桥梁桩基础设计计算

合集下载

桩基础的设计计算 m值法

桩基础的设计计算 m值法

桩基础的设计计算1.本章的核心及分析方法本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而解决桩的强度问题。

重点是桩受横轴向力时的内力计算问题。

桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方法。

目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。

以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应用。

我国公路、铁路在桩基础的设计中常用的"m"法、就属此种方法,本节将主要介绍"m"法。

2.学习要求本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法," "法计算单桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。

掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。

本专科生均应能独立完成单排桩和多排桩的课程设计。

第一节单排桩基桩内力和位移计算一、基本概念(一)土的弹性抗力及其分布规律1.土抗力的概念及定义式(1)概念桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转角,使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力,它起抵抗外力和稳定桩基础的作用。

土的这种作用力称为土的弹性抗力。

(2)定义式(4-1)式中:--横向土抗力,kN/m2;--地基系数,kN/m3;--深度Z处桩的横向位移,m。

2.影响土抗力的因素(1)土体性质(2)桩身刚度(3)桩的入土深度(4)桩的截面形状(5)桩距及荷载等因素3.地基系数的概念及确定方法(1)概念地基系数C表示单位面积土在弹性限度内产生单位变形时所需施加的力,单位为kN/m3或MN/m3。

(2)确定方法地基系数大小与地基土的类别、物理力学性质有关。

地基系数C值是通过对试桩在不同类别土质及不同深度进行实测及后反算得到。

桩基础工程量计算

桩基础工程量计算

桩基础工程量计算桩基础工程量计算是指根据设计要求和施工方案,对桩基础施工所需要的材料和工作量进行计算和估算的过程。

桩基础通常用于建筑物、桥梁、堤坝等工程的基础中,承受荷载并将荷载传递到地下的深层土体中。

以下是桩基础工程量计算的一般步骤和相关内容。

第一步:确定设计要求在进行桩基础工程量计算之前,首先需要确定设计要求,包括桩的类型、直径或截面尺寸、桩长、桩身和桩头的材料等。

这些设计要求将直接影响桩基础的工程量计算结果。

第二步:桩体积计算根据桩的类型和尺寸,计算桩的体积。

比如,对于圆柱形桩,可以通过计算桩的底面积和桩长来得到桩的体积。

对于其他形状的桩,可以使用相应的公式或几何方程进行计算。

第三步:桩身材料计算桩身材料的计算包括桩的钢筋和混凝土的计算。

根据桩的设计要求和施工方案,计算桩身钢筋的总长度和数量。

同时,根据桩的尺寸和设计强度要求,计算混凝土的用量。

第四步:桩头材料计算桩头材料的计算包括桩头的钢筋和混凝土的计算。

根据设计要求和施工方案,计算桩头钢筋的总长度和数量。

同时,根据桩头的尺寸和设计强度要求,计算混凝土的用量。

辅助工程量计算包括桩基础施工所需的其他材料和工作量的计算。

这些材料和工作量可能包括桩机的使用时间、土方量和回填材料的用量等。

第六步:计算总工程量和成本估算将以上各项工程量计算结果相加,得到桩基础施工的总工程量。

根据工程量计算结果和相关材料的价格,估算桩基础施工的成本。

以上是桩基础工程量计算的一般步骤和相关内容。

在实际工程中,还需要根据具体情况进行调整和细化。

同时,使用计算软件和工程测量仪器可以提高计算的准确性和效率。

桥梁桩基础设计计算部分

桥梁桩基础设计计算部分

一方案比选优化公路桥涵结构设计应当考虑到结构上可能出现的多种作用,例如桥涵结构构件上除构件永久作用(如自重等)外,可能同时出现汽车荷载、人群荷载等可变作用。

《公路桥规》要求这时应该按承载力极限状态和正常使用极限状态,结合相应的设计状况进行作用效应组合,并取其最不利组合进行计算。

1、按承载能力极限状态设计时,可采用以下两种作用效应组合。

(1)基本作用效应组合。

基本组合是承载能力极限状态设计时,永久作用标准值效应与可变作用标准值效应的组合,基本组合表达式为(1-1)或(1—2)γ0-桥梁结构的重要性系数,按结构设计安全等级采用,对于公路桥梁,安全等级一级、二级、三级,分别为1.1、1。

0和0.9;γGi-第i个永久荷载作用效应的分项系数.分项系数是指为保证所设计的结构具有结构的可靠度而在设计表达式中采用的系数,分为作用分项系数和抗力分项系数两类。

当永久作用效应(结构重力和预应力作用)对结构承载力不利时,γGi=1.2;对结构的承载能力有利时,γGi=10;其他永久作用效应的分项系数详见《公路桥规》;γQ1-汽车荷载效应(含汽车冲击力、离心力)的分项系数,取γQ1=1.4;当某个可变作用在效用组合中,其值超过汽车荷载效用时,则该作用取代汽车荷载,其分项系数应采用汽车荷载的分项系数;对专门为承受某种作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载时,其分项系数也与汽车荷载取同值。

γQj-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载以外的其他第j个可变作用效应的分项系数,取γQ1=1.4,但风荷载的分项系数取γQ1=1.1;S gik、S gid-第i个永久作用效应的标准值和设计值;S Qjk-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)外的其他第j个可变作用效应的标准值;S ud-承载能力极限状态下,作用基本组合的效应组合设计值,作用效应设计值等于作用效应标准值S d与作用分项系数的乘积。

桥梁桩基础计算书

桥梁桩基础计算书

桥梁桩基础课程设计桥梁桩基础课程设计一、恒载计算(每根桩反力计算)1、上部结构横载反力N1 N1=12⨯2350=1175kN 2、盖梁自重反力N2 N2=12⨯350=175kN 3、系梁自重反力N312⨯25 ⨯3.5 ⨯0.8 ⨯1=35kN 4、一根墩柱自重反力N4KN N 94.222)1025(5.01.5255.0)1.54.13(224=-⨯⨯⨯+⨯⨯⨯-=ππ(低水位)KN N 47.195255.08.4155.06.8224=⨯⨯⨯+⨯⨯⨯=ππ (常水位)5、桩每延米重N5(考虑浮力) m KN N /96.16152.1425=⨯⨯=π二、活载反力计算1、活载纵向布置时支座最大反力⑴、公路二级:7.875/k q kN m = 193.2k P kN =Ⅰ、单孔布载 55.57822.1932875.74.24=⨯+⨯=)(R Ⅲ、双孔布载 24.427.875(193.2)2766.3082R kN ⨯⨯=+⨯=(2)、人群荷载Ⅰ、单孔布载 113.524.442.72R kN =⨯⨯=1、计算墩柱顶最大垂直反力R 组合Ⅰ:R= 恒载 +(1+u )汽ϕ∑iiyP +人ϕql= 1175+175+(1+0.2)⨯1.245⨯766.308+1.33⨯85.4 =2608.45kN (汽车、人群双孔布载)2、计算桩顶最大弯矩⑴、计算桩顶最大弯矩时柱顶竖向力 R= 1N +2N +(1+u )汽ϕ∑i i y P + 人ϕql 21 = 1175+175+1.2⨯1.245⨯578.55+1.33⨯42.7= 2271.14kN (汽车、人群单孔布载)⑵、计算桩顶(最大冲刷线处)的竖向力0N 、水平力0Q 和弯矩0M0N = max R +3N + 4N (常水位)= 2608.45+35+195.47=2838.92 kN0Q = 1H + 1W + 2W= 22.5+8+10=40.5 kN0M = 14.71H + 14.051W + 11.252W + 0.3活max R= 14.7⨯22.5+14.05⨯8+11.25⨯10+0.3⨯(2608.45-1175-175) = 933.185kN.m活max R ——组合Ⅰ中活载产生的竖向力。

