六年级奥数培优年级希望杯第试题及解答

合集下载

六年级希望杯试题及答案

六年级希望杯试题及答案

六年级希望杯试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是正确的?A. 2+3=5B. 3+4=7C. 5+5=10D. 6+6=12答案:C2. 哪个图形是正方形?A. 四边形,四个角都是直角,四条边相等B. 三角形,三条边相等C. 五边形,五条边相等D. 圆形,没有边答案:A3. 下列哪个是最小的质数?A. 1B. 2C. 3D. 4答案:B4. 哪个是正确的分数?A. 3/2B. 2/0C. 4/3D. 1/1答案:A5. 下列哪个是正确的因式分解?A. x^2 - 1 = (x+1)(x-1)B. x^2 - 1 = (x+2)(x-2)C. x^2 - 1 = (x+1)(x+1)D. x^2 - 1 = (x-1)(x-1)答案:A二、填空题(每题2分,共10分)1. 一个数的平方是36,这个数是______。

答案:6或-62. 一个数的倒数是1/4,这个数是______。

答案:43. 一个三角形的底是10厘米,高是5厘米,它的面积是______平方厘米。

答案:254. 一个圆的半径是7厘米,它的周长是______厘米。

答案:44π5. 一个数乘以它自己等于49,这个数是______。

答案:7或-7三、解答题(每题10分,共20分)1. 计算下列表达式的值:(1) (3+2)×2(2) 45÷5+6(3) 9×(3-2)答案:(1) (3+2)×2 = 5×2 = 10(2) 45÷5+6 = 9+6 = 15(3) 9×(3-2) = 9×1 = 92. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。

答案:周长= 2×(长+宽) = 2×(15+10) = 2×25 = 50厘米面积 = 长×宽= 15×10 = 150平方厘米四、应用题(每题15分,共30分)1. 小明有30元钱,他买了3个苹果,每个苹果3元,他还剩多少钱?答案:小明买苹果花费了3×3=9元,所以他还剩下30-9=21元。

小学六年级小升初数学奥数希望杯综合训练试题及答案

小学六年级小升初数学奥数希望杯综合训练试题及答案

1、11111111112345678910612203042567290110+++++++++=( ) 2、从25111471,,,,0.8,,1.216548156这七个数中选出三个数,分别记为A ,B ,C 。

若选出的三个数使得A B C+最大,则此最大值是( )。

(用分数表示) 3、从1到2007这2007个整数中,有n 个数可以同时被2,3,5中的两个整数除,但不能同时被这三个整数除,那么n=( )。

4、小明求得某7个自然数的平均数等于30.26,后来发现这个小数的小数点后的最后一位数是错误的。

则这7个自然数的平均值应约等于( )。

(结果保留到小数点后两位)5、如图是某汽车行使的路程S 千米与时间t(分钟:min)的函数关系图。

观察图中所提供的信息,可以计算出汽车在前9分钟平均速度比16到30分钟内的平均速度慢( )千米/分钟。

6、有一捆铁丝,第一次用去的是余下的13,第二次用去40米,这时还剩全长12,这捆铁丝原来共长( )米。

7、购买3斤苹果,2斤桔子需要6.90元;购买8斤苹果,9斤桔子需要22.80元,那么苹果、桔子各买1斤需要( )元。

8、如图,AB=7厘米,CD =2厘米,角ABC =角ADC =90度,角BAD =45度,那么四边形ABCD 的面积是多少平方厘米?9、一项工程,如果甲单独做,甲需10天完成,乙需15天完成,丙需20天完成。

现在3人合作,中途甲先休息1天,乙在休息3天,而丙一直工作到完工为止。

这样一共需要多少天完成工程?10、一片牧场,每天生长草的速度相同。

这片牧场可供14头牛吃30天,或者可供70只羊吃16天。

如果4头羊的吃草量相当于1头牛的吃草量。

那么17头牛和20只羊一起吃这片牧场上的草,可以吃多少天?1、2008120089111999⨯=个个( )。

2、一个分数的分子和分母的和是2008,如果分子和分母都减去29,得到的分数约简后是112。

那么原来的分数是( )。

新希望杯六年级数学试卷及解析答案.doc

新希望杯六年级数学试卷及解析答案.doc

新希望杯六年级数学试卷及解析答案 (满分120分;时间120分钟) 一、填空题(每题5分;共60分) 1、计算:=-+••114154.0625.3________________. 解析:原式=625.3+••54.0-••63.1=625.2+(••54.1-••63.1)=625.2+••90.0=••09715.2或 原式=8823911108291115115829=-=-+ 2、对于任意两个数x 和y ;定义新运算◆和⊗;规则如下:x ◆y =y x y x 22++;x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯;1⊗2=5115632121==+⨯; 由此计算••63.0◆=⊗)2114(__________. 解析:=⊗)2114(345.465.045.14==+⨯;而11463.0=••;所以原式=25173211132112342114341142=++=⨯++⨯3、用4根火柴;在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…;如图1;拼成的图形中;若最下面一层有15个正方形;则需火柴__________根。

解析:第二个图形比第一个图形多9根火柴;第三个图形比第二个图形多13根火柴;经尝试;第四个图形比第三个图形多17根火柴;而最下面一层有15根火柴的是第8个图形;所以共需要火柴4+(9+13+17+21+25+29+33)=151根。

4、若自然数N 可以表示城3个连续自然数的和;也可以表示成11个连续自然数的和;还可以表示成12个连续自然数的和;则N 的最小值是_________。

(注:最小的自然数是0)解析:因为奇数个连续自然数之和等于中间数乘以数的个数;所以N 能被3和11整除;也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数;所以N 等于一个整数加上0.5再乘以12;也就是被12除余6;最小为66。

2019-2020年六年级“希望杯”全国数学大赛决赛题(含详细答案)

2019-2020年六年级“希望杯”全国数学大赛决赛题(含详细答案)

小学六年级“希望杯”全国数学大赛2019-2020年六年级“希望杯”全国数学大赛决赛题(含详细答案)1.计算: 4.5-13×8.13.6= 。

2.计算:34 +316 +364 +3256 +31024 +34096= 。

3.若10.5x -10=36-3y =14+ ,则x = ,y = 。

4.有一类自然数,从第四个数字开始每个数字都恰好等于它前面三个数字的和,直到不能再写为止,如2169,21146等等。

那么这类数中最大的一个数是____________。

5.下面是一串字母的若干次变换。

A B C D E F G H I J第一次变换后为 B C D A F G H I J E 第二次变换后为 C D A B G H I J E F 第三次变换后为 D A B C H I J E F G 第四次变换后为 A B C D I J E F G H……………………………………………………至少经过 次变换后才会再次出现“A 、B 、C 、D 、E 、F 、G 、H 、I 、J ”。

