高考经典物理模型:人船模型(一)
人船模型(原卷版)—动量守恒的十种模型解读和针对性训练——2025届高考物理一轮复习
动量守恒的十种模型解读和针对性训练人船模型模型解读1.模型图示2.模型特点(1)两物体满足动量守恒定律:m v 人-M v 船=0。
(2)两物体的位移大小满足:m s 人t -M s 船t =0,s 人+s 船=L 得s 人=M M +m L ,s 船=mM +m L 。
3.运动特点(1)人动则船动,人静则船静,人快船快,人慢船慢,人左船右。
(2)人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即s 人s 船=v 人v 船=M m。
“人船模型”的拓展(某一方向动量守恒)【典例分析】【典例】 如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直。
质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑。
以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上。
整个过程凹槽不翻转,重力加速度为g 。
(1)小球第一次运动到轨道最低点时,求凹槽的速度大小;(2)凹槽相对于初始时刻运动的距离。
【名师点拨】应用“人船模型”解题的两个关键点(1)“人船模型”的应用条件:相互作用的物体原来都静止,且满足动量守恒条件。
(2)人、船位移大小关系:m 人x 人=m 船x 船,x 人+x 船=L (L 为船的长度)。
【针对性训练】1. (2024河南名校联考).如图,棱长为a 、大小形状相同的立方体木块和铁块,质量为m 的木块在上、质量为M 的铁块在下,正对用极短细绳连结悬浮在平静的池中某处,木块上表面距离水面的竖直距离为h 。
当细绳断裂后,木块与铁块均在竖直方向上运动,木块刚浮出水面时,铁块恰好同时到达池底。
仅考虑浮力,不计其他阻力,则池深为( )A.M +m MhB.M +m m(h +2a )C.M +m M(h +2a )D.M +m Mh +2a2.(2024全国高考模拟)一小船停靠在湖边码头,小船又窄又长(估计重一吨左右)。
高中物理模型-人船模型
模型组合讲解——人船模型申健[模型概述]“人船”模型极其应用如一人(物)在船(木板)上,或两人(物)在船(木板)上等,在近几年的高考中极为常见,分值高,区分度大,如果我们在解题中按照模型观点处理,以每题分布给分的情况来看还是可以得到相当的分数。
[模型讲解]例. 如图1所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人对地面的位移各为多少?图1解析:以人和船组成的系统为研究对象,在人由船头走到船尾的过程中,系统在水平方向不受外力作用,所以整个系统在水平方向动量守恒。
当人起步加速前进时,船同时向后做加速运动;人匀速运动,则船匀速运动;当人停下来时,船也停下来。
设某时刻人对地的速度为v ,船对地的速度为v',取人行进的方向为正方向,根据动量守恒定律有:0'=-Mv mv ,即Mm v v =' 因为人由船头走到船尾的过程中,每一时刻都满足动量守恒定律,所以每一时刻人的速度与船的速度之比,都与它们的质量之比成反比。
因此人由船头走到船尾的过程中,人的平均速度v 与船的平均速度v 也与它们的质量成反比,即M m vv =,而人的位移t v s =人,船的位移t v s =船,所以船的位移与人的位移也与它们的质量成反比,即><=1M m s s 人船 <1>式是“人船模型”的位移与质量的关系,此式的适用条件:原来处于静止状态的系统,在系统发生相对运动的过程中,某一个方向的动量守恒。
由图1可以看出:><=+2L s s 人船由<1><2>两式解得L m M m s L m M M s +=+=船人,[模型要点]动力学规律:由于组成系统的两物体受到大小相同、方向相反的一对力,故两物体速度大小与质量成反比,方向相反。
这类问题的特点:两物体同时运动,同时停止。
动量与能量规律:由于系统不受外力作用,故而遵从动量守恒定律,又由于相互作用力做功,故系统或每个物体动能均发生变化:力对“人”做的功量度“人”动能的变化;力对“船”做的功量度“船”动能的变化。
高考经典物理模型:人船模型(一)