桩基础计算书

桩基础计算书

9第一部分桥梁桩基础设计一、设计题目:桥梁桩基础或沉井基础二、设计资料1.地质与水文资料图1.水文及地基土层分布表1 各层土的物理性质及力学指标2.墩底标高:90.9m3.墩底尺寸:3.5m(纵桥向) 7.0m4.上部为等跨30m的钢筋混凝土预应力桥梁,荷载为纵桥向控制设计。

5.墩底荷载:纵桥向为恒载及一孔活载时ΣN=6800+50n(kN)ΣH=360+5n( kN)(制动力及风力)ΣM=4700kN m(竖直反力偏心距、制动力及风力引起)恒载及二孔活载时ΣN=8000+50n kNn为学生学号(取后三位);三、设计任务(时间:1周)1.选择桩的类型、确定桩数、桩径、桩长、桩的平面布置、桩的配筋、混凝土标号;2.设计承台(承台尺寸、配筋、混凝土标号);3.绘制施工图(桩基础平面、桩及承台剖面、承台配筋、桩身配筋、节点详图)。

4.如果采用沉井基础,试确定沉井的高度、平面尺寸、刃脚和井壁的配筋、混凝土标号,绘制施工图(正面、侧面和平面尺寸,刃脚和井壁的配筋图)。

第一章方案拟定一.桩基础类型的选择1.摩擦桩桩基与端承桩桩基的考虑从任务书中的地质资料分析,河床7米以下的土层为密实砂卵石层,这种土层土质较好且很厚,承载能力较大,可作为持力层,但不适合柱桩的受力特性,端承桩主要指桩底支撑在基岩上的桩,适用于基岩埋深较浅的情况,埋深较大时,如果将桩一直打入基岩层,则桩的长度将很大,既不经济,给施工带来一定的难度,造成施工周期较长,故综合考虑后选择摩擦桩。

2.桩型与成桩工艺该桩基础的施工环境在水下,而钻孔灌注桩因其施工方便,基本避免了水下作业,同时施工速度快、造价低、工艺设备简单,在实际工程中广泛被采用。

灌注桩成孔的方式很多,考虑到冲抓锥更适用于淤泥、粘性土、砂土、砾石、卵石等土层的成孔,且适用孔径为0.6~1.5m,与该处条件基本相符,故综合考虑后选择钻孔灌注桩。

二.桩径的拟定查《公路桥涵地基与基础设计规范》(以下简称《规范》)知,钻孔桩设计直径不宜小于0.8m,且常用尺寸为0.8~3.2m,参照已有工程实例与荷载大小,初步拟定桩的直径为1.2m。

桥台桩基础设计计算书

桥台桩基础设计计算书

.62cos(25.1 0) =22694.12 kN E Ax E A cos( ) 25060
作用点与基础底面的距离:
1 e y 9.5 3.17 m 3
水平方向土压力对基底形心轴的弯矩:
M ex E Ax e y 22694 .12 (3.17) 71940 .36kN m
台后填土自重引起的主动土压力:
EA
式中:
1 mH 2Ka B 2
; m ——墙后填土重度的加权平均值( kN m3 )
H ――土压力作用的高度; B ――土压力作用的宽度;
K a ――主动土压力作用系数。
土压力作用系数如下:
Ka =
cos2 ( m ) cos2 cos( ) 1 sin( ) sin( ) cos( ) cos( ) cos2 (25.1 0) cos2 0 cos(25.1 2 0) 1 sin(25.1 2 25.1) sin(25.1 0) cos(25.1 2 0) cos(0 0)
Quk Qsk Qpk u p qsik li q pk AP
桩侧土的极限侧阻力标准值如下: 中密卵石土层,取 qs1k =85kPa. 密实卵石土层,取 q s 2 k =90kPa。 桩的极限端阻力标准值如下: 密实卵石土层,取 q pk =2200kPa
Quk Qsk Qpk u p qsik li q pk AP
) 1,4 36445 .14 1.4 2250 1.4 13282 .92 o M ud 1.2 (14742 37800
=33773.292 kN.m 3、桥上无飞机,台后有飞机荷载

