,另一个为负数。
当b为负数时,根的值也有两种可能:一种是两个实数根都为负数,另一种是两个实数根中一个为负数,另一个为正数。
3.一元二次方程的根与c的关系:系数 c 出现在求根公式中的平方根部分,从而 c 的变化对根的值起到重要的影响。
当 c 为正数时,根的值可能为两个实数,也可能为两个虚数。
当 c 为负数时,根的值为两个虚数。
而当 c 为零时,即方程为ax^2 + bx = 0,其中 a 和 b 不同时为零,方程则简化为 bx = 0,解为x = 0。
根据以上的分析,我们可以得出一些结论:-当a和b的值都相同时,方程的根的形态也相同。
例如,方程x^2+x+1=0和2x^2+2x+2=0都是只有虚根的方程。
-当a的绝对值很小时,方程的根的绝对值也较小;当a的绝对值很大时,方程的根的绝对值也较大。
-当b的绝对值很小时,方程的根的绝对值也较小;当b的绝对值很大时,方程的根的绝对值也较大。
-当c的绝对值很小时,方程的根的绝对值也较小;当c的绝对值很大时,方程的根的绝对值也较大。
综上所述,一元二次方程的根与系数之间存在着一定的关系,系数的变化会对根的大小、正负以及虚实等性质产生影响。
初中数学九年级专项训练一元二次方程专题根与系数关系
一元二次方程专题复习(二)根与系数的关系及其应用如果一元二次方程ax 2+bx +c=0(a ≠0)的两根为x 1,x 2,那么反过来,如果x 1,x 2满足x 1+x 2=p ,x 1x 2=q ,则x 1,x 2是一元二次方程x 2-px+q=0的两个根.一元二次方程的韦达定理,揭示了根与系数的一种必然联系.利用这个关系,我们可以解决诸如已知一根求另一根、求根的代数式的值、构造方程、证明等式和不等式等问题,它是中学数学中的一个有用的工具.【典型例题】应用一:已知一个根,求另一个根;例1 : 方程(1998x)2-1997·1999x-1=0的大根为a ,方程x 2+1998x-1999=0的小根为b ,求a-b 的值.解 : 先求出a ,b .由观察知,1是方程(1998x)2-1997·1999x-1=0的根,于是由韦达定理知,另一根为219981-,于是可得a=1.又从观察知,1也是方程x 2+1998x-1999=0的根,此方程的另一根为-1999,从而b=-1999.所以a-b=1-(-1999)=2000.应用二:求根的代数式的值不解方程,利用一元二次方程根与系数的关系求两个代数式的值关键是把所给的代数式经过恒等变形,化为含,的形式,然后把,的值代入,即可求出所求代数式的值.常见的代数式变形有:① ②③ ④⑤例2: 已知二次方程x 2-3x +1=0的两根为α,β,求:(1)βα11+ (2)22βα+ (3)α3+β3解: 由韦达定理知 : α+β=3, α·β=1.(1)31311==+=+αββαβα(2)()72912322222=-=⨯-=-+=+αββαβα (3)α3+β3=(α+β)(α2-αβ+β2)=(α+β)[(α+β)2-3αβ]=3(9-3)=18;例3: 设方程4x 2-2x -3=0的两个根是α和β,求4α2+2β的值.解: 因为α是方程4x 2-2x -3=0的根,所以4α2-2α-3=0,即 4α2=2α+3.由韦达定理可知,21=+βα.所以4α2+2β=2α+3+2β=2(α+β)+3=4.例4: 已知α,β分别是方程x 2+x -1=0的两个根,求2α5+5β3的值.解: 由于α,β分别是方程x 2+x -1=0的根,所以α2+α-1=0,β2+β-1=0,即 α2=1-α,β2=1-β.α5=(α2)2·α=(1-α)2α=(α2-2α+1)α=(1-α-2α+1)α= -3α2+2α = -3(1-α)+2α=5α-3,β3=β2·β=(1-β)β=β-β2=β-(1-β)=2β-1.所以 2α5+5β3=2(5α-3)+5(2β-1)=10(α+β)-11=-21.说明: 此解法的关键在于利用α,β是方程的根,从而可以把它们的幂指数降次,最后都降到一次,这种方法很重要.应用三:与两根之比有关的问题;例5: 已知x 1,x 2是一元二次方程 4x 2-(3m -5)x -6m 2=0的两实数根,且23x x 21=,求m 的值.解: 首先,△=(3m -5)2+96m 2>0,方程有两个实数根.由韦达定理知从上面两式中消去k ,便得即 m 2-6m+5=0, 所以m 1=1,m 2=5.应用四:求作新的二次方程例6: 求一个一元二次方程,使它的两根分别是212313, 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学一元二次方程根与系数的关系
精选例题解析
知识考点:
掌握一元二次方程根与系数的关系,并会根据条件和根与系数的关系不解方程确定相关的方程和未知的系数值。
精典例题:
【例1】关于x 的方程10422=-+kx x 的一个根是-2,则方程的另一根是 ;k = 。
分析:设另一根为1x ,由根与系数的关系可建立关于1x 和k 的方程组,解之即得。
答案:
2
5
,-1 【例2】1x 、2x 是方程05322=--x x 的两个根,不解方程,求下列代数式的值:
(1)2
22
1x x + (2)21x x - (3)22
22
133x x x -+
略解:(1)2
221x x +=212212)(x x x x -+=417
(2)21x x -=212214)(x x x x -+=2
1
3
(3)原式=)32()(22
22221x x x x -++=5417
+=4
112 【例3】已知关于x 的方程05)2(222=-+++m x m x 有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值。
分析:有实数根,则△≥0,且16212
22
1+=+x x x x ,联立解得m 的值。
略解:依题意有:
⎪⎪⎩
⎪⎪⎨⎧≥--+=∆+=+-=+-=+0)5(4)2(416