人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型”质量为M的船停在静止的水面上,船长为L,一质量为m的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u,则由动量守恒定律得:m v=Mu由于人在走动过程中任意时刻人和船的速度ν和u均满足上述关系,所以运动过程中,人和船平均速度大小uν和也应满足相似的关系,即mν=M u而x tν=,yut=,所以上式可以转化为:mx=My又有,x+y=L,得:Mx Lm M=+my Lm M=+以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。
得:mx=Myx+y=L这与“人船模型”的结果一样。
变形2:如图所示,质量为M的14圆弧轨道静止于光滑水平面上,轨道半径为R,今把质量为m的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该m系统在水平方向总动量守恒,由动量守恒定律得:mx=Myx+y=L这又是一个“人船模型”。
人船模型解析版
人船模型一、模型建构1、人船问题:人船系统在相互作用下各自运动,运动过程中该系统所受到的合外力为零,即人和船组成的系统在运动过程中动量守恒。
2、两类问题第一类:直线运动的人船模型如图,质量为M 的船停在静止的水面上,船长为L ,一质量为m 的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?设人在运动过程中,人和船相对于水面的速度分别为v 和u 由动量守恒定律得:mv Mu =由于人在走动过程中任意时刻人和船的速度v 和u 均满足上述关系mv M u =x t ν=,y u t=可得:mx My =x y L +=解得:M x L m M =+ my L m M=+第二类:曲线运动的人船模型如图所示,小球质量为m ,轨道质量为M ,半径为R ,将m 静止释放,不计阻力,分析结论.一、解题思路:1、确定系统动量守恒2、列平均速度动量守恒式3、列两物体位移关系式4、求解未知量 二、解题方法: 动量守恒定律 三、解题关键点: 1、确定哪个方向动量守恒 2、确定两物体位移关系 四、解题易错点位移关系运动到最低点,水平方向上动量守恒动量守恒:mv m=Mv M移动距离:mv m t=Mv M t即mx m =Mx M 位移之和:x m+x M =R联立解得:x m=Mm+M R,x M =mm+M R运动到另外一端最高点,水平方向上动量守恒动量守恒:mv m=Mv M移动距离:mv m t=Mv M t即mx m =Mx M位移之和:x m+x M =2R联立解得:x m=Mm+M·2R,x M =mm+M·2R.二、例题精析例1、气球质量200kg截有质量为50kg的人,静止在空中距地面20m 高的地方,气球下悬一质量不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为安全到达地面,则这根绳至少多长?解题思路:1、确定系统动量守恒2、列平均速度动量守恒式3、列两物体位移关系式4、求解未知量解题思路:1、确定系统动量守恒2、列平均速度动量守恒式3、列两物体位移关系式4、求解未知量【解答】解:人与气球组成的系统竖直方向动量守恒由动量守恒得:m1v1﹣m2v2=0即:m1﹣m2=0绳子长度:L=s气球+s人解得:L=25m例2、如图所示,质量分别为m1和m2(m1>m2)的两个人分别站在静止于光滑水平面上的质量为M的小车的两端,小车长为L,当两人交换位置时,车将向哪个方向移动?移动多大距离?【解答】设当两人交换位置时,车将向右移动的距离为x。
动量守恒-人船模型
• 如右图所示,在光滑水平面上静置一辆小 车,小车上固定直杆横梁前端用细线悬挂 一小球。现缓缓将小球拉离竖直方向一定 角度并自由释放,此时小车仍处于静止状 态。当小球下摆后与固定在小车直杆上的 油泥相撞并粘在一起,则关于此后小车的 运动状态的描述,正确的是( ) • [A]仍保持静止状态; • [B]水平向右运动; • [C]水平向左运动; 油泥 • [D]上述情形都有可能。
规定木箱原来滑行的方向为正方向 对整个过程由动量守恒定律, mv =MV+m v箱对地= MV+ m( u+ V)
M=70kg m=20kg
注意 u= - 5m/s,代入数字得 V=20/9=2.2m/s 方向跟木箱原来滑行的方向相同
u=5m/s