6.把一个棱长为2厘米的正方体在同一平面上的四条棱 的中点用线段连接起来(如右图所示),然后再把正方题 号 一 二 其中: 总 分 13 14 15 16 得 分得分 评卷人x 214体所有顶点上的三角锥锯掉。

那么最后所得的立方体的体积是立方厘米。

7.有一列数,第一个数是5,第二个数是2,从第三个数起每个数都等于它前面两个数中较大数减去较小数的差。

则这列数中前100个数之和等于。

8.在钟面上,当指针指示为6︰20时,时针与分针所组成的较小的夹角为度。

9.小明把五颗完全相同的骰子拼摆成一排(如右图所示),那么这五颗骰子底面上的点数之和是。

10. 有四个房间,每个房间里不少于4人。

如果任意三个房间里的总人数不少于14人,那么这四个房间里的总人数至少有人。

11.如果用符号“[a]”表示数字a的整数部分,例如[5.1]=5,[ 53]=1,那么[112000+12001+……+12019]=。

第十四届小学“希望杯”全国数学邀请赛六年级第二试试题及解析

第十四届小学“希望杯”全国数学邀请赛六年级第二试试题及解析
第十四届小学“希望杯”全国数学邀请赛
六年级 第2试试题
一、填空题.
1.计算: ________.
【答案】6
【考点】计算,提取公因数
【解析】
2.已知 , ,则 是 的_______倍.
【答案】13
【考点】计算,分数
【解析】 ,
3.若 ,则自然数 的最小值是_______.
【答案】3
【考点】计算,分数
【解析】 , ,则 最小为3.
【答案】5:12
【考点】几何,比例模型
【解析】设正方形面积ABCD为1,连接BD、AC, , ,
, , .
9.如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中阴影部分的面积等于_______.(圆周率 取3)
【答案】4.5
【考点】几何,圆的面积
【解析】通过平移将阴影部分补成2个小直角三角形和2个小弓形的面积和.
,较长那根还能燃烧: (分钟)
二、解答题
13.如图,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:
(1)图⑥由多少个棱长为1的小正方体堆成?
(2) 图⑩所示的立体图形的表面积.
①②③
【答案】(1)91;(2)420
【考点】几何,正方体
【解析】(1)图⑥正方体个数为: (个)
(2)堆积体的表面积包括:前后2面、左右2面和上下2面,其中前后左右4个面的面积相等,上下2个面的面积相等;
前后左右:
上下:
总表面积:
14.解方程: ,其中 表示 的整数部分, 表示 的小数部分,如 , .(要求写出所有的解)
【答案】 、 、 、
【考点】计算

第十三届小学“希望杯”全国数学邀请赛六年级第2试答案

第十三届小学“希望杯”全国数学邀请赛六年级第2试答案

解得
b=12,c=56.
(10 分 )
(3)当切割 成 的 小 正 方 体 由 棱 长 为 3、2、1
的 小 正 体 组 合 而 成 时 ,设 其 个 数 分 别 为d,e,f,
则由切 割 前 后 体 积 不 变,及 切 割 后 所 有 小 正 方
体的表面积之和是切割前的大正方体的表面积
的10 倍可得: 3
第15秒时,△NPQ 的面积为 6平方米, 所以第2015秒时,△NPQ 的面积是6平方米.
(15 分 )
第十三届小学“希望杯”全国数学邀请赛
参考答案及评分标准
一 、填 空 题 (每 小 题 5 分 .)
六年级 第2试
题号 1 2 3 4 5 6
7
8 9 10 11 12
答 案 9 25 3 11
2 100 1
45 20 70 0 188.4 330
二、解答题
13.(11111011111)2
割前的大正方体的表面积的
5×5×66+×16××16×6×91=299(倍),
因为
29 9

10, 3
所 以 这 种 情 况 不 符 合 题 意 ,舍 去 .
(5 分 )
(2)当切割成的小正方 体 中 有 1 个 是 棱 长
为4的 小 正 体 时,剩 余 部 分 可 切 割 成 棱 长 为 2
或棱长为1的小正方体,设 其 个 数 分 别 为b,c,
则由切 割 前 后 体 积 不 变,及 切 割 后 所 有 小 正 方
体的表面积之和是切割前的大正方体的表面积
的10 倍可得: 3
{6×6×6 = 4×4×4+2×2×2×b +1×1×1×c,