桥梁高桩承台式摩擦桩基础设计计算

桥梁高桩承台式摩擦桩基础设计计算

桥梁高桩承台式摩擦桩基础设计计算1. 初步拟定桩长桩基础采用高桩承台式摩擦桩,根据施工条件,桩拟采用直径d=1.2m ,以冲抓锥施工。

桩群布置经初步计算拟采用6根灌注桩,为对称竖直双排桩基础,埋置深度初步拟定为h=11.31m 。

桩长初步拟定为18m ,桩底标高为49.54m 。

2.桩群结构分析2.1承台底面中心的荷载计算永久作用加一孔可变作用(控制桩截面强度荷载)时:407469.8 5.6 2.025.043490()N kN =+⨯⨯⨯=∑358.60()H kN =∑4617.30358.60 2.05334.50()M kN =+⨯=∑永久作用加二孔可变作用(控制桩入土深度荷载)时:46788.009.8 5.6 2.025.049532()N kN =+⨯⨯⨯=∑2.2单桩桩顶荷载计算桩的计算宽度1b对于 1.0d m ≥时: 1(1)f b K K d =+式中:f K ——桩形状换算系数,对于圆形截面,取0.9;d ——桩直径,取1.2m ;K ——平行于水平作用方向的桩间相互影响系数:已知:12L m = ; 13(1) 6.6h d m =+= ; 22,0.6n b ==;对于110.6L h <的多排桩 : 2121(1)0.8020.6b L K b h -=+⨯= 所以: 10.90.802(1.21) 1.59()b m =⨯⨯+=桩的变形系数αα=0.8c EI E I =式中: α——桩的变形系数;EI ——桩的抗弯刚度,对以受弯为主的钢筋混凝土桩,根据现行规范采用;c E ——桩的混凝土抗压弹性模量,C20混凝土72.5510c E KPa =⨯;I ——桩的毛面积惯性矩,440.1018()64d I m π==m ——非岩石地基水平向抗力系数的比例系数,4120000/m kN m =;所以,计算得:10.62()m α-=桩在最大冲刷线以下深度h=11.31m ,其计算长度则为:0.6211.317.02( 2.5)h h α==⨯=> 故按弹性桩计算桩顶刚度系数1ρ、2ρ、3ρ、4ρ值计算 已知:0 6.69,11.31l m h m == ;12ζ=(根据《公桥基规》钻挖孔桩采用12ζ=), 2221.2 1.13()44d A m ππ⨯===630012000011.31 1.35710(/)C m h kN m ==⨯=⨯2220 1.240tan 11.31tan 21.142424d A h m φππ︒⎛⎫⎛⎫=+⋅=⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,易知该值大于相邻底面中心距为直径所得的面积,故按桩中心距计算面积,故取:220 3.28.044A m π=⨯=∴ 117600016.6911.3111211.132.5510 1.357108.04h l h AE C A ρζ-⎡⎤+⨯⎢⎥==+⎢⎥+⨯⨯⨯⨯⎢⎥+⎣⎦621.923100.925KN m EI =⨯⋅=已知:7.02h h α==(>4),∴取h =4,000.62 6.69 4.15()l l m α==⨯=查教材《桥梁基础工程》附表17、18、19得:Q x =0.05568 m x =0.16498 m ϕ=0.65853 所以 3320.620.055680.0133Q EIx EI EI ρα==⨯=2230.620.164980.0634m EIx EI EI ρα==⨯=40.620.658530.408m EI EI EI ραφ==⨯=计算承台底面原点O 处位移0a 、0b 、0β 对于竖直桩,且各桩的直径相同时:01434907836.0460.925N b n EI EIρ===⨯ 241310222224131()16.66358.600.38045334.56116.420.079816.660.1447()()ni i ni i n x H n MEI EI a EI EI EI EIn n x n ρρρρρρρ==++⨯+⨯===⨯-⋅+-∑∑ 2302222241310.07985334.50.3804358.60429.570.079816.660.1447()()ni i n M n H EI EI EI EI EIn n x n ρρβρρρρ=+⨯+⨯===⨯-⋅+-∑计算作用在每根桩顶上作用力i P 、i Q 、i M :竖向力:1007884.10()7836.04429.57()0.925(1.6)6612.57()i i kN P b x EI kN EI EI ρβ⎧=+=⨯±⨯=⎨⎩ 水平力:20306116.42429.570.01330.063454.11()i Q a EI EI kN EI EI ρρβ=-=⨯-⨯= 弯矩:4030429.576116.420.4080.0634212.52()i M a EI EI kN m EI EIρβρ=-=⨯-⨯=-⋅ 校核:654.11324.66()358.60()i nQ kN H kN =⨯=≈=∑13(7884.106612.57) 1.66(212.52)4828.22()5334.50()ni iii x p nMkN m kN m =+=⨯-⨯+⨯-=⋅≈⋅∑13(7884.016612.57)43490.01()43490.00()nii npkN kN ==⨯+=≈∑2.3最大冲刷线深度处荷载计算从单桩桩顶荷载计算中,已得出计算最大冲刷线深度荷载所需要的数据,计算如下:弯矩 00212.5254.11 6.69149.48()i i M M Q l kM m =+=-+⨯=⋅ 水平力 054.11()Q kN =竖向力 07884.10 1.13 6.69(2510)7997.50()P kN =+⨯⨯-=2.4最大冲刷线深度下沿桩长度方向弯矩、水平压应力的计算桩身最大弯矩处及最大弯矩的计算:由:z Q =0 得:00.62149.481.71354.11Q M C Q α⨯===由 1.713Q C = 且h =7.02>4 取h =4.0,查教材《基础工程》附表13得max 0.813Z = 故 max 0.8131.31()0.62Z m == 又由max Z =0.813 及7.02h =>4 取h =4.0,查教材《基础工程》附表13得m K =1.296∴ max 01.296149.48193.73 (kN m)m M K M =⋅=⨯=⋅最大冲刷线深度下沿桩身长度方向弯矩、水平压应力的计算:采用无量钢法计算,由h =7.02>2.5,所以用摩察桩公式计算:0z m m Q M A M B α=+ 00z Q Q Q Q A M B α=+其中54.1187.27()0.62Q kN α== 0Q =54.11kN 0M =149.48kNm A 、m B 、Q A 、Q B 的值查教材《基础工程》附表3、4、7、8 ,计算如下表:2.5桩顶纵向水平位移验算:桩在最大冲刷线处水平位移0x 和转角0ϕ的计算:由 Z =0 7.02h =>4 取 h =4 查教材《基础工程》附表1、2、5、6 得:x A =2.44066 A ϕ=-1.62100 x B = 1.6210 B ϕ=-1.7505800032x xQ M x A B EI EI αα=+ 372754.11149.482.44066 1.62100.62 2.04100.10180.62 2.04100.1018=⨯+⨯⨯⨯⨯⨯⨯⨯ 30.57106m mm =⨯<符合规范要求0002Q M A B EI EI ϕϕϕαα=+ 27754.11149.48( 1.6210)( 1.75058)0.62 2.04100.10180.62 2.04100.1018=⨯--⨯-⨯⨯⨯⨯⨯⨯ 43.13110rad -=-⨯由 7.02h m =>4m ,取4,000.62 6.69 4.15l l α==⨯= 可查得:169.91279x A = 1117.50091x A B φ== 1 5.90058B φ=1111132372*********.11212.5269.9127917.500910.62 2.04100.10180.62 2.04100.10183.010 3.0()54.11212.52(17.50091)0.62 2.04100.10180.62 2.04100.1018i ix x i i Q M x A B EI EI m mm Q M A B EI EIφφααφαα-=+=⨯-⨯⨯⨯⨯⨯⨯⨯=⨯==+=⨯--⨯⨯⨯⨯⨯⨯3( 5.90058)0.2110()rad -⨯-=-⨯桩顶的纵向水平位移1)x mm =3.0(水平位移的容许值[]cm 74.2305.0 ==△=27.4mm> 1x故桩顶水平位移满足要求3.桩身截面配筋及截面强度校核 3.1各种参数及系数的计算最大弯矩发生在最大冲刷线以下max 1.31z m =处,该处max 193.73M kN m =⋅ 计算桩最大弯矩控制截面的轴向力0max max 12j i ik N p q l q z q c z =+⋅+⋅-⋅⋅式中 j N ——控制截面的轴向力;i p ——单桩桩顶最大竖向力,已求出7884.10i p kN =; q ——桩每延米的自重(包括浮力),()21.2251016.964q kN π⨯=⨯-=;ik q ——桩周土摩阻力标准值,已知500ik q kPA =c ——冲抓锥成孔面周长,'1.3 4.08()c d m ππ==⨯= 所以,计算得:0max max 15333.60()2j i ik N p q l q z q c z kN =+⋅+⋅-⋅⋅=计算偏心距0193.730.0363()36.3()5333.60j jM e m mm N ====桩的半径r=1200/2=600mm ,对于C20混凝土,保护层取80 g a mm =,则520/520/6000.867s mmg r r ====s r桩的长细比:018/151.2L d ==>4.4,所以,应考虑偏心距增大系数η 1000222012000.2 2.7/0.2 2.736.3/11200.288181.150.01 1.150.0111.2111(/)1(18/1.2)0.2881 2.4281400/140036.3/1120e h L h L h e h ςςηςς=+=+⨯==-⋅=-⨯==+=+⨯⨯⨯=⨯故考虑偏心距增大系数后的偏心距为:0' 2.42836.388.14()e e mm η==⨯=3.2计算配筋率采用C20混凝土,钢筋拟采用HRB335钢筋,即:9.2cd f MPa = ;280sd f MPa = 计算受压区高度系数,根据经验公式得:'0'cd sd f Ae Br f Dgr Ce ρ-=⨯- 22u cd sd N Ar f C r f ρ=+ 采用试算法列表计算,根据规范,系数A 、B 、C 、D 查附表所得:由表中计算可见,当0.85ξ=时,计算纵向力u N 与设计值j N 相近,且大于设计值。

