基于农业物联网的智能监控系统
基于物联网的智能农业系统研究及应用
基于物联网的智能农业系统研究及应用一、引言随着信息技术的快速发展,物联网技术逐渐被各行各业应用,农业行业也不例外。
智能农业系统基于物联网技术,通过对农业生产、农产品流向等环节进行信息化监控,从而提高农业生产效率和产品品质,实现农业可持续发展。
本文将探讨基于物联网的智能农业系统的研究现状、技术特点及应用实践。
二、智能农业系统的研究现状目前,国内外学者已经对智能农业系统进行了多年的研究,成果丰硕。
笔者通过文献检索,发现现有研究主要集中在以下几个方面。
1.农业环境监测技术农业环境监测技术是智能农业系统中的一项关键技术。
研究者通过传感器、监测设备等手段,对农田土壤、气候、水位等环境参数进行实时监测和数据采集。
这些数据可以作为决策支持、精细管理的参考依据,有助于提升农业生产效率。
另外,基于这些数据可以建立数据分析模型,通过对数据进行分析,预测农作物的发展趋势和较好的种植策略。
2.农业生产智能化技术智能农业系统还包括影响农业生产效率的智能化技术。
例如,智能灌溉系统可以根据农田土壤的湿度、气象状况、植物需求等情况,智能化决策灌溉时机、灌溉量和方式,提升农业水利利用率。
而智能施肥系统则可以通过控制农田肥料供应,监控施肥效果和较好的施肥策略,提升农作物产量和品质。
3.农产品溯源技术农产品品质和安全是消费者关注的重点问题之一。
智能农业系统中的农产品溯源技术,可以对农作物的生长周期、管理过程、加工信息等进行记录和审核,确保农产品的溯源可追溯性,实现了对农产品从生产到输送、销售全流程的监管。
三、智能农业系统的技术特点智能农业系统具有以下几个技术特点。
1.信息化管理智能农业系统通过信息化手段对农业生产各环节进行实时监控和数据采集,从而实现了精细化管理。
这使得农民能够更好地了解农作物的生长周期和需求,有针对性地开展作业,减少资源浪费和开支。
2.智能化决策智能农业系统中的各种智能化技术,可以实现数据的处理、分析和预测。
通过对数据的分析和处理,系统可以较快地形成较好的决策方案,使得农业生产更加高效。
基于物联网的智能农业环境监控与控制系统
基于物联网的智能农业环境监控与控制系统智能农业是利用物联网技术来提高农业的生产效率和质量的一种新型农业管理模式。
基于物联网的智能农业环境监控与控制系统是智能农业的核心组成部分,它通过实时监测和控制农业生产过程中的环境参数,提供精准的灌溉、施肥、温湿度调控等服务,从而实现农业生产的智能化、自动化和精细化。
本文将详细介绍基于物联网的智能农业环境监控与控制系统的原理、优势及其在农业生产中的应用。
一、基于物联网的智能农业环境监控与控制系统的原理基于物联网的智能农业环境监控与控制系统由传感器网络、数据传输网络、云计算和决策支持系统等组成。
传感器网络是整个系统的核心,它通过安装在农田、温室等地的传感器采集环境参数,如温度、湿度、土壤湿度、二氧化碳浓度等。
采集到的数据通过数据传输网络传输到云计算平台,经过分析和处理后,最终送到决策支持系统显示和处理。
决策支持系统通过对数据分析和预测,给出农业生产中的指导意见和控制指令,以实现环境参数的精确调控。
二、基于物联网的智能农业环境监控与控制系统的优势1. 实时监测:基于物联网的智能农业环境监控与控制系统能够实时监测农田、温室等环境参数的变化,保持农作物生长环境的稳定性。
2. 精确控制:通过传感器采集到的数据,系统可以精确调控温湿度、灌溉量等参数,保持最佳的生长条件,提高农作物的产量和品质。
3. 自动化运行:系统采用自动化控制技术,能够自动调整环境参数,减轻农民的劳动强度,提高生产效率。
4. 安全高效:系统能够快速发现并处理温室火灾、农田虫害等突发事件,保证农业生产的安全性和高效性。
5. 节能减排:通过合理控制灌溉和肥料的使用量,系统能够节约能源和减少环境污染。
三、基于物联网的智能农业环境监控与控制系统的应用基于物联网的智能农业环境监控与控制系统在农业生产中得到了广泛的应用。
其中,温室蔬菜种植是一个典型的应用场景。
通过安装在温室内的传感器,系统能够实时监测温度、湿度和CO2浓度等参数,并自动调控温湿度等环境参数,保持最佳生长条件。
基于物联网的智能农业监控系统设计1
基于物联网的智能农业监控系统设计1随着科技的不断进步和物联网的发展,智能农业监控系统在现代农业中扮演着越来越重要的角色。
本文将就基于物联网的智能农业监控系统的设计进行探讨。
一、引言在传统的农业生产中,农民通常需要花费大量的时间和精力才能对农作物进行有效的监控和管理。
然而,这种传统的农业监控方式存在一些缺点,如工作效率低、信息传递困难等。
而基于物联网的智能农业监控系统正是为了解决这些问题而设计的。
二、系统架构基于物联网的智能农业监控系统由若干个传感器节点、数据采集与传输模块、数据存储与处理模块以及用户界面组成。
传感器节点负责采集农田的环境参数,如土壤湿度、温度、光照等。
数据采集与传输模块将采集到的数据传输给数据存储与处理模块,后者进行数据的存储和处理,并最终将数据呈现给用户。
三、传感器节点设计传感器节点是基于物联网的智能农业监控系统的核心组成部分。
传感器节点通常由传感器、微控制器、无线通信模块以及能量管理模块等组成。
传感器负责采集农田的环境参数,微控制器负责对传感器采集到的数据进行处理,无线通信模块负责将数据传输给数据采集与传输模块,并通过能量管理模块实现低功耗和长寿命。
四、数据采集与传输模块设计数据采集与传输模块负责接收传感器节点采集到的数据,并将其传输给数据存储与处理模块。
该模块通常由无线传输模块和数据接收与处理模块组成。
无线传输模块可以采用蓝牙、Wi-Fi或LoRa等技术实现数据的传输,数据接收与处理模块则负责接收和处理传感器节点发送的数据,并将其存储到数据库中。
五、数据存储与处理模块设计数据存储与处理模块负责接收、存储和处理采集到的数据,并最终将数据结构化呈现给用户。
该模块通常由数据库、数据处理算法以及用户界面组成。
数据库用于存储采集到的数据,数据处理算法负责对数据进行分析和处理,用户界面则提供给用户直观的数据展示界面。