小学“希望杯”培训100题(六年级)及解析

小学“希望杯”培训100题(六年级)及解析

小学“希望杯”培训100题(六年级)一、解答题(共100小题)1.计算:=.2.计算:2012×2014×().3..4.计算:(0.+0.3)×0.×0.7×=.5.计算:=.6.计算:=7.兄弟俩都有点傻,一位只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是岁,岁.8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有粒.9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=.(π取3)10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长米,井深米.15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到个梨.16.31500的约数中与6互质的共有个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=.18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要分钟.20.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点km.22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了元.24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是,最大是.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.29.甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是________米/秒.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是.36.在1到2013这2013个数中,共有个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是.38.若整数x满足不等式,则x=.39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是.40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(,).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是 .42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有 天.43.计算:.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).45.如图,在△ABC 中,,E ,G 分别是AD ,ED 的中点,若△EFG 的面积为1,则△ABC 的面积是 .46.如图 (1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是 .47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了 厘米.48.建筑公司计划修一条隧道.当完成任务的时,公司引进新设备,修建速度提高了20%,每天的工作时间缩短为原来的80%,实际185天完成了任务.若按原计划,则 天可完成任务.49.如果一个自然数能表示成两个非零自然数的平方差,则称这个数为”吉祥数”,如:9=52﹣42,9是”吉祥数”.那么从1开始的自然数中,第2013个”吉祥数”是 .50.有3个整数,如果第2个数的5倍是第1个数与1的差的4倍,第3个整数的5倍是第2个数与1的差的4倍,那么第1个数的最小值是.51.春蕊班的每位同学都参加了课外体操班或围棋班,有的同学还同时参加了两个班.如果同时参加两个班的人数是参加围棋班的,是参加体操班人数的.那么这个班只参加体操与只参加围棋班的人数之比是.52.甲乙两个硬盘的成本共1600元,甲按30%的利润定价,乙按40%的利润定价,甲按定价的90%出售,乙按定价的85%出售,供货的利润290元.那么甲的成本是元.53.已知,其中a,b,c,d,e都是整数,则其中最大的数的值是.54.咖啡店新推出一款杯子,定价是88元/个,实际销售时降了价,结果销量比预计的增加了,收入增加了,则每个杯子被降价元.55.若三个连续自然数的平方的和等于245,则这三个连续自然数的和是.56.已知长方体表面积是148cm2,底面面积是30cm2,底面的周长是22cm,则这个长方体的体积是cm3.57.用棱长为2厘米的小正方体,如图所示层层重叠放置.则当重叠了5层时,这个立方体的表面积是平方厘米.58.由长度分别为2,3,4,5,6的五条线段为边,可以组成个不同的三角形.59.若字母a,b,c分别表示不同的非零数字,则由a,b,c组成的各个数位上数字不同的三位数共有个,若除三位数外,其余几个的和为2874,则=.60.如图,边长为2a的正方形ABCD内有一个最大的圆圆O,圆O内有一个最大的正方形EFGH.用S1,S2,S3依次表示△EOF的面积,弓形EmF的面积,带弧边EmF的△EBF的面积,则S1*S2*S3=.(圆周率π取3)61.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.62.已知一列数:1,1,2,3,5,8,13,21,34,55,89,144,233,…,若第n个数比第n+2个数小233,则n=.63.一只蚂蚁沿边长为240cm的等边三角形ABC的三条边由A点顺时针爬行一周.它在三条边上的速度分别是每秒3cm,4cm,5cm(如图).且当它到达拐点(A,B,C)时会休息26秒,当它爬完一周回到点A时,行程结束.这期间,蚂蚁的平均速度是cm/s.64.至多含有一个奇数数字且能被25整除的四位数共有个.65.观察下面的数表:(横排为行,竖排为列)表中第1列都是单位分数,分母依次为1,2,3…,每行自第2个分数起,每个分数的分子等于左边分数的分子加1,分母等于左边分数的分母减1,直到分数的分母等于1.则位于第行,第列.66.从最小的质数算起,若连续n(n是大于1的自然数)个质数的和是完全平方数,则n 最小是.67.现有3个互不相等的数,甲说是2,a+1,b+2;乙说是2b﹣1,3,a.若两人都说对了,则这三个数的乘积是.68.若×=6657,其中x,y,z都代表非零数字,则=.69.两个直角三角板如图放置,则∠BFE的度数是∠CAF的倍.70.一个长方体相邻的两个面的面积之和是130,它的长,宽,高都是不超过13的整数,且均为互不相等的质数,则这个长方体的体积是.71.如图,一个物体由2个圆柱组成,它们的半径分别是3厘米和6厘米,而高分别是5厘米和10厘米,则这个物体的表面积是平方厘米.72.植树节,5名小朋友给5棵树浇水,每个小朋友至少浇一棵树,但一个小朋友不能重复给同一棵树浇水,一桶水也只能浇一棵树.活动结束后,5个小朋友分别浇了2,2,3,5,x桶水,5棵树分别被浇了1,1,2,4,y 桶水,那么x=,y=.73.小明出去散步前看了一下手表,回来时又看了一下手表,发现此时手表的时针,分针的位置正好与出去时的分针,时针位置相同.若他在外逗留的时间不足一小时,则他在外待了分钟.74.如图所示,共有个三角形.75.一个长为4,宽为3的长方形如图竖直放置,在其右上角有一个红点A,长方形绕右下角旋转90°,成为一个横放的长方形,再绕右下角旋转90°,成为一个竖放的长方形,…,当小红点A第一次回到右上角时所走过的路程是.76.书架第一层有依次排列的10本不同的故事书,现将2本不同的漫画书也放入第一层,则不同的放法共有种.77.分母是385的所有最简真分数的和等于.78.有价值总和为174万元的三批货物,这三批货物的质量比是3:4:5,单位质量的价格比是6:5:4.这三批货物各价值万元.79.将分数化成小数后,如果小数点后第一位起连续N个数位上数字之和等于2013,那么N=.80.如图所示是一个边长为120m的等边三角形,甲乙同时分别从A点,B点按顺时针方向出发,甲每分钟走120m,乙每分钟走180m,但经过每个顶点时,因转弯都要耽误5s,则乙出发s后第一次追上甲.81.原来,单独打开进水管3小时能将水池注满,单独打开出水管4小时可排完一池水.后来,这个水池漏水了,同时打开进水管与出水管14小时才能将水池注满,则只打开进水管需要小时可以注满这个漏的水池.82.图书馆,游泳馆,少年宫三个站在一条笔直的公路上,且游泳馆到图书馆,少年宫两站的距离相等.小明和小华分别从图书馆,少年宫两站同时出发相向而行.小明超过游泳馆站100米后与小华相遇.然后二人继续前进.小明到达少年宫站后立即沿原路返回,经过游泳馆站后300米追上小华.则图书馆,少年宫两站相距米.83.马和狗约好去牛哥家做客,牛哥说他忘了去超市买面包,狗说他去,一会儿,马到了牛哥家,听说狗去买东西了,他急了,他说,狗跑5步的时间我能跑6步,我跑4步的距离相当于狗跑7步.而且我比他力气大,买东西的活儿我去,于是马也奔超市去了,此时狗已跑出550米了.超市离牛哥家有2000米,则马要跑米才能追上狗,此时离超市还有米.84.12和60是很有趣的两个数,这两个数的积恰好是这两个数的和的10倍:12×60=720=10×(12+60).满足这两个条件的非零自然数对还有:.85.明明,亮亮,军军三人都参加了数学竞赛,他们共解出了100道题,每人都解出了其中的60道题目,若三个人都解出来的题称为基础题;只有两个人解出来的题称为中等题;只有一个人解出来的题称为难题,则在他们解出的100道题中,难题的数量比基础题的数量(填:多或少)道.86.一块木片沿河漂流,从河边的A地到B地,用了24小时.一只快艇在静水中的速度是18千米/小时,它从A驶到B所用的时间是从B驶到A所用时间的.则AB间的距离是千米.87.如图,AB∥CE,AC∥DE,且CE=DE=2AB=2AC,则=.88.小明和小林是两个集邮爱好者,他们共有邮票400多张,如果小明给小林a张邮票,小明就比小林少;如果小林给小明a张邮票,则小林就比小明少.