桩基础设计计算

桩基础设计计算

第四章桩基础的设计和计算桩基础具有承载力高、稳定性好、沉降变形小、抗震能力强,以及能适应各种复杂地质条件的显著优点,是桥梁工程的常用基础结构。

在受到上部结构传来的荷载作用时,桩基础通过承台将其分配给各桩,再由桩传递给周围的岩土层。

当为低承台桩基础时,承台同时也将部分荷载传递给承台周边的土体。

由于桩基础的埋置深度更大,与岩土层的接触界面和相互作用关系更为复杂,所以桩基础的设计计算远比浅基础繁琐和困难。

本章主要依据《铁路桥涵地基和基础设计规范》TB 10002.5-2005(以下简称《铁路桥涵地基规范》)的相关规定介绍铁路桥涵桩基础的设计与计算。

第一节桩基础的设计原则设计桩基础时,应先根据荷载、地质及水文等条件,初步拟定承台的位置和尺寸、桩的类型、直径、长度、桩数以及桩的排列形式等,然后经过反复试算和比较将其确定下来。

在上述设计过程中,设计者必须注意遵守相关设计规范的基本原则和具体规定,因此,在讨论设计计算方法之前,先将桩基础的设计原则介绍如下。

一、承台座板底面高程的确定低承台桩基和高承台桩基在计算原理及方法上没有根本的不同,但将影响到施工难易程度和桩的受力大小,故在拟定承台座板底面高程时,应根据荷载的大小、施工条件及河流的地质、水文、通航、流冰等情况加以决定。

一般对于常年有水且水位较高,施工时不易排水或河床冲刷深度较大的河流,为方便施工,多采用高承台桩基。

若河流不通航无流冰时,甚至可以把承台座板底面设置在施工水位之上,使施工更加方便。

但若河流航运繁忙或有流冰时,应将承台座板适当放低或在承台四周安设伸至通航或流冰水位以下一定深度的钢筋混凝土围板,以避免船只、排筏或流冰直接撞击桩身。

对于有强烈流冰的河流,则应将承台底面置于最低流冰层底面以下且不少于0.25m处。

低承台桩基的稳定性较好,但水中施工难度较大,故多用于季节性河流或冲刷深度较小的河流。

若承台位于冻胀性土中时,承台座板底面应置于冻结线以下不少于0.25m处。

桥梁桩基础计算

桥梁桩基础计算

桩长计算一、计算参数根据XXX桥《岩土工程勘察报告》取如下参数:(1)桩长埋入黄土地基容许承载力[б0]黄土:[б0]=164KPa(2)钻孔桩桩周的摩阻力标准值τi黄土:τi =80KPa桩长验算例:1号桥墩二、上部和下部荷载(1)上部荷载支点最大反力:中梁:949 kN;边梁:893 kN每个桥墩上部荷载为2*949+2*893=3684kN(2)单个桥墩下部结构自重盖梁N1=26*22.1=574.6kN墩柱N2=26*2*16.78*3.1416*0.75*0.75=1541.9kN系梁N3=26*7.49=194.7kN承台N3=26*88.2=2293.2kN桩基N5=26*4*L*3.1416*0.75*0.75=183.8LkN 桩基取自重的一半计算91.9LkN每个桩基承受的荷载为1/4* 51N N+3684/4=1/4*(574.6+1541.9+194.7+2293.2+91.9L)+3684/4= 1151.1+23L+921=2072.1+23L(kN)二、桩基轴向受压承载力容许值[Ra]按照《公路桥涵地基与基础设计规范》 JTG D63-2007中5.3.3条 摩擦桩单桩轴向受压承载力容许值:[][][])3(21a 22001-+=+=∑=h k f m q q A l q u R a r n i r p i ik γλ 其中r q =0.7*0.7*(164+1.5*18*(L-3)=13.23L+40.67则单桩轴向受压承载力容许值[Ra]=1/2*4.71*(80*L )+3.1416*0.75*0.75*(13.23L+40.67)=211.8L+71.9三、结论当N<[Ra],桩长满足设计要求。

即2072.1+23L <211.8L+71.9L>10.6桩顶至冲刷线5m根据甘肃地区地震区带划分,本桥址地处青藏北部地震区南北地震带兰州—通渭地震亚带,桥址地震动峰值加速度为0.2g ,为8度区,加之桥址处为饱和黄土地质,地质情况较差,建议采用钻孔灌注桩群桩基础,桩径1.5m,桩长30m 。

