小学奥数 牛吃草及盈亏问题

合集下载

小学六年级奥数牛吃草问题公式及练习题

小学六年级奥数牛吃草问题公式及练习题

【导语】奥数是奥林匹克数学竞赛的简称。

1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。

以下是⽆忧考整理的《⼩学六年级奥数⽜吃草问题公式及练习题》相关资料,希望帮助到您。

1.⼩学六年级奥数⽜吃草问题公式 (1)草的⽣长速度=(对应的⽜头数×吃的较多天数-相应的⽜头数×吃的较少天数)÷(吃的较多天数-吃的较少天数) (2)原有草量=⽜头数×吃的天数-草的⽣长速度×吃的天数 (3)吃的天数=原有草量÷(⽜头数-草的⽣长速度) (4)⽜头数=原有草量÷吃的天数+草的⽣长速度 2.⼩学六年级奥数⽜吃草问题练习题 天⽓渐渐变冷,牧场上的草不仅不增长反⽽以固定的速度减少。

已知牧场上有⼀⽚草地,草地上的草可供给20头⽜吃5天,15头⽜吃6天,照这样计算可供给多少头⽜吃10天? 分析:设⼀头⽜⼀天吃的草为1份。

原有草量是固定的。

在⽜吃草的过程中,由于天⽓变冷,草每天都均匀的减少。

草每天减少的量是固定的。

那么原有草量-5天草的减少的量=20头⽜吃5天的草量=20×5=100份。

原有草量-6天草的减少量=15头⽜吃6天的草量=15×6=90份。

那么(100-90)÷(6天草的减少量-5天草的减少的量)就是草每天的减少量。

每天草的减少量:(100-90)÷(6-5)=10份。

原有草量:20×5+10×5=150(份)或者15×6+10×6=150(份) 牧场10天实际消耗的原有草量:10×10=100(份) 10天可供多少头⽜吃:(150-100)÷10=5(头)3.⼩学六年级奥数⽜吃草问题练习题 有⼀个蓄⽔池装有9根⽔管,其中⼀根为进⽔管,其余8根为相同的出⽔管。

小学奥数专题一牛吃草问题

小学奥数专题一牛吃草问题

小学奥数专题一牛吃草问题牛吃草概念及公式:设定一头牛一天吃草量为“1”(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度一、奥数导引例1.一块牧场长满草,每天牧草都均匀生长。

这片牧场可供10头牛吃20天,可供15头牛吃10天,那么(1)可供25头牛吃多少天?(2)可供多少头牛吃4天?例1.解析:假设一头牛一天吃1份草,10天长出草10×20-15×10=50份,每天长出草50÷(20-10)=5份,原有草10×20-20×5=100份,25头牛吃的草,减去每天长的草,一天消耗草25-5=20份,够吃100÷(25-5)=5天。

可供25头牛吃5天。

解法二:(1)(10-x)×20=(15-x)×10=(25-x)×?(2)(10-x)×20=(15-x)×10=(?-x)×4例2.如果22头牛吃33公亩牧场的草,54天后可以吃完,17头牛吃28公亩牧场的草,84天后可以吃完,那么要在24天内吃完40公亩牧场的草,需要多少头牛? ( )A.50B.46C.38D.35例2解法1:牧场的面积发生变化,所以每天长出的草量不再是常量。

设每头牛每天的吃草量为1份,则每亩54天的总草量为:22×54÷33=36份;每亩84天的总草量为:17×84÷28=51份,那么每亩每天的新生长草量为(51-36)÷(84-54)=0.5份,每亩原有草量为36-0.5×54=9份,那么40亩原有草量为9×40=360份,40亩24天新生长草量为24×0.5×40=480份,40亩24天共有草量360+480=840,可供牛数为840÷24=35头。

四年级奥数-牛吃草问题例题讲解

四年级奥数-牛吃草问题例题讲解

例1:牧场上长满牧草,每天都匀速生长。

这片牧场可供27头牛吃6天或23头牛吃9天。

问可供21头牛吃几天?分析:设一头牛一天的吃草量为1份,(1)先算出牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)再算牧场原有的草量为:23×9-15×9=72份,(3)21头牛,要安排15头去吃每天新增的草量,剩余的牛21-15=6头去吃原有的草量,这样才可以把草吃完。

可以吃:72÷6=12天。

例2:一片牧场上长满牧草,如牧草每天都匀速生长。

则牧场可供27头牛吃6天或23头牛吃9天。

问想要18天吃完这些草要几头牛?分析:这道题和例1有点互逆的意思。

我们设一头牛一天的吃草量为1份,则(1)牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)牧场原有的草量为:23×9-15×9=72份,(3)18天要吃完草,先要安排15头牛去吃每天新增的草量,再安排72÷18=4头牛去吃原有的草量72份,所以要:15+4=19头牛。