例D、一个质量为M的运动员手里拿着一个质量为m 的物体,踏跳后以初速度v0与水平方向成α角向斜上 方跳出,当他跳到最高点时将物体以相对于运动员的 速度为u水平向后抛出。问:由于物体的抛出,使他 跳远的距离增加多少? 解: 跳到最高点时的水平速度为v0 cosα 抛出物体相对于地面的速度为 v物对地=u物对人+ v人对地= - u+ v 规定向前为正方向,在水平方向,由动量守恒定律 (M+m)v0 cosα=M v +m( v – u) v = v0 cosα+mu / (M+m) 平抛的时间 t=v0sinα/g ∴Δv = mu / (M+m)
分析与解:取人和小船为对象,它们所受合外力为零, 初动量 m人v人+m船v船=0 (均静止) 根据动量守恒定律 m人v人+m船v船= m人v/人+m船v/船 0= m人v/人 - m船v/船 则0= m人v/人t - m船v/船t
人船模型
人船模型“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
模型特点:①人动船动,人左船右,人快船快,人慢船慢,人静船静;②人船平均速度(瞬时速度)比等于质量反比;所以人船位移比等于质量的反比;③人船位移和等于相对位移。
一.选择题(共4小题)1.一条质量约为180kg的小船漂浮在静水中,当人从船尾走向船头时,小船也发生了移动(不计水的阻力).以下是某同学利用有关物理知识分析人与船相互作用过程时所画出的草图(如图所示),图中虚线部分为人走到船头时的情景.请用有关物理知识判断下图中所描述物理情景正确的是()A.B.C.D.2.如图所示,光滑圆槽质量为M,静止在光滑的水平面上,其内表面有一小球被细线吊着恰位于槽的边缘处,如将线烧断,小球滑到另一边的最高点时,圆槽的速度为()A.0 B.向左C.向右D.不能确定3.如图所示,质量为m、半径为R的小球,放在半径为2R、质量为2m的大空心球内.大球开始静止在光滑的水平面上.当小球从图示位置无初速度地沿大球内壁滚到最低点时,大球移动的距离为()A.B.C.D.4.如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离d是()A.d= B.d=mL(1﹣cosθ)C.d= D.d=二.多选题(共1小题)5.如图所示,绳长为l,小球质量为m,小车质量为M,将m拉至水平右端后放手,则(水平面光滑)()A.系统的动量守恒B.水平方向任意时刻m与M的动量等大反向C.m不能向左摆到原高度D.M向右移动的最大距离为三.解答题(共2小题)6.如图所示,一辆质量M=3kg的小车A静止在光滑的水平面上,小车上有一质量m=1kg的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:(1)小球脱离弹簧时小球和小车各自的速度大小;(2)在整个过程中,小车移动的距离.7.气球质量200kg截有质量为50kg的人,静止在空中距地面20m高的地方,气球下悬一质量不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为安全到达地面,则这根绳至少多长?参考答案与试题解析一.选择题(共4小题)1.一条质量约为180kg的小船漂浮在静水中,当人从船尾走向船头时,小船也发生了移动(不计水的阻力).以下是某同学利用有关物理知识分析人与船相互作用过程时所画出的草图(如图所示),图中虚线部分为人走到船头时的情景.请用有关物理知识判断下图中所描述物理情景正确的是()A.B.C.D.【解答】解:船和人组成的系统,在水平方向上动量守恒,人在船上向右行进,船向左退,所以人的位移方向向右,船的位移方向向左。
“人船”模型及应用
“人船”模型及应用重庆市 垫江中学(408300) 张 雄“人船”模型,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一。
利用“人船”模型及其典型变形,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷,有时甚至一眼就看出结果。
一、“人船”模型原理——质心运动守恒 一个质点系的动量等于质点系的总质量与质心速度之积,方向与质心速度方向一致。
所以,当系统不受外力或所受合外力为零时,质心的动量守恒——质心将保持原来的匀速直线运动状态或静止状态,即当0F =或0F =∑时0υ=或υ=恒量二、“人船”模型的基本公式和适用条件 如图1所示,长为L 、质量为M 的船停在静水中,一个质量为m 的人站立在船头。