桩基础设计计算

桩基础设计计算

(1)常数法
此法为我国学者张有龄于 20 世纪 30 年代提出。该法假定 Cy沿深度为均匀分布,即 n0, 见图 4-5a。由于假设 Cy 不变,而桩在地面处的变形一般又最大,因此,该处的计算土抗力 也为最大值,这与实际情况不符。但由于此法的数学处理较为简单,若适当选择 Cy 的大小, 仍然可以保证一定的精度并满足工程需要。此法在日本和美国应用较多。
第四章 桩基础的设计和计算
桩基础具有承载力高、稳定性好、沉降变形小、抗震能力强,以及能适应各种复杂地质 条件的显著优点,是桥梁工程的常用基础结构。
在受到上部结构传来的荷载作用时,桩基础通过承台将其分配给各桩,再由桩传递给周 围的岩土层。当为低承台桩基础时,承台同时也将部分荷载传递给承台周边的土体。由于桩 基础的埋置深度更大,与岩土层的接触界面和相互作用关系更为复杂,所以桩基础的设计计 算远比浅基础繁琐和困难。
(2)k 法
此法假定 Cy 在桩身弹性位移曲线第一位移零点以上按直线或抛物线变化,以下则保持 为常数 k,见图 4-5b。该法由前苏联学者安盖尔斯基于 1934 年提出,求解也比较容易,适
合于计算一般预制桩或灌注桩的内力和横向位移,曾在我国广泛应用。
(3)m 法
假定地基横向抗力系数随深度呈线性增加,即 n1,Cy=my,这里 m 为比例系数。Cy 的 分布形式见图 4-5c。该法由前苏联学者于 1939 年提出,适合于计算横向抗弯刚度 EI 较大的
图 4-1 单排桩桩基
三、设计荷载的确定 作用在桩基承台底面处的外荷载,包括竖向力、水平力及力矩,应按下述原则进行荷载 组合,即分别按主力,主力加附加力以及主力加特殊力三种方式进行荷载组合,不考虑主力 加附加力加特殊力这种组合方式,进行主力加附加力组合时,仅考虑主力与一个方向的附加 力(顺桥向或横桥向)相组合。对于不同的检算项目,应选取相应的最不利荷载组合。 四、土的横向抗力 所谓横向抗力,是指基础在外力作用下发生侧移挤压土体时,基础侧面的土体对基础的 抗力。横向抗力具有抵抗外荷载的作用,而且随着基础埋置深度的加大其作用也愈加明显。 对于桩基、管柱和沉井等深基础,因基础的埋置深度大,该项抗力将构成基础抵抗横向荷载 的主体,故在计算时应予以考虑,以使设计结果更为经济合理。 桥梁墩台桩基的设计经验表明,地面处的水平位移若超过 1cm,则墩台顶面的横向位移 将太大。而实际上基础的允许侧移量是较小的,故在确定横向抗力时,可假设基础侧面的土 体处于弹性状态,将其视为弹性变形介质,并假设横向抗力的大小与横向位移成正比。由此, 土体的横向抗力也称为弹性抗力。 五、桩基础的计算模式及主要检算项目 (一)力学计算模式

桩基础工程量公式

桩基础工程量公式

桩基础工程量公式
1.桩身材料的计算:计算桩身所需的混凝土、钢筋及其他辅助材料的用量。

桩身的材料计算是根据桩的直径、长度和构造等参数进行的。

常用的计算公式为:桩身体积=π*(桩径/2)^2*桩长
2.桩周边材料的计算:计算桩周边沉管所需的背填料、砂浆等材料的用量。

桩周边材料的计算一般是根据桩的直径以及所用材料的垫层和厚度等参数进行的。

3.桩机的工作时间计算:计算桩机进行桩基础施工的工作时间,即桩机在承担该项目施工任务所需的总工作时间。

桩机的工作时间一般由桩机工作效率、工作日历、班次情况等因素决定。

4.劳力和机械设备的计算:计算进行桩基础施工所需的劳动人员数目和机械设备的数量。

劳力和机械设备的计算一般是根据施工项目的规模、工期、工程难易程度等因素进行的。

5.辅助材料的计算:计算桩基础施工需要的其他辅助材料的用量,如保温材料、防水材料、填缝密封材料等。

计算桩基础工程量的公式和方法会根据具体的施工项目和设计要求而有所不同。

一般情况下,桩基础工程量的计算是由专业的建筑师、土木工程师或工程量清单专员进行的。

他们会根据项目的具体要求和情况,采用相应的计算公式和方法,对各项工程量进行准确计算和估算。

对于桩基础工程量的计算,还需要考虑其他一些因素,如施工中的浪费、修补、前期工程等。

因此,在实际计算中,还需要根据项目的特点和实际情况进行适当的调整和修正。

综上所述,桩基础工程量的计算是一个复杂而细致的工作,需要考虑许多因素和参数,并采用适当的计算公式和方法进行准确计算和估算。

这样才能为桩基础施工提供正确的工程量数据,从而保证项目的顺利进行和施工质量的达标。

桥梁桩基础设计计算

桥梁桩基础设计计算

第一章桩基础设计一、设计资料 1、地址及水文河床土质:从地面(河床)至标高32.5m 为软塑粘土,以下为密实粗砂,深度达30m ;河床标高为40.5m ,一般冲刷线标高为38.5m ,最大冲刷线为35.2m ,常水位42.5m 。

2、土质指标表一、土质指标3、桩、承台尺寸与材料承台尺寸:7.0m ×4.5m ×2.0m 。

拟定采用四根桩,设计直径 1.0m 。

桩身混凝土用20号,其受压弹性模量h E =×104MPa 4、荷载情况上部为等跨25m 的预应力梁桥,混凝土桥墩,承台顶面上纵桥向荷载为:恒载及一孔活载时:5659.4NKN =∑、298.8HKN =∑、3847.7MKN m =∑g恒载及二孔活载时:6498.2NKN =∑。

桩(直径1.0m )自重每延米为:21.01511.78/4q KN m π⨯=⨯=故,作用在承台底面中心的荷载力为:5659.4(7.0 4.5 2.025)7234.4298.83847.7298.8 2.04445.3N KN H KN M KN=+⨯⨯⨯===+⨯=∑∑∑ 恒载及二孔活载时:6498.2(7.0 4.5 2.025)8073.4N KN =+⨯⨯⨯=∑桩基础采用冲抓锥钻孔灌注桩基础,为摩擦桩 二、单桩容许承载力的确定根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度,设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度为3h ,则:002221[]{[](3)}2h i i N p U l m A k h τλσγ==++-∑当两跨活载时:8073.213.311.7811.7842h N h =+⨯+⨯计算[P]时取以下数据:桩的设计桩径1.0m ,冲抓锥成孔直径为1.15m ,桩周长22202021211.15 3.6,0.485,0.740.9, 6.0,[]550,12/40,120,a a a u m A m m K Kp KN m Kp Kp ππλσγττ⨯=⨯==========1[] 3.16[2.740( 2.7)120]0.700.90.7852[550 6.012( 3.33)]2057.17 5.898.78k p h h N h m=⨯⨯+-⨯+⨯⨯⨯+⨯⨯+-==+∴= 现取h=9m ,桩底标高为26.2m 。

某一级公路桥梁桩基设计计算书

某一级公路桥梁桩基设计计算书

某⼀级公路桥梁桩基设计计算书设计论⽂关键字:设计桩基第1章1.1设计资料1.1.1⼯程概况该桥梁系某I级公路⼲线上的中桥(单线),线路位于直线平坡地段。

该地区地震烈度较低,不考虑地震设防问题。

桥梁及桥墩部分的设计已经完成,桥跨由4孔30m预应⼒钢筋混凝⼟梁组成。

1.1.2 ⼯程地质和⽔⽂地质河床标⾼为78.32,桩顶与河床平齐,⼀般冲刷线标⾼为75.94 m,局部冲刷线标⾼为73.62 m。

τ= kPa;地基⼟为中密砂砾⼟,地基⼟⽐例系数m=10 000 kN/m4;地基⼟极限摩阻⼒60[f]=430 kPa,内摩擦⾓Φ=20o,⼟的密度r' = 11. 80 kN/m2(已考虑浮⼒)地基容许承载⼒ao1.1.3.荷载情况.桥墩为单排双柱式,上部结构为30 m预应⼒钢筋混凝⼟T梁,桥⾯净宽9m+2×0.75 m,设计汽车荷载为公路I级,⼈群荷载标准值为3.0kN/m2。