例3:一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。

如果用12人舀水,3小时舀完。

如果只有5个人舀水,要10小时才能舀完。

现在要想在2小时舀完,需要多少人?分析:这是一道有点变异的牛吃草问题,解题的思路也是和牛吃草问题一样。

设每人每小时舀水量为一份,则(1)漏水量(新增的水量):(10×5-12×3)÷(10-3)=2份,(2)船原有的水为:12×3-2×3=30份,要先安排2个人去舀新增的水量,再安排30÷2=15人去舀原有的水量30分,共要15+2=17人。

例4:有一片牧场,24头牛6天可以将草吃完,或21头牛8天可以吃完。

要使牧草永远吃不完,至多可以放牧几头牛?分析:要牧草永远吃不完,就要保证每天最多只吃新增的量,否则一旦超过每天新增的量,吃了原来的量,总有一天会吃完。

小学奥数专题-牛吃草问题

小学奥数专题-牛吃草问题

小学奥数专题-牛吃草问题【背景介绍】把一些牛放养在一片持续生长的草原上,牛会吃草。

如果牛的数量足够多,草的生长满足不了牛的食量,那么总有一天草会被吃完;如果牛的数量不多,草长得很快,牛有可能永远不会把草吃完。

类似于这样的问题,就是牛吃草问题。

牛吃草问题讲的是某些计划要完成的工作,该工作本身也在变化,而这个变化影响了完成工作的速度。

生活中有很多类似的事情:划船时船身进水,把水排出的速度大于进水速度,一段时间后水会被排完;排水速度没有进水速度快,那么一会儿船里会充满水。

妈妈每月买30瓶牛奶,儿子一天喝一瓶,一个月正好喝完;一天喝2瓶,仅够半个月喝;两天喝一瓶,每个月都会剩下15瓶。

今天我们就讨论一下牛吃草问题,学会的同学做好标记,在之后的课程中,行船问题、自动扶梯问题中也会有同样类型的题目。

【例题1】家里原来有12块糖,妈妈每天还会带回来2块,小明和他的兄弟姐妹每天每人都要吃1块,如果3个兄弟姐妹来吃,可以吃几天?如果4个兄弟姐妹来吃,可以吃几天?【思路分析】3人的时候,3=2+1,其中2人每天吃带回来的糖,剩下那个人去吃家里原有的12块糖,12÷1=12(天),12天后,这个人就没的吃了。

虽然吃带回来的糖的那2个人还可以继续吃,可是因为第3个人没的吃了,有1个人没的吃了就是不够了,那么只够这3个人吃12天。

4人的时候,4=2+2,其中2人每天吃带回来的糖,剩下那2个人去吃家里原有的12块糖,12÷2=6(天),6天后,这2个人就没的吃了。

虽然吃带回来的糖的那2个人还可以继续吃,可是因为第3、第4个人没的吃了,有2个人没的吃了就是不够了,那么只够这4个人吃6天。

【题后分析】3人12天总共吃了3×12=36(块);4人6天总共吃了4×6=24(块)。

为什么3人吃的总量比4人的多36-24=12(块)?因为多了12-6=6(天)。

原有的糖消耗得越慢,去吃妈妈每天带回来的糖的人,吃的天数就越多,也就有了总量的差距。

小学奥数 牛吃草问题

小学奥数 牛吃草问题

专题一:牛吃草问题※.核心公式:草场草量=(牛数-每天长出的草量)×天数这里我们把草场草量称为“原有量”把每天长出的草量称为“日产量”那么牛吃草问题的核心公式为:原有量 =(牛数-日产量)×天数※.解题思路:A.对于简单的牛吃草问题,一般可以根据已知条件,分步骤解答。

首先:求出日产量(每天长出的草量)然后:求出原有量(草场草量)最后:求出题目。

B.对于较为复杂的牛吃草问题,我们将在下面例题中,具体分析。

----------------------------------------------------------------- 例1.牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天分析:这是一道基本的牛吃草问题,我们可以按照思路A解答。

解:设1头牛1天吃的草为1份。

每天长出的草量为:(10×20-15×10)÷(20-10)= 5(份)草场原有的草量为:10×20-5×20 = 100(份)25头牛可以吃的天数:100÷(25-5)= 5(天)答:这片草地可供25头牛吃5天。

课堂练兵:牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供几头牛吃5天例2.由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天分析:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少。

但我们可以利用例1的方法,求出每天减少的草量和原有的草量。

解:设1头牛1天吃的草为1份。

每天减少的草量为:(20×5-15×6)÷(6-5)= 10(份)草场原有的草量为:20×5+10×5 = 150(份)设:可供x头牛吃10天150 = (x+10)×10x = 5答:可供5头牛吃10天。

小学奥数---牛吃草问题02(含答案解析)

小学奥数---牛吃草问题02(含答案解析)