六、用户界面设计用户界面是基于物联网的智能农业监控系统与用户交互的桥梁,它能够将采集到的数据以直观、简洁的方式展示给用户。
基于物联网的智能农业监控系统设计与实现
基于物联网的智能农业监控系统设计与实现智能农业是指运用物联网、大数据、云计算等先进技术,利用传感器、监控设备等工具,对农业环境、作物生长过程等进行实时监测与管理,以提高农业生产效率、降低资源消耗、改善农产品质量的一种现代农业生产方式。
在智能农业中,智能农业监控系统起到了核心作用。
本文将介绍基于物联网的智能农业监控系统的设计与实现。
一、系统设计需求分析基于物联网的智能农业监控系统主要用于监测和管理农作物的生长环境,保障农作物的生长质量和产量。
根据这一需求,我们需要设计一个功能完善、可靠稳定的系统,具有以下特点:1.环境监测功能。
系统应能实时监测和记录农作物生长环境的关键参数,如温度、湿度、土壤湿度、光照强度等,以便及时采取调控措施。
2.远程监控与控制功能。
系统应具备远程监控和控制的能力,允许用户通过手机、电脑等终端设备对农作物生长环境进行远程监控和控制。
3.数据分析与预测功能。
系统应能对收集到的农作物生长环境数据进行分析和处理,通过数据挖掘算法,预测农作物的生长状态和产量变化,为农户提供科学决策依据。
二、系统架构设计与实现基于上述需求,我们设计了一个多层次的智能农业监控系统架构,包括传感器层、网络传输层、数据存储与处理层和应用展示层。
1.传感器层:该层布置了多个传感器节点,用于采集农作物生长环境的关键参数数据。
传感器可以包括温湿度传感器、土壤湿度传感器、光照传感器等,这些传感器将实时监测环境参数并将数据发送到网络传输层。
2.网络传输层:该层负责传输传感器采集到的环境数据,将数据传输至数据存储与处理层。
可以利用无线传输技术,如Wi-Fi、蓝牙等,实现传输层与传感器层之间的数据传输。
3.数据存储与处理层:该层用于存储和处理传感器采集到的数据。
数据存储可以采用云存储技术,将数据保存在云平台上,实现数据的长期储存和备份。
数据处理则通过数据挖掘和分析算法,对数据进行处理、分析和预测,生成可视化的数据报告。
4.应用展示层:该层为用户提供友好的用户界面,允许用户通过手机、电脑等终端设备访问系统。
《2024年基于云计算的现代农业物联网监控系统》范文
《基于云计算的现代农业物联网监控系统》篇一一、引言随着科技的不断进步和物联网(IoT)的迅猛发展,云计算技术在现代农业中得到了广泛应用。
云计算和物联网的结合,为现代农业带来了巨大的便利和发展空间。
通过建立基于云计算的现代农业物联网监控系统,能够实现对农田环境的实时监控、作物生长的智能管理以及农业资源的优化配置。
本文将详细探讨基于云计算的现代农业物联网监控系统的设计、实现及其优势。
二、系统设计1. 系统架构基于云计算的现代农业物联网监控系统采用分层架构设计,包括感知层、网络层、平台层和应用层。
感知层通过各类传感器收集农田环境数据;网络层负责将数据传输至云计算平台;平台层提供数据存储、处理和分析功能;应用层则根据分析结果为用户提供决策支持。
2. 关键技术(1)传感器技术:采用高精度、低功耗的传感器,实时监测土壤温度、湿度、光照等环境因素。
(2)物联网通信技术:通过无线传感器网络、移动通信网络等技术,将数据传输至云计算平台。
(3)云计算技术:利用云计算平台进行数据存储、处理和分析,为用户提供强大的计算能力和丰富的数据资源。
三、系统实现1. 硬件设备系统硬件设备包括各类传感器、网关、通信设备等。
传感器负责收集农田环境数据,网关负责将数据传输至云计算平台。
此外,还需要配备一定数量的计算机、服务器等设备,以支持系统的正常运行。
2. 软件系统软件系统包括操作系统、数据库、数据处理和分析软件等。
操作系统负责管理硬件设备,数据库负责存储数据,数据处理和分析软件则负责将数据转化为有价值的信息,为用户提供决策支持。
四、系统优势1. 数据实时性高:通过物联网技术,实现了对农田环境的实时监测,使得用户能够及时掌握作物的生长情况。
2. 管理智能化:利用云计算技术,实现了对农业资源的优化配置,提高了农业生产的管理水平。
3. 降低成本:通过精确控制农业生产过程中的资源投入,降低了生产成本,提高了农业生产的经济效益。
4. 提高产量:通过对农田环境的实时监测和智能管理,提高了作物的生长质量,从而提高了农产品的产量和品质。
开题报告《基于物联网的智能农业监测与控制系统设计》
开题报告《基于物联网的智能农业监测与控制系统设计》一、研究背景与意义随着科技的不断发展,物联网技术在各个领域得到了广泛应用,其中智能农业作为物联网技术的一个重要应用领域备受关注。
传统农业生产方式存在着效率低下、资源浪费等问题,而智能农业通过物联网技术的应用,可以实现对农业生产全过程的监测与控制,提高农业生产效率,降低生产成本,保障粮食安全,具有重要的现实意义和广阔的应用前景。
二、国内外研究现状分析目前,国内外对于基于物联网的智能农业监测与控制系统设计已经展开了一系列研究。
国外先进国家在智能农业领域投入巨大,已经形成了一套完善的智能农业监测与控制系统设计方案。
而国内也有不少学者和科研机构在这一领域进行了深入研究,取得了一定的成果。
然而,在智能农业监测与控制系统设计方面仍存在一些问题和挑战,需要进一步深入研究。
三、研究内容与技术路线本课题旨在设计一套基于物联网的智能农业监测与控制系统,主要包括以下内容:构建智能传感器网络:通过部署传感器节点实现对土壤湿度、温度、光照等环境参数的实时监测。
数据采集与传输:利用物联网技术实现传感器数据的采集、传输和存储,确保数据的及时性和准确性。
数据分析与决策:运用数据挖掘和人工智能算法对采集到的数据进行分析,为农业生产提供科学决策支持。
远程监测与控制:设计远程监测与控制系统,实现对农业设施的远程监控和操作。
四、预期研究成果通过本课题的研究,预期可以设计出一套稳定可靠、高效智能的农业监测与控制系统,具有以下特点:实时监测:可以实时监测农田环境参数,及时发现问题并采取相应措施。