设船的质心在O 处,距船头、船尾分别为1L 和2L 。
当人在船头时,人、船系统的质心在1O 处,距离O 为1l ;当人走到船尾时,人、船系统的质心在2O 处,距离O 为2l 。
若不计水的粘滞阻力,在人丛船头走到船尾的过程中,系统在水平方向不受外力作用,动量守恒,即水平方向的总动量始终为零——系统的质心位置不变。
所以,当人向右相对船移动距离L ,引起系统的质心向右移动(12l l +)时,船将向左移动同样的距离,即12l l l =+船根据人和船的质量与到质心距离之积相等,有111()m L l Ml -=222()m L l Ml -=将两式相加,可得1212()m m l l L L L M m M m +=+=++所以,当人对船的位移为L 时,船对地的位移为m l L M m=+船 ①人对地的位移为Ml L l L M m=-=+人船 ②若人相对船以水平初速度υ跳出,可以认为在极短的时间t 内,人相对于船的位移为L 。
根据①②式和速度的定义Ltυ=,所以船和人对地的速度分别为mM m υυ=+船 ③MM mυυ=+人 ④这就是“人船”模型的四个基本公式,其物理意义和适用条件如下1、人、船对地的位移与其相对位移和对方的质量之积成正比,与系统的总质量成反比,而与运动性质无关。
高中物理 人船模型 易懂
重难点 人船模型1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒。
在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比。
这样的问题即为“人船模型”问题。
2.人船模型的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0。
(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1。
(3)应用x 1x 2=v 1v 2=m 2m 1时要注意:v 1、v 2和x 1、x 2一般都是相对地面而言的。
方法讲解例1(第一个层次)如图所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,则船和人相对地面的位移各为多少?解析:因为动量守恒,当人向左运动时,船向右运动。
设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止。
因整个过程中动量守恒,所以有mv 1=Mv 2设整个过程中的平均速度大小为v -1、v -2,则有m v -1=M v -2上式两边乘以时间t ,有m v -1t =M v -2t ,即mx 1=Mx 2且x 1+x 2=L ,解得x 1=M m +M L ,x 2=m m +M L 。
答案:m m +M L M m +ML方法讲解例2(第二个层次)如图所示,船长为2L 、质量为M 的小船停在静水中,在船中央有一个旗杆,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,则船和人相对地面的位移各为多少?解析:因为动量守恒,当人向左运动时,船向右运动。
设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止。
因整个过程中动量守恒,所以有mv 1=Mv 2设整个过程中的平均速度大小为v -1、v -2,则有m v -1=M v -2前半和后半程是一样的;上式两边乘以时间t ,有m v -1t =M v -2t ,即mx 1=Mx 2且x 1+x 2=2L ,解得x 1=2M m +M L ,x 2=2m m +M L 。
高考物理建模之人船模型
高考物理建模之人船模型
在动量守恒定律应用上,人船模型是经典的特例,在近几年高考物理里极为常见,区分度较高。
因此在复习中,人船模型是高中物理专题复习里不容忽视的知识点。
人船模型特点
系统原来处于静止状态,总动量为0,一人(物)或两人(物)运动,会引起另一物体(人)发生相对运动。
系统遵循动量守恒定律,同时两物体的位移存在某种关系。
人船模型规律
设人的质量为m,速度为v1,位移为s1,船的质量为M,速度为v2,位移为s2。
船的长度为L,在水平方向上遵循动量守恒。
1、由动量守恒定律得:
0=mv1-Mv2