小学奥数—牛吃草问题牛吃草问题(奥数知识点总结):基本公式:草生长速度=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);原草量=较长时间×(较长时间牛头数-×生长速度);或原草量=较短时间×(较短时间牛头数-×生长速度)问牛吃能吃几天数时=原草量÷(牛头数《问题的牛头数》-草生长速度)问可供多少头牛吃时=原草量÷吃的天数+草生长速度1、牧场上一片青草,每天牧草都匀速生长。

这片牧草可供20头牛吃10天,或者可供23头牛吃8天。

问:可供16头牛吃几天?2、有一片牧草每天匀速生长,可供10头牛吃12天,可供8头牛吃20天,那么最多可以养多少头牛,使得这片草永远吃不完?3、一个大型的污水池存有一定量的污水,并有污水不断流入,若安排4台污水处理设备,36天可将池中的污水处理完;若安排5台污水处理设备,27天可将池中污水处理完;若安排7台污水处理设备,多少天可将池中污水处理完.4、一水库原存有一定量的水,且水库源头有河水均匀入库,用5台抽水机连续20天可以把水库抽干,用6台同样的抽水机连续15天也可以把水库的水抽干.因工程需要,要求6天抽干水库的水,需要同样的抽水机多少台?5、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?6 、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。

问:该扶梯共有多少级?7、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。

从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。

如果同时打开7个检票口,那么需多少分钟?8、有一片草场,10头牛8天可以吃完草场上的草;15头牛,如果从第二天开始每天少一头,可以5天吃完.那么草场上每天长出来的草够多少头牛吃一天.小学奥数-牛吃草、基本公式:草生长速度=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);原草量=较长时间×(较长时间牛头数-草生长速度);或原草量=较短时间×(较短时间牛头数-草生长速度)问牛吃能吃几天数时=原草量÷(牛头数《问题的牛头数》-草生长速度)问可供多少头牛吃时=原草量÷吃的天数+草生长速度1、牧场上一片青草,每天牧草都匀速生长。

小学奥数牛吃草

小学奥数牛吃草
解:假设1人1小时舀1份水
12×3=36份……原水量+3小时进水量
5×10=50份……原水量+10小时的进水量
每小时的进水量:
(50-36)÷(10-3)=2份
原水量:
36-3×2=30份 或50-10×2=30份
30份
2份
+
(30+12)份水需要几个人6小时舀完?
(30+12)÷6=7小时
25×9=225份……原草量-9天的减少量
草每天的减少量:
(240-225)÷(9-8)=15份
原草量:
240+8×15=360份 或220+9×15=360份
400份
15份
-
360份草可供21头牛吃几天?
360÷(21+15)=10天
15头牛在吃
例3 一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进入了一些水,如果用12人舀水,3小时舀完,如果只有5个人舀水,要10小时才能舀完,现在想在6小时舀完,需要多少人?
解:假设1头牛1天吃的草的数量是1份
20×5=100份……原草量-5天的减少量
15×6=90份……原草量-6天的减少量
草每天的减少量:
(100-90)÷(6-5)=10份
原草量:
100+5×10=150份 或90+6×10=150份
剩下150-100=50份
150份
10份
-
50份草可供多少头牛吃10天?
[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?
解:假设1头牛1天吃的草的数量是1份

小学奥数 牛吃草及盈亏问题

小学奥数 牛吃草及盈亏问题

盈亏问题和牛吃草问题一,牛吃草问题属于应用题模块,是经典的奥数题型之一,也是考试中经常会涉及到的考点。

下边是牛吃草的五大经典类型,大家可以来学习一下。

“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间。

难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定。

“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变;②每头牛每天的食草量不变;③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④新生的草量=每天生长量×天数同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数×较多天数-对应牛的头数×较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数×吃的天数-草的生长速度×吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1 牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。

总草量可以分为牧场上原有的草和新生长出来的草两部分。

牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。

奥数牛吃草的问题

奥数牛吃草的问题

奥数牛吃草的问题
奥数关于牛吃草的问题
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

口诀:
每牛每天的.吃草量假设是份数1,
A头B天的吃草量算出是几?
M头N天的吃草量又是几?
大的减去小的,除以二者对应的天数的差值,
结果就是草的生长速率。

原有的草量依此反推。

公式就是A头B天的吃草量减去B天乘以草的生长速率。

将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
原有的草量除以剩余的牛数就将需要的天数求知。

例:整个牧场上草长得一样密,一样快。

27头牛6天可以把草吃完;23头牛9天也可以把草吃完。

问21头多少天把草吃完。

每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;
大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)
结果就是草的生长速率。

所以草的生长速率是45/3=15(牛/天);
原有的草量依此反推。

公式就是A头B天的吃草量减去B天乘以草的生长速率。

所以原有的草量=27X6-6X15=72(牛/天)。

将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;
剩下的21-15=6去吃原有的草,
所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)。