那么小明原有张邮票,小林原有张邮票.89.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.90.为确保信息安全,信息需加密传输,发送方将明文加密成密文,接收方收到密文后解密可得明文.已知有一种加密方式是将英文26个小写字母a,b,c,…,依次对应0,1,2,…,25这26个整数(见下表),当明文中的字母对应的序号为a时,将a+10除以26后所得的余数作为密文中的字母对应的序号,例如明文”a”对应密文”k”.””91.如图,在正方形场地ABCD的四周有32个洞(每边9个洞),一个工人扛着32面旗子,从A洞开始插旗,按顺时针方向,每隔5个洞就插一面旗,当他绕着正方形走完5圈时,发现有n个洞不能插旗,求n.92.某校有960套桌凳需要维修.现有甲乙两个木工,甲单独修理这批桌凳比乙多用20天;乙每天比甲多修8套;甲乙每天的修理费分别是80元,120元.在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案共选择:①由甲单独修理;②由乙单独修理;③由甲乙共同合作修理.你认为哪种方案即省时又省钱?试比较说明.93.甲乙丙三辆汽车分别从A地开往千里之外的B地.乙比甲晚出发40分钟,出发后160分钟后能追上甲;丙比乙晚出发20分钟,出发后5小时追上乙.那么如果甲比乙先出发10分钟,乙比丙先出发10分钟,那么乙追上甲之后过多久丙能追上甲?94.已知甲乙丙三位同学在北京,广州,上海的大学学习软件设计,服装设计,城市规划.有下列判断:①甲不在北京学习;②乙不在广州学习;③在北京学习的同学不学城市规划;④在广州学习的同学是学软件设计的;⑤乙不学服装设计.三位同学各在什么城市学习什么专业?95.如图,长方形ABCD,ABEF,AGHF的长与宽的比相同,且,长方形BEHG的周长是22,求长方形ECDF的面积.96.在小于30的所有质数中,是否存在差与平方和都是质数的两个质数?若存在,有几组?若不存在,请说明理由.97.甲容器内有物质A和物质B,其质量比是2:3,乙容器内有物质B和物质C,其质量比是1:2,丙容器内有物质A和物质C.现将甲乙丙三容器中的物质以1:2:3的比例取出,混合,则所得新的混合物中,A,B,C三种物质的质量比是183:152:385.求丙容器内物质A和物质C的质量比.98.程序员设计了一款新游戏,共20级.小刚一次晋级2级游戏,或一次晋级3级游戏,那么他从入门(0级)晋级到第20级共有多少种不同的方法?10月份,小强的家里用了23m的居民用水,他开的餐厅,用了102m的餐饮用水,则这个月他应该交多少元水费?100.0.买一盒牙膏,一瓶沐浴露和一瓶洗发露共付款100元.若1瓶沐浴露比2盒牙膏贵,2瓶洗发露比7瓶沐浴露贵,8盒牙膏比1瓶洗发露贵,且每个产品的单价都是整数元,分别求一盒牙膏,一瓶沐浴露,一瓶洗发露的价格.小学“希望杯”培训100题(六年级)参考答案与试题解析一、解答题(共100小题,满分0分)1.计算:=.2.计算:2012×2014×()=2.3.(2010•成都校级自主招生).解:++…+,=×(﹣+﹣+…+﹣),=×(﹣)=×()=×=.4.计算:(0.+0.3)×0.×0.7×=.+0.3)×0.7×,(+×××,×××(×××,=××=×=5.=102.解:,=(1+3+5+..+19)+3×=102+3×(1﹣)=100+=102.6.=.解:设n=++,m=,则:(1+++)×(+++)﹣(1++++)×(++),=(1+n)×m﹣(1+m)×n=m+mn﹣n﹣mn=m﹣n,=()﹣(++)=.7.兄弟俩都有点傻,以为只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是6岁,9岁.解:弟弟:(3+3)÷(2﹣1)=6(岁);哥哥:6+3=9(岁).8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有180粒.解:取了:20÷(6﹣5)=20(次),共有:20×3×(1+2)=180(粒);9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=48cm2.(π取3)S1﹣S2=(S1+S阴)﹣(S2+S阴)=S圆﹣S正=3×(16÷2)2﹣122=192﹣144=48(平方厘米);10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是23×34×52×72×11×13.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有121块糖,丙最多有19块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.)×=3﹣×=3班的人数与总人数的比值是;故答案为:.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是84.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长42米,井深12米.对应的分率的差额是:﹣)()15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到15个梨.16.31500的约数中与6互质的共有8个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=4.S=S18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是153,154,155.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要27分钟.则苏老师与公车速度和为问题;苏老师与公车速度差为,因为这时是相遇问题;那么苏老师速度(+),所以苏老师与公车速度比:,,+),公车速度(﹣),苏老师与公车速度比:=520.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是3.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点136.96km.t=﹣,22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有12个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了120元.=,丙占总数的;;﹣﹣)÷,24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是24,最大是72.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现51个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以102次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=81.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有6组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是45:61.29.(2011•成都)甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是乙丙丁甲.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是米/秒.,那么上坡的时间就是,下坡的时间就是;用总路程+)÷,(米故答案为:.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是48.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是123.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的75%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有102座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是600.36.在1到2013这2013个数中,共有51个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是18.38.若整数x满足不等式,则x=3.因为不等式,<3,2,39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是1:3.厘米的圆面积的厘米的圆面积的,圆中,据此40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(4,60).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是18.42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有132天.43.计算:.2+))﹣,)2+)2+),.,2012+.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).的分子、分母同时扩大倍,变成的分子、分母同时扩大倍,变成===﹣=﹣﹣,==++++,==﹣﹣=+,45.如图,在△ABC中,,E,G分别是AD,ED的中点,若△EFG的面积为1,则△ABC的面积是18.中,,且,据此利用分数除法的意义即可解答问题.中,的面积的,÷=1846.如图(1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S1,S2,S3,则S1,S2,S3的大小关系是相等.47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了厘米.。