以顺桥向计算,计得⾄盖梁顶的各作⽤值见表1。

根据表1,经计算求得作⽤⼀根桩顶荷载为:双跨结构重⼒ P1=1467.40kN盖梁⾃重反⼒ P2=264.00kN⼀根墩柱⾃重 P3=165.32kN系梁⾃重反⼒ P4=66.90kN每⼀延⽶桩重 q=25.91kN/m(已考虑浮⼒)两跨双列汽车荷载反⼒ P5=1184.24kN(考虑横桥向偏⼼影响,计算桩长⽤,取⼤值)两跨⼈群荷载反⼒ P6=66.89kN单跨双列汽车荷载反⼒P7=280.50kN(考虑横桥向偏⼼影响,计算内⼒⽤,取⼩值)单跨⼈群荷载反⼒P8=32.21kN单跨双列汽车荷载弯矩 M1=243.67kN*m单跨⼈群荷载弯矩M2=13.18kN*m⽔平制动⼒H1=81.9kN风⼒⽔平⼒H2=9.5kN1.2 设计依据1.中华⼈民共和国交通部部标准.公路桥涵地基与基础设计规范(JTG D63-2007).⼈民交通出版社,20072.中华⼈民共和国铁道部标准.铁路桥涵地基基础设计规范,TBJ2-993.赵明华主编,徐学燕副主编.基础⼯程.⾼等教育出版社,20034.李克钏主编,罗书学副主编.基础⼯程.中国铁道出版社,20005.王晓谋主编,基础⼯程.⼈民交通出版社,2005第2章⽅案设计2.1⽅案⽐选(1)对刚性扩⼤基础基础在外⼒(包括基础⾃重)作⽤下,基底的地基反⼒为,此时基础的悬出部分a-a断⾯左端,相当于承受着强度为的均布荷载的悬臂梁,在荷载作⽤下,a-a断⾯将产⽣弯曲拉应⼒和剪应⼒。

桥梁工程量计算流程

桥梁工程量计算流程

桥梁工程量计算流程一、基础部分。

咱先说说桥梁基础的工程量计算哈。

这基础就像是房子的地基一样重要呢。

对于桩基础,我们得先确定桩的类型,是灌注桩还是预制桩。

如果是灌注桩,那就要计算桩的长度啦。

这个长度可不能随便估,得根据地质勘查报告来确定,要一直打到合适的持力层才行。

然后就是计算桩的直径,不同的设计要求直径可不一样哦。

根据桩的长度和直径,就能算出桩的体积啦,就像算圆柱体的体积一样简单,πr²h嘛,不过这里的r就是半径,h就是桩长咯。

墩台基础也不能忘。

要是扩大基础的话,要算出基础的底面积和高度,底面积乘以高度就是基础的体积啦。

在计算的时候,还要注意考虑基础的形状,有时候不是简单的矩形,可能是多边形,那就要把它分成几个小的形状来分别计算面积,再相加得到总的底面积。

这就像是拼拼图一样,一块一块地把基础的工程量算清楚。

二、下部结构。

下部结构里的桥墩和桥台也有好多要算的呢。

桥墩的工程量计算,首先是墩身的混凝土量。

墩身的形状也各种各样,有圆柱的,有矩形的。

如果是圆柱墩身,同样用圆柱体体积公式来算就好啦。

要是矩形墩身,那就是长乘以宽乘以高啦。

而且呀,墩身里面可能还有钢筋呢,这钢筋的长度和重量也要计算。

钢筋的长度要根据墩身的尺寸和钢筋的布置方式来确定,一般是一根一根地算,然后根据钢筋的直径算出每根钢筋的重量,最后把所有钢筋的重量加起来。

桥台呢,桥台的结构可能更复杂一点。

除了台身的混凝土量,还有台帽、耳墙这些部分的工程量。

台帽就像是给桥台戴的帽子一样,计算它的混凝土量也要根据设计的形状和尺寸。

耳墙就像是桥台的耳朵,虽然不大,但是也不能忽略它的工程量。

计算耳墙的时候,要注意它的形状和与桥台主体的连接部分,把这些都算准确了,下部结构的工程量才不会出错。

三、上部结构。

上部结构可是桥梁的关键部分呢。

对于梁式桥来说,梁的工程量是重点。

先算梁体的混凝土量,如果是预制梁,要根据预制梁的规格尺寸来计算单根梁的体积,然后乘以梁的数量就得到总的梁体混凝土量啦。

公路桥梁桩基础课程设计任务书(桩柱式桥墩,含计算书)

公路桥梁桩基础课程设计任务书(桩柱式桥墩,含计算书)

公路桥梁桩基础课程设计任务书(桩柱式桥墩,含计算书)桥梁桩基础课程设计任务书一、桩基础课程设计资料该公路桥梁采用桩柱式桥墩,预计尺寸如下图1所示。

桥面宽7米,两边各0.5米人行道。

设计荷载为公路Ⅱ级,人群:3.5kN/m2.1、桥墩组成该桥墩基础由两根钻孔灌注桩组成。

桩径采用φ=1.2m,墩柱直径采用φ=1.0m。

桩底沉淀土厚度t=(0.2~0.4)d。

局部冲刷线处设置横系梁。

2、地质资料标高25m以上桩侧土为软塑亚粘土,其各物理性质指标为:容量γ=18.5kN/m3,土粒比重G=2.70g/cm3,天然含水量ω=21%,液限ωl=22.7%,塑限ωp=16.3%。

标高25m以下桩侧及桩底土均为硬塑性亚粘土,其物理性质指标为:容量γ=19.5kN/m3,土粒比重G=2.70g/cm3,天然含水量ω=17.8%,液限ωl=22.7%,塑限ωp=16.3%。

3、桩身材料桩身采用25号混凝土浇注,混凝土弹性模量Eh=2.85×104MPa,所供钢筋有Ⅰ级钢和Ⅱ级钢。

4、计算荷载1)一跨上部结构自重G=2350kN;2)盖梁自重G2=350kN;3)局部冲刷线以上一根柱重G3应分别考虑最低水位及常水位情况;4)公路Ⅱ级:双孔布载,以产生最大竖向力;单孔布载,以产生最大偏心弯矩。