行测数量盈亏和牛吃草问题非常好的思路和解析附练习题

行测数量盈亏和牛吃草问题非常好的思路和解析附练习题

【盈亏问题公式】(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。

(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。

(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。

(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。

例1:一个植树小组去栽树,如果每人栽3棵,还剩下15棵树苗;如果每人栽5棵,就缺少9棵树苗。

求这个小组有多少人?一共有多少棵树苗?分析:已知如果每人栽3棵,还剩下15棵树苗,也就是说还有15棵树苗没有栽上,树苗余下了;又知如果每人栽5棵,就缺少9棵树苗,这就是说,树苗不够了。

按照第一种方案去栽,树苗余下了,若按照第二种方案去栽,树苗不足了。

一个是余下一个是不足,这两个方案之间相差多少棵呢?相差(15+9=)24棵,也就是说,如果按照第二种方案去栽的话,可以比第一种方案多栽24棵树。

为什么能多栽24棵树呢?因为每个人多栽(5-3=)2棵。

由于每一个人多栽2棵树,一共多栽24棵树,即“2棵树”对应于“1个人”。

这样,小组的人数可以求得。

随之,树苗的棵数也可以求得。

计算:(1)小组的人数:(15+9)÷(5-3)=24÷2=12(人)(2)树苗的棵数:3×12+15=51(棵)答:这个小组有12人,一共有51棵树苗。

在解题时,常常要找两个“差”。

一个是总棵数之差,即第一种方案同第二种方案所栽树苗的总差数;另一个是单量之差,即每个人所栽树苗的差。

有了这两个差即可求出结果。

因此,这种解题的思路也可以称作“根据两个差求未知数”。

例2:悦悦每天早晨7点30分从家出发上学去,如果每分钟走45米,则迟到4分钟到校;如果每分钟走75米,则可以提前4分钟到校。

牛吃草问题、盈亏问题、鸡兔同笼问题

牛吃草问题、盈亏问题、鸡兔同笼问题

牛吃草问题、盈亏问题、鸡兔同笼问题1、由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。

经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。

那么,可供11头牛吃几天?分析:以1头牛1天吃的草为1份。

牧场上的草每天自然减少(20×5-16×6)÷(6-5)=4(份),原来牧场有草(20+4)×5=120(份),可供11头牛吃120÷(11+4)=8(天)。

2、有一个水池,池底有一个打开的出水口。

用5台抽水机 20时可将水抽完,用 8台抽水机 15时可将水抽完。

如果仅靠出水口出水,那么多长时间能把水漏完?分析:将1台抽水机1时的抽水量当做1份。

出水口每时出水(8×15-5×20)÷(20-15)=4(份),水池原有水(5+4)×20=180(份),单靠出水口漏完需180÷4=45(时)。

3、有三块草地,面积分别为4公顷、8公顷和10公顷。

草地上的草一样厚,而且长得一样快。

第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周。

问:第三块草地可供50头牛吃几周?分析:将第一块草地及牛的头数都扩大到原来的2倍,变成8公顷地可供48头牛吃6周。

对比第二块草地,8公顷地可供36头牛吃12周。

设1头牛1周吃的草为1份,则8公顷地每周长草(36×12-48×6)÷(12-6)=24(份),8公顷地原有草(36-24)×12=144(份)。

可供50头牛吃180÷(50-30)=9(周)。

4、若干个同学去划船,他们租了一些船,若每船4人则多5人,若每船5人则船上有4个空位。

问:有多少个同学?多少条船?分析:41名同学,9条船5、全班同学去划船,如果减少一条船,那么每条船正好坐9人;如果增加一条船,那么每条船正好坐6人。

问:全班有多少人?分析:36人。

6、2分和5分的硬币共36枚,共值 99分。

六年级奥数-34“牛吃草”问题

六年级奥数-34“牛吃草”问题

“牛吃草”问题1.了解“牛吃草”问题的特点;2.熟练掌握解决“牛吃草”问题的方法和过程;3.明确牛吃草问题的归类,并能归纳哪些条件属于“牛”,哪些条件相当于“草”;1.重点:理解“牛吃草”这类问题的解题步骤,掌握“牛吃草”问题的解题思路;2.难点:能利用“牛吃草”问题解决抽水问题和检票口检票等问题;知识点一:简单“牛吃草”问题1.“牛吃草”问题简介“牛吃草”问题是因牛顿提出而得名的。

“一堆草可供10头牛吃3天,供6头牛吃几天?”这题很简单,用56103=÷⨯(天)就计算出来了。

但如果把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了。

因为草每天都在生长,草的数量在不断变化,故而难以求解。

像这类工作总量不固定(均匀变化)的问题就是“牛吃草”问题。

2.“牛吃草”问题涉及的量简单“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间。

难点在于随着时间的增长,草也按不变的速度在增长,所以草的总量是不固定的。

3.解“牛吃草”问题的主要依据(1)草的每天生长量不变;(2)每头牛每天吃草的量不变;(3)草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值;(4)新生的草量=每天生长量×天数;4.同一片牧场中的“牛吃草”问题一般解法总结(1)把1头牛1天吃草的量看成“1”份;(2)草的生长速度=(较多的天数×对应牛的头数—较少的天数×对应牛的头数)÷(较多的天数—较少的天数);(3)原来的草量=较多的天数×对应牛的头数—较多的天数×草的生长速度;(4)吃的天数=原来的草量÷(牛的头数—草的生长速度);(5)牛的头数=原来的草量÷吃的天数+草的生长速度;例1.一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周或者23头牛吃9周,那么这片草地可供21头牛吃几周?练习1.一片草地,每天都匀速长出青草,如果可供24头牛吃6天,20头牛吃10天,那么可供19头牛吃几天?此类题型每天都会长出青草,抓住青草的增长速度不变和草地原有草的分数不变是重点例2.由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