智能化管理:通过数据分析和算法优化,实现对农业生产过程的智能化管理。
远程操作:支持远程监测与控制,方便农民进行远程操作管理。
五、拟解决的关键问题在研究过程中,将重点解决以下关键问题:传感器网络布局优化问题;数据传输安全性保障问题;数据分析算法优化问题;远程操作稳定性问题。
综上所述,《基于物联网的智能农业监测与控制系统设计》是一个具有重要意义和挑战性的课题,在未来将会对智能农业领域的发展起到积极推动作用。
智能农业监控系统的设计与实现(基于物联网技术)
智能农业监控系统的设计与实现(基于物联网技术)一、引言随着科技的不断发展,智能农业作为一种新型的农业生产方式逐渐受到人们的关注。
智能农业监控系统作为智能农业的重要组成部分,通过物联网技术实现对农田环境、作物生长情况等数据的实时监测和管理,为农民提供科学决策支持,提高农业生产效率和质量。
本文将介绍智能农业监控系统的设计与实现,重点探讨基于物联网技术的应用。
二、智能农业监控系统的架构设计1. 系统整体架构智能农业监控系统主要包括传感器节点、数据传输网络、数据处理中心和用户终端四个部分。
传感器节点负责采集农田环境数据和作物生长数据,通过数据传输网络将数据传输至数据处理中心进行处理分析,最终将结果反馈给用户终端,实现对农田的远程监控和管理。
2. 传感器节点设计传感器节点是智能农业监控系统中最基础的组成部分,其设计需要考虑到传感器类型选择、布设密度、通信协议等因素。
常用的传感器包括温湿度传感器、光照传感器、土壤湿度传感器等,通过这些传感器可以实时监测农田环境参数和作物生长情况。
3. 数据传输网络建设数据传输网络是保证数据传输稳定可靠的关键环节,可以选择有线网络或者无线网络进行数据传输。
有线网络成本低廉但受距离限制,无线网络覆盖范围广但存在信号干扰等问题。
在设计智能农业监控系统时需要根据具体情况选择合适的数据传输网络方案。
4. 数据处理中心构建数据处理中心是智能农业监控系统的核心部分,负责接收、存储、处理和分析传感器节点采集到的数据。
通过数据处理中心可以实现对农田环境和作物生长情况的大数据分析,为用户提供科学决策支持。
5. 用户终端界面设计用户终端界面是用户与智能农业监控系统交互的窗口,设计直观友好的用户界面可以提升用户体验。
用户可以通过手机App、Web页面等方式查看农田实时数据、历史数据、报警信息等,并进行远程控制操作。
三、基于物联网技术的关键技术应用1. 物联网通信技术物联网通信技术是智能农业监控系统实现远程监控的基础,包括有线通信和无线通信两种方式。
基于物联网的智能农业环境监控系统软件设计
基于物联网的智能农业环境监控系统软件设计基于物联网的智能农业环境监控系统软件设计随着科技的快速发展和人们对可持续农业的需求增加,智能农业逐渐成为农业领域的热点。
智能农业的一个重要组成部分是农业环境监控系统,它利用物联网技术实时监测农田的关键环境参数,帮助农民更好地管理农作物的生长环境。
本文将详细介绍基于物联网的智能农业环境监控系统软件的设计。
一、系统需求分析在设计之前,我们需要对系统的需求进行详细分析。
首先,系统需要能够实时监测农田的温度、湿度、光照强度等环境参数,并将数据传输到云端进行存储和分析。
其次,系统应具备报警功能,能够在环境参数异常时及时通知农民,帮助他们采取相应的措施。
最后,系统需要展示农田环境数据的可视化界面,方便农民进行数据分析和决策。
二、系统架构设计基于需求分析的结果,我们可以确定系统的整体架构。
系统由传感器节点、传输模块、云端服务和用户界面组成。
1. 传感器节点:传感器节点负责采集农田的环境参数数据。
每个传感器节点都有一个唯一的标识符,并通过无线通信方式将数据传输到传输模块。
2. 传输模块:传输模块负责接收传感器节点的数据,并通过无线通信方式将数据传输到云端服务。
传输模块还负责与云端服务进行通信,接收来自云端服务的指令并进行相应的处理。
3. 云端服务:云端服务是系统的核心部分,负责存储和处理传感器数据。
数据存储模块将接收到的数据存储到数据库中,数据处理模块负责对数据进行分析和处理,生成报警信息并发送给用户界面。
4. 用户界面:用户界面提供给农民使用,展示农田的环境数据和报警信息。
用户界面可以通过网页或移动应用的方式呈现,用户可以通过界面对数据进行查询、分析和设置报警参数。
三、系统功能设计1. 数据采集功能:传感器节点采集农田的温度、湿度、光照强度等环境参数数据,并通过传输模块传输到云端服务。
2. 数据存储功能:云端服务将接收到的数据存储到数据库中,确保数据的安全性和完整性。
基于物联网的智能农业大棚监控系统设计
基于物联网的智能农业大棚监控系统设计随着科技的发展和人们对食品质量和安全的要求日益增长,智能农业大棚监控系统成为了现代农业的重要组成部分。
物联网技术的应用使得大棚监控系统更加智能化和高效化,为农业生产带来了巨大的改进和便利。
本文将介绍基于物联网的智能农业大棚监控系统的设计。
智能农业大棚监控系统是指通过物联网技术将大棚内的环境和土壤等参数进行实时监测,并通过云平台进行数据分析和管理的系统。
该系统可以帮助农民实时了解大棚内的环境变化,并及时采取相应的措施,以提高农作物的产量和质量。
首先,智能农业大棚监控系统需要部署各种传感器来感知大棚内的环境参数。
例如,温湿度传感器可用来监测大棚内的温度和湿度变化,光照传感器可用来感知大棚内的光照强度,土壤湿度传感器可用来测量土壤湿度等。
这些传感器通过物联网技术与云平台进行连接,将实时的环境数据传输到云端。
其次,智能农业大棚监控系统需要搭建云平台来管理和分析传感器采集的数据。
云平台可以实现数据的存储和分析,并通过数据挖掘等技术提供有价值的决策参考。
例如,根据温湿度和光照等数据,云平台可以智能调节大棚内的温度、湿度和光照强度,以创造适宜的环境条件促进农作物的生长。
同时,云平台还可以通过数据预测和分析,提前预警可能出现的病害和虫害,并提供相应的防治措施。
此外,智能农业大棚监控系统还可以与移动设备进行互联,提供便捷的远程监控和管理功能。
农民可以通过手机或平板电脑随时随地监测大棚内的环境参数和作物生长情况,及时了解大棚的运行状态。