支座对桥墩的纵向偏心距为b=0.3m(见图2)。

计算汽车荷载时考虑冲击力。

5)人群荷载:双孔布载,以产生最大竖向力;单孔布载,以产生最大偏心弯矩。

6)水平荷载(见图3)制动力:H1=22.5kN(4.5);盖梁风力:W1=8kN(5);柱风力:W2=10kN(8)。

采用常水位并考虑波浪影响0.5m,常水位按45m计,以产生较大的桩身弯矩。

W2的力臂为11.25m。

活载计算应在支座反力影响线上加载进行。

支座反力影响线见图4.5、设计要求确定桩的长度,进行单桩承载力验算。

桥梁桩基础课程设计计算书一、恒载计算(每根桩反力计算)在进行恒载计算时,需要计算上部结构横载反力N1、盖梁自重反力N2、系梁自重反力N3、一根墩柱自重反力N4以及桩每延米重N5.其中,需要考虑浮力对桩每延米重的影响。

公路桥梁桩基础课程设计任务书(桩柱式桥墩,含计算书)

公路桥梁桩基础课程设计任务书(桩柱式桥墩,含计算书)

桥梁桩基础课程设计任务书1、桥墩组成:该桥墩基础由两根钻孔灌注桩组成。

桩径采用φ=1.2m ,墩柱直径采用φ=1.0m 。

桩底沉淀土厚度t = (0.2~0.4)d 。

局部冲刷线处设置横系梁。

2、地质资料:标高25m 以上桩侧土为软塑亚粘土,其各物理性质指标为:容量γ=18.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量%21=ω,液限%7.22=l ω,塑限%3.16=p ω。

标高25m 以下桩侧及桩底土均为硬塑性亚粘土,其物理性质指标为:容量γ=19.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量%8.17=ω,液限%7.22=l ω,塑限%3.16=p ω。

3、桩身材料:桩身采用25号混凝土浇注,混凝土弹性模量αMP E h 41085.2⨯=,所供钢筋有Ⅰ级钢和Ⅱ级纲。

4、计算荷载⑴ 一跨上部结构自重G=2350kN ;⑵ 盖梁自重G 2=350kN⑶ 局部冲刷线以上一根柱重G 3应分别考虑最低水位及常水位情况;⑷公路Ⅱ级 :双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。

支座对桥墩的纵向偏心距为3.0=b m (见图2)。

计算汽车荷载时考虑冲击力。

⑸ 人群荷载:双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。

⑹ 水平荷载(见图3)制动力:H 1=22.5kN (4.5);盖梁风力:W 1=8kN (5);柱风力:W 2=10kN (8)。

采用常水位并考虑波浪影响0.5m ,常水位按45m计,以产生较大的桩身弯矩。

W2的力臂为11.25m。

活载计算应在支座反力影响线上加载进行。

支座反力影响线见图4。

2、桩基础配筋图3、桩基础钢筋数量表桥梁桩基础课程设计计算书一、恒载计算(每根桩反力计算)1、上部结构横载反力N1N1=1/2*G1=1/2*2000(30/20)^1.2=1626.7KN2、盖梁自重反力N2221135017522N G kN=⨯=⨯=3、系梁自重反力N331(0.71)(11) 3.325292N kN =⨯⨯⨯⨯⨯⨯=(?)4、一根墩柱自重反力N4低水位:()22411258.32510 5.1223.8544N kNππ⨯⨯=⨯⨯+-⨯⨯=常水位:()2241125 4.825108.6196.9144N kNππ⨯⨯=⨯⨯+-⨯⨯=5、桩每延米重N5(考虑浮力)()25 1.22510116.964N kN π⨯=-⨯⨯=二、活载反力计算1、活载纵向布置时支座最大反力⑴、公路II 级:7.875/k q kN m =,193.5k p kN =Ⅰ、 单孔布载 1290.76R kN =Ⅲ、双孔布载 2581.52R kN =⑵、人群荷载ϕ人=1.33三、荷载组合1、计算墩柱顶最大垂直反力R组合Ⅰ:R= 恒载 +(1+u )汽ϕ汽车+ 人ϕ人群 (汽车、人群双孔布载)1175175(10.3) 1.25581.521 1.33 3.524.42408.55R kN =+++⨯⨯⨯+⨯⨯=2、计算桩顶最大弯矩⑴、计算桩顶最大弯矩时柱顶竖向力组合Ⅰ:R= 1N +2N +(1+u )汽ϕ∑i i y P + 人ϕql 21(汽车、人群单孔布载)11175175 1.3 1.25290.761 1.33 3.524.41879.282R kN =++⨯⨯⨯+⨯⨯⨯=⑵、计算桩顶(最大冲刷线处)的竖向力0N 、水平力0Q 和弯矩0M0N = max R +3N + 4N (常水位)2408.5529196.912631.71kN=++=0Q = 1H + 1W + 2W 22.581040.5kN=++= 0M = 14.71H + 14.051W + 11.252W + 0.3活max R=()14.722.514.05811.25100.32408.551175175873.22kN m⨯+⨯+⨯+⨯--=⋅活max R ——组合Ⅰ中活载产生的竖向力的较大者。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章桩基础设计一、设计资料 1、地址及水文河床土质:从地面(河床)至标高32.5m 为软塑粘土,以下为密实粗砂,深度达30m ;河床标高为40.5m ,一般冲刷线标高为38.5m ,最大冲刷线为35.2m ,常水位42.5m 。

2、土质指标表一、土质指标3、桩、承台尺寸与材料承台尺寸:7.0m ×4.5m ×2.0m 。

拟定采用四根桩,设计直径 1.0m 。

桩身混凝土用20号,其受压弹性模量h E =×104MPa 4、荷载情况上部为等跨25m 的预应力梁桥,混凝土桥墩,承台顶面上纵桥向荷载为:恒载及一孔活载时:5659.4NKN =∑、298.8HKN =∑、3847.7MKN m =∑g恒载及二孔活载时:6498.2NKN =∑。

桩(直径1.0m )自重每延米为:21.01511.78/4q KN m π⨯=⨯=故,作用在承台底面中心的荷载力为:5659.4(7.0 4.5 2.025)7234.4298.83847.7298.8 2.04445.3N KN H KN M KN=+⨯⨯⨯===+⨯=∑∑∑ 恒载及二孔活载时:6498.2(7.0 4.5 2.025)8073.4N KN =+⨯⨯⨯=∑桩基础采用冲抓锥钻孔灌注桩基础,为摩擦桩 二、单桩容许承载力的确定根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度,设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度为3h ,则:002221[]{[](3)}2h i i N p U l m A k h τλσγ==++-∑当两跨活载时:8073.213.311.7811.7842h N h =+⨯+⨯计算[P]时取以下数据:桩的设计桩径1.0m ,冲抓锥成孔直径为1.15m ,桩周长22202021211.15 3.6,0.485,0.740.9, 6.0,[]550,12/40,120,a a a u m A m m K Kp KN m Kp Kp ππλσγττ⨯=⨯==========1[] 3.16[2.740( 2.7)120]0.700.90.7852[550 6.012( 3.33)]2057.17 5.898.78k p h h N h m=⨯⨯+-⨯+⨯⨯⨯+⨯⨯+-==+∴= 现取h=9m ,桩底标高为26.2m 。