5)2(222212
22122
121m m x x x x m x x m x x 由①②③解得:1-=m 或15-=m ,又由④可知m ≥4
9
- ∴15-=m 舍去,故1-=m 探索与创新:
【问题一】已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数根,问:1x 与2x 能否同号?若能同号请求出相应的m 的取值范围;若不能同号,请说明理由。
略解:由1632+-=∆m ≥0得m ≤
2
1。
121+-=+m x x ,22141
m x x =≥0
∴1x 与2x 可能同号,分两种情况讨论:
(1)若1x >0,2x >0,则⎩⎨⎧>>+00
2
121x x x x ,解得m <1且m ≠0
∴m ≤
2
1
且m ≠0 (2)若1x <0,2x <0,则⎩⎨⎧><+0
02121x x x x ,解得m >1与m ≤21
相矛盾
综上所述:当m ≤
2
1
且m ≠0时,方程的两根同号。
【问题二】已知1x 、2x 是一元二次方程01442=++-k kx kx 的两个实数根。
(1)是否存在实数k ,使2
3
)2)(2(2121-=--x x x x 成立?若存在,求出k 的
值;若不存在,请说明理由。
(2)求使
21
2
21-+x x x x 的值为整数的实数k 的整数值。
略解:(1)由k ≠0和△≥0⇒k <0 ∵121=+x x ,k
k x x 41
21+=
∴2122121219)(2)2)(2(x x x x x x x x -+=-- 2
3
49-=+-=k k ∴5
9
=
k ,而k <0 ∴不存在。
(2)21221-+x x x x =4)(2
1221-+x x x x =14+-
k ,要使14
+-k 的值为整数,而k 为整数,1+k 只能取±1、±2、±4,又k <0
∴存在整数k 的值为-2、-3、-5
跟踪训练: 一、填空题:
1、设1x 、2x 是方程0242=+-x x 的两根,则①
2
11
1x x +
= ;②21x x - = ;③)1)(1(21++x x = 。
2、以方程0422=--x x 的两根的倒数为根的一元二次方程
是 。
3、已知方程0452=+-mx x 的两实根差的平方为144,则m = 。
4、已知方程032=+-m x x 的一个根是1,则它的另一个根是 ,m 的值
是 。
5、反比例函数x
k
y =
的图象经过点P (a 、b ),其中a 、b 是一元二次方程042=++kx x 的两根,那么点P 的坐标是 。
6、已知1x 、2x 是方程0132=+-x x 的两根,则1112422
1++x x 的值为 。
二、选择题:
1、如果方程12=+mx x 的两个实根互为相反数,那么m 的值为( ) A 、0 B 、-1 C 、1 D 、±1
2、已知ab ≠0,方程02=++c bx ax 的系数满足ac b =⎪⎭⎫
⎝⎛2
2,则方程的两根之比
为( )
A 、0∶1
B 、1∶1
C 、1∶2
D 、2∶3 3、已知两圆的半径恰为方程02522=+-x x 的两根,圆心距为3,则这两个圆的外公切线有( )
A 、0条
B 、1条
C 、2条
D 、3条
4、已知,在△ABC 中,∠C =900,斜边长2
1
7,两直角边的长分别是关于x 的方
程:09)21
(32=++-m x m x 的两个根,则△ABC 的内切圆面积是( )
A 、π4
B 、π23
C 、π47
D 、π4
9
5、菱形ABCD 的边长是5,两条对角线交于O 点,且AO 、BO 的长分别是关于x 的方程:03)12(22=++-+m x m x 的根,则m 的值为( )
A 、-3
B 、5
C 、5或-3
D 、-5
或3 三、解答题:
1、证明:方程0199719972=+-x x 无整数根。
2、已知关于x 的方程032=++a x x 的两个实数根的倒数和等于3,关于x 的方程023)1(2=-+-a x x k 有实根,且k 为正整数,求代数式
2
1
--k k 的值。
3、已知关于x 的方程03)21(22=-+--a x a x ……①有两个不相等的实数根,且关于x 的方程01222=-+--a x x ……②没有实数根,问:a 取什么整数时,方程①有整数解?
4、已知关于x 的方程03)1(222=-++-m x m x (1)当m 取何值时,方程有两个不相等的实数根?
(2)设1x 、2x 是方程的两根,且012)()(21221=-+-+x x x x ,求m 的值。
5、已知关于x 的方程01)12(2=-+-+k x k kx 只有整数根,且关于y 的一元二次方程03)1(2=+--m y y k 的两个实数根为1y 、2y 。
(1)当k 为整数时,确定k 的值。
(2)在(1)的条件下,若m =2,求2
22
1y y +的值。
6、已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实根,问:1x 、2x 能否同号?若能同号,请求出相应m 的取值范围;若不能同号,请说明理由。
参考答案
一、填空题:
1、①2;②22;③7;
2、0242=-+x x ;
3、±18;
4、2,2;
5、(-2,-2)
6、43; 二、选择题:ABCDA 三、解答题:
1、略证:假设原方程有整数根,由⎩⎨⎧==+19971997
2
121x x x x 可得1x 、2x 均为整数根,
∵199721=x x ∴1x 、2x 均为奇数
但21x x +应为偶数,这与199721=+x x 相矛盾。
2、1=k ,02
1
=--k k 3、3=a
4、(1)2->m ;(2)1=m
5、(1)k =0,-1;(2)当k =0时,132
221=+y y ;当1-=k 时,4
172
22
1=
+y y 6、能同号,m ≤2
1
且m ≠0。