同时,农民还可以通过移动设备远程控制大棚的灯光和温湿度等参数,实现远程自动化管理。
为了满足智能农业大棚监控系统的设计要求,需要考虑以下几个方面:首先,系统需要具备稳定可靠的数据传输和存储能力。
在大棚环境中,数据传输可能受到信号干扰和网络波动的影响,因此需要采用稳定的通信技术和可靠的数据存储模式,确保数据的准确性和完整性。
其次,系统需要具备实时响应和智能决策能力。
基于物联网的智能农业环境监控系统软件设计
村乡科技XIANGCUN KEJI118XIANGCUN KEJI 2021年9月(上)基于物联网的智能农业环境监控系统软件设计蔡绍博1,3蔡绍硕2张军4鲍玲玲3,5(1.长江大学园艺园林学院,湖北荆州434025;2.青岛海纹智慧农业科技有限公司,山东青岛266001;3.武汉市春晓曲农业科技有限公司,湖北武汉430211;4.武汉菜佰仟数字农业科技有限公司,湖北武汉430074;5.长江大学教育与体育学院,湖北荆州434025)[摘要]针对智能农业实现过程中采集数据点多、数据率低的现实问题,设计一种基于物联网与An-droid 技术的农业环境监控系统:利用传感器来检测农业大棚的温度、湿度及光照强度,将终端传感器节点采集的数据打包发送到服务器端,用户通过网页或安卓手机远程监测温室大棚环境,控制电磁阀开关等其他控制设备来调节温室大棚的环境参数。
[关键词]物联网;环境监控;智能农业[中图分类号]S625[文献标识码]A[文章编号]1674-7909(2021)25-118-3虽然与西方发达国家相比,我国将物联网技术运用于农业智能化控制方面起步晚、技术落后,但近些年随着我国政府政策的大力扶持和国内市场巨大需求的刺激,我国农业物联网在农业大棚和大棚智能化控制方面的应用也取得了许多科研成果和实践经验。
例如,中国农业大学张猛等[1]提出基于ZigBee 和Internet 的温室群环境远程监控系统由多个基于ZigBee 网络的子温室监控系统构成,这些子监控系统把各自采集的数据上传至总服务器,通过总监控系统及控制算法,实现对温室生态因子的实时监测和控制;天津市气候中心的黎贞发[2]等研发了具有数据实时采集、低温灾害监测、预警发布和远程加温控制一体功能的基于物联网的日光温室低温灾害监测预警系统;江南大学的潘金珠等[3]研发了通过ZigBee 无线传感器网络采集终端传感器的数据,数据通过无线网关传输到远程监测中心,用户通过PC 或手机终端进行数据检测和调控温室里的终端设备,从而实现对温室大棚里生态信息实时监测和对设备远程自动控制。
基于物联网的智能农业监控系统设计
基于物联网的智能农业监控系统设计智能农业是物联网技术在农业领域的应用,利用物联网技术将传感器、网络通信与智能控制等技术相结合,实现对农田环境、农作物生长和农业设施的监测与管理。
基于物联网的智能农业监控系统设计,旨在提升农业生产效率、优化资源利用以及保护环境等方面具有广泛的应用前景。
一、智能农业监控系统的概述智能农业监控系统是指通过物联网技术实现对农业环境参数的实时监测与控制,帮助农民及时获取农田信息、实现远程监控和精确控制,从而提高作物生长质量、减少人工成本、提升农产品质量。
该系统通常由传感器节点、控制节点、数据传输网络和数据处理平台等组成。
二、物联网传感器在智能农业监控中的应用1.土壤湿度传感器:通过感知土壤湿度、盐分、酸碱度等参数,实现农田的自动灌溉和远程监测,保证作物的适宜生长环境。
2.气象监测传感器:监测气温、湿度、光照等气象数据,为农户提供合理的气象信息,帮助其做出科学的种植决策。
3.作物生长环境传感器:监测光照、二氧化碳浓度和空气湿度等作物生长环境参数,为农民提供精确的养殖和种植建议。
三、基于物联网的智能农业监控系统设计方案1.传感器选择与布局:根据农田环境参数需求,选择合适的传感器,并合理布局在农田中,以实现全面监控和高效采集数据。
2.物联网通信技术选择:选择合适的物联网通信技术,如NB-IoT或LoRaWAN 等,以保障监控系统的数据传输稳定性和覆盖范围。
3.数据传输与处理:将传感器采集到的数据传输到云平台进行处理与分析,并实现数据的可视化展示,提供决策支持和预警功能。
4.远程控制与管理:通过云平台实现对农田环境参数的远程监控与调控,包括灌溉、施肥、温度控制等,提高农田管理的便捷性和精确性。
四、基于物联网的智能农业监控系统的优势与应用1.提高农业生产效率:通过实时监测和准确控制农田环境参数,提供科学合理的农田管理方案,提高农作物的生长效率。
2.优化资源利用:根据农田环境参数的变化,精确投放灌溉水量、施肥量等资源,避免资源浪费,保护环境。
基于物联网的智慧农业监测系统设计
基于物联网的智慧农业监测系统设计智慧农业是指借助物联网技术,通过植物生长环境信息的实时监测和数据分析,实现农业生产的智能化管理。
基于物联网的智慧农业监测系统设计旨在提高农业生产的效率和质量,降低农业生产的成本和风险。
本文将详细介绍基于物联网的智慧农业监测系统的设计原理与功能。
一、系统设计原理基于物联网的智慧农业监测系统设计的核心原理是通过传感器网络实时监测农田环境的多个参数,包括温度、湿度、光照、土壤湿度和肥料浓度等,并将这些参数传输到云平台进行数据分析和决策支持。
同时,系统还能实现对农田的自动控制,包括自动灌溉、自动施肥、自动通风等。
1. 传感器网络:通过在农田布设温度传感器、湿度传感器、光照传感器、土壤湿度传感器和肥料浓度传感器等传感设备,实现对农田环境参数的实时监测。
这些传感器将采集到的数据通过无线网络传输至云平台,实现大规模的农田监测和数据采集。
2. 云平台:通过云计算技术构建的智能农业数据平台,能够接收并存储来自农田传感器的实时数据。
云平台具备数据处理和分析的能力,可以对传感器采集到的数据进行实时分析和处理,并生成各种农田环境指标和农作物生长状态的报告。
农民可以通过智能手机或电脑客户端查看和分析农田数据,实现远程监控和管理。
3. 自动控制系统:基于云平台分析的结果,智慧农业监测系统可以自动控制灌溉系统、施肥系统、通风系统等农田设备,实现农田环境的自动调节。
