2019中考总复习一次函数专题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019总复习一次函数专题

1如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣3

2直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()

A.x≤3 B.x≥3 C.x≥﹣3 D.x≤0

3已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限

4如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()

A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)5如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y (cm2)关于x(cm)的函数关系的图象是()

A.B.

C.D.

6点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()

A.B.C.D.

7如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是

()

A.乙前4秒行驶的路程为48米

B.在0到8秒内甲的速度每秒增加4米/秒

C.两车到第3秒时行驶的路程相等

D.在4至8秒内甲的速度都大于乙的速度

8将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为_________.

9若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.

10在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.

11若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第象限

12如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________.

13甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.

14为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第秒.

2. (2016·吉林·8分)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示.

(1)甲的速度是60km/h;

(2)当1≤x≤5时,求y乙关于x的函数解析式;

(3)当乙与A地相距240km时,甲与A地相距220km.

【考点】一次函数的应用.

【分析】(1)根据图象确定出甲的路程与时间,即可求出速度;

(2)利用待定系数法确定出y乙关于x的函数解析式即可;

(3)求出乙距A地240km时的时间,乘以甲的速度即可得到结果.

【解答】解:(1)根据图象得:360÷6=60km/h;

(2)当1≤x≤5时,设y乙=kx+b,

把(1,0)与(5,360)代入得:,

解得:k=90,b=﹣90,

则y乙=90x﹣90;

(3)令y乙=240,得到x=,

则甲与A地相距60×=220km,

故答案为:(1)60;(3)220

3. (2016·江西·6分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.

(1)求点B的坐标;

(2)若△ABC的面积为4,求直线l2的解析式.

【考点】两条直线相交或平行问题;待定系数法求一次函数解析式;勾股定理的应用.

【分析】(1)先根据勾股定理求得BO 的长,再写出点B 的坐标;

(2)先根据△ABC 的面积为4,求得CO 的长,再根据点A 、C 的坐标,运用待定系数法求得直线l 2的解析式.

【解答】解:(1)∵点A (2,0),AB =

∴BO =

=

=3

∴点B 的坐标为(0,3);

(2)∵△ABC 的面积为4 ∴×BC ×AO =4 ∴×BC ×2=4,即BC =4 ∵BO =3 ∴CO =4﹣3=1 ∴C (0,﹣1)

设l 2的解析式为y =kx +b ,则

,解得

∴l 2的解析式为y =x ﹣1

8.(2016·孝感)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级.经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.

(1)求A 种、B 种树木每棵各多少元;

(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠.请设计一种购买树木的方案,使实际所花费用最少,并求出最少的费用. 解:(1)设A 种、B 种树木每棵分别为a 元、b 元,则

⎩⎪⎨⎪⎧2a +5b =600,3a +b =380.解得⎩

⎪⎨⎪⎧a =100,b =80. 答:A 种、B 种树木每棵分别为100元、80元.

(2)设购买A 种树木为x 棵,则购买B 种树木为(100-x)棵, 则x ≥3(100-x),解得x ≥75. 设实际付款总金额为y 元,则

y =0.9[100x +80(100-x)]=18x +7 200. ∵18>0,∴y 随x 的增大而增大.

相关文档
最新文档