第十四届希望杯六年级初赛带答案

第十四届希望杯六年级初赛带答案

2021年六年级数学希望杯第一试1、 算121×13+12×2125 2512、2021个2021乘的与 2021个2021乘的相加的和的个位数字是 〔〕。

3、察下面一列数的律,列数从左到右第 100个数是〔 〕。

,3,5,7,9⋯⋯581114.4、a 是1到9中的一个数字,假设循小数=1,a=〔〕。

a5、假设四位数 2ABC 能被13整除,A+B+C 的最大是〔 〕。

6、食堂来一批大米,第一天吃了全部的3,第二天吃了剩下的 2,剩下210千105克,批大米一共有〔〕千克。

7、定a*b=2×{a }+3×{ab},其中符号{x }表示x 的小数局部,如{}=.26那么,*=〔 〕。

【如果用小数表示。

】8、如图,圆柱与圆锥的高的比是4:5,底面周长的比为3:5。

圆锥的体积是250立方厘米,圆柱的体积是〔〕立方厘米。

9、一仓库里堆放着假设干个完全相同的正方体货箱,这堆货箱的三视图如下列图,这堆正方体货箱共有〔〕个。

10、如图,时钟显示 9:15,此时分针与时针的夹角是〔〕度。

11、如图,三张卡片的正面各有一个数,它们的反面分别写有质数m,n,p,假设三张卡片正反两面的两个数的和都相等,那么m+n+p的最小值是〔〕。

12、一个长方体,如果高增加2厘米就成了正方体,而且外表积增加56平方厘米,原来这个长方体的体积是〔〕立方厘米。

13、一个分数,假设分母减1,化简后得1,假设分子加4,化简后得1,这个分数是〔〕。

3214、甲、乙两车同时从A、B两地相向而行,它们相遇时距A,B两地中点8千米,甲车速度是乙车速度的倍,那么A、B两地相距〔〕千米。

15、如下列图的网格图中,猴子KING的图片是由假设干个圆弧和线段组成,其中最大的圆的半径是4,那么阴影局部的面积是〔〕。

【圆周率取3】16、如图,正方形ABCD的边长8厘米,正方形D EFG边长5厘米,那么三角形ACF的面积是〔〕平方厘米。

希望杯第届小学六年级全国数学竞赛题及解答

希望杯第届小学六年级全国数学竞赛题及解答

第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.∙2×1.∙2∙4+1927=________. 4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。

小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。

”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。

”小明和小刚共有玻璃弹球________个。

7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。

这次测验共有________道题。

8.一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字之和的五分之三是________。

9.将一个数A 的小数点向右移动两位,得到数B 。

那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。

11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。

小明的编号是30,他排在第3行第6列,则运动员共有________人。

12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。

则三个面涂漆的小正方体有________块。

13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。

2024年希望杯六年级竞赛数学试卷培训题+答案

2024年希望杯六年级竞赛数学试卷培训题+答案

2024年希望杯竞赛六年级数学培训题1 .计算: .2 . 计算: .3 .计算: .4 .计算:.5 .等式中的和都是自然数,.6 . .7 .的积不到,里最大填 .8 .以表示不超过的最大整数,若要,则自然数的最小值是 .9 .如果正整数使得,则为 .(其中表示不超过的最大整数) 10 .的整数部分是 .11 .不等式,时的解为 ,时的解为 ,时的解为 .12 .甲、乙两个两位数,甲数的等于乙数的,这两个数的和最大是 . 13 .一个三位数加或者乘的结果都是完全平方数,这个三位数是 . (注:一个自然数与自身相乘的积叫做完全平方数.) 14 .已知是数字到中的一个,若循环小数,则.15 .下面竖式中,相同的图标表示相同的数字,不同的图标表示不同的数字.那么,., .17 .将至填入右图的网格中,要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍,已知左右格子已经填有数字和,问:标有字母的格子所填的数字最大是 .18 .各位数字均不大于,且能被整除的六位数共有 个. 19 .八位数(中的数字可重复出现)是的倍数,这样的八位数共有 个.20 .把的所有自然数连写在一起,可以得到这样的一个多位数,它是 位数.21 .某日,可可到动物园里去观赏动物,他看了猴子,熊猫和狮子三种动物,这三种动物的总量在到只之间,根据下面的情况: ①猴子和狮子的总数要比熊猫的数量多, ②熊猫和狮子的总数要比猴子的两倍还多, ③猴子和熊猫的总数要比狮子的三倍还多,④熊猫的数量没有狮子数量的两倍那么多,可知猴子有 只,熊猫有 只,狮子有 只.22 .儿童节的早上,方玲去图书馆看了一会儿书后到游泳馆游泳.她每天去一次图书馆,每天去游泳一次.方玲下一次既到图书馆看书,又到游泳馆游泳的时间是 月 日.23 .五名选手在一次数学竞赛中共得分,每人得分互不相等且都是整数,并且得分最高的选手得了分,那么得分最低的选手至少得 分,至多得 分. 24 .被除余,被除余,被除余的最小两位数是 。

希望杯六年级真题及解析

希望杯六年级真题及解析

第十三届小学“希望杯”全国数学邀请赛六年级第 1 试试题2015 年 3 月 15 日上午 8:30 至以下每题 6 分,共 120 分. 1. 计算:1 + 1 + 1 + 1+ 1 ________. 2 4 8 1632【出处】2015 年希望杯六年级初赛第 1 题【考点】借来还去——分数计算【难度】☆31【答案】 32【解析】原式 =12 + 14 + 18 + 161 + ( 321 + 321 ) - 321= 12 +14 +18 + (161 + 161 ) - 321= 12 + 14 + ( 18 + 18 ) - 321= 12 + ( 14 + 14 ) - 321 =12 + 12 - 321= 1 - 321= 32312. 将 99913化成小数,小数部分第 2015 位上的数字是________.【出处】2015 年希望杯六年级初赛第 2 题【考点】循环小数与分数——计算【难度】☆【答案】1【解析】 99913= 0.013 , 2015 ÷ 3 = 671 2 ,所以数字为 1.13.若四位数2AB7能被13整除,则两位数AB的最大值是________.【出处】2015年希望杯六年级初赛第3题【考点】整除问题——数论【难度】☆☆【答案】97【解析】13 2AB7⇒13AB0+2007,2007÷135,所以AB0÷138 ,13 AB5 ,利用数字谜或倒除法,可确定AB=97。