例如,在检测到土壤湿度过低时,系统可以自主启动灌溉系统进行浇水,保持土壤湿度在适宜的范围内。
二、系统功能基于物联网的智慧农业监测系统设计具备如下功能:1. 农田环境监测:系统能够实时监测农田的温度、湿度、光照、土壤湿度、肥料浓度等参数。
农民可以通过云平台查看农田环境传感器的数据,了解农田的实时状况。
2. 报警和预警功能:系统能够根据设定的阈值,实时监测农田环境参数的变化,并在异常情况下及时发出报警信息。
例如,当温度超过设定阈值或土壤湿度过低时,系统会自动发送短信或推送消息给农民,提醒其采取相应的措施。
基于物联网的智慧农业控制系统设计
基于物联网的智慧农业控制系统设计随着科技的不断发展,物联网技术不仅已经在各行各业展开应用,同时也为农业带来了新的机遇。
基于物联网的智慧农业控制系统可以有效地提高农业生产效率和产量,降低农业生产成本,因此各国纷纷开始推进智慧农业的发展。
本篇文章将针对基于物联网的智慧农业控制系统设计展开讨论。
一、智慧农业控制系统概述智慧农业控制系统的设计是基于物联网技术的一种创新型农业管理方法。
该系统利用传感器等硬件设备将耕地、气象、机械、作物、动物等农业元素进行集成,形成一个能够实现远程控制的全面农业管理平台,从而能够最大化地提高农业生产效率和农业产量,降低农业管理成本,加强农业可持续发展。
二、智慧农业控制系统设计要素为了实现智慧农业控制系统的有效运行,需要针对以下要素进行设计:1.传感器系统。
传感器系统是智慧农业控制系统的核心组成部分。
通过传感器可以实现监控土壤湿度、温度、光照强度等生长环境参数,并将数据传输给农场控制系统,便于农民远程管理和农场做出相应的调整。
2.远程控制系统。
农民可以通过PC或手机等终端设备对智慧农业控制系统进行远程管理和控制。
当某个生长环境参数发生异常,例如土壤湿度过高或过低时,农民通过远程控制系统可以及时接收相关预警,并进行相应的决策和调整。
3.大数据分析。
借助大数据分析,农民可以了解到生产过程中所涉及的各项指标和数据,从而能够更加精准地预测作物生长状态、预防病虫害、优化施肥。
将传感器采集到的各类数据进行集中处理和分析,也可以给农民提供更加科学的生产决策依据。
4.个性化服务。
智慧农业控制系统可以根据不同的作物种类和地理环境的不同,进行针对性的设置和管理,确保农业生产环境以及作物生长状态得到最优化的管控。
同时,该系统还可以对农民进行个性化的培训和指导,提高农民的生产技能和生产效率。
三、智慧农业控制系统的应用智慧农业控制系统广泛应用于各种农业领域,例如温室、大棚、果园、农田等。
下面简单介绍几个例子。
基于物联网的智慧农业监控系统设计
基于物联网的智慧农业监控系统设计智慧农业是利用物联网技术来提高农业生产效率和管理效能的一种新型农业模式。
基于物联网的智慧农业监控系统设计旨在通过传感器、数据采集、远程监控等技术手段,实现农业生产过程的智能化监控与管理,提高农业生产的质量和效益。
一、系统架构智慧农业监控系统的架构主要包括物联网传感器、数据采集、数据传输、数据分析和决策支持等五个模块。
1. 物联网传感器模块:该模块是整个智慧农业监控系统的核心,通过布设各类传感器,实时监测农田环境的温度、湿度、光照强度等参数,并实现对土壤的湿度、肥料含量等的监测。
2. 数据采集模块:该模块负责将传感器采集到的数据进行采集和传输。
传感器通过物联网技术实现与数据采集模块的连接,将实时的农田环境参数数据发送给数据采集模块。
3. 数据传输模块:该模块负责将采集到的数据传输至云端服务器。
可采用无线通信技术,如4G、5G等实现数据的实时传输,确保数据的及时性。
4. 数据分析模块:该模块对采集到的数据进行处理和分析,提取有价值的信息。
通过数据统计、预测和模型建立等手段,实现农田环境的数据分析,并生成相应的报表和图表,为决策提供参考。
5. 决策支持模块:该模块根据数据分析结果提供决策支持。
如针对农田的温度过高或湿度过低等异常情况,系统会自动发出警报提醒农民。
同时,提供农田的管理建议,如合适的灌溉时间和肥料用量等。
二、功能设计1. 远程监控功能:农民通过手机APP或电脑网页浏览器等终端设备,随时随地可以查看农田环境的实时数据。
可以实时了解农田的温度、湿度、光照强度等参数,及时采取措施应对环境变化。
2. 数据分析功能:系统根据农田环境参数的历史数据,进行趋势分析和预测,提供合理的农田管理建议。
并且系统可以生成相关的报表和图表,以直观的方式展现数据分析结果。
3. 警报功能:系统可以根据预设的阈值,实时监测农田环境参数,一旦检测到温度过高、湿度过低等异常情况,即刻发出警报通知农民。
基于物联网的智能农业管理系统设计
基于物联网的智能农业管理系统设计智能农业是利用物联网技术在农业领域进行数据采集、分析和应用的一种创新方式。
基于物联网的智能农业管理系统设计旨在提高农业生产的效率和质量,促进农业可持续发展。
本文将为您介绍智能农业管理系统的设计要点和关键技术。
一、系统设计要点1. 农业环境监测基于物联网的智能农业管理系统的第一步是监测农业环境条件。
通过使用各种传感器来实时收集农田的温度、湿度、光照强度和土壤湿度等信息。
这些传感器将通过物联网连接到中央系统,使农民能够通过手机或电脑随时获取农田的实时环境数据。
2. 智能灌溉和施肥根据农田的具体需求,智能农业管理系统可以自动调节灌溉和施肥的量和时机。
系统会根据农田的湿度和植物的需水量,自动开启或关闭灌溉设备。
同样,根据土壤的养分含量和植物的需求,系统还可以自动调节施肥机的投放量和频率。
3. 病虫害监测和预防智能农业管理系统可以通过安装病虫害监测传感器来实时监测农田中的病虫害情况。
一旦检测到病虫害的存在,系统将会自动发送警报给农民,并提供相应的建议和控制措施。
此外,系统还可以借助机器视觉技术,通过图像识别植物病虫害,提前预警并进行防治。
4. 自动化设备与机器人智能农业管理系统还可以集成自动化设备和机器人,以进一步提高农业生产的效率。
例如,无人机可以用于植保喷洒和巡视农田,智能机器人可以用于自动化收割和种植作业。