桩的轴向承载力符合要求。

具体见如图1所示。

纵桥向断面横桥向断面三、桩顶及最大冲刷线处荷载i P 、i Q 、i M 、0M 、0Q 、0P <一>、参数计算 1、桩的计算宽度1b100.9(1)0.9(11) 1.8j b K K K d d K K K==⨯+=⨯+=g g g又:111.5:3(1)6:2:0.6L m h d m n b ==+===故:111110.6 1.50.60.7670.60.660.990.767 1.38L b K b h b '--'=+⨯=+⨯=∴=⨯= 2、桩的变形系数α:α=331121222233(2)810 2.72510(2 2.7 1.3) 1.3417.2510/m m h m h h h m h KN m ++⨯⨯+⨯⨯⨯+⨯===⨯324410.670.67 2.610/0.0491640.489k E E KN m d I m m πα-==⨯⨯==∴==桩在最大冲刷线以下深度h=9m ,其计算长度为:0.4899 4.401 2.5h h α==⨯=>故按弹性桩计算。

3、桩顶刚度系数1ρ、2ρ、3ρ、4ρ值计算22013.3;9;;0.78524d l m h m A m πξ=====3530010102510 2.510/C m KN m ==⨯⨯=⨯按桩中心距计算面积,2202.5 4.914A m π=⨯=1175000513.39112[]310.785 2.610 2.510 4.918.355100.977l h AE C A EIρ-+⨯==++⨯⨯⨯⨯+=⨯=已知:0.4899 4.4014hh α==⨯=>,取用4。

000.489 3.3 1.614l l α==⨯=由已知资料和查附表得:0.262564;0.448403; 1.063181Q m m x x φ===30.031Q Q EIx EI ρα==、20.107mm EIx EI ρα==、0.520m m EI EI ραφ'==4、计算承台底面原点O 处位移000b αβ、、017234.41851.4240.977N b n EI EI ρ===⨯2241140.500.9774 1.258.185mi i n x EI EI EIρρ=+=⨯+⨯⨯=∑23222340.0310.12440.1070.429()(0.429)0.184()n EI EI n EI EI n EI EI ρρρ=⨯==⨯===所以:24131022241312()()()8.185298.80.4294445.352299.660.1248.1850.184()mi i mi i n x H n Mn n x n EI EI EI EI EI EIρρραρρρρ==++==+-⨯+⨯=⨯-∑∑23022241312()()0.1244445.30.429298.8820.800.1248.1850.184()mi i n M n H n n x n EI EI EI EI EI EIρρρρρρρ=+==+-⨯+⨯=⨯-∑<二>计算作用在每根桩顶上的作用力i p i Q i M 。

竖向力:001851.42820.80()0.977[ 1.25]2810.87{806.33i i i p b x EI EI EIKN KNρβ=+=⨯±⨯= 水平力:2005299.66820.800.0310.10774.7i m Q EI EI EI EI KNραρρ=-=⨯-⨯=弯矩:400820.805299.660.5200.107141.50i m M EI EI EI EI KN mρβρα'=-=⨯-⨯=-g校核:474.7298.8298.8inQ KN H KN =⨯===∑12(2810.87806.33) 1.254(141.50)4445.34445.3ni iii x p nMKNm M KNm=+=⨯-⨯+⨯-===∑∑12(2810.87806.33)7234.47234.4nii npKN M KN ==⨯+===∑∑<三>计算最大冲刷线处桩身弯矩0M 水平力0Q 及轴向力0P 。

00141.5074.7 3.3105.00i i M M Q l KNm =+=-+⨯=074.7Q KN =、02810.870.785 3.3152849.73P KN =+⨯⨯=四、最大弯矩max M 及最大弯矩位置max Z 的计算0.4890.4899 4.401h αα==⨯=、0.489105.000.68774.7Q M C Q α⨯===由设计规范查表得:1.0431.0432.132 1.9720.489m Z Z K α====、、所以:max 0105.00 1.972207.06m M M K KNm ==⨯=五、桩顶纵向水平位移验算桩在最大冲刷线处水平位移0x 和转角0φ:2.44066, 1.62100, 1.62100, 1.75058x x A B A B φφ===-=-0003232374.71052.44066 1.621000.4890.4892.64410 2.6446x xQ M x A B EI EI EI EI m mm mmαα-=+=⨯+⨯=⨯=<符合规范要求。

00023274.7105( 1.62100)( 1.75058) 1.027100.4890.489Q M A B EI EIrad EI EIφφφαα-=+=⨯-+⨯-=-⨯33300574.7 3.3 1.04210 1.042338.58810Ql x m m EI -⨯===⨯=⨯⨯23405141.50 3.38.97100.897228.58810m Ml x m m EI --⨯===-⨯=-⨯⨯ 所以桩顶纵向水平位移313(2.644 1.02712.3 1.0420.897)1015.431015.43x mm--=+⨯+-⨯=⨯=水平位移容许值[] 2.5cm ==V,符合要求。

六、桩身截面配筋的计算<一>、配筋的计算最大弯矩截面在Z=处,次处设计最大弯矩为207.06jM KNm =,设计最大弯矩为:112849.73 2.13211.7840 3.61 2.132222708.36j N KN=+⨯⨯-⨯⨯⨯=由截面强度的计算公式:22h b j g c sN R Ar R C r αγγμγγ≤+330b b j j g c sN e M R Br R D gr αγγηημγγ⨯=≤+取以上两式的临界状态分析,整理得:()()00a g Br A e R R C e Dgr ημη-=⨯-现拟定采用20号钢筋,I 级钢筋,11240a g R MPa R MPa ==、1、计算偏心距增大系数0207.0676.5270.39jj M e mm N ===因 4.401 4.0h α=>,故桩的计算长度 4.00.5 3.3507400.489p l mm ⎛⎫=⨯+= ⎪⎝⎭,长细比57405.74071000pl d ==<,可不考虑纵向弯矩对偏心距的影响,取1η=。

2、计算受压区高度系数01000176.576.550022d e mm r mm η=⨯====、设g=则0.90500450gr gr mm ==⨯=。

()()001150076.524076.54505500841.518360108000a g Br A e R R C e DgrB ACD B A C Dημη-=⨯-⨯-=⨯⨯-⨯--、()()22220.950.95115002405001.25 1.25209000045600000b b u g c sN R Ar R C r A C A C αγγμγγμμ=+=⨯⨯⨯+⨯=+ 现采用试算法列表计算,见下表:由计算表可见,当ζ=时,计算纵向力u N 与设计值j N 之比较为合理,故取ζ=,μ=为计算值。

3、计算所需纵向钢筋的截面积2220.002726(500)2141g A r mm μππ==⨯⨯=现选用10φ18,225.45g A cm =,布置如图2 所示。

相关文档
最新文档