化简得:
mv1=Mv2
两边同时乘以t得:
ms1=Ms2
2、两位移存在关系式:
s1+s2=L
联立上述两式得:
s1=ML/(M+m)
s2=mL/(M+m)
常见人船模型
人船模型两个重要推论
1、系统动量守恒时,任意时间内平均动量也守恒;
2、系统动量守恒时,系统质心保持原来静止或匀速直线运动状态不变。
阅读本文的人还阅读:
1、高考物理建模之子弹打穿木块模型
2、高考物理建模之碰撞模型。
2010年经典高中物理模型--人船模型之一
人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型” 质量为M 的船停在静止的水面上,船长为L ,一质量为m 的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u ,则由动量守恒定律得:m v =Mu由于人在走动过程中任意时刻人和船的速度ν和u 均满足上述关系,所以运动过程中,人和船平均速度大小u ν 和 也应满足相似的关系,即 m ν=M u 而x t ν=,y u t=,所以上式可以转化为: mx=My又有,x+y=L,得: M x L m M=+ m y L m M=+ 以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。
得:mx=Myx+y=L这与“人船模型”的结果一样。
变形2:如图所示,质量为M的14圆弧轨道静止于光滑水平面上,轨道半径为R,今把质量为m的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得:mx=Myx+y=L这又是一个“人船模型”。
高三物理第一轮复习:人船模型与反冲运动;碰撞中的动量守恒粤教版
高三物理第一轮复习:人船模型与反冲运动;碰撞中的动量守恒粤教版【本讲教育信息】一. 教学内容:1、专题:人船模型与反冲运动2、专题:碰撞中的动量守恒【要点扫描】专题:人船模型与反冲运动 一、人船模型1、若系统在整个过程中任意两时刻的总动量相等,则这一系统在全过程中的平均动量也必定守恒。
在此类问题中,凡涉及位移问题时,我们常用“系统平均动量守恒”予以解决。
如果系统是由两个物体组成的,合外力为零,且相互作用前均静止。
相互作用后运动,则由0=m 11v +m 22v 得推论0=m 1s 1+m 2s 2,但使用时要明确s 1、s 2必须是相对地面的位移。
2、人船模型的应用条件是:两个物体组成的系统(当有多个物体组成系统时,可以先转化为两个物体组成的系统)动量守恒,系统的合动量为零.二、反冲运动1、指在系统内力的作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反方向发生动量变化的现象2、研究反冲运动的目的是找反冲速度的规律,求反冲速度的关键是确定相互作用的物体系统和其中各物体对地的运动状态.专题:碰撞中的动量守恒 碰撞1、碰撞指的是物体间相互作用持续时间很短,而物体间相互作用力很大的现象.在碰撞现象中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.按碰撞前后物体的动量是否在一条直线上有正碰和斜碰之分,中学物理只研究正碰的情况.2、一般的碰撞过程中,系统的总动能要有所减少,若总动能的损失很小,可以略去不计,这种碰撞叫做弹性碰撞.其特点是物体在碰撞过程中发生的形变完全恢复,不存在势能的储存,物体系统碰撞前后的总动能相等。
若两物体碰后粘合在一起,这种碰撞动能损失最多,叫做完全非弹性碰撞.其特点是发生的形变不恢复,相碰后两物体不分开,且以同一速度运动,机械能损失显著。
在碰撞的一般情况下系统动能都不会增加(有其他形式的能转化为机械能的除外,如爆炸过程),这也常是判断一些结论是否成立的依据.3、弹性碰撞 题目中出现:“碰撞过程中机械能不损失”.这实际就是弹性碰撞.设两小球质量分别为m 1、m 2,碰撞前后速度为v 1、v 2、v 1'、v 2',碰撞过程无机械能损失,求碰后二者的速度. 根据动量守恒 m 1 v 1+m 2 v 2=m 1 v 1/+m 2 v 2/ ……① 根据机械能守恒 21m 1 v 12十21m 2v 22=21m 1 v 1/2十21m 2 v 2/2 ……② 由①②得v 1'=()21221212m m v m v m m++-,v 2'=()21112122m m v m v m m++-仔细观察v 1'、v 2'的结果很容易记忆,当v 2=0时v 1'=()21121m m v m m+-,v 2'=21112m m v m +①当v 2=0,m 1=m 2时,v 1’=0,v 2’=v 1 这就是我们经常说的交换速度、动量和能量.②m 1>>m 2,v'1=v 1,v 2’=2v 1.碰后m 1几乎未变,仍按原来速度运动,质量小的物体将以m 1的速度的两倍向前运动。