这些设备和机器人将通过物联网与系统连接,实现集中控制和智能协作。
5. 数据分析与决策支持通过物联网的智能农业管理系统不仅能够实时收集各种农田数据,还能对这些数据进行分析和处理。
系统可以利用大数据分析和机器学习算法,对农田环境、作物生长和产量进行预测和优化。
这些分析结果将为农民提供决策支持,帮助他们做出更科学有效的农业管理决策。
二、关键技术1. 物联网通信技术基于物联网的智能农业管理系统的核心是实现农田各种设备和传感器之间的信息传输和互联。
因此,物联网通信技术如无线传感器网络、射频识别和蓝牙等是不可或缺的。
基于物联网技术的智能农业监控系统设计
基于物联网技术的智能农业监控系统设计随着社会的进步和科技的发展,物联网技术在农业领域的应用日益广泛。
基于物联网技术的智能农业监控系统可以帮助农民实时监测农田环境、作物生长情况,提高农业生产效益。
本文将介绍一个基于物联网技术的智能农业监控系统设计。
一、系统需求分析基于物联网技术的智能农业监控系统主要用于监测农田环境和作物的生长情况,为农民提供实时的数据和决策支持。
系统应具备以下功能:1. 农田环境监测:通过传感器实时监测农田的温度、湿度、光照等环境指标,并将数据上传到云端服务器。
2. 作物生长监测:通过图像识别技术,对作物的生长情况进行监测和评估,并提供相应的决策支持。
3. 灌溉控制:根据农田环境和作物生长情况,自动调节灌溉系统,实现智能化的农田管理。
4. 警报和预警功能:当农田环境异常或作物出现病害时,及时产生警报,并发送给农民,以便采取相应的措施。
5. 数据分析和决策支持:对农田环境和作物生长数据进行分析,生成农业生产的相关指标和决策支持报告。
二、系统设计与实现1. 硬件设计:系统的硬件部分包括传感器、执行器、嵌入式设备和通信模块。
传感器用于获取农田环境和作物生长的数据,执行器用于控制灌溉系统,嵌入式设备负责数据采集和处理,通信模块负责与云端服务器的通信。
2. 软件设计:系统的软件部分包括嵌入式软件、图像识别算法和云端服务器软件。
嵌入式软件用于数据采集、传输和控制,图像识别算法用于作物生长监测,云端服务器软件用于数据存储、分析和决策支持。
3. 系统架构:系统采用分布式架构,包括边缘计算节点和云端服务器。
边缘计算节点负责实时数据采集和信号处理,云端服务器负责数据存储和分析。
通过云端服务器,农民可以远程监控和控制农田环境和作物生长。
4. 数据通信与安全:系统采用无线通信技术,通过物联网协议将数据上传到云端服务器。
为确保数据的安全性,系统需采取数据加密和访问控制等措施,保护用户隐私和数据的完整性。
5. 用户界面设计:系统的用户界面应简洁明了,提供直观的数据展示和操作界面。
农业行业:农业物联网智能监控系统方案
农业行业:农业物联网智能监控系统方案第1章项目背景与意义 (2)1.1 农业物联网发展概述 (2)1.2 农业智能监控系统的重要性 (3)1.3 农业物联网智能监控系统的发展趋势 (3)第2章农业物联网技术概述 (3)2.1 物联网技术原理 (4)2.2 农业物联网关键技术与架构 (4)2.3 农业物联网在我国的应用现状 (4)第3章系统总体设计 (5)3.1 设计原则与目标 (5)3.1.1 设计原则 (5)3.1.2 设计目标 (5)3.2 系统架构设计 (5)3.3 系统功能模块划分 (6)第四章数据采集与传输模块设计 (6)4.1 传感器选型与布设 (6)4.1.1 传感器选型 (6)4.1.2 传感器布设 (6)4.2 数据传输技术 (7)4.2.1 无线传输技术 (7)4.2.2 有线传输技术 (7)4.3 数据预处理与存储 (7)4.3.1 数据预处理 (7)4.3.2 数据存储 (7)第5章网络通信与控制模块设计 (8)5.1 网络通信技术选择 (8)5.1.1 无线传感网络技术 (8)5.1.2 4G/5G网络技术 (8)5.1.3 有线网络技术 (8)5.2 控制策略与算法 (8)5.2.1 数据预处理算法 (8)5.2.2 智能控制策略 (8)5.2.3 预测控制算法 (9)5.3 设备集成与调试 (9)5.3.1 设备选型 (9)5.3.2 设备集成 (9)5.3.3 系统调试 (9)第6章数据处理与分析模块设计 (9)6.1 数据处理技术 (9)6.1.1 数据采集与预处理 (9)6.1.2 数据存储与管理 (9)6.1.3 数据传输与同步 (9)6.2 数据挖掘与分析算法 (10)6.2.1 时序数据分析 (10)6.2.2 关联规则分析 (10)6.2.3 聚类分析 (10)6.3 农业知识图谱构建 (10)6.3.1 知识图谱概念模型设计 (10)6.3.2 知识图谱构建方法 (10)6.3.3 知识图谱应用 (10)6.3.4 知识图谱更新与维护 (10)第7章农业专家系统设计 (10)7.1 专家系统概述 (10)7.2 农业专家系统构建方法 (11)7.3 农业专家系统应用实例 (11)第8章用户界面与交互设计 (12)8.1 用户需求分析 (12)8.2 界面设计原则与风格 (12)8.3 系统功能操作与交互设计 (13)第9章系统集成与测试 (13)9.1 系统集成方法与策略 (13)9.1.1 模块化设计 (13)9.1.2 遵循国家标准与规范 (14)9.1.3 系统集成策略 (14)9.2 系统测试方法与步骤 (14)9.2.1 测试方法 (14)9.2.2 测试步骤 (14)9.3 系统稳定性与可靠性分析 (15)9.3.1 系统稳定性分析 (15)9.3.2 系统可靠性分析 (15)第10章项目实施与效益分析 (15)10.1 项目实施步骤与要求 (15)10.2 项目风险与应对措施 (16)10.3 项目综合效益分析与发展前景展望 (16)第1章项目背景与意义1.1 农业物联网发展概述信息技术的飞速发展,物联网技术在各行业中的应用日益广泛,农业领域亦然。
基于物联网的智能农业大棚监控与控制系统设计与实现
基于物联网的智能农业大棚监控与控制系统设计与实现随着科技的不断发展和人们对高效农业的需求增加,物联网技术在农业领域中得到了广泛应用。