小学奥数专题牛吃草问题

小学奥数专题牛吃草问题

小学奥数专题一牛吃草问题牛吃草概念及公式:设定一头牛一天吃草量为“1”1草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;2原有草量=牛头数×吃的天数-草的生长速度×吃的天数;3吃的天数=原有草量÷牛头数-草的生长速度;4牛头数=原有草量÷吃的天数+草的生长速度一、奥数导引例1.一块牧场长满草,每天牧草都均匀生长;这片牧场可供10头牛吃20天,可供15头牛吃10天,那么1可供25头牛吃多少天 2可供多少头牛吃4天例1.解析:假设一头牛一天吃1份草,10天长出草10×20-15×10=50份,每天长出草50÷20-10=5份,原有草10×20-20×5=100份,25头牛吃的草,减去每天长的草,一天消耗草25-5=20份,够吃100÷25-5=5天;可供25头牛吃5天; 解法二:110-x×20=15-x×10=25-x×210-x×20=15-x×10= -x×4例2.如果22头牛吃33公亩牧场的草,54天后可以吃完,17头牛吃28公亩牧场的草,84天后可以吃完,那么要在24天内吃完40公亩牧场的草,需要多少头牛A.50B.46C.38D.35例2解法1:牧场的面积发生变化,所以每天长出的草量不再是常量;设每头牛每天的吃草量为1份,则每亩54天的总草量为:22×54÷33=36份;每亩84天的总草量为:17×84÷28=51份,那么每亩每天的新生长草量为51-36÷84-54=0.5份,每亩原有草量为36-0.5×54=9份,那么40亩原有草量为9×40=360份,40亩24天新生长草量为24×0.5×40=480份,40亩24天共有草量360+480=840,可供牛数为840÷24=35头;解法2:利用列方程解问题;二、历年真题三、奥数拔高训练100分1.一个牧场可供58头牛吃7天,或者可供50头牛吃9天;假设草的生长量每天相等,每头牛的吃草量也相等,那么可供多少头牛吃6天10分2.现要将一池塘水全部抽干,但同时又有水流进池塘;若用8台抽水机10天可以抽干;用6台抽水机20天可以抽干;若要5天抽干水,需要多少台同样的抽水机抽水 15分3.一个蓄水池装有9根水管,1根进水管,8根相同的出水管;先放进一些水再排水;排水时进水管不关;如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光;要想在4.5小时内把池内的水全部排光,需同时打开几个出水管 15分4.旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站开放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客解决完毕;1求增加人数的速度;2原来的人数;30分5.有三块草地,面积分别是5、15、24亩;草地上的草一样厚,而且长得一样快;第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天 30分1.解析:50×9-58×7÷9-7=22份,58×7-22×7=252份,252+6×22÷6=64头可供64头牛吃6天;2.解析:假设一台抽水机一天抽水1份;6×20-8×10÷20-10=4份,8×10-4×10=40份, 40+4×5÷5=12台,需要12台同样的抽水机抽水;3.解析:假设打开一根出水管每小时可排水“一份”,那么8根出水管开3小时共排出水8×3=24份;5根出水管开6小时共排出水5×6=30份;两种情况比较,可知3小时内进水管放进的水是30-24=6份;进水管每小时放进的水是6÷3=2份;3小时排水24份,3小时进水6份,可见打开排水管前,水池中有水24-6=18份;4.5小时再进水4.5×2=9份,4.5小时排完需打开18+9÷4.5=6根排水管;4.解析:设一个检票口一分钟通过一个人1个检票口30分钟30个人1个检票口10分钟20个人30-20÷30-10=0.5个人原有1×30-30×0.5=15人或者2×10-10×0.5=15人5.解析:设每头牛每天的吃草量为1份,则每亩30天的总草量为:10×30÷5=60份;每亩45天的总草量为:28×45÷15=84份,那么每亩每天的新生长草量为84-60÷45-30=1.6份,每亩原有草量为60-1.6×30=12份,那么24亩原有草量为12×24=288份,24亩80天新生长草量为24×1.6×80=3072,24亩80天共有草量3072+288=3360,可供牛数为3360÷80=42头;例 1 一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于l头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天例 22008年“陈省身杯”国际青少年五年级数学邀请赛有一个水池,池底存了一些水,并且还有泉水不断涌出;为了将水池里的水抽干,原计划调来8台抽水机同时工作;但出于节省时间的考虑,实际调来了9台抽水机,这样比原计划节省了8小时;工程师们测算出,如果最初调来10台抽水机,将会比原计划节省12小时;这样,将水池的水抽干后,为了保持池中始终没有水,还应该至少留下台抽水机;例3 甲、乙、丙三车同时从A地出发到B地去.甲、乙两车的速度分别是每小时60千米和每小时48千米.有一辆卡车同时从B地迎面开来,分别在它们出发后6小时、7小时、8小时先后与甲、乙、丙车相遇,求丙车的速度.巩固小新、正南、妮妮三人同时从学校出发到公园去.小新、正南两人的速度分别是每分钟20米和每分钟16米.在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度.例 4 一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽巩固现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间。