高中物理人船模型知识点归纳
高中物理人船模型知识点归纳全文共四篇示例,供读者参考第一篇示例:高中物理人船模型知识点归纳人船模型是物理学教学中经常使用的实验模型之一,通过这个实验可以学习到很多物理知识。
在进行人船模型实验时,可以观察到一些现象和规律,从而帮助学生更好地理解一些物理原理。
以下是关于高中物理人船模型的知识点归纳:1.浮力的作用:在人船模型实验中,我们可以观察到当人站在浮力极小的模型船上时,模型船会下沉,而人站在浮力足够的大的船上时,模型船会浮起。
这是因为浮力是与物体浸没在液体中的体积成正比的,当物体浸没在液体中时,浮力的大小与物体的体积大小有关。
根据浮力的作用,我们可以知道在不同密度的液体中,物体的浮沉情况会有所不同。
2.密度的影响:在人船模型实验中,我们也可以观察到密度对物体的浮沉情况有影响。
在模型船上放入不同密度的物体,可以发现密度越大的物体,模型船下沉的情况会更为明显。
这是因为密度是物体质量与体积的比值,密度越大的物体在液体中受到的浮力越小,从而导致它下沉的情况显著。
3.牛顿第三定律:在人船模型实验中,我们还可以学习到牛顿第三定律的作用。
牛顿第三定律规定了任何两个物体之间的相互作用力是大小相等、方向相反的,这个定律在人船模型实验中也得到了体现。
当人站在模型船上时,在人的重力作用下,模型船受到的向下的推力,从而使得模型船下沉;而在同一时间,模型船也对人施加一个向上的反作用力,使得人站在模型船上时不至于下沉太快。
这个过程中模型船和人之间就体现了牛顿第三定律的作用。
4.平衡力的平衡:在进行人船模型实验时,我们还可以学习到平衡力的平衡原理。
在模型船上放置小石块,可以观察到石块的位置会对模型船的浮沉情况产生影响。
当石块处于船的中心位置时,模型船可以平衡地漂浮在水面上;而当石块位置偏移时,模型船可能会发生倾斜或下沉的情况。
这个现象说明了平衡力的平衡在人船模型实验中的重要性,只有当平衡力平衡时,模型船才能稳定地浮在水面上。
高考物理解题模型-人船模型
高考物理解题模型 第三章 功和能三、人船模型1. 如图3.09所示,长为L 、质量为M 小船停在静水中,质量为m 人从静止开始从船头走到船尾,不计水阻力,求船和人对地面位移各为多少?图3.09解析:以人和船组成系统为研究对象,在人由船头走到船尾过程中,系统在水平方向不受外力作用,所以整个系统在水平方向动量守恒。
当人起步加速前进时,船同时向后做加速运动;人匀速运动,则船匀速运动;当人停下来时,船也停下来。
设某时刻人对地速度为v ,船对地速度为v',取人行进方向为正方向,根据动量守恒定律有:0'=-Mv mv ,即Mm v v =' 因为人由船头走到船尾过程中,每一时刻都满足动量守恒定律,所以每一时刻人速度与船速度之比,都与它们质量之比成反比。
因此人由船头走到船尾过程中,人平均速度v 与船平均速度v 也与它们质量成反比,即M m vv =,而人位移t v s =人,船位移t v s =船,所以船位移与人位移也与它们质量成反比,即><=1M m s s 人船 <1>式是“人船模型”位移与质量关系,此式适用条件:原来处于静止状态系统,在系统发生相对运动过程中,某一个方向动量守恒。
由图1可以看出:><=+2L s s 人船由<1><2>两式解得L mM m s L m M M s +=+=船人, 2. 如图3.10所示,质量为M 小车,上面站着一个质量为m 人,车以v 0速度在光滑水平地面上前进,现在人用相对于小车为u 速度水平向后跳出后,车速增加Δv ,则计算Δv 式子正确是:( )A. mu v v M v m M -∆+=+)()(00B. )()()(000v u m v v M v m M --∆+=+C. )]([)()(000v v u m v v M v m M ∆+--∆+=+D. )(0v u m v M ∆--∆= 图3.10答案:CD3. 如图3.11所示,一排人站在沿x 轴水平轨道旁,原点O 两侧人序号都记为n (n =1,2,3,…),每人只有一个沙袋,x>0一侧沙袋质量为14千克,x<0一侧沙袋质量为10千克。