基于物联网的智能农业大棚监控与控制系统的设计与实现,能够实时监测和控制大棚环境,提高农作物的产量和质量。
本文将详细介绍智能农业大棚监控与控制系统的设计原理和实施方案。
一、设计原理1. 传感器技术:智能农业大棚监控与控制系统通过使用各种传感器,如光照传感器、土壤湿度传感器、温度传感器等,实时监测大棚内的环境参数。
这些传感器可以连续地收集数据,并将其发送给控制系统。
2. 数据采集与处理:控制系统负责从传感器接收数据,并对其进行处理和分析。
通过对数据进行分析和对比,系统可以确定是否需要采取相应的措施来优化大棚环境。
例如,如果温度过高,系统可以自动启动降温设备,以保持最佳生长温度。
3. 远程监控与控制:智能农业大棚监控与控制系统能够将监测到的数据上传到云平台,农户可以通过手机或电脑远程监控大棚的环境状况。
此外,系统也支持远程控制,农户可以通过应用程序对大棚的设备进行远程操作,如灌溉、通风等。
二、系统实施方案1. 硬件设备选型:为了实现智能农业大棚监控与控制系统,需要选择合适的硬件设备。
根据不同的环境参数,选择相应的传感器,如温度传感器、湿度传感器、二氧化碳传感器等。
此外,必须保证这些传感器的可靠性和稳定性,以确保数据的准确性。
2. 设备连接与通讯:为了实现数据的采集和控制,需要将传感器和控制设备连接到一个无线网络中。
可以使用Wi-Fi或蓝牙等无线通信技术,使得传感器和控制设备可以互相通信。
大棚内的设备应该能够稳定地连接到网络,并且具备一定的数据传输速率。
3. 数据处理和分析:在控制系统中,需要根据传感器采集到的数据进行处理和分析。
可以使用相应的软件来对数据进行处理和存储,以便后续的决策和分析。
此外,系统还应具备实时监测功能,及时报警和通知农户,以便他们可以及时采取相应的措施。
农业物联网智能监控系统
农业物联网智能监控系统农业物联网智能监控系统是一种集成了现代信息技术的农业管理工具,它通过传感器、无线通信技术和云计算等技术手段,实现对农业生产环境的实时监控和管理。
这种系统能够提高农业生产的效率和质量,降低资源消耗,是现代农业发展的重要趋势。
首先,农业物联网智能监控系统的核心是传感器技术。
这些传感器可以监测土壤湿度、温度、光照强度、CO2浓度等环境参数,以及作物的生长状况。
通过这些数据,系统能够实时了解农田的实际情况,为农业生产提供准确的信息支持。
其次,无线通信技术是连接传感器和监控中心的桥梁。
通过无线网络,传感器收集的数据可以实时传输到监控中心。
这样,即使在偏远的农田,管理人员也能随时掌握农田的动态,及时做出决策。
再次,云计算技术为农业物联网智能监控系统提供了强大的数据处理和存储能力。
大量的农业数据通过云计算平台进行分析和处理,可以帮助管理人员更好地理解农业生产的规律,优化生产流程,提高资源利用效率。
此外,农业物联网智能监控系统还具备智能决策支持功能。
系统可以根据收集到的数据,结合农业生产的经验和知识,为管理人员提供科学的决策建议。
例如,系统可以预测作物病虫害的发生,提前采取预防措施,减少损失。
最后,农业物联网智能监控系统还有助于实现精准农业。
通过精确控制灌溉、施肥等农业生产活动,系统可以最大限度地减少资源浪费,提高作物产量和品质。
总之,农业物联网智能监控系统是现代农业发展的重要方向,它通过先进的信息技术,为农业生产提供了强大的支持,有助于实现农业的可持续发展。
随着技术的不断进步,农业物联网智能监控系统将在未来发挥更加重要的作用。
基于物联网的智能农业监测系统的设计与实现共3篇
基于物联网的智能农业监测系统的设计与实现共3篇基于物联网的智能农业监测系统的设计与实现1基于物联网的智能农业监测系统的设计与实现随着科技的不断进步,物联网技术也得以广泛应用于农业领域。
传统的农业生产方式需要耗费大量的人力和物力,而现在随着物联网技术的应用,农业生产已经可以实现智能化、自动化,这对提高农业生产效率、改善农业生产环境、提升农业生产质量等方面都有着积极的作用。
而本文将介绍一种基于物联网的智能农业监测系统的设计与实现。
1.系统的设计基于物联网的智能农业监测系统主要由传感器、数据采集模块、数据传输模块、数据处理模块以及移动终端等组成。
1.1 传感器传感器是系统的核心部件之一,其用于采集农业生产中关键的环境指标参数,如温度、湿度、土壤水分、土壤肥力等,并将采集到的数据传输到数据采集模块。
传感器需要有良好的防水、防尘、耐腐蚀等性能,以确保其在恶劣的环境下也能正常运行。
1.2 数据采集模块数据采集模块是系统中的第二个核心模块,主要用于整合传感器采集的数据,并将其传输到数据处理模块。
该模块需要有较好的稳定性和可靠性,保证数据的准确性以及数据流的稳定性。
同时,该模块可以帮助种植者进行数据管理,包括数据存储、数据转储等,为后续的数据处理工作提供了基础。
1.3 数据传输模块数据传输模块主要负责将数据采集模块采集到的数据与数据处理模块相连接,对数据进行传输和转换。
在实现过程中,可以采用不同的通讯方案,如WIFI、蓝牙等传输方式。
对于农场较为分散或者农田较为遥远机动力不足等因素,可以使用移动网络或者卫星网络进行数据传输。
1.4 数据处理模块数据处理模块主要是对采集到的数据进行计算、分析和处理,并且可以根据不同的数据情况,提出不同的反馈建议。
例如,如果某个农田干旱严重,该模块可以提供相应的浇水计划。
1.5 移动终端移动终端主要是指传统的PC机、手机、平板等具有数据显示功能和数据交互功能的电子设备,它们可以接受到数据处理模块传递的处理结果,帮助种植者更好地了解农业生产状况,以便对下一步的农业生产进行合理的规划。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于农业物联网的智能监控系统
0 引言
物联网拥有业界最完整的专业物联产品系列,覆盖从传感器、控制器到云计算的各种应用,构建了“质量好、技术优、专业性强,成本低,满足客户需求”的综合优势。
而农业物联网技术作为一个分支,在现代农业生产中发挥重要的作用。
何为农业物联网?