奥数专题之牛吃草问题

奥数专题之牛吃草问题

奥数专题之牛吃草问题Revised on July 13, 2021 at 16:25 pm
奥数专题之牛吃草问题2
1有一片牧场;草每天都匀速的生长;如果放牧24头牛;则6天吃完草;如果放牧21头牛则8天吃完草.设每头每天吃相等的;问
2.如果放牧16头牛几天可吃完牧草
3.要使草永远吃不完;最多只能放牧几头牛
4;有一片牧草;如果养27头牛;这些牛6天可以把草吃尽;如果养23头牛;这些牛9天可以把草吃尽;如果养21头牛;这些牛几天可以把草吃尽
5;牧场上有一片牧草;供24头牛6周吃完;供18头牛10周吃完.假定草的生长速度不变;那么供19头牛需要几周吃完
6.有三块牧地;面积分别为3又1/3平方米;10平方米;24平方米;第一块牧地12头可吃4星期;第二块牧地21头可吃9星期;第三块牧地可供几头牛吃18星期
7.一批货物;用5匹马运;6天可以运完;用6头牛运;4天可以运完..如果用4匹马和4头牛同时运;几天可以运完
8;11头牛10天可吃完5公顷草;12头牛14天可吃完6公顷全部牧草;问8公顷草地可供19头牛吃多少天假设每块草地每公顷每天牧草长得一样快
9.一片牧场;草每天都在匀速生长草每天增长量相等;如果放牧24头牛;则6天吃完草;如果每天放牧21头牛;则8天吃完草;设每头牛没天吃草量相同;问如果放牧16头牛;几天可以吃完牧草
10.一块草地上的青草;到处长得一样密;养牛户发现;他养的牛每天吃的草量是相同的;这块草地15头牛6天可吃完;10头牛10天可以吃完..那么每天生长出的草是原来草量的几分之几
编辑推荐:。

小学六年级小升初培优奥数- 牛吃草问题

小学六年级小升初培优奥数- 牛吃草问题

牛吃草问题把研究一片草地上的草,可以让多少头牛在一定时间把草吃完的这类问题称为“牛吃草”问题。

在“牛吃草”问题中,草地原有草量、每天新增草量(或者减少量)、每头牛每天吃草量,这三者都是固定不变的量他们之间存在一定的关系。

☜知识要点解答这类问题的关键,就是要抓住草地总草量的变化来推算:一般首先假设每天每头牛吃草量为1份,在根据其中的相互关系求出每天新长的草的份数、原有草量的份数。

在这三个不变量知道后,就可解决其他问题了。

1、每日新增草量=(牛头数×吃的较多天数-牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);2、原有草量=牛头数×吃的天数-每日新增草量×吃的天数;`3、吃的天数=原有草量÷(牛头数-草的生长速度);4、牛头数=原有草量÷吃的天数+每日新增草量☜精选例题【例1】:一个牧场长满青草,青草每日的生长速度都相同,如果让27头去牧场吃草,6天可以把草全部吃完;如果让23头去牧场吃草,9天可以把草全部吃完,要是让21头牛去吃草,多少天可以吃完? 思路点拨:假设1头牛1天吃1份草,27头牛6天吃的草量和23头牛9天吃的草量就相差23×9-27×6=45(份),为什么会相差45份草?因为23头牛要比27头牛多吃3天,这45份草,就是这三天草的增长量,那么草每天增长量为45÷(9-6)=15(份)。

27头牛6天吃完牧场上全部的草,草每天有增加15份,那这个牧场原有的草量:(27-15)×6=72(份)。

现在让21头牛来吃草,先让15头去出每天长出来的,就可以看做草不再生长,那么就看剩下的牛多少天可以把72份草吃完,就可以求出吃草的时间。

☝标准答案:解:每头牛每天吃1份草;草每日新增量:(23×9-27×6)÷(9-6)=15(份)原有草量:(27-15)×6=72(份)21头牛吃的天数:72÷(21-15)=12(天)✌活学巧用1. 一片草地,青草每天都在均匀的生长,可供24头牛吃6天,或者让20头牛吃10天,那么可供19头牛吃多少天?2. 龙里大草原上的一片放牧区的草每天以固定的速度生长,牧场上的草可供25只羊吃24天,或者让20只羊吃36天,这片放牧区的草如过要在18天吃完,要放多少只羊来吃草?3. 一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天。