数字谜方法如下:根据乘积的个位,可确定第二个因数的个位为5,因为构造最大值,所以十位为最大为7,积为9751 3 1 3 1 3⇒ 6 5 6 55 5 9 7 54.若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了________%.【出处】2015年希望杯六年级初赛第4题【考点】分数应用题——应用题【难度】☆☆【答案】37.5a a ⨯1 - 20% ) a 5 5 ⎛ 5 ⎫= ⨯ - ÷ 1 ⨯ 100% = 37.5% 【解析】设原分数为,则新分数为,所以新分数为原分数的⎪b b ⨯(1 + 28% ) b8 8 ⎝ 8 ⎭5. 若a< 1 < a +1 ,则自然数a=________.1 + 1 + 1 + 1 + 12011 2012 2013 2014 2015【出处】2015年希望杯六年级初赛第5题【考点】比较与估算——计算【难度】☆☆【答案】402【解析】设x= 1 x> 1 = 2011 = 402 1 x < 1 = 2015 = 403 ,所1+ 1+1+1+1 1⨯ 51⨯ 52011 2012 2013 2014 2015 2011 2015 以402 1 < x <403, a =4025x 3.14 = 0.14 0.5 = 0.5 ⎧ 2015 ⎫ + ⎧ 315 ⎫ + ⎧412 ⎫ =6. .那么,⎨ ⎬ ⎨ ⎬ ⎬5⎩ 3 ⎭ ⎩ 4 ⎭ ⎩ ⎭ ________.(结果用小数表示)【出处】2015年希望杯六年级初赛第6题【考点】高斯记号与循环小数——计算2【难度】☆☆【答案】1.816⎧ 2015 ⎫ ⎧ 315 ⎫ ⎧ 412 ⎫ 2 3 2【解析】⎨ ⎬ + ⎨ ⎬ + ⎨ ⎬ = + + = 0.6 + 0.75 + 0.4 =1.8164 5 3 4 5⎩ 3 ⎭ ⎩ ⎭ ⎩ ⎭7.甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4.已知丙制作了20件,则甲制作了________件.【出处】2015年希望杯六年级初赛第7题【考点】比例应用题——应用题【难度】☆☆【答案】15【解析】甲制作了总数的30%,乙、丙制作的件数是总数的1-30%=70%,乙、丙制作的件数之比是3:4,则乙做了30%,丙做了40%,则甲:乙:丙= 3 : 3 : 4,甲制作了20÷4⨯3=15(件)。

第八届全国小学六年级“希望杯”奥数试题解析(邀请赛第一试)

第八届全国小学六年级“希望杯”奥数试题解析(邀请赛第一试)

第8届希望杯六年级初赛试题及详解以下每题6分,共120分。

1.计算:(..).128714225139∙-⨯-÷+0=__________。

答案:6.62解:原式 (202181)82388238923866295999=--⨯+=-++=-=()2.将分子相同的三个最简假分数化成带分数后,分别是23a ,34b ,35c ,其中a ,b ,c 是不超过10的自然数,则()2a b c +÷=__________。

答案:344解:23233a a +=,34344b b +=,35355c c +=由题意: 324353a b a +=+=+ 且10a b c ≤、、由435345b c b c +=+⇒= 又10b c ≤、 ∴ 5b =,4c = ∴ 7a = ∴())3275444a b c +÷=(2⨯+÷=3.若用“*”表示一种运算,且满足如下关系: (1)1*11=;(2)()1n +*1(3n =⨯*)1。

则5*1-2*1=___________。

答案:78解:2*1=3*(1*1)=3 3*1=3*(2*1)=9 4*1=3*(3*1)=27 5*1=3*(4*1)=81 ∴原式81378=-=4.一个分数,分子减1后等于23,分子减2后等于12,则这个分数是___________。

答案:56解:设这个分数为22x x +,由已知12323x x x +=⇒= ∴该分数为565.将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是__________。

答案:247解:设原式()()()()100010010abcd efgh a e b f c g d h =-=-+-+-+-其中a ,b ,c ,d ,e ,f ,g ,h 从~29中选择 显然, 7a e -≤-,b f -,c g -,7d h -≤要让这个差最小,则应使1a e -=,7b f -=-,5c g -=-,3d h -=- 即6a =,5e =,2b =,9f =,3c =,8g =,4d =,7h =∴这个计算结果是1000700503247---=6.一个箱子里有若干个小球。

六年级希望杯历届真题

六年级希望杯历届真题

总部地址:长沙市天心区劳动西路 245 号恒力卡瑞尔大厦五楼(贺龙体育馆南门) 3 思齐官网:
读名校 上思齐
【解析】:
如图,连结 DF、CF,那么显然△DHG 与△DHF 同底等高,两者面积相等,我们容易 知道又四边形 BCFD 是平行四边形,由蝴蝶定理可知△DHF 与△BHC 面积相等,那么 阴影部分的面积恰好为正方形 ABCD 的 a 一半即 18 平方厘米。 13.圆柱体的侧面展开,放平,是边长分别为 10 厘米和 12 厘米的长方形,那么这个圆 柱体的体积是________立方厘米。(结果用 π 表示) 【解析】:分两种情况进行分析,若圆柱体的高为 10 厘米,则它的底面积为 米,体积为 积为
二、 解答题(每小题 10 分,共计 40 分)
16.国际统一书号 ISBN 由 10 个数字组成,前面 9 个数字分成 3 组,分别用来表示区域、 出版社和书名,最后一个数字则作为核检之用。核检码可以根据前 9 个数字按照一定的 顺序算得。如:某书的书号是 ISBN 7-107-17543-2,它的核检码的计算顺序是: ①7×10+1×9+0X 8+7×7+1×6+7×5+5×4+4×3+3×2=207; ②207÷11=18……9; .
【解析】:图中共有 4 个不同的数,每个数除以 3 的余数只可能有 0、1、2 三种,根据 抽屉原理可知,这 4 个数中必然至少存在一对同余的数,那么这两个数的差必然为 3 的 倍数,故不存在这样的填法。 19.40 名学生参加义务植树活动,任务是:挖树坑,运树苗。 这 40 名学生可分为甲、乙、 丙三类,每类学生的劳动效率如下表所示。如果他们的任务是:挖树坑 30 个,运树苗 不限,那么应如何安排人员才能既完成挖树坑的任务,又使树苗运得最多?
【解析】:比较一下甲乙丙三人运树苗与挖树坑的效率比: 甲: 20 2 10 ; 1 乙: 10 1.2 8 ; 3 3 丙: 7 0.8 8 ; 4 3 1 由于 10 8 8 ,所以安排运树苗的优先顺序为甲、丙、乙,那么挖树坑的顺序为乙、 4 3