高考经典物理模型:人船模型(一)
人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型”质量为M的船停在静止的水面上,船长为L,一质量为m的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u,则由动量守恒定律得:m v=Mu由于人在走动过程中任意时刻人和船的速度ν和u均满足上述关系,所以运动过程中,人和船平均速度大小uν和也应满足相似的关系,即mν=M u而x tν=,yut=,所以上式可以转化为:mx=My又有,x+y=L,得:Mx Lm M=+my Lm M=+以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。
得:mx=Myx+y=L这与“人船模型”的结果一样。
变形2:如图所示,质量为M的14圆弧轨道静止于光滑水平面上,轨道半径为R,今把质量为m的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该m系统在水平方向总动量守恒,由动量守恒定律得:mx=Myx+y=L这又是一个“人船模型”。
高中物理人船模型知识点归纳
高中物理人船模型知识点归纳全文共四篇示例,供读者参考第一篇示例:高中物理人船模型知识点归纳人船模型是一种常见的物理实验器材,用于研究浮力、压力等物理现象。
在高中物理教学中,人船模型是一个重要的学习工具,通过实验操作,学生可以更直观地了解浮力和压力的原理和应用。
下面我们将对高中物理人船模型的知识点进行归纳和总结,希望能帮助同学们更好地掌握这一重要实验内容。
一、浮力的原理浮力是指液体或气体对浸入其中的物体的向上的支持力。
根据阿基米德原理,浮力大小等于排挤的液体的重量,方向垂直向上。
在人船模型实验中,我们可以通过调节水面上的人船的放水量,观察人船的浮沉情况,来验证浮力的原理。
二、浮力的计算浮力的大小可以通过以下公式来计算:F=ρVgF表示浮力的大小,ρ表示液体的密度,V表示物体的体积,g表示重力加速度。
在实验中,我们可以通过称量水的重量,并根据液体的密度和重力加速度的数值,计算出物体的浮力大小。
三、浮力的应用浮力是人船模型实验的重要内容之一,通过实验操作,我们可以了解浮力的原理和应用,比如船只在水面上浮沉的原因、潜水艇的下潜和浮起等现象。
浮力的应用还涵盖了许多实际生活中的场景,比如气球、潜水器等设备的设计和制造,都需要考虑浮力对物体的支持作用。
压力是指单位面积上所受的力,通常用P表示,计量单位为帕斯卡(Pa)。
根据压力的定义,压强和压力有着密切的关系,可以通过以下公式来计算:P=F/AP表示压强,F表示作用力,A表示面积。
在人船模型实验中,我们可以通过在人船上施加外力,调节重物的放置位置,来观察人船表面的压强分布情况。
五、浮力和压力的关系浮力和压力是密切相关的物理现象,在液体中,物体受到的浮力大小和液体的密度、物体的体积以及重力加速度有关;而压力是液体对物体作用的力,并受到液体的密度和液体的深度的影响。
在人船模型实验中,我们可以通过调节水面上的人船和水面之间的距离,探究浮力和压力之间的关系,进一步加深对这两个物理现象的理解。
人船模型(实例)
人船模型(实例)在中学物理各知识章节中,都有典型的物理模型。
人船模型就是动量守恒定律一章中的理想模型。
一.人船模型适用条件是由两个物体组成的系统,在水平方向动量守恒,在人与船相互作用前,都是静止的。
例1.如图(一)长为L、质量为M的小船停在静水中,一个质量为m的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地的位移各是多少二.人船模型的变形.例2.如图(二)气球的质量为M,下面拖一条质量不计的软梯,质量为m的人站在软梯上端距地面为H,气球保持静止状态,求:1)人安全到地面软梯的最小长度。
2)若软梯的长为H,则人从软梯上端到下端时,人距地面多高。