四年级奥数-牛吃草问题例题讲解

四年级奥数-牛吃草问题例题讲解

四年级奥数-牛吃草问题例题讲解work Information Technology Company.2020YEAR例1:牧场上长满牧草,每天都匀速生长。

这片牧场可供27头牛吃6天或23头牛吃9天。

问可供21头牛吃几天分析:设一头牛一天的吃草量为1份,(1)先算出牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)再算牧场原有的草量为:23×9-15×9=72份,(3)21头牛,要安排15头去吃每天新增的草量,剩余的牛21-15=6头去吃原有的草量,这样才可以把草吃完。

可以吃:72÷6=12天。

例2:一片牧场上长满牧草,如牧草每天都匀速生长。

则牧场可供27头牛吃6天或23头牛吃9天。

问想要18天吃完这些草要几头牛?分析:这道题和例1有点互逆的意思。

我们设一头牛一天的吃草量为1份,则(1)牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)牧场原有的草量为:23×9-15×9=72份,(3)18天要吃完草,先要安排15头牛去吃每天新增的草量,再安排72÷18=4头牛去吃原有的草量72份,所以要:15+4=19头牛。

例3:一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。

如果用12人舀水,3小时舀完。

如果只有5个人舀水,要10小时才能舀完。

现在要想在2小时舀完,需要多少人?分析:这是一道有点变异的牛吃草问题,解题的思路也是和牛吃草问题一样。

设每人每小时舀水量为一份,则(1)漏水量(新增的水量):(10×5-12×3)÷(10-3)=2份,(2)船原有的水为:12×3-2×3=30份,要先安排2个人去舀新增的水量,再安排30÷2=15人去舀原有的水量30分,共要15+2=17人。

小学奥数知识点总结——关于牛吃草及盈亏计算

小学奥数知识点总结——关于牛吃草及盈亏计算

小学奥数知识点总结——关于牛吃草及盈亏计算
小升初是孩子最重要的起步方向,我们需要关注怎样的信息才能对孩子的未来有帮助呢?店铺网小编告诉大家!
小学奥数知识点总结——盈亏计算
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。

基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。

基本题型:
①一次有余数,另一次不足;
基本公式:总份数=(余数+不足数)÷两次每份数的差
②当两次都有余数;
基本公式:总份数=(较大余数一较小余数)÷两次每份数的差
③当两次都不足;
基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

小学奥数知识点总结——关于牛吃草
基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;
关键问题:确定两个不变的量。

基本公式:
生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
总草量=较长时间×长时间牛头数-较长时间×生长量;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盈亏问题和牛吃草问题一,牛吃草问题属于应用题模块,是经典的奥数题型之一,也是考试中经常会涉及到的考点。

下边是牛吃草的五大经典类型,大家可以来学习一下。

“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间。

难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定。

“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变;②每头牛每天的食草量不变;③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④新生的草量=每天生长量×天数同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数×较多天数-对应牛的头数×较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数×吃的天数-草的生长速度×吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1 牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。

总草量可以分为牧场上原有的草和新生长出来的草两部分。

牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。

下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。

设1头牛一天吃的草为1份。

那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。

前者的总草量是200份,后者的总草量是150份,前者是原有的草加 20天新长出的草,后者是原有的草加10天新长出的草。

200-150=50(份),20—10=10(天),说明牧场10天长草50份,1天长草5份。

也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。

由此得出,牧场上原有草(l0—5)× 20=100(份)或(15—5)×10=100(份)。

现在已经知道原有草100份,每天新长出草5份。

当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。

所以,这片草地可供25头牛吃5天。

在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。

(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。

(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天。

例2 一个水池装一个进水管和三个同样的出水管。

先打开进水管,等水池存了一些水后,再打开出水管。

如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空。

那么出水管比进水管晚开多少分钟?分析:虽然表面上没有“牛吃草”,但因为总的水量在均匀变化,“水”相当于“草”进水管进的水相当于新长出的草,出水管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也与例1相似。

出水管所排出的水可以分为两部分:一部分是出水管打开之前原有的水量,另一部分是开始排水至排空这段时间内进水管放进的水。

因为原有的水量是不变的,所以可以从比较两次排水所用的时间及排水量入手解决问题。

设出水管每分钟排出水池的水为1份,则2个出水管8分钟所排的水是2×8=16(份),3个出水管5分钟所排的水是3×5=15(份),这两次排出的水量都包括原有水量和从开始排水至排空这段时间内的进水量。