农业物联网技术就是将网络技术、感应技术、应用开发技术结合,及时采集空气温湿度、光照强度、土壤温湿度、CO2浓度等环境信息,通过有线和无线方式发送给中央监控器,并以直观的图表和曲线方式将数据显示给用户,用户可以根据生产需要,设置温室卷膜、卷帘、滴灌等执行设备的自动调控条件。
目前,农业物联网技术在许多地区逐渐开展起来,在传统的大棚上运用了物联网技术。
农民们灌溉土地只需要轻点鼠标即可完成,无须奔走田间,大大节省了人力。
这是物联网技术和传统农业结合的产物。
传统农业的浇水、施肥、打药,农民全凭经验、靠感觉。
如今瓜果蔬菜该不该浇水,施肥、打药怎样保持精确的浓度,温度、湿度、光照如何实行按需供给,都由信息化智能监控系统实时定量“精确”把关。
1 案例:在养鱼场建立智能监控系统
农业物联网技术有利于节本增效,在现代化养鱼场中也发挥着高效的作用。
24小时对水产苗种繁育阶段的水温、pH值和溶氧量等进行实时监测预警。
一旦发现问题,能够及时自动处理或通过短信迅速通知相关人员。
据相关应用测算,使用物联网智能控制管理系统养鱼后,可节本增效20%左右,亩均可增收1000元以上,极大地提高了渔民收入。
农业物联网是物联网产业的分支,从上述案例中我们看到了这一技术对未来农业生产的改变,也看到了作为一场科技革命浪潮即将开始。
墨翟科技基于飞思卡尔I.MX27开发的视频监控系统正是基于农业市场对视频监控系统的迫切需求推出的一款智能化高科技成熟产品。
它是由服务器和终端设备共同构成一个视频监视系统,终端负责采集图像,并将图像通过网线接入以太网或者通过3G传输到服务器端,服务器端完成图像显示、存储和处理功能。
在服务器端可以将采集到的图像利用不同的智能识别算法可以实现对不同场合环境下智能监测的需求。
即摄像头安装在需要监测的地方,接入以太网或者通过3G将图像传输给监控中心。
2视频监控系统功能设计
2.1 视频图像采集
通过摄像头采集视频图像,并将视频图像进行压缩编码。
若采用高清摄像头,则图像可以达到D1(720*576)分辨率,视频压缩编码可以有很多种格式,如MPEG2、MPEG4、H.264等等,常用的是H.264格式,因为压缩率高,可减小文件大小,增加传输速率。
我们采用的I.MX27平台是一个带硬件H.264编解码的CPU,采用H.264编解码不占用CPU资源,大大提高了CPU工作效率,很好的降低了系统功耗。
2. 2 视频图像本地存储和上传
摄像头采集到的图像可以选择本地存储和上传,也可以选择直接上传,选择哪种方式是根据用户需要和系统的配置决定的。
本地存储的介质可以是SD卡,也可以是SATA硬盘,两
种介质系统都可以支持。
上传可以是有线网络,通过RJ45连接网线,支持10/100M以太网。
也可以是无线网络,一般是3G,选择3G作为传输媒介时,带宽收到一定制约。
我们系统可以做到的传输速度是D1@30fps,这个速度在选择3G网络传输时,会受到网络带宽的约制。
2. 3 视频图像处理和识别
我们的视频监控系统,如何才能代替人呢,也就是说视频图像传到监控中心以后,监控中心可以如何利用这些图像自动完成一些工作呢?如果将这些图像利用一定的模式识别算法,让电脑运行一定的算法后,能够利用图像上的特征,自动地作出一些判断,然后自动完成一些控制动作,那么就大大降低了人力的投入。
3系统平台核心介绍
该系统平台采用的控制器I.MX27 CPU是一颗ARM926 400M主频的高性能CPU。
基于这颗高性能CPU所搭建的系统平台,具有众多优点:本地存储的可扩展性可以作为硬盘录像机,当网络出现故障时可以将监控画面进行本地保存,从而确保监控的可靠性;高速而强大的CPU可以运行主流的实时嵌入式操作系统;高速且低功耗的CPU适合不同环境的要求,低功耗可以很好的节约资源,在某些不需要实时监控的场所,就可以启用低功耗模式;高清晰且连续的视频码流,适合于绝大多数算法应用的需求,便于实现视频监控的功能。
4结语
针对目前我国农业信息化应用水平普遍较低、数字化管理程度不高等实际情况,该智能监控系统作为目前急需的综合性产业信息平台,可实时监控各基地农业生产状况,与监控点实现在线交流,能及时发布生产指导、预警信息,指导基地农业生产。
依据监测信息,开展分析研究,提出决策参考数据,提升农业部门服务农业生产经营管理水平,促进现代农业发展。
由于建成智能化和自动化管理系统,实现管理自动化,减少生产管理成本,基地蔬菜、种苗、生猪产量、水产渔业品质和效益同步提高。
民之根本乃农业,高科技视频监控的多方面应用为现代农业带来了春天,更使现代农业成为物联网大家庭中不可或缺的一员。