第十届希望杯-六年级-第2试试卷及解析

第十届希望杯-六年级-第2试试卷及解析

第十届小学“希望杯”全国数学邀请赛 六年级 第2试一、填空题(每小题5分,共60分.)1. 计算:=⨯⨯⨯⨯+⨯⨯⨯523221534323514131212. 计算: =+++++++15535256311992135323. 王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是 .4. 在数0.20120415中的小数后面的数字上方加上循环点,得到循环小数,这些循环小数中,最大的是 ,最小的是 .5. 对任意两个数x ,y 规定运算“*”的含义是:yx m yx y x ⨯+⨯⨯⨯=*34(其中m 是一个确定的数),如果1*2 = 1,那么m = ,3*12 = .6.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB 变成向外凸的折线ACDEB,其中C 和E 是AB 的三等分点,C,D,E 三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是 ;经过四次“生长”操作,得到的图形的周长是 .7. 如图3所示的“鱼”形图案中共有 个三角形. 8. 已知自然数N 的个位数字是0,且有8个约数,则N 最小是 .图 1(3)(2)(1)图 29. 李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款489元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是 元,李华共买了 件.10. 如图4,已知AB = 40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是 cm 2.(π取3.14) 11. 快车和慢车同时从甲、乙两地相对开出,快车每小时行33千米,相遇行了全程的74,已知慢车行完全程需要8小时,则甲、乙两地相距 千米.12. 甲、乙、丙三人去郊游,甲买了9根火腿,乙买了6个面包,丙买了3瓶矿泉水,乙花的钱是甲的1312,丙花的钱是乙的32,丙根据每人所花钱的多少拿出9元钱分给甲和乙,其中,分给甲元,分给乙 元.二、解答题(每小题15分,共60分.)每题都要写出推算过程.13. 将1到9这9个自然数中的5个数填入图5所示的圆圈内,使任意有线段相连的两个圆圈内的两数之差恰好等于连接这两个圆圈的线段的条数,图6给出了一种填法,请你再给出两种不同的填法.图 635172图 5答:图 414. 甲、乙二人分别从A、B两地同时出发,相向而行,于C地相遇后,甲继续向B地行走,乙则休息14分钟后再继续向A地行走,甲和乙各自到达B地和A地后立即折返,又在C地相遇,已知甲每分钟走60米,乙每分钟走80米,则A、B两地相距多少米?15. 将100个棱长为1的立方体堆放成一个多面体,将可能堆成的多面体的表面积按从小到大排列,求开始的6个.16. 在m行n列的网格中,规定:由上而下的横行依次为第1行,第2行,…,由左向右的竖列依次为第1列,第2列,….点(a,b)表示位于第a 行、第b列的格点,图7是4行5列的网格.从点A(2,3)出发,按象棋中的马走“日”字格的走法,可达到网格中的格点B(1,1),C(3,1),D(4,2),E(4,4),F(3,5),G(1,5),如果在9行9列的网格中(图8),从点(1,1)出发,按象棋中的马走“日”字格的走法,(1)能否到达网格中的每一个格点?答: .(填“能”或“不能”)(2)如果能,那么沿最短路线到达某个格点,最多的需要几步?这样的格点有几个?写出它们的位置.如果不能.请说明理由.1062参考答案图 8F 图 71、8152、338243、44、大:0.2012041•5 小:0.2•012041•5 5、m = 2 3*12 = 7246、、48;256/37、35个8、309、21元,7件 10、628 11、19812、甲6元 乙3元 13、14、168015、130,160,208,240,250,258 16、能.最多6步(7,9)(8,8)(9,7)(9,9)。

第六届小学“希望杯”全国数学邀请赛六年级第二试及答案

第六届小学“希望杯”全国数学邀请赛六年级第二试及答案

1、如图,大圆直径上的黑点是五等分点,则A 、B 、C 三部分的面积比为 。

3、如图3,梯形ABCD 被它的一条对角线BD 分成了两部分。

△BDC 的面积比△ABD 的面积大10平方分米。

已知梯形的下底与上底的长度之和是15分米,长度之差是5分米。

则梯形ABCD 的面积等于 平方分米。

图34、如图4,ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径。

已知AB =BC =10厘米,那么阴影部分的面积是 平方厘米。

(∏的值取3.14)图4 图5 5、如图5,在一张长方形的纸片内有一个圆洞。

请画一条直线将纸片分成面积相等的两部分。

6、如图6,△ABC 的面积是5平方厘米,AE =ED ,BD =2DC 。

阴影部分的总面积是 平方厘米。

7、如图7中有3个圆A 、B 、C 。

圆A 中的阴影部分面积是圆A 面积的31,圆B 中的阴影部分面积是圆B 面积的21,圆C 中阴影部分面积是圆C 面积的41;如果圆A 和圆B 的总面积等于圆C 面积的32,则圆A 的面积和圆B 的面积之比是 。

8、一个长方形,如果长减少5厘米,宽减少2厘米,那么面积就减少66平方厘米,这时剩下的部分恰好是一个正方形,则原来长方形的面积是 平方厘米。

9、明明、冬冬、兰兰、静静、思思、毛毛六人参加晚会,见面时每两人都要握一次手,当明明握了5次手,冬冬握了4次手,兰兰握了3次手,静静握了2次手,思思握了一次手,毛毛握了 次手。

A BCDE F 图6A BC图7AB CDABCD。

完整word版,六年级“希望杯”全国数学邀请赛答案详细解析

完整word版,六年级“希望杯”全国数学邀请赛答案详细解析

第十五届小学六年级“希望杯”全国数学邀请赛1.计算:=+⨯20161201620152017( ) 2.计算:=⨯-⨯321128574.03.6742851.0&&&&( ) 3.定义:a ☆b=b 1a -,则2☆(3☆4)=( ) 4.如图1所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有( )个点① ② ③④5.已知A 是B 的21,B 是C 的43。

若A+C=55,则A=( )6.如图2所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如195793.1&&,357919.3&&。

在所有这样只有一位整数的循环小数中,最大的是( )7.甲,乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5。