两者相减就是在8-5=3(分)内所放进的水量,所以每分钟的进水量是(16-15)/3=1/3(份)假设让1/3个出水管专门排进水管新进得水,两相抵消,其余得出水管排原有得水,可以求出原有水得水量为:(2-1/3)×8=40/3(份)或(3-1/3)×5=40/3(份)解:设出水管每分钟排出得水为1份,每分钟进水量(2×8-3×5)/(8-5)=1/3(份) 进水管提前开了(2-1/3)×8÷1/3=40(分)答:出水管比进水管晚开40分钟。

例3 由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?分析与解:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少。

但是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量。

设1头牛1天吃的草为1份。

20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草。

由“草地上的草可供20头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份)。

由150÷10=15知,牧场原有草可供15头牛吃 10天,寒冷占去10头牛,所以,可供5头牛吃10天。

+例4 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩V用了5分钟到达楼上,女孩用了6分钟到达楼上。

问:该扶梯共有多少级?分析:与例3比较,“总的草量”变成了“扶梯的梯级总数”,“草”变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草问题。

上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度。

男孩5分钟走了20×5= 100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1(分),说明电梯1分钟走10级。

由男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和,所以扶梯共有(20+10)×5=150(级)。

解:自动扶梯每分钟走(20×5-15×6)÷(6—5)=10(级),自动扶梯共有(20+10)×5=150(级)。

答:扶梯共有150级。

例5 某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。

从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。

如果同时打开7个检票口,那么需多少分钟?分析与解:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解。

旅客总数由两部分组成:一部分是开始检票前已经在排队的原有旅客,另一部分是开始检票后新来的旅客。

设1个检票口1分钟检票的人数为1份。

因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客(4×30-5×20)÷(30-20)=2(份)。

假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为(4-2)×30=60(份)或(5-2)×20=60(份)。

同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分)。

例6 有三块草地,面积分别为5,6和8公顷。

草地上的草一样厚,而且长得一样快。

第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。

问:第三块草地可供19头牛吃多少天?分析与解:例1是在同一块草地上,现在是三块面积不同的草地。

为了解决这个问题,只需将三块草地的面积统一起来。

[5,6,8]=120。

因为 5公顷草地可供11头牛吃10天,120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天。

因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天。

120÷8=15,问题变为: 120公顷草地可供19×15=285(头)牛吃几天?因为草地面积相同,可忽略具体公顷数,所以原题可变为:“一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供28 5头牛吃几天?”这与例1完全一样。

设1头牛1天吃的草为1份。

每天新长出的草有(240×14-264×10)÷(14-10)=180(份)。

草地原有草(264—180)×10=84 0(份)。

可供285头牛吃840÷(285—180)=8(天)。

所以,第三块草地可供19头牛吃8天。

二,知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(((物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意1.条件转换 2.关系互换板块一、直接计算型盈亏问题【例 1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【解析】比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少27块,第二种少21块,结果总数就相差9(块).【巩固】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【解析】“多8元”与“多4【巩固】老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?【解析】老猴子的第一种方案盈9个桃子,第二种方案盈2.【巩固】有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?【解析】由题意知:第一种方案:每人发5本多出70本;第二种方案:每人发7本多出1060【例 2】只.【详解】当【巩固】学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?【解析】“差9本”和“差2【巩固】幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?【解析】由12【巩固】王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?【解析】本题购物的两个方案,第一个方案:买7把差110元,第二个方案:买5把还多30元,从买7把变成买5140元可以买2把小提琴,可见小提琴的单价是每把70.【巩固】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【解析】本题中“损坏一个倒赔100元”的意思是运一个完好的花瓶与损坏1个花瓶相差1个花瓶不但得不到20元的运费,而且要付出120元.本例可假设250就是因为有损坏的瓶子,损坏1个花瓶相差120(个).【例 3】某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?【解析】由已知条件每间5人少14个床位每间7人多4个床位人,间)人)人)【巩固】学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【解析】如果30168(间).(这是一个鸡兔同笼,放在这里做对比)【巩固】智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【解析】由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?【解析】题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或 4×28+48=160(个).板块二、条件关系转换型盈亏问题【例 4】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【解析】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两【巩固】学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?【解析】第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两【巩固】学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?【解析】第一种分配方案亏66个球,第二种方案不盈不亏,所以盈亏总和是66个,两次.【巩固】一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【解析】第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分【巩固】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【解析】没辆车坐60人,则多余15人,每辆车坐60+5=65人,则多出一辆车,也就是差65人.因此车辆数目为:(65+15)÷5=80÷5=16(辆).学生人数为:60×(16-1)+15=60×15+15=900+15=915(人).【例 5】甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用 2 张信纸,乙每封信用 3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?【解析】由题意,如果乙用完所有的信封,那么缺30 张信纸.这是盈亏问题,盈亏总额为(20+30)张信纸,两次分配的差为(3-2)张信纸,所以有信封(20+30)÷(3-2)=50(个),有信纸2×50+20=120(张).【例 6】幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。

相关文档
最新文档