例3.如图(三)一个质量为M,底边边长为b的劈静止在光滑的水平面上,有一质量为m的小球由斜面顶部无初速滑到底部时,劈移动的距离是多少例4.如图(四)质量为M的均匀方形盒静置于光滑的水平面上,在其顶部的中央A点,以长度为5.0cm的细线悬吊一质量m=M/3的质点,开始时该质点静止且细线与铅直线夹角B为37°,设重力加速度为10m/s2,sin37°=3/5,释放质点后,对静止在地面上的观察者而言下列说法正确的是()A. 整个系统动量守恒B. 整个系统在水平方向动量守恒C.质点达到最底点时,质点的速度为3.9cm/sD.质点达到右边最高点,M方形盒向左移1.5cm例5.如图(五)质量为m半径为R的小球,放在半径为2R质量为M=2m的大空心球内,大球开始静止在光滑的水平面上,两球心在同一水平线,当小球从图中所示的位置无初速沿内壁滑到最底点时,大球移动的距离为()A R/2B R/3C R/4D R/6三.多个物体组成的人船模型两个物体组成的人船模型也同样使用于多个物体组成的系统。
例6.如图(六)在光滑的水平面上,有一长L=2m的木板C,它的两端各有一块挡板。
C的质量为M c=5Kg,C的正中央并排放着两个可视为质点的物块A与B,质量分别为M a=1Kg,M b=4Kg。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人船模型之一
“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型”质量为M的船停在静止的水面上,船长为L,一质量为m的人,由船头走到船尾,若不计水的
阻力,则整个过程人和船相对于水面移动的距离
分析:“人船模型”是由人和船两个物体构
成的系统;该系统在人和船相互作用下各自
运动,运动过程中该系统所受到的合外力为
零;即人和船组成的系统在运动过程中总动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u,则由动量守恒定律得:
m v=Mu
由于人在走动过程中任意时刻人和船的速度ν和u均满足上述关系,所以运动过程中,人和船平均速度大小u
ν和也应满足相似的关系,即
m ν=M u 而x
t ν=,y u t
=,所以上式可以转化为: mx=My
又有,x+y=L,得: M x L m M
=+ m y L m M
=+ 以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形
变形1:质量为M 的气球下挂着长为L 的绳梯,一质量为m 的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离
分析:由于开始人和气球组成的系统静止在空
中,
竖直方向系统所受外力之和为零,即系统竖直方
向系统总动量守恒。
得:
mx=My
x+y=L
这与“人船模型”的结果一样。
圆弧轨道静止于光滑水平面上,变形2:如图所示,质量为M的1
4
轨道半径为R,今把质量为m的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离
分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得:
mx=My
x+y=L
这又是一个“人船模型”。
3、“人船模型”的应用
①“等效思想”
如图所示,长为L 质量为M
船头船尾分别站立质量为m 1、m 2(m 1>m 2)
的两个人,那么,当两个人互换位置后,
船在水平方向移动了多少
分析:将两人和船看成系统,系统水平方向总动量守恒。
本题可以理解为是人先后移动,但本题又可等效成质量为12()m m m m ∆∆=-的人在质量为2'2M M m =+的船上走,这样就又变成标准的“人船
模型”。
解答:人和船在水平方向移动的距离为x 和y ,由动量守恒定律可得:
'mx M y ∆= x y L +=
这样就可将原本很复杂的问题变得简化。
②“人船模型”和机械能守恒的结合
如图所示,质量为M 的物体静止于光滑水平面
上,其上有一个半径为R 的光滑半圆形轨道,
现把质量为m 的小球自轨道左测最高点静止释放,试计算:
1.摆球运动到最低点时,小球与轨道的速度是多少
2.轨道的振幅是多大
分析:设小球球到达最低点时,小球与轨道的速度分别为v 1和v 2,根据系统在水平方向动量守恒,得:12mv Mv = 又由系统机械能守恒得:22121
122
mgR mv Mv =+
解得:1v =2v =当小球滑到右侧最高点时,轨道左移的距离最大,即振幅A 。
由“人船模型”得:
mx My =
2x y R += 解得:2M x R m M =+,2m y R m M
=+ 即振幅A 为:2m A R m M =
+。