两人共有的邮票张数是( )张8.从1,2,3,........,2016中任意取出n 个数,若取出的数中至少有两个数互质,则n的最小是( )9.等腰∆ABC 中,有两个内角的度数比是1:2,则∆ABC 的内角中,角度最大的可以是( )度10.能被5和6整除,并且数字中至少有一个6的三位数有( )个11.小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的415与每支钢笔的售价相等,则一支钢笔的售价是( )元12.已知x 是最简真分数,若它的分子加a ,化简得31,若它的分母加a ,化简得41,则x=( )13.a ,b ,c 是三个互不相等的自然数,且a+b+c=48,那么a ,b ,c 的乘积最大是( )14.小丽做一份希望杯练习题,第一小时做完了全部的51,第二小时做完了余下的41,第三小时做完了余下的31,这时,余下24题没有做,则这份练习题共有( )道15.如图3,将正方形纸片ABCD 折叠,使点A 、B 重合于O 点,则EFO ∠=( )度16.如图4,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是( )平方厘米17.如图5,将一根10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是( )立方分米18.将浓度为40%的100克糖水倒入浓度为20%的a 克糖水中,得到的浓度为25%的糖水,则a=( )19.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110度;回家时还未到7点,此时时针和分针的夹角仍是110度,则张强外出锻炼身体用了( )分钟20.甲、乙两人分别从A 、B 两地同时出发,相向而行,在c 点相遇。

六年级奥数培优-6年级希望杯第4-10届试题及解答

六年级奥数培优-6年级希望杯第4-10届试题及解答

第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.•2×1.•2•4+ 1927=________.4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。

小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。

”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。

”小明和小刚共有玻璃弹球________个。

7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。

这次测验共有________道题。

8.一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字之和的五分之三是________。

9.将一个数A 的小数点向右移动两位,得到数B 。

那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。

11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。

小明的编号是30,他排在第3行第6列,则运动员共有________人。

12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。

则三个面涂漆的小正方体有________块。

13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有_______个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。小明的编号是30,他排在第3行第6列,则运动员共有________人。
3.1. ×1. +=________.
4.如果a=,b= ,c= ,那么a,b,c中最大的是________,最小的是________.
5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.
6.小明和小刚各有玻璃弹球若干个。小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。”小明和小刚共有玻璃弹球________个。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。则三个面涂漆的小正方体有________块。
13.如下图中,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=____度。
14.如上图右,桌面上有A、B、C三个正方形,边长分别为6,8,10。B的一个顶点在A的中心处,C的一个顶点在B的中心处,这三个正方形最多能盖住的面积是________。
17.根据图a和图b,可以判断图c中的天平________端将下沉。(填“左”或“右”)。
18.甲乙两地相距12千米,上午l0:45一位乘客乘出租车从甲地出发前往乙地,途中,乘客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的 加上未走路程的2倍,恰好等于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是________。
19.明明每天早上7:00从家出发上学,7:30到校。有一天,明明6:50就从家出发,他想:“我今天出门早,可以走慢点。”于是他每分钟比平常少走lO米,结果他到校时比往常迟到了5分钟。明明家离学校________米。
20.某校入学考试,报考的学生中有 被录取,被录取者的平均分比录取分数线高6分,没被录取的学生的平均分比录取分数线低24分,所有考生的平均成绩是60分,那么录取分数线是________分。
六年级奥数培优-年级希望杯第-届试题及解答
———————————————————————————————— 作者:
———————————————————————————————— 日期:

第四届小学“希望杯”全国数学邀请赛六年级第1试
1.2006×2008×( + )=________.
2.900000-9=________×99999.
21.北京时间比莫斯科时问早5个小时,如当北京时间是9:00时,莫斯科时间是当日的4:00。有一天,小张乘飞机从北京飞往莫斯科,飞机于北京时间15:00起飞,共飞行了8个小时,则飞机到达目的地时,是莫斯科时间________。(按24时计时法填几时几分)
22.成语“愚公移山”比喻做事有毅力,不怕困难。假设愚公家门口的大山有80万吨重,愚公有两个儿子,他的两个儿子又分别有两个儿子,依此类推。愚公和他的子孙每人一生能搬运100吨石头。如果愚公是第1代,那么到了第________代,这座大山可以搬完。
1.8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3=________。
2.一个数的比3小 ,则这个数是________。
3.若a=,b= ,c=,则a,b,c中最大的是________,最小的是________。
4.牧羊人赶一群羊过10条河,每过一条河时都有三分之一的羊掉入河中,每次他都捞上3只,最后清查还剩9只。这群羊在过河前共有________只。
5.如下左图所示,圆圈中分别填人0到9这10个数,且每个正方形顶点上的四个数之和都是18,则中间两个数A与B的和是________。
6.磁悬浮列车的能耗低。它的每个座位的平均能耗是汽车的70%,汽车每个座位的平均能耗是飞机的 ,飞机每个座位的平均能耗是磁悬浮列车每个座位平均能耗的______倍。
7.“△”是一种新运算,规定:a△b=a×c+b×d(其中c,d为常数),如5△7=5×c+7×d。如果1△2=5,2△3=8,那么6△1OOO的计算结果是________。
23.一位工人要将一批货物运上山,假定运了5次,每次的搬运量相同,运到的货物比这批货物的 多一些,比 少一些。按这样的运法,他运完这批货物最少共要运________次,最多共要运________次。
24.一批工人到甲、乙两个工地工作,甲工地的工作量是乙工地工作量的1倍,上午在甲工地工作的人数是乙工地人数的3倍,下午这批工人中有在乙工地工作。一天下来,甲工地的工作已完成,乙工地的工作还需4名工人再做一天。这批工人有________人。
参考答案
1
2

4



8
2
9
20/9
2007/2008;2005/2006
20%
16
15


1
16
101/99
2
144

40°
175
13/3л,11/12л
92
17
18
19
20
21
22
23
24

11:03
900
74
18:00
13
7,9
36
第四届“希望杯”全国数学邀请赛 六年级第2试
一、填空题。(每小题4分,共60分。)
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。这个两位数的各位数字之和的五分之三是________。
9.将一个数A的小数点向右移动两位,得到数B。那么B+A是B-A的_______倍.(结果写成分数形式)
15.如下图左,从正方形ABCD上截去长方形DEFG,其中AB=1厘米,DE=厘米,DG= 厘米。将ABCGFE以GC边为轴旋转一周,所得几何体的表面积是________平方厘米,体积是_____立方厘米。(结果用π表示)
16.上图右是小华五次数学测验成绩的统计图。小华五次测验的平均分是________分。
相关文档
最新文档